Perovskite-type SrTiO₃, CaTiO₃ and BaTiO₃ porous film electrodes for dye-sensitized solar cells

Yuji OKAMOTO and Yoshikazu SUZUKI^{*,†}

Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305–8573, Japan *Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305–8573, Japan

Phase-pure perovskite-type SrTiO₃, CaTiO₃ and BaTiO₃ electrodes have been applied for dye-sensitized solar cells, to obtain higher V_{OC} than TiO₂ electrode. Furthermore, TiO₂/SrTiO₃ and TiO₂/BaTiO₃ composite electrodes have been also prepared. SrTiO₃, CaTiO₃ and BaTiO₃ powders synthesized by solid-state reaction method at 1200°C for 2 h were used to prepare the solar cells. Phase-pure SrTiO₃ and BaTiO₃ cells showed higher V_{OC} than that from TiO₂, but showed lower J_{SC} and efficiency. To utilize the positive effect to increase the V_{OC} , P25 TiO₂/SrTiO₃ and P25 TiO₂/BaTiO₃ composite DSC were prepared. For each series, ~30 wt % addition was favorable to increase the photo-electric conversion efficiency.

 $\ensuremath{\textcircled{\sc 02014}}$ The Ceramic Society of Japan. All rights reserved.

Key-words : SrTiO₃, CaTiO₃, BaTiO₃, Dye-sensitized solar cell, Perovskite, Double oxide

[Received April 21, 2014; Accepted June 3, 2014]

1. Introduction

Dye-sensitized solar cells (DSC) have been widely studied because of their high cost merit compared with Si-based solar cells and of their fascinating appearance.¹⁾ DSC with photoelectric conversion efficiency of >10% (or even 12%) have been reported,^{2)–10)} where porous TiO₂ films are generally used as semi-conductor electrodes. Such porous TiO₂ films usually have high specific surface area, and thus, they adsorb plenty of dye molecules, resulting in high current density.¹¹⁾ To date, our group reported the improvement of efficiency via the nanostructure-control of TiO₂ electrodes.^{12)–14}

Recently, non-TiO₂ single oxide, such as ZnO,¹⁵⁾ SnO₂,¹⁶⁾ $Nb_2O_5^{(17)}$ and $WO_3^{(18)}$ have also been extensively studied for DSC electrodes, where these single oxides are used as (A) phasepure porous electrode, (B) composite electrode with TiO₂, or (C) coating materials for porous TiO₂ network (Fig. 1). Besides the non-TiO₂ single oxides, perovskite-type double oxides, e.g., SrTiO₃,¹⁹⁾ CaTiO₃,²⁰⁾ and BaTiO₃,²¹⁾ have been applied for the DSC semiconductor electrodes, and they are mainly studied as coating materials for TiO₂ (i.e., type-C in Fig. 1). Some researchers, however, also have reported phase-pure perovskitetype electrodes (type-A). Jayabal et al.²²⁾ reported that SrTiO₃ electrode was effective to obtain relatively higher opencircuit voltage (V_{OC}) of 0.73 eV. SrTiO₃,^{22),23)} CaTiO₃^{24),25)} and BaTiO326),27) are n-type semiconductors, and their band-gaps are equal or more than that of TiO₂. Thus, DSC using these perovskite-type semiconductors may exhibit higher V_{OC} than DSC using TiO₂, although the band tuning among electrode, dye and electrolyte is necessary.

In this study, phase-pure $SrTiO_3$, $CaTiO_3$ and $BaTiO_3$ electrodes (type A) have been applied for DSC to obtain higher V_{OC} than TiO_2 electrode. Furthermore, $TiO_2/SrTiO_3$ and $TiO_2/BaTiO_3$ composite electrodes (type B) have been also evaluated.

Fig. 1. Non-TiO₂ oxides used for DSC electrodes: (A) phase-pure porous electrode, (B) composite electrode with TiO₂, and (C) coating materials on TiO₂.

