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Abstract 

We performed a new coupled circuit numerical simulation of eddy currents in an open 

compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, 

the conducting structures were divided into subdomains along the length (or width) and the 

thickness, and by implementing coupled circuit concepts we have simulated transient 

responses of eddy currents for subdomains in different locations. We implemented the Eigen 

matrix technique to solve the network of coupled differential equations to speed up our 

simulation program. On the other hand, to compute the coupling relations between the 

biplanar gradient coil and any other conducting structure, we implemented the solid angle 

form of Ampere’s law. We have also calculated the solid angle for three dimensions to 

compute inductive couplings in any subdomain of the conducting structures. Details of the 

temporal and spatial distribution of the eddy currents were then implemented in the 

secondary magnetic field calculation by the Biot–Savart law. In a desktop computer 

(Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo 

E7500 @ 2.93 GHz 2.93 GHz; OS: Windows 7 Professional; Memory (RAM): 4.00 GB), it 

took less than three minutes to simulate the entire calculation of eddy currents and fields, and 

approximately six minutes for X-gradient coil. The results are given in the time–space 

domain for both the direct and the cross-terms of the eddy current magnetic fields generated 

by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of 

eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. 

The simulation results were found to be in good agreement with the experimental results. In 

this study we have also conducted simulations for transient and spatial responses of 

secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less 

computational complexity than the conventional electromagnetic numerical simulation 

methods. 
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Introduction 

Eddy currents are inevitable secondary effects of magnetic resonance imaging (MRI) 

gradient coils. The switching of  the applied  signals in the gradient coils generate time- and 

space dependent magnetic fields that create spatially distributed transient eddy currents in the 

surrounding conducting structures. Temporal and spatially dependent secondary magnetic 

fields are generated from these transient eddy currents. These decaying  magnetic fields 

superimposed on the desired gradient field, distort the nuclear magnetic resonance (NMR) 

localization processes, and create intensity artifacts [1, 2], phase dispersion, imperfect 

rephasing of echoes, loss of signal, and distortions of images and spectra [3]. For this reason, 

the implementation of a proper compensation technique in any MRI system requires 

characterization of the eddy currents. 

In this work, we have implemented a new solid angle coupled circuit numerical 

analysis approach to analyze eddy current responses in open compact MRI systems. The 

physics behind this method is the multiexponential response of a network of inductively 

coupled circuits to a time-dependent current signal.  This method is very efficient than the 

traditional electromagnetic simulation approaches in terms of computational complexity, 

computational time, and as it can handle boundary conditions [4, 5]. Semi-analytic solutions 

are also possible to get by this method.  Conventional methods, such as the finite difference 

time domain (FDTD) method or the finite element method (FEM), have a time-consuming 

large-scale computational burden that requires very large memory and a high-performance 

computer—sometimes with parallel processing environments [6–8]. In addition, because of 

the large-scale computational complexity that combines the differential and integral 

techniques, there is a possibility of having numerical artifacts in the final results, like the 

artifacts because of interpolation in the transformation from lower dimensional grids to 

higher dimensional grids or field leakage across the boundary because of the slower 
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propagation in the FDTD grid which differs from the propagation speed in the continuous 

world and so on [9]. The coupled circuit approach implements the advantages of differential 

equation and, matrix techniques to solve this system of first order differential equations that 

make it a mathematically much less complex and faster numerical simulation scheme. 

Following the coupled circuit method [10], eddy current conducting structures are 

modeled as inductively coupled subdomains and simple coupled differential equations are 

solved to find the transient responses of eddy currents in different subdomains. Studies [10–

12] using the coupled circuit approach were done on closed-bore (superconducting magnet) 

MRI systems and the coupled subdomains assumed for the cylindrical cryogenic walls were 

of circular ring shaped. Simple inductive coupling formulas for computing the coupling 

relations between the subdomain and the gradient coils could be implemented in those studies. 

In references [5, 13] a network simulation - coupled in Fourier space - has been proposed for 

gradient coils of arbitrary geometry in cylindrical coordinates and validated by simulating the 

eddy current response in a finite length cylindrical cryostat induced by an actively shielded 

cylindrical x-gradient coil. Recently a Multilayer Integral Method (MIM) has been suggested 

[4] in which the eddy current conducting surface is approximated to a connected set of 

discrete mesh of plane triangles. In open MRI systems, the gradient coils are of the planar 

type, consisting of an upper and a lower coil [14]. Also, the eddy current conducting 

structures have different geometrical shapes—for example, the local radio frequency (RF) 

shielding box has a cubic structure [15, 16].  There is no direct traditional formula to compute 

inductive couplings between a planar gradient coil and different subdomains. As the 

formulation of a solid angle expression for three dimensions (3D) subtended by a two-

dimensional (2D) current-carrying coil of arbitrary shape can be easily performed by simple 

mathematical manipulations in the Cartesian coordinates [17-21], we have implemented the 

solid angle form of Ampere’s law [22] to compute the inductive coupling between planar 

4 
 



gradient coil and any subdomain. We have calculated the 3D solid angle formula for both  Z-

gradient (Gz coil) and X-gradient (Gx coil) coil patterns with the aim of computing coupling 

relations to subdomains in any position. We have also provided details of the solid angle 

calculation for both Z-gradient and X- or Y-gradient coils. For the calculation of solid angle 

for Z-gradient coil pattern (circular loop) we have followed the mathematical approaches 

explained in [17, 19, and 20]. In case of X-gradient coil, because of asymmetric coil position 

compare to the magnet center, we have followed an efficient segmentation solid angle 

calculation approach by following the method explained by H. Gotoh, et al [21] in their 

calculation of solid angle at any field point subtended by a rectangular slit. In our study we 

have found this approach mathematically less complex, faster in computer simulation, and 

easier to implement. This segmentation approach can also be possible to implement to 

calculate solid angle for any type of coil patterns (for example, the area covered in a cylinder 

by one turn of cylindrical Gx coil can be projected on a plane, and then it is possible to 

segment that projected area into several rectangular section to calculate the total solid angle 

subtended by the cylindrical Gx coil). Both the direct and cross-terms of the secondary fields 

generated by the Z-gradient coil have been simulated in the temporal–spatial domain. We 

have also conducted free induction decay (FID) measurements of eddy currents by using an 

