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Radiofrequency renal denervation in SHR 2 

Abstract 1 

Aims: We aimed to investigate the anti-hypertensive effect of radiofrequency (RF) renal 2 

denervation (RDN) in an animal model of hypertension.   3 

Materials and Methods: RF energy was delivered with opening abdomen to bilateral 4 

renal arteries through a 2Fr catheter in 8 spontaneously hypertensive rats (SHR) and 8 5 

Wistar-Kyoto rats (WKY). Sham operation was performed in other 8 SHR and 8 WKY. 6 

Blood pressure (BP), heart rate (HR), and urinary norepinephrine excretion were 7 

followed up for 3 months. Plasma and renal tissue concentrations of norepinephrine and 8 

plasma renin activity were measured 3 months after the procedure. The RDN was 9 

confirmed by a decrease in renal tissue norepinephrine. 10 

Key findings: RF-RDN restrained a spontaneous rise in systolic BP (46±12% increase 11 

from 158±8 to 230±14 mmHg vs. 21±18% increase from 165±9 to 197±20 mmHg, p=0.01) 12 

and diastolic BP (55±27% increase from 117±9 to 179±23 mmHg vs. 28±13% increase 13 

from 120±7 to 154±13 mmHg, p=0.04) in SHR; however, WKY were not affected. 14 

Although there were no changes in HR and systemic norepinephrine, the renal tissue 15 

norepinephrine was decreased by RF-RDN in both SHR (302±41 vs. 159±44 ng/g kidney, 16 

p<0.01) and WKY (203±33 vs. 145±26 ng/g kidney, p=0.01). Plasma renin activity was 17 

reduced by the RF-RDN only in SHR (35.3±9.5 vs. 21.4±8.6 ng/mL/hr, p<0.01). 18 

Significance: RF-RDN demonstrated an anti-hypertensive effect with a reduction of 19 

renal tissue norepinephrine and plasma renin activity in SHR. 20 

 21 
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Introduction 1 

Hypertension is one of the most important modifiable risk factors for 2 

cardiovascular morbidity and mortality (Lewington et al. 2002; Staessen et al. 2003; 3 

Hisham et al. 2013; Zambon et al. 2014). A billion people in the world have hypertension 4 

and the incidence is predicted to increase by 60% in 2025 (Kearney et al. 2005). 5 

Furthermore, approximately 13% of patients with hypertension remains above target 6 

blood pressure (BP) despite concurrent use of three or more anti-hypertensive drugs of 7 

different classes including diuretics; namely, the resistant hypertension (Kumbhani et al. 8 

2013).  9 

Renal efferent sympathetic and afferent sensory nerves, which adjacently 10 

surround the renal arterial wall, play a crucial role in the development and maintenance 11 

of hypertension (DiBona and Esler 2010; Kopp et al. 2011; DiBona 2013). Actually, a 12 

radical surgical sympathetic denervation had been demonstrated an anti-hypertensive 13 

effect; however, it was associated with high perioperative morbidity and mortality and 14 

long-term complications (Morrissey et al. 1953; Smithwick and Thompson 1953; Evelyn 15 

et al. 1960). Recently, a radiofrequency renal denervation (RF-RDN) using a 16 

catheter-based technique has been featured as an effective and less invasive approach 17 

for the resistant hypertension (Krum et al. 2009; Esler et al. 2012). The mechanisms of 18 

RF-RDN have been thoroughly investigated; however, they are not so clear yet. 19 

Furthermore, the responders and adequate procedural endpoint of RF-RDN have been 20 

uncertain.  21 

In animal models of hypertension, the anti-hypertensive effect of surgical RDN 22 

and its procedural techniques consisting of cutting renal nerves and swabbing phenol 23 

have been well established (Kline et al 1980; Winternitz et al 1980; Janssen et al 1989; 24 
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Girchev et al. 2006; Lohmeier et al. 2012; Rafiq et al. 2012; Katayama et al. 2013).  The 1 

RF-RDN studies in animals, however, have been limited to normotensive animals such 2 

as swine and canine (Rippy et al. 2011; Steigerwald et al. 2012; Chinushi et al. 2013).  3 

There is no report concerning the effects of RF-RDN on BP in hypertensive animals such 4 

as spontaneously hypertensive rats (SHR).  Furthermore, technical details of RF-RDN 5 

in small animals such as rats have not been reported.  Because the RF-RDN is applied 6 

to the patients with resistant hypertension, it seems to be quite important to reveal the 7 

precise effects of RF-RDN on BP in SHR.   8 

Therefore, this study aimed to investigate the anti-hypertensive effect of RF-RDN 9 

in a rat model of hypertension, SHR.  10 

11 
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   1 
Material and Methods 2 