2. Experimental

2.1 Preparation of double oxide powders

As for Sr, Ca and Ba sources, commercially available SrCO₃, CaCO3 and BaCO3 powders (99.9%, Wako Pure Chemical Industries Ltd., Osaka, Japan) were used, respectively. For Ti source, TiO₂ anatase powder (99%, Kojundo Chemical Laboratory Co. Ltd., Saitama, Japan) was used. Each carbonate powder and TiO₂ powder (1:1 in molar fraction) were mixed by wet-ball milling with nylon balls including steel core for 2 h in ethanol. The slurries were dried by vacuum evaporator for ~ 30 min, and then the mixture was dried in a 80°C oven for 24 h. The mixed powders were uniaxially pressed at 11.3 MPa to obtain cylindrical pellets. To obtain the double oxides, the pellets were sintered in air at 1200°C for 2 h, with the ramp rate of 5°C/min. After cooling, the pellets were crushed and planetary ball-milled in ethanol at 4g for 4 h to obtain fine perovskite-type powders. The crystal structure of the powders was determined by X-ray diffractometry (XRD, 40 kV, 40 mA, Multiflex, RIGAKU, Tokyo, Japan).

2.2 Preparation of SrTiO₃, CaTiO₃ and BaTiO₃ photoanodes

The obtained SrTiO₃, CaTiO₃ and BaTiO₃ powders were mixed with polyethylene glycol (molecular weight: 20,000, Wako Pure Chemical Industries Ltd.), 2:1 mass fraction, in an

[†] Corresponding author: Y. Suzuki; E-mail: suzuki@ims.tsukuba. ac.jp

agate mortar. To prepare the pastes, some distilled water and acetylacetone (dispersant, 99%, Wako Pure Chemical Industries Ltd., Osaka, Japan) were added into the mixed powders. Each mixture was pestled for 20 min.

The SrTiO₃, CaTiO₃ and BaTiO₃ pastes were coated on ITO conducting glass (Type 0052, $10 \Omega/\text{sq.}$, Geomatec Co. Ltd., Yokohama, Japan) using the squeegee technique with the electrode area of 1 cm². Perovskite-type porous film electrode (type-A) was prepared by sintering at 450°C for 30 min in air. The sintered perovskite electrodes (thickness of ~10 µm) were immersed in a 0.3 mM ethanol solution of a ruthenium dye (N719, Sigma-Aldrich Co. LLC) at 40°C for 24 h. The microstructure of sintered electrode was observed by scanning electron microscopy (SEM, TM3000 Tablemicroscope, Hitachi, Tokyo, Japan).

2.3 Preparation of TiO₂/perovskite composite photoanodes

To prepare composite photoanodes (type-B), SrTiO₃ or BaTiO₃ powder described in Section 2.1 was mixed with P25 TiO₂ powder (P25, Nippon Aerosil Co., Ltd., Tokyo, Japan), where the mass fraction of the perovskite powder was 10–50 wt %. TiO₂/ perovskite composite photoanodes were prepared similarly as described above. The film thickness of the composite electrode was set as $\sim 20 \,\mu\text{m}$, to obtain the homogeneous structure via the thickness direction. As a reference, P25 TiO₂ electrode without the perovskite addition (thickness: $\sim 20 \,\mu\text{m}$) was also prepared in a similar manner.

2.4 Characterization

The redox electrolyte was composed of 0.5 M LiI (97%, Wako Pure Chemical) and 0.05 M I₂ (99.9%, Wako Pure Chemical) in acetonitrile. Pt-coated ITO was used as a counter electrode. A spacer film with the thickness of 100 μ m (T284, Nitoms, Inc., Tokyo, Japan) was used to prepare open-type cells. Solar energy conversion efficiency was measured under simulated solar light, i.e., AM 1.5, 100 mW/cm² using a solar simulator (XES-40S1, San-Ei Electric, Osaka, Japan). The light intensity of the illumination source was calibrated by using a standard silicon photodiode (BS520, Bunkoh-Keiki Co. Ltd., Tokyo, Japan). The photocurrent–voltage curves were measured by using a source meter (6241A, ADCMT, Tokyo, Japan).