NMR probe designed at our laboratory to verify our simulation results. We have found a 

good agreement between the simulation and the experiment.  Simulation of secondary 

magnetic field responses of X-gradient coil has also been performed and results are given for 

both transient and spatial response of eddy current fields. 
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Materials and Methods 

A. The Coupled Circuit Method 

Because of losses in conducting materials, eddy current responses are characterized as 

the sum of exponentials with different decay time constants and amplitudes in different 

conducting structures [3, 23–26]. This multiexponential decay of eddy currents can in turn be 

modeled by inductive-resistive (L–R) series circuits comprising conducting structures and 

current-generating coils [3, 10]. In 1984, Sablik et al. first formulated this concept into a 

coupled circuit numerical analysis method in which eddy current conducting structures are 

represented as stacks of inductively coupled subdomains in mutual coupling with the current-

generating gradient coils [10]. Further works [5, 11–13] have proven this approach as an 

efficient, fast, and computationally less complex numerical analysis method than the 

conventional methods for analyzing the eddy current characteristics in MRI systems. In this 

work, we implemented a numerical approach to simulate the eddy current responses in an 

open compact 0.3 T MRI system that was developed for skeletal age assessment in children 

[15], as shown in Fig. 1. 

In open MRI system, the gradient coil is of the planar type consisting of an upper and 

a lower coil positioned in the gap between the magnet poles (as is shown in Fig. 2). In 

addition, the eddy current conducting structures can have different geometric shapes, and for 

this reason, we searched for a more efficient process. The coupled circuit method works by 

subdividing each conducting structure into infinitely thin sublayers and further dividing each 

sublayer into subdomains.  The subdomains are considered to be inductively coupled to each 

other and to the gradient coils also. System of first order differential equations is formulated 

from these networks of resistive-inductive series circuits. Eddy current transient responses in 

different subdomains at different spatial locations can be easily found by solving this system 

of first order differential equations.  
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Let us consider the eddy current responses in a cubic RF shielding box.  We can 

consider the upper and lower coils as a single eddy current generating source. Following the 

coupled circuit approach we subdivide the brass plates in the RF box into several subdomains 

along the thickness and length of each plate [5, 10 – 13]. For each subdomain, we assign a 

self-inductance, Li, and a dc resistance, Ri. If we represent the self-inductances (Li) and  

mutual inductances among subdomains by the matrix, 𝐌𝐌𝑖𝑖𝑖𝑖, and the inductive couplings 

between the gradient coil and any subdomain by the  matrix, 𝐌𝐌𝑖𝑖𝑖𝑖, then the system of coupled 

circuit differential equations can be expressed as [5, 12] 

𝐌𝐌𝑖𝑖𝑖𝑖
𝑑𝑑𝐈𝐈(𝑡𝑡)
𝑑𝑑𝑡𝑡

+ 𝐑𝐑𝑖𝑖𝐈𝐈(𝑡𝑡) = −𝐌𝐌𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖𝑠𝑠(𝑡𝑡)
𝑑𝑑𝑡𝑡

, where 

 𝐌𝐌𝑖𝑖𝑖𝑖 = �

𝐿𝐿1 𝑀𝑀12 . 𝑀𝑀1𝑛𝑛
𝑀𝑀21 𝐿𝐿2 . 𝑀𝑀2𝑛𝑛

. . . .
𝑀𝑀𝑛𝑛1 𝑀𝑀𝑛𝑛2 . 𝐿𝐿𝑛𝑛

�; 𝐌𝐌𝑖𝑖𝑖𝑖 = �

𝑀𝑀1𝑖𝑖
𝑀𝑀2𝑖𝑖

.
𝑀𝑀𝑛𝑛𝑖𝑖

�; 𝐑𝐑𝑖𝑖 = �

𝑅𝑅1 0 . 0
0 𝑅𝑅2 . 0
. . . .
0 0 . 𝑅𝑅𝑛𝑛

�;  

in which, 𝐿𝐿1,  𝐿𝐿2,  … … , 𝐿𝐿𝑛𝑛 are the self-inductances of the subdomains; 𝑀𝑀12,   

𝑀𝑀13,  … … ,𝑀𝑀1𝑛𝑛 are the mutual inductances between the subdomains; 𝑀𝑀1𝑖𝑖,  𝑀𝑀2𝑖𝑖,  … … ,𝑀𝑀𝑛𝑛𝑖𝑖 

are the mutual couplings between the gradient coil and the subdomains; and 𝑅𝑅1,  𝑅𝑅2,  … … ,𝑅𝑅𝑛𝑛 

are the resistances of the subdomains; 𝑖𝑖𝑖𝑖(𝑡𝑡) is the gradient coil current which is represented in 

our work as trapezoidal signal in the time-domain with equal  ramp-up and ramp-down time 

and constant flat-top current of duration much higher so that the eddy current signal can 

decay within this period. The signal representation can be expressed as 

𝑖𝑖𝑖𝑖(𝑡𝑡) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 0,                𝑡𝑡 ≤ 𝑡𝑡1
𝑖𝑖𝑜𝑜(𝑡𝑡 − 𝑡𝑡1)
𝑡𝑡2 − 𝑡𝑡1

,         𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2

        1,                      𝑡𝑡2 ≤ 𝑡𝑡 ≤ 𝑡𝑡3
𝑖𝑖𝑜𝑜(𝑡𝑡3 − 𝑡𝑡)
𝑡𝑡4 − 𝑡𝑡3

,          𝑡𝑡3 ≤ 𝑡𝑡 ≤ 𝑡𝑡4

0,                𝑡𝑡4 ≤ 𝑡𝑡 ⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫
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 where io is the maximum current and parameter 𝑡𝑡1, 𝑡𝑡4 define the start and end point 

of the trapezoidal signal and, 𝑡𝑡2, 𝑡𝑡3 locate the shoulders of the signal. I(t) is the eddy current 

matrix with dimensions equal to the number of subdomains considered. We have applied the 

Eigen matrix concepts of solving differential equations to simplify and speed up the entire 

calculation process. 

