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Abstract 

Our aim was to investigate the three-dimensional (3D) vortex ring in the wake of a tail fin and to 

clarify the propulsion mechanism of dolphins and fish. In this study, we replaced a tail fin in 

pitching motion with an oscillating wing having a drive unit. The flow fields around the wing were 

measured by stereoscopic particle image velocimetry. To visualize the 3D structure of the vortex 

in the wake, we determined the flow fields in equally spaced cross-sectional planes. We 

reconstructed the 3D velocity fields from the velocity data with three components in two 

dimensions. We visualized the 3D vortex structure from these velocity data and plotted an iso-

vorticity surface. As a result, we found that the vortex ring was generated by the kick-down and 

kick-up motions of the wing and that the wake structure was comparable with that obtained 

numerically. Moreover, we calculated the propulsive forces from the temporal variations in 

circulation and in the area surrounded by the vortex ring. 

1 Introduction 

Aquatic animals swimming at high speeds in water, such as dolphins, achieve 

high propulsive efficiency. However, the hydrodynamic mechanism of dolphins is 

not clear because an analytical approach to large-scale wing oscillation has not yet 

been established. It is difficult to analyze the flow field around these wings 

because of the complexity resulting from its three-dimensionality and 

unsteadiness. 

 

Many experiments and numerical calculations have been conducted to clarify the 

relationship between the flow field around a swimming fish and its propulsive 

force (see Triantafyllou et al., 2004 for a review of studies published before 

2004). In earlier studies, the main concern was to gain insight into the two-

dimensional (2D) flow of an oscillating wing using numerical simulations and 

experiments (see Anderson et al., 1998). A highly important discovery was that 
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unsteady mechanisms play a very important role. High values of the lift 

coefficient were found to be associated with the formation of a leading-edge 

vortex with a large scale per half-cycle, resulting eventually in the formation of a 

reverse Karman street. The appearance of the vortex street was found to be 

strongly related to a nondimensional parameter called the Strouhal number. 

Studies of oscillating wings made of rigid material were extended to flexible 

wings (Alben, 2009), and the conditions that yielded the maximum power output 

or high efficiency were also discussed. The importance of such large-scale 

vortices was also recognized in relation to a dynamic stall or high-lift mechanism 

in an accelerated flow or to translating bodies such as an aerofoil with a large 

angle of attack (Izumi and Kuwahara., 1983; Morikawa and Grönig, 1995; Soria 

et al., 2003; Troolin et al., 2006; Sengupta et al., 2007).  

   

Müller et al. (1997) analyzed the wake behind a continuously swimming mullet 

by using particle image velocimetry (PIV); they found that undulatory oscillation 

of the body generated less than half of the total energy, and the remainder was 

generated by the tail. Drucker and Lauder (1999) reconstructed the wake structure 

of the pectoral fin of a bluegill sunfish based on PIV data and also estimated the 

thrust and lift due to the fin. Nauen and Lauder (2002) measured the flow field 

around the tail fin of a swimming mackerel from various directions using PIV and 

predicted the structure of the continuous vortex rings formed in the fin wake from 

the measured velocity data in each plane. They also estimated the propulsive force 

by postulating vortex ring formation. Wolfgang et al. (1999) performed three-

dimensional (3D) numerical calculations using a computational model based on a 

fish body shape together with a fin; they concluded that for the flow field around 

the fish, a 2D approximation is possible in the horizontal plane, but the three-

dimensionality is high in the vertical plane and was highest near the fin tip. They 

solved the interaction of the body-generated vorticity with a strong wake shed 

from the tail fin by assuming the flow to be irrotational, with the exception of thin 

wakes.  

 

In addition to studies of real fish, model experiments or numerical simulations 

have been conducted, focusing on the unsteady dynamics produced by an 

oscillating wing with a finite span. A straightforward and simpler method of 
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observing the 3D structure of the wake is to use streak lines visualized using dye 

(von Ellenrieder et al., 2003; Parker et al., 2005; Buchholz and Smits, 2006; 

Buchholz and Smits, 2008). Very complex structures of the unsteady and 3D 

characteristics were proposed as a three-dimensional vortex skeleton. However, 

many researchers (Hama, 1962; Coutanceau and Defaye, 1991; von Ellenrieder et 

al., 2003) noted the limitations of this method in applications to unsteady flows. 

To test the interpretation of the wake structure found by dye-flow observations, 

many of these authors conducted planar measurements using PIV (Parker et al., 

2005; Buchholz and Smits, 2006; Parker et al., 2007b; Buchholz and Smits, 

2008).  

 

In addition to experimental studies, numerical analysis is becoming a powerful 

tool for analyzing the wake structure behind or around a 3D oscillating wing 

(Blondeaux et al., 2005; Dong et al., 2006). These researchers visualized the wake 

structure by drawing the contour of the vorticities in detail. However, no 3D 

results have been obtained experimentally for comparison with the structure 

constructed numerically.  