Animals 3 

Male SHR and their normotensive controls, Wistar-Kyoto rats (WKY) were 4 

purchased from Japan Charles River (Kanagawa, Japan) at 8 weeks of age. All rats were 5 

housed in an animal facility with a 12-hour light/dark cycle. They received standard 6 

chow (NMF; Oriental Yeast Co., Ltd., Tokyo, Japan) and drinking water ad libitum. All 7 

experimental procedures were performed in accordance with institutional guidelines for 8 

animal research approved by the Experimental Animal Committee at University of 9 

Tsukuba.  10 

Experimental Protocol 11 

To evaluate the anti-hypertensive effect of RF-RDN, all rats were followed up for 3 12 

months after treatments: bilateral RF-RDN (SHR-RDN, n=8; WKY-RDN, n=8) and sham 13 

operation (SHR-Sham, n=8; WKY-Sham, n=8). The RF-RDN and sham operation were 14 

performed at 12 weeks of age, as described below. Blood pressure (BP) and heart rate 15 

(HR) were recorded at baseline (10 weeks of age) and every month after the treatments. 16 

The 24-hour urinary samples were collected at baseline (10 weeks of age), 1 month, and 3 17 

months after the treatments. After the 3-month follow-up period, arterial blood was 18 

obtained by cardiac puncture under anesthetization with pentobarbital sodium; the 19 

plasma was collected for measurement of norepinephrine and renin activity by 20 

centrifugation and stored at −80 °C until analysis. Renal arteries were immediately 21 

excised and fixed with 4% paraformaldehyde for histological examination of renal nerves. 22 

Kidneys were frozen for measurement of renal tissue norepinephrine to verify 23 

completion of the RF-RDN. Biochemistry of the renal tissue, blood, and urine were 24 

performed at SRL Inc. (Tokyo, Japan).   25 
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Radiofrequency Renal Denervation and Sham Operation 1 

Rats were anesthetized with pentobarbital sodium (50 mg/kg i.p.). A ventral 2 

incision was made in the midline. The bilateral renal arteries were exposed by blunt 3 

dissection. A 2Fr ablation catheter (Ensemble, Japan Lifeline Co., Tokyo, Japan) was 4 

placed on a renal artery. RF energy was delivered from a distal tip of the catheter under 5 

temperature control mode targeting 60 °C with maximum output of 3 W. As a dispersive 6 

electrode, a rectangular electro-conductive plate (60 cm2) was put on the shaved and 7 

depilated back of rats. The abdominal cavity was irrigated with saline during each RF 8 

application (30 sec). Local impedance and its decrease after the RF application were 9 

obtained at the distal tip of the catheter. The RF application was interrupted before 10 

reaching 30 sec under the following conditions: a change in local impedance exceeding 60 11 

Ω and a rise in local temperature exceeding 60 °C. The RF application was repeated until 12 

the number of RF application with duration of more than 20 sec reached three times for 13 

each renal artery. As a sham operation, the renal arteries were exposed and the local 14 

impedance was obtained in the same way as the RF-RDN; however, the RF energy was 15 

not delivered.  16 

Blood Pressure, Heart Rate, and Urine Samples 17 

Before recordings of BP and HR, rats were pre-heated in a chamber at 35 °C for 10 18 

min, then placed in plastic restrainers. A cuff with a pneumatic pulse sensor was 19 

attached to the proximal tail.  BP and HR were recorded on a Model BP-98A (Softron 20 

Co., Ltd., Tokyo, Japan) with heating; the records were averaged from five consecutive 21 

readings obtained from each rat. After the recordings of BP and HR, all rats were housed 22 

in metabolic cages (CT-10S type II; CLEA Japan, Inc., Tokyo, Japan) to collect urinary 23 
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samples for 24 hours to measure urinary norepinephrine excretion. The urine sample 1 

was collected in a bottle containing 6 N hydrochloric acid.  2 

Renal Tissue Norepinephrine 3 

The frozen kidneys were homogenized in ice-cold 0.3 N perchloric acid. The 4 

homogenate was centrifuged at 18,600 g for 20 min (Avanti HP-25; Beckman Coulter, 5 

Inc., CA, USA); the supernatant was stored at −80 °C until analysis. The renal tissue 6 

norepinephrine concentration was determined by high performance liquid 7 

chromatography (Nakashima et al. 1996). The renal tissue norepinephrine (ng/g kidney) 8 

was calculated as follows: renal tissue norepinephrine concentration (ng/mL) × 9 

homogenate volume (mL) / kidney weight (g).  10 

Histological Examination 11 

Renal arteries were fixed with 4% paraformaldehyde, embedded in paraffin, 12 

sectioned into 4-μm-thick slices, and stained with Masson’s trichrome protocol for 13 

evaluation of the renal nerves that adjacently surround the renal arterial wall. Images 14 

were obtained by a digital microscopy (Biozero BZ-8000, Keyence, Chicago, IL). 15 