B. Simplification by the Eigen Method 

We can express the above system of ordinary differential equations as 

𝑑𝑑𝐈𝐈(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝐀𝐀𝐈𝐈(𝑡𝑡) + 𝐁𝐁𝑑𝑑𝑖𝑖𝑠𝑠(𝑡𝑡)
𝑑𝑑𝑡𝑡

, 

where 𝐀𝐀 = −𝐌𝐌𝑖𝑖𝑖𝑖
−1𝐑𝐑𝑖𝑖 and 𝐁𝐁 = −𝐌𝐌𝑖𝑖𝑖𝑖

−1𝐌𝐌𝑖𝑖𝑖𝑖. For the constant flattop portion of the gradient 

signal the second term (𝑑𝑑𝑖𝑖𝑠𝑠(𝑡𝑡)
𝑑𝑑𝑡𝑡

) of the right hand side of above equation is zero and it becomes 

a homogeneous system of differential equations: 

𝑑𝑑𝐈𝐈(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝐀𝐀𝐈𝐈(𝑡𝑡). 

On the other hand, for the ramp-up or ramp-down duration of the gradient signal, 

𝑑𝑑𝑖𝑖𝑠𝑠(𝑡𝑡)
𝑑𝑑𝑡𝑡

 is not zero and the system of differential equations becomes a nonhomogeneous 

differential equation problem. We treat the homogeneous case by implementing the following 

decoupling solution method. 

Case 1: Homogeneous 

Here is the general procedure: to solve a homogeneous linear system of ordinary 

differential equations with constant coefficients and initial values 

𝑑𝑑𝐈𝐈(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝐀𝐀𝐈𝐈(𝑡𝑡),          𝐈𝐈(𝑡𝑡0) = 𝐈𝐈0. 

(i) Compute the eigenvalues and eigenvectors of the coefficient matrix 𝐀𝐀. 

(ii) Use the eigenvalues and eigenvectors of 𝐀𝐀 to respectively construct the diagonal 

matrix 𝐃𝐃 and the change of basis matrix 𝐂𝐂, such that 
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𝐃𝐃 = 𝐂𝐂−𝟏𝟏𝐀𝐀𝐂𝐂    ↔     𝐀𝐀 = 𝐂𝐂𝐃𝐃𝐂𝐂−𝟏𝟏. 

(iii) Write down the general solution of the decoupled system 

𝑑𝑑𝐳𝐳
𝑑𝑑𝑡𝑡

= 𝐃𝐃𝐳𝐳      →      𝐳𝐳 = �
𝑐𝑐1𝑒𝑒𝜆𝜆1𝑡𝑡
⋮

𝑐𝑐𝑛𝑛𝑒𝑒𝜆𝜆𝑛𝑛𝑡𝑡
�. 

(iv) Determine the coefficient matrix 

𝐜𝐜 = 𝐂𝐂−1 �
𝐼𝐼1(𝑡𝑡0)𝑒𝑒−𝜆𝜆1𝑡𝑡0

⋮
𝐼𝐼𝑛𝑛(𝑡𝑡0)𝑒𝑒−𝜆𝜆𝑛𝑛𝑡𝑡0

�. 

(v) The solution of the original (coupled) system will be 

𝐈𝐈(𝑡𝑡) = 𝐂𝐂𝐳𝐳. 

 

To find the solution to the initial value problem of the nonhomogeneous equations 

𝑑𝑑𝐳𝐳
𝑑𝑑𝑡𝑡

= 𝐃𝐃𝐳𝐳 + 𝐄𝐄(𝑡𝑡),        𝐈𝐈(𝑡𝑡0) = 𝐈𝐈0, 

where 𝐄𝐄(𝑡𝑡) = 𝐂𝐂−1𝐁𝐁 𝑑𝑑𝑖𝑖𝑠𝑠(𝑡𝑡)
𝑑𝑑𝑡𝑡

, we implement the fundamental matrix method. 

Case 2: Nonhomogeneous 

The general procedure is given below. 

(i) The fundamental matrix was expressed as 

𝚽𝚽(𝑡𝑡) = �
𝒗𝒗11𝑒𝑒𝜆𝜆1𝑡𝑡 𝒗𝒗12𝑒𝑒𝜆𝜆2𝑡𝑡 … .𝒗𝒗𝟏𝟏𝑛𝑛𝑒𝑒𝜆𝜆𝑛𝑛𝑡𝑡

⋮ ⋮ ⋮
𝒗𝒗𝑛𝑛1𝑒𝑒𝜆𝜆1𝑡𝑡 𝒗𝒗𝑛𝑛2𝑒𝑒𝜆𝜆2𝑡𝑡 … .𝒗𝒗𝑛𝑛𝑛𝑛𝑒𝑒𝜆𝜆𝑛𝑛𝑡𝑡

�, 

where 𝒗𝒗𝑛𝑛1, 𝒗𝒗𝑛𝑛2, …., 𝒗𝒗𝑛𝑛𝑛𝑛 are the associated eigenvectors, and 𝜆𝜆1, 𝜆𝜆2, …., 𝜆𝜆𝑛𝑛 are the 

eigenvalues of the corresponding homogeneous equation. 

(ii) The solutions of the nonhomogeneous equations can be given by 

𝑰𝑰(𝑡𝑡) = 𝚽𝚽(𝑡𝑡)𝚽𝚽(0)−1𝐈𝐈(𝑡𝑡0) + ∫ 𝚽𝚽(𝑡𝑡)𝚽𝚽(𝑠𝑠)−1𝑡𝑡
𝑡𝑡0

𝐄𝐄(𝑠𝑠)𝑑𝑑𝑠𝑠. 

C. Coupled Circuit Modeling 
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To consider the skin effect of eddy current, at first, each conducting structure is 

subdivided into a number of ideally infinitely thin sublayers so that enough sublayers are 

considered to represent the skin depth more accurately [10]. For practical numerical 

calculation purposes, a sufficient number of sublayers is considered, so that the eddy currents 

in each layer can be assumed as constant. But considering a finite number of sublayers would 

necessarily introduce some errors in the simulation results that decrease with decreasing 

sublayer thickness [13]. Following the approach in references [6, 10], we have considered the 

thickness to be less than one-tenth of the skin depth, 𝛿𝛿. For high frequency and/or high 

conductivity, the formula we took for 𝛿𝛿 can be expressed [27] as 

𝛿𝛿 = � 2
𝜇𝜇𝜇𝜇𝜇𝜇

 , 

where 𝜇𝜇 is the permeability, 𝜔𝜔 is the angular frequency, and 𝜎𝜎 is the conductivity. Each 

sublayer is again divided into several subdomains along the length or width. Because the 

current in each subdomain is considered to be constant, we have assumed dc resistance  for 

each subdomain. The resistance of each subdomain is then calculated by 

𝑅𝑅 = 𝜌𝜌 𝑙𝑙
w𝑑𝑑

, 

where 𝜌𝜌 is the resistivity and 𝑙𝑙, 𝑤𝑤, and 𝑑𝑑 are the length, width, and thickness of each 

subdomain, respectively. The self- and mutual inductances among the subdomains are 

computed by applying the simple formulas (source: Ref. [28]) given in the Appendix A. 