  

Using a quite different approach, Gharib and others proposed a new idea that 

would lead to an optimal condition for vortex ring generation based on a piston-

nozzle model; they discussed the condition by introducing a new parameter, the 

formation number (Gharib et al., 1998; Dabiri and Gharib, 2005; Linden and 

Turner, 2004). Although the kinematics of the original model differs from that of 

generation by an oscillating wing, this concept may illuminate the optimal 

condition for high-efficiency vortex ring generation in an oscillating wing. 

 

These studies improved our understanding of the tail fin propulsion mechanism. 

However, either the flow fields were predicted from only 2D velocity data or there 

was no experimental evidence indicating their 3D structure. Therefore, our aim 

was to visualize the 3D vortex structure in the wake of a tail fin and to investigate 

the relationship between vortex ring formation and the propulsive force. We 

conducted 3D measurements using the stereoscopic particle image velocimetry 

(stereo-PIV) (Prasad and Adrian, 1993) of an oscillating wing with a drive unit. 
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We visualized the vortex structure using experimental data and calculated the 

propulsive force from the circulation and area of the vortex ring. 

 

2 Methods 

Experiments using live animals encounter severe problems with individual 

differences and repeatability. Therefore, we replaced a tail fin in a pitching motion 

with an oscillating wing having a drive unit. The unit has a function of 

transforming from rotational motion to oscillation via a crank mechanism. A 

schematic of the experimental setup is shown in Fig. 1. Experiments were 

conducted in a water tunnel having a length of 4.6 m, a span of 2.0 m, and a depth 

of 1.2 m, with a glass-windowed observation section. The water temperature was 

set to 27 °C (density ρ = 0.997 g/cm3). The flow field was observed and 

illuminated through glass windows on both sides of the water tunnel. The pitching 

angle and frequency of the wing drive unit could be arbitrarily adjusted. In this 

experiment, x denotes the direction of flow, y denotes the span direction of the 

tunnel, and z denotes the height. 

 

The flow in the water tank was visualized using seeded nylon particles (Daicel-

Evonik, DAIAMID, Polyamide12, diameter of 100 μm, specific gravity of 1.03). 

The responses of the particles in an oscillating flow were confirmed to be reliable 

in a 1 kHz frequency range. A laser sheet 8 mm in thickness produced by a 

double-pulsed Nd:YAG laser (New Wave Research, Solo 120XT, 15 Hz) 

irradiated the y–z plane from the side of the tunnel. Two CCD cameras (Kodak, 

ES1.0, 1008 pixels × 1024 pixels, 30 fps), referred to as CCD cameras 1 and 2 in 

Fig. 1, were placed on either side of the tunnel to capture images of the particles. 

The angle between the optical axes of the two cameras was set to about 90°, and 

lenses were mounted so as to satisfy the Scheimpflug condition (Prasad and 

Jensen, 1995). Two prism containers made of acrylic and filled with water were 

placed outside the tunnel and used to make the optical axis perpendicular to the 

air–tank interface. 

 

Data capture was controlled by a rotary encoder (Ono Sokki, LG-916) and a pulse 

generator (Quantum Composers, Inc., 9314). The encoder detected the rotational 
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position of the rotating disk in the drive unit and output the digital signal by 

dividing it into 24 segments at equal time intervals for a pitching motion cycle. 

The output signal was forwarded to the pulse generator. A trigger signal was then 

sent from the output of the pulse generator to the laser oscillator and the CCD 

cameras. The images captured by these CCD cameras were stored in the host 

memory of a PC via image grabbers (Coreco Imaging, Inc., PC-DIG). 

 

We used a stereoscopic PIV system built in-house that includes data acquisition 

and a method of determining the velocity fields. The data acquisition and analysis 

methods are described in detail in Sakakibara et al. (2004) together with the error 

estimation. The stereo-PIV measurement region was set to about 600 mm × 500 

mm in the y-z plane. All the three components of velocity were determined 

completely at points spaced at 10 mm (= ∆y = ∆z) in the plane. To capture the 3D 

vortex structure in the wake, we measured the flow fields of many equally spaced 

cross-sections. We changed the measurement plane by moving the system of the 

oscillating wing in the direction normal to the laser sheet, instead of moving the 

optical system, because it was difficult to position the system exactly. The 

measurement planes are shown in Fig. 2. Thirty-one cross-sections were measured 

by moving the wing system up to 600 mm in 20 mm (= ∆x) steps in the upstream 

direction (negative x direction). The movement was carried out manually, in a 

careful manner. The positioning accuracy was less than 0.5 mm. This value is 

considerably small compared to the position uncertainty of the cross-correlation 

method. Among the planes, the plane 100 mm from the tips of the wing was 

chosen as a basis. Then, 480 image pairs (20 image pairs × 24 phases) were taken 

at each cross-section. The velocities were determined in each y-z plane using two 

particle images taken at two instants at an interval of 2.5 ms. Moreover, 

unsynchronized fluctuations were removed by phase-averaging over 20 pitching 

cycles. 