Statistical Analysis 16 

All data were expressed as mean±standard deviation. Experimental groups were 17 

compared by one-way analysis of variance followed by the Tukey’s test for multiple 18 

comparisons. Differences were considered statistically significant with p<0.05. Analysis 19 

was performed using IBM SPSS version 21.0 software (IBM Co., Armonk, NY, USA). 20 

21 
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 1 
Results 2 

Procedural Data 3 

The RF-RDN was performed to a similar extent in the WKY-RDN and SHR-RDN 4 

(Table 1). There were no differences in mean RF power and total number, duration, and 5 

energy of RF application. The mean decrease in local impedance after each RF 6 

application was also comparable between the two groups. The local impedance was not 7 

different among the 4 groups (WKY-Sham, WKY-RDN, SHR-Sham, and SHR-RDN).  8 

Effects of RF-RDN on Blood Pressure 9 

The RF-RDN for SHR significantly restrained a spontaneous rise in systolic and 10 

diastolic BP after the 3 months follow-up (Figure 1A and 1B). The SHR-RDN 11 

demonstrated a lower spontaneous rise in systolic BP than the SHR-Sham (21±18% 12 

increase from 165±9 to 197±20 mmHg vs. 46±12% increase from 158±8 to 230±14 mmHg, 13 

p=0.01). The SHR-RDN also demonstrated a lower spontaneous rise in diastolic BP than 14 

the SHR-Sham (28±13% increase from 120±7 to 154±13 mmHg vs. 55±27% increase from 15 

117±9 to 179±23 mmHg, p=0.04).  16 

The BP of WKY, however, was not affected by the RF-RDN after the 3 months 17 

follow-up (Figure 1A and 1B). A change in systolic BP was not different between the 18 

WKY-RDN and WKY-Sham (6±18% increase from 120±8 to 126±15 mmHg vs. 8±8% 19 

increase from 116±3 to 124±10 mmHg, p=0.99) as well as a change in diastolic BP 20 

(6±19% increase from 90±7 to 95±12 mmHg vs. 7±14% increase from 88±5 to 94±11 21 

mmHg, p=1.00).  22 

Effects of RF-RDN on Heart Rate 23 

HR was not affected by the RF-RDN in the WKY and SHR during the 3-month 24 

follow-up period (Figure 2). The HR was not different between the SHR-RDN and 25 
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SHR-Sham at baseline (350±46 vs. 360±41 bpm, p=0.96), 1 month (349±19 vs. 381±42 1 

bpm, p=0.10), 2 months (362±11 vs. 350±31 bpm, p=0.88), and 3 months (364±49 vs. 2 

376±51 bpm, p=0.97), or between the WKY-RDN and Sham WKY at baseline (355±30 vs. 3 

365±48 bpm, p=0.97), 1 month (346±20 vs. 338±21 ng/day, p=0.94), 2 months (366±46 vs. 4 

345±34 ng/day, p=0.60), and 3 months (372±64 vs. 342±35 ng/day, p=0.64).  5 

Effects of RF-RDN on Urine Output 6 

Urine output for 24 hours was not affected by the RF-RDN in the WKY and SHR 7 

during the 3-month follow-up period (Figure 3). The 24-hour urine output was not 8 

different between the SHR-RDN and SHR-Sham at baseline (7.4±1.6 vs. 7.1±1.1 mL/day, 9 

p=0.99), 1 month (7.7±1.5 vs. 7.6±1.8 mL/day, p=1.00), and 3 months (8.4±1.4 vs. 7.8±1.8 10 

mL/day, p=0.97), or between the WKY-RDN and WKY-Sham at baseline (13.3±2.4 vs. 11 

13.4±3.7 mL/day, p=1.00), 1 month (15.5±3.9 vs. 15.5±2.6 mL/day, p=1.00), and 3 months 12 

(15.9±4.0 vs. 14.7±3.4 mL/day, p=0.84).  13 

However, there was a difference in 24-hour urine output between the SHR and 14 

WKY. The SHR-Sham demonstrated a lower 24-hour urine output than the WKY-Sham 15 

at baseline (7.1±1.1 vs. 13.4±3.7 mL/day, p<0.01), 1 month (7.6±1.8 vs. 15.5±2.6 mL/day, 16 

p<0.01), and 3 months (7.8±1.8 vs. 14.7±3.4 mL/day, p0.01). The SHR-RDN also 17 

demonstrated a lower 24-hour urine output than the WKY-RDN at baseline (7.4±1.6 vs. 18 

13.3±2.4 mL/day, p<0.01), 1 month (7.7±1.5 vs. 15.5±3.9 mL/day, p<0.01), and 3 months 19 