The Z-gradient coil has a combination of circular current loops wound onto a surface 

of fiber-reinforced plastic (FRP) plate with the diameter optimized using a genetic algorithm 

[15]. To calculate the inductive coupling between the planar coils (upper and lower coils) and 

any subdomain, we implemented the solid angle form of Ampere’s law, according to which 

the magnetic flux density (B) is proportional to the gradient of the solid angle (Ω) subtended 

by an arbitrary loop carrying a current, 𝑖𝑖𝑐𝑐𝑜𝑜𝑖𝑖𝑙𝑙 [22]: 
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B = −𝜇𝜇𝑜𝑜𝑖𝑖𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐∇Ω
4𝜋𝜋

. 

Here, ∇ is the gradient operator. In order to calculate the flux linkage of the gradient 

coil to subdomains at any position we need to formulate the solid angle expression 

considering any location in the three dimensional space. In our analysis, we have formulated 

the solid angle expression in Cartesian coordinate considering all three axes, X, Y, and Z for 

both Gz and Gx type coil loops by following the works done in References [17, 19 - 21]. 

Because of cylindrical symmetry we have followed a simple analytical solid angle calculation 

approach for Gz coil (circular current loop) by following the methods given in references [17, 

19, and 20]. But in case of Gx coil the current loops are in asymmetric position with respect 

to the magnet center. To consider this fact, we have applied a simple rectangular 

segmentation approach to calculate the solid angle of Gx coil at any position in the region of 

interest (ROI) by following the method given in reference [21]. Details of the calculation 

methods are explained in Appendix B and Appendix C for Gz coil and Gx coil loops, 

respectively. A schematic diagram of the solid angle approach in coupled circuit method has 

been presented in Fig. 3 for a circular loop and subdomains of a conducting plate of the RF 

shielding box. The eddy current conducting structure is divided into sublayers and 

subdomains along thickness (along Z-axis) and length or width (along Y- or X-axis), 

respectively, so that the thickness d is much smaller than the skin depth of the corresponding 

signal frequency. If B𝑑𝑑𝑜𝑜𝑑𝑑 is the average magnetic flux density in each subdomain generated 

by all the current loops in the gradient set carrying an equal current 𝑖𝑖𝑐𝑐𝑜𝑜𝑖𝑖𝑙𝑙, then the total flux 

across each subdomain of area 𝐴𝐴𝑑𝑑𝑜𝑜𝑑𝑑 and, hence, the inductive coupling between the gradient 

coil and each subdomain (M𝑖𝑖𝑖𝑖) [29] can be calculated by 

𝑀𝑀𝑖𝑖𝑖𝑖 = B𝑑𝑑𝑜𝑜𝑑𝑑𝐴𝐴𝑑𝑑𝑜𝑜𝑑𝑑
𝑖𝑖𝑐𝑐𝑜𝑜𝑖𝑖𝑙𝑙� . 

As for the planar Z-gradient coil, it has two sets of similar coils near the magnet poles 

(as shown in Fig. 2). Since current circulations in these two layers of coils are opposite in 
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direction [14] the solid angle in the region of interest (ROI) will be of opposite sign – for 

anti-clockwise current circulation the solid angle is positive and for clockwise circulation it is 

negative [22]. If Mir is the flux linkage between the r-th coil loop and i-th subdomain, then 

the total flux linkage to that subdomain from n number of loops will be 

� 𝑀𝑀𝑖𝑖𝑖𝑖

𝑖𝑖=𝑛𝑛

𝑖𝑖=1
 

At any subdomain in between the magnet gap, these opposite flux linkages - induced 

from all of the coil loops both from the upper and the lower coil sets - are added to get total 

flux linkage of Gz coil to that subdomain. In this way, inductive coupling between Z-gradient 

coil and all of the subdomains are calculated.  

In case of X-gradient coil, it also has upper and lower layer coils near the magnet 

poles. In addition, in each layer there have two sets of the similar coil patterns with clockwise 

and anti-clockwise current circulations [14]. Flux linkages of Gx coil to any subdomain in the 

magnet gap should consider contribution of flux linkages from these four sets of coil loops. 

The sign of the solid angles are considered according to the current circulation directions 

mentioned above. Once we have calculated all the matrices of inductances and resistances 

(Mii, Mis, and Rii) for a network of coupled eddy current conducting subdomains, we can 

implement them in the coupled differential equations to get the transient response of eddy 

current in different subdomains at different locations. 

D. Simulation Parameters 

We considered the distribution of eddy currents in the local RF shielding box induced 

by both Z-gradient and X-gradient coils. The shielding box was positioned within the 122 

mm magnet gap, symmetrical to the center of the gradient coil. The box is made of 0.3 mm-

thick brass plates of resistivity 𝜌𝜌, 6 × 10−8 Ω. m, and with boundary dimensions of 220 

mm×180 mm×100 mm . Both the upper and lower Z-gradient coils have similar circular 

loops of maximum diameter 315.42 mm consisting of 30 circular turns. On the other hand, 
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the X-gradient coil were designed as a combination of circular arc and second-order Bezier 

curve with the position and center angle optimized using Genetic algorithm [15]. In each part 

there have 16 turns of coil and the coil pattern was restricted to a circular region of 320 mm 

in diameter. For both type of coils, each gradient coil element was made by winding 

polyethylene-coated copper wire of 0.6 mm diameter on a surface of fiber-reinforced plastic 

(FRP) plate. The applied gradient signal was of the trapezoidal type with a ramp-up and 

ramp-down time of 170 µs and flattop duration of 1.06 ms. The corresponding skin depth was 

1.60739 mm. 

Because the upper and lower plates of the local shielding box are in the X–Y plane, 

perpendicular to the Z-gradient (Gz) field direction, and the Z component (axial component) 

of the Gz field has a much higher value than the negligible X and Y components, the eddy 

currents can be assumed to exist mostly in the upper and lower plates of the shielding box. 

Following the coupled circuit method, we took two 0.15 mm-thick sublayers of each plate, 

which was considered to be sufficiently thin (less than one-tenth of the skin depth (1.60739 

mm at 5.882 KHz)) to assume a constant eddy currents along the thickness (along the Z-axis). 