 

The physical coordinates and the corresponding coordinates on the image plane 

were calibrated as follows. A calibration plate consisting of a 10 × 10 mm2 lattice 

was used to completely calibrate the y-z coordinates of the lattice points. Other 

points were interpolated using polynomials. For calibration in the x direction, the 

same lattice was used on the plane 10 mm away from the first one. The movement 
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accuracy of the lattice plate was achieved by a programmable stepping motor. Our 

measurement system was the same as that described in Sakakibara et al. (2004), 

and research conducted with the same system, including a large facility such as 

the water tunnel, has already been published (Matsuuchi et al., 2009). We 

followed the same procedure with no modifications. The corresponding 

uncertainty of the velocity measurement was estimated by assuming the subpixel 

accuracy of the particle displacement measurement to be 0.1 pixels. The estimated 

uncertainty was 26 mm/s for the w component and 39 mm/s for both the u and v 

components. The errors were 5.2% and 7.8%, respectively, relative to a uniform 

velocity of 500 mm/s. The vorticity was estimated by substituting the space 

derivatives of the velocities with their central difference at intervals of 20 mm (= 

∆x) in the x direction and 10 mm (= ∆y = ∆z) in the two remaining directions. The 

central difference had second-order accuracy. The finite-difference approximation 

error is estimated to be at most on the order of 10-3, which is negligibly small 

compared with the error in the cross-correlation method. 

 

The shape and material of the wing set up in the unit are shown in Fig. 3. The 

wing was made of laminated carbon-fiber-reinforced plastic (CFRP), and its 

design was based on the form of a 1.2 m long fish swimming with carangiform 

motion (Breder, 1926). To improve the elasticity, the thickness of the wing was 

varied by using a laminated construction that became thinner from the root toward 

the tip. The laminated form has been continually revised for over ten years at the 

Musashi Institute of Technology in Japan. We studied this laminated wing and 

estimated the flexibility of the wing, whose design was propriety, by measuring 

the tip displacement of the wing. As shown in Fig. 3, the stepwise change in 

thickness is 0.3 mm at maximum. According to the laminar boundary theory, the 

thickness at 80=x  mm is about 2 mm. The steps were completely within the 

boundary layer. Accordingly, the effect of discrete changes may not greatly affect 

the total flow field. 

 

A schematic of the pitching motion of the wing and its drive unit is shown in Fig. 

4. In the holding part of the wing, there is an asymmetry between the upper and 

lower sides. This asymmetry may affect the structure of wakes in the kick-up and 

kick-down. The pitching angle θp measured from the horizontal plane (z = 0) was 
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positive for counterclockwise rotation and negative for clockwise rotation. 

Moreover, the pitching angles of the upper and lower dead points are designated 

as θa and - θa, respectively. The distance between the upper and lower dead points 

at the wing tip in pitching motion was denoted as the double amplitude a (see Fig. 

4). 

 

The oscillating wing was set at a depth of 500 mm below the surface. The Froude 

number was 0.226 on the basis of a uniform velocity and depth. The effect of the 

free surface on the flow was estimated and was confirmed to be negligible. The 

experimental conditions were selected according to those of a live animal. The 

Strouhal number St is defined here as 

0

p

U
af

St = , (1) 

where fp is the pitching frequency, and U0 is the flow velocity of the water tunnel. 

Taylor et al. (2003) estimated the Strouhal number for fish and found that it 

ranged from 0.2 to 0.4, irrespective of the size and swimming method. Therefore, 

experiments were conducted under the following conditions: U0 = 0.5 m/s, fp = 1.0 

Hz, and θa = 15° (a = 0.195 m), with St = 0.39. The Reynolds number was 

estimated to be 1.6 × 105 for water at 27 °C using the chord length as a 

characteristic length and the uniform velocity as a characteristic velocity. 

Furthermore, to investigate the relationships between the variation in propulsive 

force and the flow field, we conducted further measurements with θa = 20° and 

25°. The experimental conditions are summarized in Table 1. 

 

To determine the fin flexibility quantitatively, we measured deflections of the fin 

tip in the period immediately after the transition from kick-up to kick-down. The 

measured deflection at the tip was 51.2 mm for the pitching angle θa = 15°. The 

corresponding value for θa = 25° was calculated as 71.6 mm.. 

 

3 Visualization of the 3D vortex structure 

Temporal variations in the pitching motion were investigated as a function of the 

dimensionless time, determined by the product of the time and the pitching 
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frequency, t* ( pft ⋅= ). The upper dead point was assumed to be t* = 0, and the 

lower dead point was assumed to be about t* = 0.5. 

 

We reconstructed the 3D velocity fields from the velocity data with three 

components in two dimensions obtained by stereo-PIV. Three components of the 

vorticity, ωx, ωy, and ωz, and the absolute value |ω|, defined as 

222
zyx ωωωω ++= , (2) 

were calculated from the reconstructed velocity data. As noted by Adrian et al. 