Results and discussion

3.1 Properties of SrTiO₃, CaTiO₃ and BaTiO₃ photoanodes

Figure 2 shows XRD patterns of perovskite-type double oxide powders synthesized at 1200°C for 2 h, which show each constitutent phase was cubic SrTiO₃, orthorhombic CaTiO₃ and

Fig. 2. XRD patterns of perovskite-type double oxide powders synthesized at 1200° C for 2 h.

tetragonal BaTiO₃, respectively.²⁸⁾⁻³⁰⁾ Photovoltaic output parameters of DSC with the phase-pure perovskite electrodes (film thickness of $\sim 10 \,\mu\text{m}$) are summarized in Table 1. Values for a widely-used P25 TiO₂ electrode (thickness of $\sim 20 \,\mu m$, written in Section 2.3) are also given in the table as a comparison. The cells made from perovskite powders, except the cell made from CaTiO₃, showed higher V_{OC} than that from TiO₂. The V_{OC} values depend on the difference between the Fermi level of the oxide and the redox potential of the electrolyte.³¹⁾ Since TiO₂ and three perovskite-type double oxides are n-type semiconductors, their Fermi levels are substantially equal to the bottom of the conduction band. As is reported by Jayabal,²²⁾ the conduction band of SrTiO₃ is $\sim 0.2 \text{ eV}$ upper than that of TiO₂ anatase. Similarly, as for CaTiO₃ and BaTiO₃, their schematic band diagams compared with TiO₂ have been given by Jang et al.,²⁴⁾ and thus, their difference between the Fermi level of the oxide and the redox potential of the electrolyte can be larger than that for TiO₂, which may result in higher V_{OC} as shown in Table 1. Lower V_{OC} for CaTiO₃ is then attributable to the mismatch of band structure with dyes; electron transport from the excited dye to CaTiO₃ can not be performed efficiently due to its higher conduction band than others.²⁴⁾ As for the short circuit current density $(J_{\rm SC})$ and conversion efficiency (η), J_{SC} and η of phase-pure perovskitetype double oxide cells were two-order lower than that of P25 TiO₂. Even taking into account the effect of the thickness, the difference was really remarkable.

To clarify the above reason, appearance and microstructure of these cells are observed, as shown in **Fig. 3** and **Fig. 4**, respectively. Figure 3 indicated that the dye-adsorption for perovskite cells were apparently less than that for TiO₂ cells, which is attributed to the different particle size of the powders (Fig. 4). In this preliminary work, the perovskite powders were prepared by solid-state reaction at 1200°C. Much finer perovskite powders should be necessary to increase the surface area of porous electrodes. **Figure 5** shows the particle-size distributions in perovskite-type cells measured by SEM image analysis. For all samples, particles with the size of ~0.5 μ m were frequently observed. CaTiO₃ and BaTiO₃ cells contained larger particles than SrTiO₃ cell. Since the melting point of SrTiO₃ (1625°C), grain

Table 1. Photovoltaic output parameters of DSC for phase-pure perovskite electrodes (film thickness of ${\sim}10\,\mu\text{m}$). Values for a widely used P25 TiO₂ electrode (thickness of ${\sim}20\,\mu\text{m}$) are also given in the table as a comparison

	TiO ₂ (P25)	SrTiO ₃	CaTiO ₃	BaTiO ₃
J_{SC} (mA/cm ²)	13.13	1.28×10^{-1}	1.72×10^{-2}	1.27×10^{-1}
V _{OC} (V)	0.509	0.636	0.488	0.650
FF	0.264	0.464	0.312	0.433
η (%)	1.76	3.78×10^{-2}	2.62×10^{-3}	3.59×10^{-2}

Fig. 3. Appearances of perovskite-type electrodes of DSC (phase-pure porous electrode, type-A).

Fig. 4. SEM images of the surface of perovskite-type electrodes of DSC. TiO₂ (P25) electrode is also shown as a comparison.

Fig. 5. Particle-size distributions in perovskite-type cells measured by SEM image analysis.

growth of SrTiO₃ after solid-state reaction can be smaller than that of CaTiO₃ and BaTiO₃. Besides some difference in perovskites, larger grain size (compared with P25 TiO₂) resulted in less surface contact with TCO and in more possibility of electron–hole recombination at the interface between TCO and electrolyte.²²⁾

Throughout this section, we can conclude that the submicronsized perovskite-type powders can be effective to obtain high $V_{\rm OC}$ but cannot be effective to obtain high $J_{\rm SC}$. Hence, we tried to use the perovskite-type powders not as main phases (type-A) but as second phases in TiO₂ matrix (type-B) in the next section.