To consider the eddy current distribution along X- and Y- axis, we have again divided each 

sublayer into thin subdomains along each direction. In this simulation we have considered 

subdomains of equal width 2 mm. In this way, subdomains taken in each layer along X-axis 

was 110 and along Y-axis was 90. The number of Eigen values was twice of these values for 

each direction as we have divided each plate into two thin sublayers. The dimension of each 

subdomain divided along the length of each brass plate was 180 mm×2 mm×0.15mm and 

along the width was 220 mm×2 mm×0.15 mm.   

E. Experimental Setup 

We compared our simulation and experimental results for Z-gradient coil induced 

eddy current responses. The experiment was conducted using the FID measurement technique 
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[30]. We designed an NMR probe consisting of a solenoid RF coil wound around a 6 mm-

diameter glass sphere filled with baby oil, tuning and matching capacitors, and a rectangular 

shield box made of brass plates. The experimental setup and the internal structure of the 

NMR probe are shown in Fig. 4a. 

The NMR probe was located at a given position in the region of interest (ROI) by a 

three-axis stepper motor stage with accuracy of 0.1 mm, and paired FID signals with opposite 

gradient polarity were measured followed by a 40 µs nonselective (hard) RF pulse to 

calculate the temporal evolution of the eddy current fields. Experimental details with the 

applied gradient configuration are presented in Fig. 4b. 

Results 

The coupled network calculation was conducted using the Mathematica® 

programming platform in a desktop computer (Processor: Intel(R) Core(TM)2 Duo E7500 @ 

2.93 GHz 2.93 GHz; OS: Windows 7 Professional; Memory (RAM): 4.00 GB). In the 

calculation, at first we performed the computation of the resistance matrix, 𝐑𝐑𝑖𝑖, and the 

inductive coupling matrices, 𝐌𝐌𝑖𝑖𝑖𝑖, and 𝐌𝐌𝑖𝑖𝑖𝑖. It took less than two minutes to compute all the 

matrices for Z-gradient induce eddy current responses. Then, we used these data in the 

network equation to compute eddy current responses. Once we had constructed these 

matrices for a given configuration of the MRI system, we could implement them in the 

calculation of eddy currents for any time-dependent current applied to the gradient coil. 

A. Z-Gradient Eddy Current Response: 

In our analysis, we found that the amplitudes of eddy currents along the X- or Y-axis 

were symmetric to the center of the plate, which is expected from the positioning of the 

gradient coil and the upper or lower plate of the local shielding box as illustrated in Fig. 2. 

Fig. 5 depicts the nature of the eddy current distribution along the X-axis of the upper plate 
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for the outermost sublayer. Results are given for different time instants of the decaying 

currents. In addition, the central subdomain was found to have the largest amplitudes. 

In Fig. 6, eddy current responses are given as a function of time for few subdomains 

located at different positions in the X-axis direction. Fig. 6a presents the eddy current 

transients for several domains located on the negative X-axis and Fig. 6b is for similar 

domains on the positive X-axis. Here, we see that transient responses have similar 

characteristics on both sides from the center of the plate. We also see that the eddy current 

responses during both ramp-up and ramp-down have rapid transient characteristics, whereas 

they show a slower exponential decay when there is no change in the input gradient signal. 

These characteristics are found to be in agreement with the physics of a network of 

inductively coupled circuits. In accordance with Lenz’s law, the responses of eddy currents 

during the rising or falling portion of the input gradient signal clearly depict the opposing 

nature of eddy currents in an MRI system. 

The secondary magnetic fields generated by these eddy currents can be determined by 

the Biot–Savart law. To verify the simulation results, we conducted FID measurements of the 

eddy current fields. In the measurements, the NMR probe was positioned at different points 

in the region of interest (ROI – around the center of the magnet gap), and the same procedure 

was repeated. We took FID signals for two cases: a) keeping the brass box inside the magnet, 

and b) without the brass box. The latter case was used to measure the secondary field due to 

other components of the MRI system. These results were then subtracted to get the secondary 

field generated by eddy currents in the shielding box only. 

The simulation and experimental results of transient eddy current magnetic fields are 

combined in Fig. 7. Results are given for several points along the Z-axis for both the positive 

and negative sides from the center of the region of interest (ROI). We found that similar 

points on either side from the axis origin (center of the magent) have nearly the same 
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responses with opposite polarity of field amplitudes. The time constants of the decaying 

transient secondary fields are listed in Fig. 8 for several points along the Z-axis. As for the 

experiments, each FID signal was exponentially fitted to calculate the time constants. The 

decaying field showed a time constant of around 170 µs. Fig. 9 depicts the results of the 

secondary field along the Z-axis for different instances of the gradient signal. The responses 

are nearly linear along the Z-axis. We found good agreement between the simulation and 

experimental results. Both the temporal and spatial responses in the ROI along all the three 

axes (X-, Y-, and Z-axis) are given in Fig. 10. Compared with the temporal–spatial response 

of the Z-eddy field, the secondary X- or Y-eddy field responses were found to be very small. 

B. X-Gradient Eddy Current Response:  

Simulation for X-gradient induced eddy currents was conducted in the similar fashion 

as that for the Z-gradient coil. But the solid angle for a coil in the X-gradient set is 

asymmetric considering the center of the magnet and also considering the center of the 

spherical space bounding the coil and the ROI. For this reason we have followed a 

segmentation solid angle calculation approach following the calculation method given in 

reference [21] (details are explained in Appendix C). Also Gx coil has four sets (two sets in 

the upper layer and two sets in the lower layer near the magnet poles) of coils compared to 

the two sets of coils for planar Z-gradient coil. For both of these reasons, more calculation 

resources were needed for the simulation of X-gradient coil generated eddy currents. The 

computational time become two times longer (approximately six minutes) than the time 

required for Z-gradient eddy current simulation. In Fig. 11 we have illustrated eddy current 

distribution along the X-axis. In accordance with the Gx coil response the eddy current 

response was found nearly zero at the center of the plate whereas subdomains considered at 

either side from the center show increasing values. The transient eddy current responses for 

few subdomains are given in Fig. 12. We have found that the Gx eddy currents decay faster 
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than the Gz eddy current (illustration given in Fig. 6). Fig. 13 illustrates the transient 

secondary magnetic fields for few points in the ROI. Compare to the Z-gradient transient 

eddy field (illustration given in Fig. 7), X-gradient eddy field was found to decay faster with 

an approximate decay time constant of 70 µs. The linear eddy current field response is given 

in Fig. 14. Here also we see that the secondary X-gradient fields have smaller responses than 

the secondary Z-gradient fields (illustration given in Fig. 9). Since the current circulates in 

the opposite directions in the two sets of coil in each layer of planar X-gradient coil, they also 

have opposing secondary magnetic field response in the region of interest (ROI).     