(2000), a shear layer would make the vortex shape unclear. A quick way of 

avoiding this difficulty is to use an isosurface of the swirling strength instead of 

that of the vorticity strength. However, because the vortex is not weak enough to 

be cleared away by the shear layer, as numerical results have clearly indicated 

(see Blondeaux et al., 2005; Dong et al., 2006), we selected the isosurface of the 

vorticity to visualize the 3D vortex structure. The vortex structures created by 

kick-down and kick-up for θa = 15° at t* = 0.45 and 0.95 are shown in Figs. 5 (a)–

(c) (an animation is provided in Online Resource 1). In these figures, we show the 

isosurface of the vorticity for |ω | = 10 s-1, (a) the isosurface in x–y–z space, (b) the 

isosurface and streamline in the central plane of the wing (in the x–z plane, y = 0) 

viewed from the side, and (c) the isosurface and streamline in the horizontal plane 

(in the x–y plane, z = 0) viewed from the top. The left-hand panel of Fig. 5 shows 

the vortex structure just before the wing reaches the lower dead point by kick-

down at t* = 0.45. In the process leading up to this time, the vortex ring generated 

by kick-up in the preceding cycle is shed, and a new vortex ring is formed by 

kick-down in the current cycle. Conversely, the right-hand panel of Fig. 5 shows 

the vortex structure just before the wing reaches the upper dead point, and a new 

vortex ring is formed by kick-up at t* = 0.95. These figures also show that these 

vortex rings connected with each other in the back and front. In Figs. 5 (b) and 

(c), it is clear that a type of jet flow passed through in the vortex ring generated by 

the wing motion. Hence, it was thought that a zigzagging jet flow, which passed 

sequentially through two types of vortex rings, occurred in the pitching motion. A 

slight asymmetry between the kick-up and kick-down motions can particularly be 

observed in Fig. 5 (b). The asymmetry may have resulted from the motion of the 

upstream part of the wing including the holding part (see Fig. 4). 
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The result for the three components of the vorticity, ωx, ωy, and ωz, extracted from 

the 3D vortex structure of Fig. 5 are shown in Figs. 6 (a)–(c), respectively (an 

animation is provided in Online Resource 2). These figures show the isosurfaces 

of the vorticity for ±10 s-1; positive vorticity appears in red, and negative vorticity 

appears in blue. In these figures, θa = 15° at t* = 0.45 and 0.95, as shown in Fig. 5.  

 

From Fig. 6 (a) for ωx, it is clear that a pair of trailing vortices with positive and 

negative signs was released by kick-down and kick-up. From Fig. 6 (b), it is clear 

that ωy was highly 2D over the wingspan. In this figure, the vorticity component 

ωy due to wing motion took negative and positive values in kick-down and kick-

up, respectively. Such a series of vortices ωy with positive and negative signs is 

known to form a reverse Karman vortex street (Anderson et al., 1998; 

Triantafyllou et al. 2000). In comparison to the other rotational components, the 

vorticity component ωz was scarcely discernible near the wing [Fig. 6 (c)]. 

 

We confirmed that the reverse Karman vortex street (ωy) is connected with the 

trailing vortex (ωx), and the wing wake as a whole forms a vortex ring, as shown 

in Fig. 5. We visualized the vortex structure in the wing wake on the basis of the 

experimental data obtained by stereo-PIV, although so far the wake structure has 

been deduced from the results of 2D PIV. 

 

Geometric similarities were found between our reconstructed vortex structure and 

the numerical results of Blondeaux et al. (2005) and Dong et al. (2006). Dye flow 

visualization with streak lines also shows that the wake vorticity is dominated by 

a single pair of intense counter-rotating vortices. However, each member of the 

vortex pair consists of two smaller co-rotating vortices (Parker et al., 2007a). In 

addition, the vortex structure obtained by dye-flow visualization (Buchholz and 

Smits, 2006; Buchholz and Smits, 2008) is more complex than that we obtained 

by our PIV measurement. For example, two smaller co-rotating vortices (Parker et 

al., 2007a) were not discerned in the wake just behind the wing. Dye flow 

visualization is a useful means of obtaining an overall picture of the 3D flow 

structure. However, many researchers have noted the limitations of this method in 

applications to unsteady flows and the possibilities for misunderstanding the 
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unsteady characteristics (Hama, 1962; Coutanceau and Defaye, 1991; von 

Ellenrieder et al., 2003).  

 

4 Propulsive force based on vortex ring 

4.1 Estimation of propulsive force 

To clarify the relationship between the vortex ring in the wing wake and the 

propulsive force in wing motion, we calculated the force using the temporal 

variations in the momentum of a vortex ring (Milne-Thomson, 1966). The 

momentum is derived from the “impulse” (Lamb, 1932) and in this case has the 

form 

AΓM ρ= , (3) 

where Γ is the circulation along a closed loop of a vortex filament of the vortex 

ring, A is the area surrounded by a vortex ring, and ρ is the density of the fluid. A 

similar approach has been used by many authors (for example, Dickinson, 1996; 

Drucker and Lauder, 1999; Sane, 2003). The force F resulting from the formation 

of the vortex ring is obtained by differentiating Eq. 3 with respect to time 

according to Newton’s second law of motion: 

( )AΓ
t

F
d
dρ= . (4) 

Eq. 4 can be rewritten by taking into account the temporal changes in both the 

ring circulation and ring area (Dickinson, 1996): 