3.2 Properties of TiO₂/perovskite composite photoanodes

In the previous section, $SrTiO_3$ and $BaTiO_3$ showed somewhat higher V_{OC} than TiO_2 . Hence, these perovskite-type oxides were

730

Fig. 6. Apperances of DSC for composite electrodes with TiO_2 : (a) $SrTiO_3 (0-50 \text{ wt }\%) + TiO_2$ and (b) $BaTiO_3 (0-50 \text{ wt }\%) + TiO_2$.

Fig. 7. I–V curves of DSC for composite electrodes with TiO_2 : (a) $SrTiO_3 (0-50 \text{ wt }\%) + TiO_2$, (b) $BaTiO_3 (0-50 \text{ wt }\%) + TiO_2$.

then used as second phases. **Figure 6** shows the appearance of P25 TiO₂/SrTiO₃ and P25 TiO₂/BaTiO₃ composite electrodes. Dye adsorption seems to decrease with increasing the perovskite powder addition, in good agreement with the previous section. **Figure 7** and **Table 2** show the photovoltaic properties of DSC for composite electrodes with TiO₂ (film thickness of ~20 µm). For both series, with increasing the perovskite-type second phase, $V_{\rm OC}$ increased and $J_{\rm SC}$ decreased. With ~30 wt% addition of

	TiO ₂	S (10 wt %) +TiO ₂	S (20 wt%) +TiO ₂	S (30 wt %) +TiO ₂	S (40 wt%) +TiO ₂	S (50 wt %) +TiO ₂
J _{SC} (mA/cm ²)	13.13	10.61	11.93	9.54	8.33	6.92
V _{OC} (V)	0.509	0.580	0.544	0.559	0.566	0.580
FF	0.264	0.312	0.287	0.368	0.405	0.410
η (%)	1.76	1.92	1.87	1.96	1.96	1.64
	TiO ₂	B (10 wt %) +TiO ₂	B (20 wt %) +TiO ₂	B (30 wt%) +TiO ₂	B (40 wt %) +TiO ₂	B (50 wt %) +TiO ₂
J _{SC} (mA/cm ²)	13.13	13.34	11.45	10.65	9.40	9.09
V _{OC} (V)	0.509	0.530	0.537	0.537	0.551	0.551
FF	0.264	0.260	0.313	0.338	0.321	0.329

Table 2. Photovoltaic output parameters of DSC for composite electrodes with TiO_2 (film thickness of $\sim 20 \,\mu$ m). S: SrTiO₃, B: BaTiO₃

SrTiO₃ or BaTiO₃, the composite cells showed higher efficiency than P25 TiO₂. The highest efficiency value was obtained for the composite electrode with 30 wt % SrTiO₃, which was 11.4% larger than that of P25 TiO₂.

Although we should also take into account another positive effect by the light-scattering from added large particles, this work suggested a potential use of perovskite-type double oxide for DSC. Aqueous solution process to obtain fine and highcrystallinity perovskite-type double oxide is on going.

Conclusions

Phase-pure SrTiO₃, CaTiO₃ and BaTiO₃ electrodes have been synthesized by solid-state reaction methods and applied for DSC to obtain higher V_{OC} than TiO₂ electrode. SrTiO₃ and BaTiO₃ cells showed higher V_{OC} than that from TiO₂, but lower J_{SC} and efficiency. To utilize the positive effect to increase V_{OC} , P25 TiO₂/SrTiO₃ and P25 TiO₂/BaTiO₃ composite DSC were prepared. For each series, ~30 wt % addition was favorable to increase the efficiency.

Acknowledgement A part of this work was supported by Univ. Tsukuba-NIMS Collaborative Research Project. We thank to Dr. T. S. Suzuki at NIMS for the use of SEM.