Discussion 

The flattop duration of the gradient signal we considered was long enough for the 

eddy currents to decay to nearly zero within this period. But for the signal with shorter flattop 

duration or for shorter interpulse signal sequences the eddy current might not decay to 

negligible value. In that case, the added effect of the remaining eddy currents before each 

new pulse would be required to consider in the simulation. Because of system propagation 

delays, the flattop duration was slightly longer than the designed signal durations. In the 

simulation, we considered the nominal signal durations. 

In our computation of inductive coupling between the Z-gradient coil and any 

subdomain, we solved the analytical formula of solid angle for the circular coil patterns 

considering all three dimensions. The same formula can be implemented for the cylindrical 

Z-gradient coil with a small modification [22] in the approach to formulating the inductive 

coupling equation. As an example, in our study case the field variables x and y are variables 

and z is constant, since the upper or lower brass plates of the RF shielding box is parallel to 

the planar gradient coils (parallel to the X-Y plane). In case of cylindrical or ellipsoidal RF 

shielding box or any other conducting structures, all of the field variables (x, y, and z – which 

are different from the variables or parameters that define the coil geometry) would be 
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variable. In the calculation of magnetic flux linkage between gradient coils (Gz or Gx coil) 

and conducting structure of cylindrical or ellipsoidal shape we have to consider this issue and 

define the field variables according to the geometry of the eddy current conducting structure. 

The solid angle expression would remain the same as it is for the case of rectangular cubic 

RF shielding box. 

In case of Gx coil solid angle calculation we followed a segmentation approach by 

dividing the area of each coil into several rectangular segments and implemented solid angle 

calculation formula for a rectangular section [21]. We have found this calculation approach 

faster in terms of computer simulation and mathematically less complex. In case of 

cylindrical X- or Y-gradient coil we can take the projection of the area bounded by a 

cylindrical loop on a plane and can easily implement the rectangular segmentation approach 

to formulate the analytical expression for the solid angle. Reference [31] divides the 

curvature of the coil into several line segments and approximates the solid angle as the angle 

of a polygon. This approach can also be implemented for cylindrical gradient coil solid angle 

calculations. 

In this work, we did not simulate the secondary magnetic fields generated by eddy 

currents in the magnetic pole or yoke. The permeability of the ferromagnetic materials does 

not remain constant rather varies in accordance with the hysteresis response of the material. 

In the coupled circuit approach the calculation of self- and mutual inductances of the 

subdomains and the inductive coupling between the coil and subdomains all include 

permeability as a constant which is not the case for ferromagnetic materials [29]. For this 

reason it would be needed to model the permeability variations in the hysteresis curve [32] 

and formulate inductance calculations accordingly. We hope to consider this study in our 

future works. As the magnetic pole or yoke is much further from the ROI, the eddy currents 

in those components have a smaller impact on the ROI. This is clearly shown in the 
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experimental results in Fig. 15. In addition, there were slight variations in the magnitude of 

eddy current fields between simulation and experiment (see Fig. 7). In the simulation, we 

have not considered the coupling effect between the eddy current conducting structures. Also 

there might have some nonlinear eddy current responses that we plan to analyze in our future 

works. The stepper motor has a positioning accuracy of 0.1 mm, which can affect the exact 

positioning of the NMR probe in different positions, but we still found good similarity 

between our simulation and the experimental results. 

In the coupled circuit approach, we found that there was no strict rule in determining 

the sublayer thickness, although it is generally considered that it should be as thin as possible 

compared with the skin depth (𝛿𝛿) of the corresponding signal frequency. Ideally, it should be 

infinitely thin. It has been suggested [13] that the thickness should be less than one-fifth of δ, 

whereas in Ref. [12] the thickness considered was less than one-third of the skin depth. The 

reason for these considerations was that the self-inductance formulas considered in these 

papers do not include the thickness of each subdomain. We have implemented a self-

inductance formula that includes thickness to accommodate the finite thickness of each 

subdomain. We found that a change in thickness has a certain effect on the transient response 

of eddy current—amplitudes and time constants show a slight variation for different 

thicknesses. To consider the skin effect more rigorously, we considered the thickness of each 

sublayer to be less than one-tenth of the skin depth, and found our simulation results to be in 

good agreement with the experimental results. 

Conclusion 

We performed eddy current simulation of an open MRI system by implementing new 

approaches to the coupled circuit numerical analysis method. Eigen matrix techniques for 

solving matrices of differential equations were implemented to speed up the calculation. 

Solid angle approach was implemented in the calculation of the coupling relations between 
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the gradient coils and any other eddy current conducting structures that induce eddy currents. 

We also conducted FID measurements of eddy fields and compared these results with the 

simulation results. A good agreement was found between the simulation and the experiment. 

Our approach is fast and efficient, and can be implemented to analyze eddy currents for any 

MRI system. Although the effect of secondary fields due to eddy currents in the local 

shielding box was larger than the fields due to eddy currents in other components, in future 

work we intend to calculate these fields as well. 

Appendix 

A. Self- and Mutual Inductances of Subdomains 

The self-inductance of a subdomain is given by [28, pp. 313–314] 

𝜇𝜇0
2𝜋𝜋

𝑙𝑙 �𝐿𝐿𝐿𝐿𝐿𝐿 �
2𝑙𝑙

0.2235(𝑡𝑡 + 𝑎𝑎)� − 1 +
0.2235(𝑡𝑡 + 𝑎𝑎)

𝑙𝑙
�, 

where 𝜇𝜇0 is the magnetic permeability, 𝑙𝑙 is the length, 𝑎𝑎 is the width, and 𝑡𝑡 is the thickness of 

each subdomain. 

The mutual inductance between the subdomains was computed by the following 

expression [28, p. 316]: 

𝜇𝜇0
2𝜋𝜋
𝑙𝑙 �𝐿𝐿𝐿𝐿𝐿𝐿 �𝑙𝑙

𝑑𝑑
+ �1 + 𝑙𝑙2

𝑑𝑑2
� − �1 + 𝑑𝑑2

𝑙𝑙2
+ 𝑑𝑑

𝑙𝑙
�. 