 +=

t
ΓA

t
AΓF

d
d

d
dρ . (5) 

Here, considering only the component of the propulsive force, from Eq. 5, we 

obtain 









+=

t
ΓA

t
A

ΓF yz
yz

x d
d

d
d

ρ , (6) 

where Ayz is the area projected in the y–z plane of area A. To determine Fx from 

Eq. 6, the temporal changes in Γ and Ayz have to be calculated from the 

development of a vortex. 
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Fig. 7 illustrates a method for calculating the circulation Γ. The circulation was 

estimated by choosing, as a typical value, the vorticity ωy in the central plane of 

the wing, i.e., in the x–z plane (y = 0). We integrated over the area of ωy ≤  0 in 

kick-down and over that of ωy ≥  0 in kick-up because ωy has a negative value in 

kick-down and a positive value in kick-up, as shown in Fig. 6 (b). Note that the 

vortex in the previous pitching cycle was not included in the integration. The 

integration range in the x direction was limited to 0 ≤  x ≤  xmax + 0.2 m, where 

xmax is the x coordinate at which ωy peaks in the plane. In the left and right panels 

of Fig. 7, the two integration ranges are identified by blue and red frames, 

respectively. 

 

Fig. 8 shows a method for calculating the area Ayz. The area was calculated first 

by finding the points lying on a vortex filament and then by defining the polygon 

connecting these points on the filament. First, we defined an angle θw that 

measured the direction viewed from the midpoint of the line connecting the two 

wing tips, as shown in Fig. 8 (a). Next, the point giving the peak of |ω| in the 

plane θw = 0° was found. If the plane differed from the lattice position of the 

experimental data, a linear interpolation of |ω| was made. A similar procedure was 

then carried out by moving θw by 10° increments in the range 10° ≤  θw ≤  180°. 

In Fig. 8 (a), the detected points are depicted by red circles. Finally, we 

determined the vortex ring area by connecting the detected points, as shown in 

Fig. 8 (b), and calculated Ayz by projecting the area to the y–z plane, as shown in 

Fig. 8 (c). Note that the plane surrounded by a vortex ring exchanges inside out 

sequentially in kick-down and kick-up. The sign of the area Ayz was defined as 

negative in kick-down and positive in kick-up. 

 

4.2 Calculated circulation and area of the vortex ring, and propulsive 
force 

The calculation results for the circulation Γ are shown in Fig. 9. The horizontal 

axis represents the dimensionless time t*, and the vertical axis denotes the 

circulation. The wing acceleration (at an arbitrary scale) is also drawn for 

convenient interpretation. The magnitude of Γ increases with time and then 
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becomes constant near t* = 0.3 and 0.8, where the wing lies almost in the 

horizontal plane. Therefore, we speculate that Γ increases in the time period when 

the wings are accelerating and then becomes constant in the time period when the 

wings are decelerating in a pitching motion. In Fig. 9, the temporal variations in 

the wing acceleration, 

td
d

td
d p

p

θ
α = ,  (7) 

were drawn at an arbitrary scale for convenience. This means that the wing 

deceleration did not contribute to vortex generation. The visualization shows that 

vortices were shed at the instant the wing was near the upper or lower dead point. 

The vortices form a reverse Karman vortex street. In this respect, the video 

(Online Resource 2) is helpful for understanding the situation. Moreover, because 

the increase in Γ becomes more remarkable as the pitching amplitude θa is 

increased, it is probable that the increase in Γ becomes more remarkable as the 

wings accelerate. 

 

The time variations in the area Ayz are shown in Fig. 10. The horizontal axis 

represents the dimensionless time t*, and the vertical axis denotes Ayz. No data 

were plotted during the transient period of the wing from kick-up to kick-down 

and vice versa because of the difficulty in determining the area. In this figure, Ayz 

begins to increase about 0.1 later than the instant at which the direction of the 

wing motion changes. The increase rate of Ayz is large when the pitching 

amplitude θa is large. It is plausible that as the wing moves further, the trailing 

vortex leaving both edges of the wing becomes longer, so a long vortex ring is 

formed. 

 

Substituting the circulation Γ and the area Ayz in Eq. 6, we can calculate the 

propulsive force Fx, as shown in Fig. 11. The horizontal axis measures the 

dimensionless time t*, and the vertical axis denotes Fx. The latter has two peaks in 

a pitching cycle; they occur at the instants t* = 0.3 and 0.8, which is just when the 

wing is almost in the horizontal plane. The reason is that the speed of the wing is 

highest at these instants. Moreover, Fx becomes larger when pitching amplitude θa 

is larger. The force variations are different from that calculated by Parker et al. 

(2007a), who showed that the peaks in the force appear at the instants 8/3* =t  
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and 8/7* =t  using a formula commonly used for steady flows. It is not clear 

whether the difference arises from the use of the formula or from differences due 

to the kinematic conditions. 