(8.4±1.4 vs. 15.9±4.0 mL/day, p<0.01). 20 

Effects of RF-RDN on Urinary Norepinephrine 21 

The 24-hour urinary norepinephrine excretion was not affected by the RF-RDN in 22 

the WKY and SHR during the 3-month follow-up period (Figure 4). The 24-hour urinary 23 

norepinephrine excretion was not different between the SHR-RDN and SHR-Sham at 24 
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baseline (605±123 vs. 655±81 ng/day, p=1.00), 1 month (773±102 vs. 860±116 ng/day, 1 

p=0.86), and 3 months (1103±182 vs. 1121±133 ng/day, p=0.84), or between the 2 

WKY-RDN and WKY-Sham at baseline (401±50 vs. 368±58 ng/day, p=0.86), 1 month 3 

(499±99 vs. 544±97 ng/day, p=0.83), and 3 months (654±75 vs. 636±56 ng/day, p=0.99).  4 

However, there was a difference in 24-hour urinary norepinephrine excretion 5 

between the SHR and WKY. The SHR-Sham demonstrated a higher 24-hour urinary 6 

norepinephrine excretion than the WKY-Sham at baseline (655±81 vs. 368±58 ng/day, 7 

p<0.01), 1 month (860±116 vs. 544±97 ng/day, p<0.01), and 3 months (1121±133 vs. 8 

636±56 ng/day, p<0.01). The SHR-RDN also demonstrated a higher 24-hour urinary 9 

norepinephrine excretion than the WKY-RDN at baseline (605±123 vs. 401±50 ng/day, 10 

p<0.01), 1 month (773±102 vs. 499±99 ng/day, p<0.01), and 3 months (1103±182 vs. 11 

654±75 ng/day, p<0.01).  12 

Effects of RF-RDN on Plasma Norepinephrine 13 

The plasma level of norepinephrine was not affected by the RF-RDN in the WKY 14 

(650±193 vs. 618±176 pg/mL, p=0.99) and SHR (1281±208 vs. 1174±196 pg/mL, p=0.67; 15 

Figure 5). However, there was a difference in plasma norepinephrine between SHR and 16 

WKY. The SHR-Sham demonstrated a higher plasma norepinephrine than the 17 

WKY-Sham (1281±208 vs. 651±193 pg/mL, p<0.01). The SHR-RDN also demonstrated a 18 

higher plasma norepinephrine than the WKY-RDN (1174±196 vs. 618±176 pg/mL, 19 

p<0.01). 20 

Effects of RF-RDN on Plasma Renin Activity 21 

Plasma renin activity was significantly decreased by the RF-RDN in SHR 22 

(35.3±9.5 vs. 21.4±8.6 ng/mL/hr, p<0.01); however, there was no difference between the 23 

WKY-Sham and WKY-RDN (24.5±5.1 vs. 25.0±4.5 ng/mL/hr, p1.00; Figure 6). The 24 
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SHR-Sham demonstrated a higher plasma renin activity than the WKY-Sham (35.3±9.5 1 

vs. 24.5±5.1 ng/mL/hr, p=0.03); however, there was no difference between the SHR-RDN 2 

and WKY-RDN (21.4±8.6 vs. 25.0±4.5 ng/mL/hr, p=0.77).  3 

Effects of RF-RDN on Renal Tissue Norepinephrine 4 

Renal tissue norepinephrine was significantly decreased by the RF-RDN in both 5 

WKY (203±33 vs. 145±26 ng/g kidney, p=0.01) and SHR (302±41 vs. 159±44 ng/g kidney, 6 

p<0.01; Figure 7). The SHR-Sham demonstrated higher renal norepinephrine content 7 

than the WKY-Sham (302±41 vs. 203±33 ng/g kidney, p<0.01); however, there was no 8 

difference between the SHR-RDN and WKY-RDN (159±44 vs. 145±26 ng/g kidney, 9 

p=0.84).  10 

Histological Changes in Renal Nerve Bundle 11 

 Renal nerve bundle was surrounded by a thin fibrotic connective tissue sheath in 12 

the SHR-Sham. By contrast, the structures of renal nerve bundle and fibrotic sheath 13 

were broken in the SHR-RDN (Figure 8). Similar changes in the renal nerve structures 14 

were also observed between the WKY-Sham and WKY-RDN.  15 

16 
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 1 
Discussion 2 

 This is the first report of an anti-hypertensive effect of RF-RDN in an animal 3 

model of hypertension. Although a surgical RDN has demonstrated anti-hypertensive 4 

effects in animal models of hypertension for more than 30 years ago (Kline et al 1980; 5 

Winternitz et al 1980; Janssen et al 1989), the previous studies of RF-RDN in animals 6 

have been limited to normotensive animals such as swine and canine (Rippy et al. 2011; 7 