Here, 𝑑𝑑 is the geometric mean distance between subdomains, which is equal to the 

distance between the centers. 

B. Solid Angle Calculation for Z-gradient coil pattern 

Following the work of Paxton [17] and Galiano et al. [19], we calculated the solid 

angle formula for the circular-type coil for three dimensions. The basic equation of solid 

angle formulation can be expressed as [17] 

Ω = ∫ 𝐧𝐧.𝐝𝐝𝐝𝐝
𝑧𝑧2

, 
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where ds is the infinitesimal area of the coil and 𝐧𝐧.𝐝𝐝𝐝𝐝 is the area of the projection of ds onto 

the plane perpendicular to z, as shown in Fig. 14. As a starting point, we took an expression 

derived from the equation given in [22]. The expression that describes the solid angle 

subtended by a circular coil of radius 𝑟𝑟 at the center of a sphere is: 

Ω = 2𝜋𝜋(1 − cos𝜃𝜃), 

where 𝜃𝜃 represents the apex angle and cos𝜃𝜃 can be expressed from Fig. 14 as z
√𝑧𝑧2+𝑖𝑖2

. We can 

also express the above equation as 

Ω = 2𝜋𝜋 �1 − z
√𝑧𝑧2+𝑖𝑖2

�. 

To obtain an expression for the solid angle along the X-axis, two factors must be 

taken into account: first, the point at x is now at a distance of √𝑧𝑧2 + 𝑥𝑥2 from the center of the 

coil, and second, from this viewpoint the coil appears to be skewed at an angle of 𝜃𝜃1 with 

respect to the normal (see the black dashed lines in Fig. 15). If we take the projection 

(cos𝜃𝜃1) of the skewed coil at the original position of the coil, we need to multiply z
√𝑧𝑧2+𝑥𝑥2

 

with the above equation. The equation along the X-axis then becomes 

Ω = 2𝜋𝜋 �1 − √𝑧𝑧2+𝑥𝑥2

√𝑧𝑧2+𝑥𝑥2+𝑖𝑖2
� × z

√𝑧𝑧2+𝑥𝑥2
. 

Now, if we skew the X-skewed coil along the Y-axis again (as shown by the red circle in Fig. 

14), z will become �𝑧𝑧2 + 𝑥𝑥2 + 𝑦𝑦2 and we have to multiply the projection (cos𝜃𝜃2) of the Y-

skewed coil, √𝑧𝑧2+𝑥𝑥2

�𝑧𝑧2+𝑥𝑥2+𝑦𝑦2
, with the above equation. Therefore, the final equation can be 

expressed as 

Ω = 2𝜋𝜋 �1 − �𝑧𝑧2+𝑥𝑥2+𝑦𝑦2

�𝑧𝑧2+𝑥𝑥2+𝑦𝑦2+𝑖𝑖2
� × z

√𝑧𝑧2+𝑥𝑥2
× √𝑧𝑧2+𝑥𝑥2

�𝑧𝑧2+𝑥𝑥2+𝑦𝑦2 
 , 

𝐿𝐿𝑟𝑟  Ω = 2𝜋𝜋 �
z

�𝑧𝑧2 + 𝑥𝑥2 + 𝑦𝑦2
−

z
�𝑧𝑧2 + 𝑥𝑥2 + 𝑦𝑦2 + 𝑟𝑟2

�. 
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C. Solid Angle Calculation for planar X- or Y-gradient coil pattern 

The solid angle of Gx coil is calculated by following the research work done by H. Gotoh, et 

al [21] for a rectangular slit. At first we will explain in brief on the solid angle of a rectangle 

at a point on Z-axis. Fig. C1, shows the schematic of solid angle subtended at P (0, 0, h) by a 

rectangle ABCO with sides a and b. The solid angle subtended by this rectangle at the point P 

is represented by [21], 

𝛺𝛺 = ℎ� 𝑑𝑑𝑥𝑥�
𝑑𝑑𝑦𝑦

(𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2)
3
2

𝑏𝑏

0

𝑎𝑎

0
 

The solution of this double integral has been given as [21], 

𝛺𝛺 = tan−1
𝑎𝑎𝑎𝑎

(𝑎𝑎2 + 𝑎𝑎2 + ℎ2)
1
2

 

Now to consider solid angle of a rectangle at any point, let us consider solid angle subtended 

at an arbitrary observation point P (xp, yp, zp) by the rectangle B'EDC as (see Fig. C2). The 

solid angle can be calculated by 

𝛺𝛺𝐵𝐵′𝐸𝐸𝐸𝐸𝐸𝐸 = 𝛺𝛺𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸 − 𝛺𝛺𝑂𝑂𝑂𝑂𝐵𝐵′𝐸𝐸 

The formula will become as: 

𝛺𝛺𝐵𝐵′𝐸𝐸𝐸𝐸𝐸𝐸 = tan−1
�𝑥𝑥1 − 𝑥𝑥𝑝𝑝��𝑦𝑦2 − 𝑦𝑦𝑝𝑝�

𝑧𝑧𝑝𝑝 ��𝑥𝑥1 − 𝑥𝑥𝑝𝑝�
2

+ �𝑦𝑦2 − 𝑦𝑦𝑝𝑝�
2

+ 𝑧𝑧𝑝𝑝�
1
2

− tan−1
�𝑥𝑥1 − 𝑥𝑥𝑝𝑝��𝑦𝑦1 − 𝑦𝑦𝑝𝑝�

𝑧𝑧𝑝𝑝 ��𝑥𝑥1 − 𝑥𝑥𝑝𝑝�
2

+ �𝑦𝑦1 − 𝑦𝑦𝑝𝑝�
2

+ 𝑧𝑧𝑝𝑝�
1
2

 