 

Note that the calculated Fx could have a larger value than the actual propulsive 

force measured separately. The cause may lie in the determination of the 

circulation Γ. In this study, Γ was evaluated as a typical value of the vorticity ωy 

in the central plane of the wing, i.e., in the x–z plane at y = 0. However, it is 

doubtful that Γ is constant along the circumference of the vortex ring. It is 

probable that the circulation calculated in the central plane is largest on the 

circumference of the vortex ring. Therefore, the circulation at other positions on 

the circumference of the vortex ring will be discussed in the next section. 

 

5 Discussion 

First, we discuss the 3D effect on a vortex ring. In many investigations reported to 

date, 3D flow structures have been reconstructed using 2D data obtained in one 

plane under a certain condition. We attempted to check the validity of this method 

by reconstructing the 3D vortex structure in the wing wake using 2D PIV data 

obtained in the y–z plane. We arranged time series data in the hypothetical x 

direction (the flow direction) using Taylor’s frozen-flow hypothesis (Taylor, 

1938) and obtained 3D spatial data. To reconstruct the 3D wake structure from the 

2D data, we introduce the hypothetical coordinate x*, defined as  

tUx ⋅= c
* , (8) 

where Uc is the convection velocity estimated by averaging the axial velocity u 

spatially and temporally.  

 

The 3D vortex structure thus obtained is shown in Fig. 12 (an animation is 

provided in Online Resource 3). The vortex structure was built with the data in the 

y–z plane at x = 0.3 m from the wing tip. The isosurface of the vorticity for |ω| = 

10 s-1 is depicted for θa = 15° at t* = 0.95, as in the right-hand panel in Fig. 5. 

There are clearly two differences between Figs. 12 and. 5. The first is that the 

vortex spreading in the z direction seen in Fig. 5 (b) is not as large as that in Fig. 
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12 (b). The second is that the shrinking of the vortices into the centerline seen in 

Fig. 5 (c) is scarcely detectable in Fig. 12 (c). The vortex ring seems to flow 

downstream while maintaining a constant diameter. Therefore, it is concluded that 

the vortex structure in the real wing wake cannot flow downstream with a fixed 

shape once generated; thus, it seems to be difficult to correctly determine its 

structure using only 2D data obtained in a fixed plane. 

 

In the previous section, the circulation Γ was determined only in the central plane. 

To evaluate the momentum of a vortex ring in the wing wake in more detail, the 

circulation around the vortex rings at points other than the point in the central 

plane should be calculated. Fig. 13 illustrates how to calculate this circulation. 

Here, only the circulation near the middle of the trailing vortices was calculated as 

an example. All the variations along a ring were impossible to calculate because 

the vortices overlapped. 

 

We first define a unit tangent t. On the vortex filament, we consider two position 

vectors close to each other, s and s + ds. The unit vector is then defined by t = 

ds/ds (ds = |ds|). The vector is expressed as (sinθt cosφt, sinθt sinφt, cosθt), where 

φt and θt are the azimuthal and polar angles, respectively [see Fig. 13 (a)]. Two 

tangent vectors corresponding to θw = 20° (left-hand side of the wing, LH) and 

160° (right-hand side of the wing, RH) on the vortex filament are shown in Fig. 

13 (a). Next, we consider two planes perpendicular to the tangent vectors that pass 

through the points θw = 20° and 160°, as shown in Fig. 13 (b). In calculating the 

circulation on both sides of the wing, the integration is performed in the left and 

right planes separately. The component of the vorticity ω = (ωx, ωy, ωz) normal to 

the plane, ω*, is calculated as t⋅=  ω*ω . Finally, the circulation Γ was obtained 

by integrating ω* in each plane, as shown in Fig 13 (c). Note that ω* ≤  0 in kick-

down, and ω* ≥  0 in kick-up, as shown in Fig. 7. 

 

The results of the circulation Γ are summarized in Table 2. They were estimated at 

the same instants as those shown in Fig. 5. Table 2 shows that the circulation Γ in 

the left-hand and right-hand planes was about 54% smaller in kick-down and 66% 

smaller in kick-up than those in the central plane. Therefore, if we assume that the 

value increases at a fixed rate from the wing tip toward the central plane of the 
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wing, the propulsive force Fx shown in Fig. 11 would be overestimated by about 

30% in kick-down and 20% in kick-up motion. 

 

Last we mention about the formation time proposed by Gharib et al. (1998). 

According to Linden et al. (2004), the formation time corresponds to the inverse 

Strouhal number, 

.00

a
TU

af
U

p

=  (9) 

This is a formal adaption of plug aspect ratio. Note that the vortex rings are 

oblique to the main flow and the generation of them occupies a half of the entire 

oscillating periodT , it is plausible to replace the double amplitude a  with 

)sin( ra α and T with 2/T , where )32( ≅rα  is an angle of attack of the slanted 

vortex ring. Hence we have the formation time of 2.4 for our oscillating wing. 

This value may be comparable to that for an optimal formation condition of a 

vortex ring. 