Steigerwald et al. 2012; Chinushi et al. 2013). The RF-RDN in human study 8 

demonstrated the antihypertensive effect as well as surgical RDN (Krum et al. 2009; 9 

Esler et al. 2012). However, the RF-RDN study in animal models of hypertension has 10 

been lacked. We here demonstrated firstly the effects of RF-RDN on hypertension in 11 

SHR. 12 

Major Findings 13 

The major findings of this study were following: (1) RF-RDN significantly lowered 14 

BP only in SHR; (2) RF-RDN significantly decreased renal tissue norepinephrine with 15 

histological disruption to the renal nerve bundle; (3) systemic (urinary and plasma) 16 

norepinephrine was higher in SHR than WKY; (4) the systemic norepinephrine was not 17 

affected by RF-RDN; (5) RF-RDN significantly reduced plasma renin activity only in 18 

SHR; (6) urine output was lower in SHR than WKY; and (7) the RF-RDN did not affect 19 

the urine output and HR.  20 

Anti-hypertensive Effect of RF-RDN  21 

 The renin-angiotensin system plays an important role in the regulation of BP 22 

(Griendling et al. 1993; Unger et al. 2011). Thus, we examined the effect of RF-RDN on 23 

plasma renin activity.  The RF-RDN significantly reduced plasma renin activity in SHR. 24 

This finding is consistent with previous reports of surgical RDN (Lohmeier et al. 2012; 25 
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Katayama et al. 2013). However, we also found that the RF-RDN did not reduce plasma 1 

renin activity in WKY. In addition, the significant reduction of BP was demonstrated 2 

only in SHR. Therefore, the anti-hypertensive effect of RF-RDN in SHR might be 3 

associated with the reduction of plasma renin activity.  4 

Renin release from juxtaglomerular granular cells (JGC) is evoked by (1) an 5 

increase in efferent renal sympathetic nerve activity via beta 1 adrenergic receptor at 6 

JGC, (2) a decrease in perfusion pressure inside the afferent renal arteriole detected by 7 

JGC, (3) a decrease in NaCl concentration, usually owing to a decrease in glomerular 8 

filtration ratio (GFR), at the macula densa in the distal tubule (DiBona and Esler 2010; 9 

Kurtz 2011). The GFR is reduced by a constriction of afferent renal arterioles according 10 

to an increase in efferent renal sympathetic nerve activity (Fleming et al. 1992; Chen 11 

and Fleming 1993). These regulation systems with renin and sympathetic nerve well 12 

explain a mechanism of hypertension and anti-hypertensive effect of RF-RDN in SHR.   13 

The SHR-sham demonstrated higher norepinephrine levels in urine, plasma, and 14 

renal tissue than the WKY-sham. These findings indicated the enhanced renal and 15 

systemic sympathetic activity in SHR. The enhanced renal sympathetic activity directly 16 

evokes the renin release from JGC. The SHR-sham also demonstrated lower urine 17 

output than the WKY-sham. This can be explained by a reduction in GFR due to a 18 

constriction of renal afferent arteriole evoked by enhanced renal sympathetic activity, 19 

leading to further renin release from JGC. Increased renin secretion produces 20 

angiotensin II, which increases circulating blood volume through increasing sodium 21 

reabsorption by aldosterone and induces contraction of small arteries. Moreover, 22 

angiotensin II drives systemic sympathetic activity through direct activation of central 23 

sympathetic neuron. Taken together, activated renin-angiotensin system and 24 
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sympathetic hyperactivity creates a vicious cycle, resulting to accelerating hypertension 1 

(Griendling et al. 1993; Unger et al. 2011). The RF-RDN could restrain the spontaneous 2 

BP rise in the SHR by interrupting the vicious cycle between activated sympathetic 3 

nerve system and renin-angiotensin system. The BP could fall until the increased GFR 4 

returned to a former state to maintain the fluid homeostasis.  5 

As for the depressor effects of the renin-angiotensin system inhibitors in SHRs, 6 

Susic et al reported that a chronic treatment with AT1 receptor antagonist losartan 7 

showed 39 mmHg reduction in the systolic BP of SHRs fed normal-salt diet (Susic D et 8 

al. 2011). In the present our study, the RF-RDN showed a comparable reduction in the 9 

systolic BP (33 mmHg) of SHRs fed normal-salt diet to the chronic treatment with 10 

losartan. The depressor effects of RF-RDN on SHRs fed high-salt diet, however, need a 11 

further study. Moreover, a further study on the combination therapy of the RF-RDN and 12 

AT1 blocker vs. single therapy of each alone in SHRs fed normal-salt diet and high-salt 13 

diet would be interesting and important, because the depressor effects of the AT1 14 

receptor blocker in SHRs were reported to be different between in normal-salt diet and 15 

in high-salt diet (Susic D et al. 2011). 16 

The afferent renal sensory nerve plays an important role in the regulation of 17 

systemic sympathetic activity by modulating the central nervous system (Kopp et al. 18 