Now, we can consider the portion of a Gy coil (we have considered Gy coil pattern as its 

position would be more realizable to explain this approach) in first quadrant (arc NH'B' in Fig. 
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C3) as a combination of several rectangular sections. Here, solid angle of the arc B'F'N will 

be 

𝛺𝛺𝐵𝐵′𝐹𝐹′𝑁𝑁𝐸𝐸 = (𝛺𝛺𝑂𝑂𝐸𝐸𝐸𝐸′𝐸𝐸 − 𝛺𝛺𝑂𝑂𝐸𝐸𝑂𝑂𝐸𝐸) + (Ω𝐹𝐹𝐹𝐹′𝐺𝐺𝑂𝑂 − 𝛺𝛺𝐹𝐹𝐹𝐹𝐸𝐸𝑂𝑂) + (Ω𝑂𝑂𝑂𝑂𝑂𝑂′𝐼𝐼 − 𝛺𝛺𝑂𝑂𝐻𝐻𝐺𝐺𝑂𝑂) 

Total solid angle of the Gy coil (arc MNB') will be double of the above equation 

𝛺𝛺𝑇𝑇𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 = 2𝛺𝛺𝐵𝐵′𝐹𝐹′𝑁𝑁𝐸𝐸 

In this fashion we can divide the arc of any gradient coil into enough rectangular sections and 

calculate the solid angle with some approximations.  
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Fig. Captions 

Fig. 1. Open compact 0.3 T magnetic resonance imaging (MRI) system for skeletal age 

assessment in children. 

Fig. 2. Schematic representation of the open compact MRI system. The planar gradient coil 

consisted of an upper and a lower coil, shown separately on the right side of the diagram. The 

local RF shielding box is positioned in between these coils. Eddy currents are expected to be 

created in the brass plates of the boundary of the RF box, and the secondary magnetic fields 

created by these eddy currents have a major effect on the region of interest (ROI) . 

Fig. 3. A schematic representation of the solid angle approach implemented in the coupled 

circuit numerical method is shown for a circular turn of coil. Imaginary slices are considered 

as inductively coupled subdomains of minimal thickness. 

Fig. 4. Experimental setup to conduct FID measurements of eddy current fields. (a) The 

NMR probe was positioned at a given position by a three-axis stepper motor stage with 

accuracy of 0.1 mm. The NMR probe consisted of a solenoid RF coil wound around a 6 mm-

diameter glass sphere filled with baby oil, tuning and matching capacitors, and a rectangular 

shield box made of brass plates. (b) Schematics of the signaling in the FID experiment. An 

amplitude of 5 A of the trapezoidal signal with a nominal rise and fall time of 170 µs and 

constant duration of 1.06 ms was used in the experiment. An RF hard pulse was applied 

immediately after the gradient and FID signals were measured for the opposite gradient 

polarity signals by the NMR probe. 
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Fig. 5. Eddy current amplitudes along (a) the X-axis in the upper plate of the RF shielding 

box. The plate was subdivided into sublayers along the thickness (along the Z-axis). Here, 

results are given for the outermost layer. A symmetric current distribution from the center of 

the plate is seen in the diagram. 

Fig. 6. Transient response of eddy currents for subdomains taken at different points  (a) along 

the negative X-axis and (b) along the positive X-axis with respect to the center of the magnet. 

The brass plates are divided along the X-axis into 110 subdomains of width 2 mm each. 

Distances along the X-axis (that are mentioned in the diagrams) are measured by multiplying 

the number of the subdomains and the width of each subdomain. Responses are given for the 

applied gradient signal of trapezoidal shape with rise and fall times of 170 µs and a plateau 

length of 1.06 ms. Eddy currents are found to be opposing the changes in the gradient coil 

signal, thus reducing the amplitudes and delaying the signal responses of the original gradient 

current. Also, we see a symmetric response for subdomains at the same distance from the 

center of the plate. 

Fig. 7. The transient responses of secondary magnetic fields generated in the ROI by the eddy 

currents in the local shielding box. Responses are given for (a) simulation and (b) experiment 

for several points on both the positive and negative sides along the Z-axis. The total signal 

duration was 1.4 ms and secondary responses were given from 1.6 ms. The measurements 

were conducted for the conditions of the brass box in the ROI and without the brass box. The 

eddy field without the brass box was measured to account for the effect of eddy currents other 

than those in the brass box. These fields were subtracted to find the eddy fields due to eddy 

currents in the brass box only. The simulation results were in good agreement with the 

experimental results. 

Fig. 8. The experimental and simulated time constants for several points on the Z-axis within 

the ROI. 

28 
 



Fig. 9. Linear eddy field responses for three different time instants calculated after the end of 

the applied gradient current. Good agreement was found between (a) simulation and (b) 

experimental results. 

Fig. 10. Secondary transient magnetic fields along the (a) Z-axis, (b) X-axis and, (c) Y-axis in 

the ROI as a result of Z-gradient-induced eddy currents in the RF shielding box. 

Fig. 11. Eddy current distribution along the X-axis induced by X-gradient coil. In accordance 

with the field response of the X-gradient coil, the distributed eddy currents were found to be 

nearly zero at the center of the brass plate and increasing or decreasing values on opposite 

sides from the center. 

Fig. 12. Eddy current transient response induced by X-gradient coil. Here responses are given 

for few subdomains located at different position on the X-axis. 

Fig. 13. The X-gradient coil generated eddy current field is illustrated here for few points 

along the X-axis. X-gradient generated eddy field decays faster than the Z-gradient induced 

secondary magnetic field. 

Fig. 14. Linear secondary magnetic field induced by X-gradient coil. 

Fig. 15. Eddy current fields as a result of eddy currents induced in components of the MRI 

system other than the local RF shielding box. 

Fig. B1.  Geometric representation of the solid angle of a circular coil. Here, θ is the apex 

angle of the solid angle subtended at a distance 𝑟𝑟0 by a circular coil of radius r. 

Fig. B2. Geometric representation of a solid angle calculation in the X–Y plane. The dotted 

schematics represent the inclinations of the coil to account for the projection of the solid 

angle considering any point in the X–Y plane. 𝜃𝜃1 and 𝜃𝜃2 are the projection angles for any 

point along the X- and Y- axis, respectively, and ab and bc are the distances from the center 

along the X- and Y- axis, respectively. 
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Fig. C1. Geometry for the calculation of solid angle subtended by a rectangular section 

ABCO at a distance h on the Z-axis. 

Fig. C2. Geometry for the calculation of solid angle subtended by an arbitrary rectangle at 

any field point P (xp, yp, zp).  

Fig. C3. Rectangular segmentation approach in the calculation of solid angle subtended by 

the X- or Y-gradient coil. Here half of the area of a coil is divided into several rectangular 

sections. The total solid angle would be twice of the solid angle subtended by this portion in 

first quadrant.     
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