 

6 Conclusions 

We aimed to clarify the relationship between the flow field around a tail fin and 

the propulsive force by conducting 3D measurements of the wing wake in a water 

tunnel using stereo-PIV and an oscillating wing with a drive unit. We then 

visualized and determined the 3D structure of vortex ring formation in the wing 

wake on the basis of the experimental data. We demonstrated that the wake 

consists of a series of a vortex pairs of intense counter-rotating vortex rings, and 

each vortex ring consists of a trailing vortex and reverse Karman vortex. The 

reconstructed structure of the wake is very close to that obtained in numerical 

simulations. We also showed that 3D structures based on 2D data do not describe 

the vortex characteristics correctly. Moreover, we calculated the propulsive forces 

arising from vortex ring formation. We then found that the circulation Γ in kick-

down first increases as a function of time and then becomes constant after about t* 

= 0.3, when the wing is almost in the horizontal plane. The circulation in kick-up 

also increases first and becomes constant after about t* = 0.8. It also followed that 

the rate of increase in Ayz is large for a large pitching amplitude θa. The propulsive 

15 



forces resulting from vortex ring formation were estimated and demonstrated two 

peaks in each pitching cycle, which is inherent in the formation of a vortex ring. 

 

Acknowledgments 

This study was supported by a Grant-in-Aid for Challenging Exploratory Research (23650383) 

from the Japan Society for the Promotion of Science. The authors thank Professor Jun Sakakibara 

of the University of Tsukuba for providing many useful comments and the technical support for 

using the PIV measurement system. The authors also thank the reviewers for insightful comments 

and the editor for helpful guidance. 

References 

Adrian RJ, Christensen KT, Liu Z-C (2000) Analysis and interpretation of instantaneous turbulent 

velocity fields. Exp. Fluids 29: 275–290 

Alben S (2009) Simulating the dynamics of flexible bodies and vortex sheets. J. Comput. Phys. 

228: 2587–2603 

Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS (1998) Oscillating foils of high 

propulsive efficiency. J. Fluid Mech. 360: 41–72 

Blondeaux P, Formarelli F, Guglielmini L, Triantafyllou MS, Verzicco R (2005) Numerical 

experiments on flapping foils mimicking fish-like locomotion. Phys. Fluids 17(113601) 

Breder CM (1926) The locomotion of fishes. Zoologica 4: 159–297 

Buchholz JHJ, Smits AJ (2006) On the evolution of the wake structure produced by a low-aspect-

ratio pitching panel. J. Fluid Mech. 546: 433–443 

Buchholz JHJ, Smits AJ (2008) The wake structure and thrust performance of a rigid low-aspect-

ratio pitching panel. J. Fluid Mech. 603: 331–365 

Coutanceau M, Defaye AY (1991) Circular cylinder wake configurations: A flow visualization 

survey. App. Mech. Rev. 44: 255–305 

Dabiri JO, Gharib M (2005) The role of optimal vortex formation in biological fluid transport. 

Proc. Roy. Soc. B272: 1557–1560 

Dickinson MH (1996) Unsteady mechanisms of force generation in aquatic and aerial locomotion. 

Am. Zool. 36: 537–554  
Dong H, Mittal R, Najjar FM (2006) Wake topology and hydrodynamic performance of low-

aspect-ratio flapping foils. J. Fluid Mech. 566: 309–343  
Drucker EG, Lauder GV (1999) Locomotor forces on a swimming fish: Three-dimensional vortex 

wake dynamics quantified using digital particle image velocimetry. J. Exp. Biol. 202: 2393–2412 

Gharib M, Rambod E, Shariff K (1998) A universal time scale for vortex ring formation. J. Fluid 

Mech. 360: 121–140 

Hama FR (1962) Streaklines in a perturbed shear flow. Phys. Fluid 5: 644–650 

16 



Izumi K, Kuwahara, K (1983) Unsteady flow field, lift and drag measurements of impulsively 

started elliptic cylinder and circular-arc airfoil. AIAA Paper 83–1711 

Lamb H (1932) Hydrodynamics, sixth edn. Cambridge Univ. Press 

Linden PF, Turner JS (2004) ‘Optimal’ vortex rings and aquatic propulsion mechanisms. Proc. 

Roy. Soc. B271: 647–653 

Matsuuchi K, Miwa T, Nomura T, Sakakibara J, Shintani H, Ungerechts BE (2009) Unsteady flow 

field around a human hand and propulsive force in swimming. J. Biomech. 42: 42–47 

Milne-Thomson LM (1966) Theoretical aerodynamics. Macmillan, New York  

Morikawa K, Grönig H (1995) Formation and structure of vortex systems around a translating and 

oscillating airfoil. Z. Flugwiss. Weltraumforsch. 19: 391–396 

Müller UK, van den Heuvel BLE, Stamhuis EJ, Videler JJ (1997) Fish foot prints: morphology 

and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso). J. 

Exp. Biol. 200: 2893–2906 

Nauen JC, Lauder GV (2002) Hydrodynamics of caudal fin locomotion by chub mackerel, 

Scomber japonicus (Scombridae). J. Exp. Biol. 205: 1709–1724  
Parker K, von Ellenrieder KD, Soria J (2005) Using stereo multigrid DPIV (SMDPIV) 

measurements to investigate the vortical skelton behind a finite-span flapping wing. Exp. Fluids 

39: 281–298 

Parker K, Soria J, von Ellenrieder, KD (2007a) Thrust measurements from a finite-span flapping 

wing. AIAA J. 45(1): 58–70 

Parker K, von Ellenrieder KD, Soria J (2007b) Morphology of the forced oscillatory flow past a 

finite-span wing at low Reynolds number. J. Fluid Mech. 571: 327–357 

Prasad AK, Adrian RJ (1993) Stereoscopic particle image velocimetry applied to liquid flows. 