2011; Chinushi et al. 2013). Therefore, RF-RDN is expected to attenuate not only renal 19 

sympathetic activity but also systemic sympathetic activity and its regulating HR. 20 

Indeed, clinical trials of RF-RDN have shown a significant reduction of HR by RF-RDN 21 

(Krum et al. 2009). The possible attenuation of systemic sympathetic activity and HR, 22 

however, was not demonstrated by RF-RDN in both the SHR and WKY despite the 23 

significant attenuation of renal sympathetic activity. These findings were consistent 24 
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with the previous reports of surgical RDN for animal models (Lohmeier et al. 2012; 1 

Katayama et al. 2013). Furthermore, selective afferent RDN by a dorsal rhizotomy 2 

significantly decreased BP in uni-nephrectomized SHR (Janssen et al. 1989). HR, 3 

plasma norepinephrine concentrations, and responses to hexamethonium were not 4 

affected by this procedure. However, it significantly increased responses in HR to 5 

phenylephrine but not to nitroprusside. Therefore, afferent renal nerves seem to have 6 

less impact on the development and maintenance of hypertension in SHR; however, it 7 

may contribute to the mechanisms that alter sympathetic function and baroreceptor 8 

reflex sensitivity during the development of hypertension. 9 

The issue of selecting responders to RDN is problematic and controversial. Our 10 

data might suggest that the RF-RDN is also effective for hypertension associated with 11 

obesity and chronic kidney disease, which also demonstrates high renin and enhanced 12 

systemic sympathetic activity. Obesity and chronic kidney disease as well as high 13 

plasma renin activity and high systemic norepinephrine might be useful indicators for 14 

screening the responders to RF-RDN (Lohmeier et al. 2012; Katayama et al. 2013; 15 

Kiuchi et al. 2013; Petras et al. 2013). On the other hand, bilateral surgical RDN delayed 16 

the onset and development of hypertension with a significant increase in urinary sodium 17 

excretion in 7-week-old SHR but not in 18-week-old SHR (Winternitz et al. 1980). 18 

Therefore, they concluded that the renal sympathetic nerves contributed to the 19 

development of hypertension during early stage in the SHR in part by causing enhanced 20 

sodium retention; however, the renal nerves did not play a significant role in the 21 

maintenance of increased BP in established hypertension.  Early intervention by RDN 22 

might inhibit or delay the development of drug-resistant hypertension.  23 

Technique of RF-RDN 24 
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An adequate RF-RDN protocol remains a major issue, although a surgical RDN 1 

has an established protocol of cutting nerves with phenol swabbing (Girchev et al. 2006; 2 

Lohmeier et al. 2012; Rafiq et al. 2012; Katayama et al. 2013). The RF-RDN protocol 3 

should provide both safety and efficacy.   4 

In this study, the RF-RDN did not cause complications such as a pop phenomenon 5 

resulting in a rupture of renal artery. A rapid increase in the local temperature above the 6 

boiling point can vaporize blood and surrounding saline, causing a mini-explosion and 7 

audible pop. Evaporation may occur intramurally, leading to gas bubble formation 8 

within the renal arterial wall. With continued energy application, this bubble expands 9 

and erupts through the weakest path, cleaving the renal artery (Juneja et al. 2001). 10 

Indeed, we had frequently experienced this pop phenomenon in our preliminary 11 

experiments of RF-RDN in SHR and WKY under the following conditions: an absence of 12 

temperature control mode and maximum output of 4W or greater.  The pop 13 

phenomenon, however, had never occurred under the temperature control mode 14 

targeting 60 °C with maximum output of 3 W.   15 

This study demonstrated an anti-hypertensive effect of RF-RDN with a 16 

significant decrease in renal tissue norepinephrine.  Currently, the decrease in renal 17 

tissue norepinephrine remains the gold standard of RDN in animal studies (Nakashima 18 

et al. 1996; DiBona 2013). The measurement of renal tissue norepinephrine, however, is 19 

not immediate and is not clinically applicable. We found that the local impedance 20 

decreased approximately 40 Ω after each RF application, which might provide a useful 21 

readout for the effective RF-RDN, similar to an autonomic response to electrical 22 

stimulation of renal nerves (Chinushi et al. 2013). In addition, the RF-RDN might be 23 

effective when the RF application is repeated until a number of RF applications with 24 



Radiofrequency renal denervation in SHR 17 

duration of more than 20 sec reaches three times for each renal artery as described in the 1 

methods section.   2 

The RF-RDN procedure exhibited excellent safety under the temperature control 3 

mode with a limited maximum power output. Repeated RF applications guided by a 4 

decrease in local impedance and sufficient RF duration might be required for the 5 

effective RF-RDN.  6 

Limitations 7 

The mechanisms of regulating BP include not only the sympathetic nerve system 8 

and renin-angiotensin system but also the carotid baroreflex system (Lohmeier et al. 9 