References

- 1) B. O'Regan and M. Grätzel, Nature, 353, 737-740 (1991).
- A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gratzel, *Science*, 334, 629–634 (2011).
- Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Y. Han, Jpn. J. Appl. Phys., 45, 638–640 (2006).
- S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, *Nat. Chem.*, 6, 242–247 (2014).
- P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin and M. Grätzel, *Adv. Mater.*, 16, 1806–1811 (2004).
- S. Divya, A. Thankappan, C. P. G. Vallabhan, V. P. N. Nampoori, P. Radhakrishnan and A. Mujeeb, *J. Appl. Phys.*, 115, 064501 (2014).
- D. Joly, L. Pelleja, S. Narbey, F. Oswald, J. Chiron, J. N. Clifford, E. Palomares and R. Demadrille, *Sci. Rep.*, 4, 4033 (2014).

- C. C. Chou, F. C. Hu, H. H. Yeh, H. P. Wu, Y. Chi, J. N. Clifford, E. Palomares, S. H. Liu, P. T. Chou and G. H. Lee, *Angew. Chem., Int. Ed.*, 53, 178–183 (2014).
- K. Kurotobi, Y. Toude, K. Kawamoto, Y. Fujimori, S. Ito, P. Chabera, V. Sundstrom and H. Imahori, *Chemistry*, 19, 17075– 17081 (2013).
- 10) Y. M. Cao, Y. Bai, Q. J. Yu, Y. M. Cheng, S. Liu, D. Shi, F. F. Gao and P. Wang, J. Phys. Chem. C, 113, 6290–6297 (2009).
- 11) A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo and H. Pettersson, *Chem. Rev.*, **110**, 6595–6663 (2010).
- Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida and S. Yoshikawa, *Cent. Eur. J. Chem.*, 4, 476–488 (2006).
- S. Pavasupree, S. Ngamsinlapasathian, Y. Suzuki and S. Yoshikawa, J. Nanosci. Nanotechnol., 6, 3685–3692 (2006).
- 14) K. Asagoe, S. Ngamsinlapasathian, Y. Suzuki and S. Yoshikawa, Cent. Eur. J. Chem., 5, 605–619 (2007).
- Z. Qifeng, D. S. Christopher, Z. Xiaoyuan and C. Guozhong, *Adv. Mater.*, 21, 4087–4108 (2009).
- 16) S. Gubbala, V. Chakrapani, V. Kumar and M. K. Sunkara, Adv. Funct. Mater., 18, 2411–2418 (2008).
- K. Sayama, H. Sugihara and H. Arakawa, *Chem. Mater.*, 10, 3825–3832 (1998).
- H. D. Zheng, Y. Tachibana and K. Kalantar-zadeh, *Langmuir*, 26, 19148–19152 (2010).
- 19) S. J. Wu, X. S. Gao, M. H. Qin, J. M. Liu and S. J. Hu, *Appl. Phys. Lett.*, 99, 042106 (2011).
- 20) S. M. Yang, H. Z. Kou, H. J. Wang, K. Cheng and J. C. Wang, *Electrochim. Acta*, 55, 305–310 (2009).
- L. Zhang, Y. H. Shi, S. J. Peng, J. Liang, Z. L. Tao and J. Chen, J. Photochem. Photobiol., A, 197, 260–265 (2008).
- P. Jayabal, V. Sasirekha, J. Mayandi, K. Jeganathan and V. Ramakrishnan, J. Alloys Compd., 586, 456–461 (2014).
- 23) S. Yang, H. Kou, J. Wang, H. Xue and H. Han, *J. Phys. Chem. C*, 114, 4245–4249 (2010).
- 24) J. S. Jang, P. H. Borse, J. S. Lee, K. T. Lim, O.-S. Jung, E. D. Jeong, J. S. Bae and H. G. Kim, *Bull. Korean Chem. Soc.*, 32, 95–99 (2011).
- 25) Q. Fu, J. L. Li, T. He and G. W. Yang, J. Appl. Phys., 113, 104303 (2013).
- 26) K. Suzuki and K. Kijima, Jpn. J. Appl. Phys., 44, 2081–2082 (2005).
- 27) S. H. Wemple, Phys. Rev. B, 2, 2679-2689 (1970).
- 28) ICDD-JCPDS No. 86-0178 for cubic SrTiO₃.
- 29) ICDD-JCPDS No. 70-8503 for orthorhombic CaTiO₃.
- 30) ICDD-JCPDS No. 74-4540 for tetragonal BaTiO₃.
- 31) H. Tian and S. Liu, Adv. Biomed. Eng., 8, 59-63 (2012).