Exp. Fluids 15: 49–60 

Prasad AK, Jensen K (1995) Scheimpflug stereocamera for particle image velocimetry in liquid 

flows. Appl. Opt. 34: 7092–7099 

Sakakibara J, Nakagawa M, Yoshida M (2004) Stereo-PIV study of flow around a maneuvering 

fish. Exp. Fluids 36: 282–293 

Sane SP (2003) The aerodynamics of insect flight. J. Exp. Biol. 206: 4191–4208 

Sengupta TK, Lim TT, Sajjan SV, Ganesh G, Soria J (2007) Accelerated flow past a symmetrical 

aerofoil: experiments and computations. J. Fluid Mech. 591: 255–288 

Soria J, New TH, Lim TT, Parker K (2003) Multigrid CCDPIV measurements of accelerated flow 

past an airfoil at an angle of attack of 30º. Exp. Therm. Fluid Sci. 27: 667–676 

Taylor GI (1938) The spectrum of turbulence. Proc. Roy. Soc. 164: 476–490 

Taylor GK, Nudds RL, Thomas ALR (2003) Flying and swimming animals cruise at a Strouhal 

number tuned for high power efficiency. Nature 425: 707–711 

Triantafyllou MS, Triantafyllou GS, Yue DKP (2000) Hydrodynamics of fishlike swimming. Ann. 

Rev. Fluid Mech. 32: 33–53 

Triantafyllou MS, Techet AH, Hover FS (2004) Review of experimental work in biomimetic foils. 

IEEE J. Oceanic Eng. 29: 585–594 

17 



TroolinDR, Longmire EK, Lai WT (2006) Time resolved PIV analysis of flow over a NACA 0015 

airfoil with Gurney flap. Exp. Fluids 41: 241–254  

von Ellenrieder KD, Parker K, Soria J (2003) Flow structures behind a heaving and pitching finite-

span wing. J. Fluid Mech. 490: 129–138 

Wolfgang MJ, Triantafyllou MS, Yue DKP (1999) Visualization of complex near-body transport 

process in flexible-body propulsion. J. Visual. 2: 143–151 

 

Fig. 1 Experimental setup for stereo-PIV 

Fig. 2 Measurement planes for stereo-PIV 

Fig. 3 Shape and material of the wing: b is the span, and c is the chord length of the wing 

Fig. 4 Schematic of the pitching motion of the wing and its drive unit 

Fig. 5 3D vortex structure in the wing wake: left, t* = 0.45; right, t* = 0.95 

Fig. 6 3D vortex structure of three components of the vorticity, ωx (a), ωy (b), and ωz (c): left, t* = 

0.45; right, t* = 0.95 

Fig. 7 Illustration of calculation of circulation Γ 

Fig. 8 Illustration of calculation of area Ayz 

Fig. 9 Circulation Γ and acceleration (arbitrary scale) as a function of dimensionless time 

Fig. 10 Area Ayz as a function of dimensionless time 

Fig. 11 Propulsive force Fx as a function of dimensionless time 

Fig. 12 3D vortex structure reconstructed using 2D data at t* = 0.95 

Fig. 13 Illustration of calculation of the circulation around a vortex ring 

 

Table 1 Experimental conditions for stereo-PIV 

Table 2 Circulation around the vortex ring for various pitching amplitudes and cross-sections: 

center plane and planes of θw = 20° (LH) and 160° (RH) 

18 



 
FIG1 
 

 

FIG2 
 

 
FIG3 



 
FIG4 



 

FIG5 



 

FIG6 



 
FIG7 
 

 

FIG8 



 
FIG9 
 

 
FIG10 
 

 
FIG11 



 

FIG12 



FIG13 



θ a [deg.] a  [m] f p [Hz] U 0 [m/s] St [-]

15 0.195 1.0 0.5 0.39

20 0.243 1.0 0.5 0.48

25 0.292 1.0 0.5 0.58
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θ a [deg.] Motion Γ  [1/s] Γ  [1/s] Γ  [1/s] (L + R) / 2 / Center [%]

(Center) (L) (R)

15 Kick-down (t
*
 = 0.45) - 0.24 - 0.14 - 0.13 56

Kick-up (t
*
 = 0.95)   0.26   0.17   0.18 67

20 Kick-down (t
*
 = 0.43) - 0.31 - 0.17 - 0.16 53

Kick-up (t
*
 = 0.93)   0.33   0.21   0.23 67

25 Kick-down (t
*
 = 0.45) - 0.34 - 0.18 - 0.18 53

Kick-up (t
*
 = 0.95)   0.40   0.25   0.26 64

(Shown in Fig. 9)
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