2012), renal sodium handling (Katayama et al. 2013), reactive oxygen species (Hubens 10 

et al. 2013), and endothelin (Girchev et al. 2006; Weber et al. 2009; Dhaun et al. 2011; 11 

Moorhouse et al. 2013). However, this study did not address potential mechanisms other 12 

than the sympathetic nerve system and renin-angiotensin system. Therefore, further 13 

studies are required to clarify the precise mechanisms responsible for the 14 

anti-hypertensive effect of RF-RDN in SHR.   15 

Direct recording of renal nerve activity was not performed in this study.  16 

Individual recording of renal afferent and efferent nerves was reported; however, it 17 

required cutting renal nerves (Xie and Wang 2009; Kopp et al. 2011). Continuous 18 

recording of renal nerve was also reported; however, the maximum recording duration 19 

did not reach 3 months (Fujisawa et al. 2011). Furthermore, detachment of renal nerve 20 

for recording its activity might hurt the renal nerve itself. To compare the long-term 21 

effect of RF-RDN with sham operation, this study did not take the risk of renal nerve 22 

injury by the direct recording of renal nerve activity.   23 
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The RF energy in this study was applied to renal arteries from the external side, 1 

which is opposite to the clinical setting (Krum et al. 2009; Esler et al. 2012). This might 2 

strengthen the effects of RF-RDN on renal nerves, because the renal nerves lie adjacent 3 

to the outer side of renal arterial wall (Rippy et al. 2011; Steigerwald et al. 2012). The 4 

endovascular RF-RDN may require more radical RF energy application to assure the 5 

anti-hypertensive effect. However, the RF-RDN has never been validated in animal 6 

models of hypertension regardless of its energy application side (internally or externally). 7 

This study takes a first step to clarify the mechanism of reducing BP by RF-RDN and to 8 

establish the adequate protocol of RF-RDN, demonstrating the anti-hypertensive effects 9 

of RF-RDN for the first time in animal models of hypertension. Therefore, although the 10 

endovascular RF-RDN should also be investigated in animal models of hypertension in a 11 

future, this study provides a valuable insight into the novel treatment option for 12 

hypertension.  13 

Although the RF-RDN restrained a spontaneous rise in BP, it failed to completely 14 

normalize the elevated BP in SHR. Our findings were in accordance with the Kline’s 15 

report that bilateral surgical RDN significantly delayed but did not completely inhibit 16 

the development of hypertension in SHR (Kline et al. 1980). Although the renal tissue 17 

norepinephrine was significantly decreased after the RDN, it partially recovered 18 

suggesting the renal reinnervation. Thus, the RF-RDN may not provide the complete 19 

resolution of resistant hypertension, indicating the need for hybrid therapy. Recently, a 20 

selective endothelin-receptor antagonist demonstrated an additional anti-hypertensive 21 

effect in resistant hypertension (Weber et al. 2009; Dhaun et al. 2011; Miyauchi and 22 

Goto 2013, Moorhouse et al. 2013;). A hybrid therapy by combining the RF-RDN with 23 
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new drugs such as selective endothelin-receptor antagonists might provide some hope of 1 

cure for the resistant hypertension. 2 

Conclusions 3 

This study provides an experimental evidence for an anti-hypertensive effect of 4 

RF-RDN for the first time in an animal model of hypertension. The RF-RDN restrained a 5 

spontaneous BP rise in SHR despite the systemic sympathetic hyperactivity. The 6 

anti-hypertensive effect of RF-RDN seemed to be mediated by a reduction of enhanced 7 

plasma renin activity. Technical aspects of RF-RDN were also examined in detail to 8 

provide safety and efficacy for replication. This study provides a novel insight into the 9 

use of RF-RDN, which is a clinically expanding treatment for the resistant hypertension.  10 
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Figure legends 1 

 2 

Figure 1. Effects of radiofrequency renal denervation on systolic blood pressure (A) and 3 

diastolic blood pressure (B). Values are expressed as mean±standard deviation (n=8 in 4 

each group). Asterisk indicates statistical significance (p<0.05) vs. sham operated rats; 5 

N.S., not significant; WKY-Sham, sham-operated Wistar-Kyoto rats; WKY-RDN, WKY 6 

subjected to radiofrequency renal denervation; SHR-Sham, sham-operated 7 

spontaneously hypertensive rats; SHR-RDN, SHR subjected to radiofrequency renal 8 

denervation.  9 

 10 

Figure 2. Effects of radiofrequency renal denervation on heart rate. Values are expressed 11 

as mean±standard deviation (n=8 in each group). Asterisk indicates statistical 12 

significance (p<0.05) vs. sham operated rats; N.S., not significant; WKY-Sham, 13 

sham-operated Wistar-Kyoto rats; WKY-RDN, WKY subjected to radiofrequency renal 14 

denervation; SHR-Sham, sham-operated spontaneously hypertensive rats; SHR-RDN, 15 

SHR subjected to radiofrequency renal denervation.  16 

 17 

Figure 3. Effects of radiofrequency renal denervation on urine output for 24 hours. 18 

Values are expressed as mean±standard deviation (n=8 in each group). Asterisk 19 

indicates statistical significance (p<0.05) vs. sham operated rats; N.S., not significant; 20 

WKY-Sham, sham-operated Wistar-Kyoto rats; WKY-RDN, WKY subjected to 21 

radiofrequency renal denervation; SHR-Sham, sham-operated spontaneously 22 

hypertensive rats; SHR-RDN, SHR subjected to radiofrequency renal denervation.  23 

 24 
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Figure 4. Effects of radiofrequency renal denervation on urinary norepinephrine 1 

excretion. Values are expressed as mean±standard deviation (n=8 in each group). 2 

Asterisk indicates statistical significance (p<0.05) vs. sham operated rats; N.S., not 3 

significant; WKY-Sham, sham-operated Wistar-Kyoto rats; WKY-RDN, WKY subjected 4 

to radiofrequency renal denervation; SHR-Sham, sham-operated spontaneously 5 

hypertensive rats; SHR-RDN, SHR subjected to radiofrequency renal denervation.  6 

 7 

Figure 5. Effects of radiofrequency renal denervation on plasma norepinephrine. Values 8 

are expressed as mean±standard deviation (n=8 in each group). Asterisk indicates 9 

statistical significance (p<0.05) vs. sham operated rats; N.S., not significant; WKY-Sham, 10 

sham-operated Wistar-Kyoto rats; WKY-RDN, WKY subjected to radiofrequency renal 11 

denervation; SHR-Sham, sham-operated spontaneously hypertensive rats; SHR-RDN, 12 

SHR subjected to radiofrequency renal denervation. SHRs are also compared with 13 

WKYs; the statistical significance is indicated by the sharp (p<0.05 vs. WKY-Sham) and 14 

dagger (p<0.05 vs. WKY-RDN).  15 

 16 

Figure 6. Effects of radiofrequency renal denervation on plasma renin activity. Values 17 

are expressed as mean±standard deviation (n=8 in each group). Asterisk indicates 18 

statistical significance (p<0.05) vs. sham operated rats; N.S., not significant; WKY-Sham, 19 

sham-operated Wistar-Kyoto rats; WKY-RDN, WKY subjected to radiofrequency renal 20 

denervation; SHR-Sham, sham-operated spontaneously hypertensive rats; SHR-RDN, 21 

SHR subjected to radiofrequency renal denervation. SHRs are also compared with 22 

WKYs; the statistical significance is indicated by the sharp (p<0.05 vs. WKY-Sham) and 23 

dagger (p<0.05 vs. WKY-RDN).  24 
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 1 

Figure 7. Effects of radiofrequency renal denervation on renal tissue norepinephrine. 2 

Values are expressed as mean±standard deviation (n=8 in each group). Asterisk 3 

indicates statistical significance (p<0.05) vs. sham operated rats; N.S., not significant; 4 

WKY-Sham, sham-operated Wistar-Kyoto rats; WKY-RDN, WKY subjected to 5 

radiofrequency renal denervation; SHR-Sham, sham-operated spontaneously 6 

hypertensive rats; SHR-RDN, SHR subjected to radiofrequency renal denervation. SHRs 7 

are also compared with WKYs; the statistical significance is indicated by the sharp 8 

(p<0.05 vs. WKY-Sham) and dagger (p<0.05 vs. WKY-RDN).  9 

 10 

Figure 8. Histological changes in renal nerve bundle by radiofrequency renal 11 

denervation. Horizontal bar indicates a scale of 100 µm; SHR-Sham, sham-operated 12 

spontaneously hypertensive rats; SHR-RDN, SHR subjected to radio frequency renal 13 

denervation.  14 



Table 1. Procedural data of the radiofrequency renal denervation 

Parameters of radiofrequency application 

WKY SHR 

P-value Sham 

(n=8) 

RDN 

(n=8) 

Sham 

(n=8) 

RDN 

(n=8) 

Mean Power, W - 2.4 ± 0.7 - 2.5 ± 0.6 0.71 

Total number, time - 8 ± 1 - 8 ± 1 0.84 

Total duration, sec - 246 ± 79 - 215 ± 58 0.38 

Total energy, J - 514 ± 176 - 421 ± 54 0.19 

Mean local impedance, Ω 233 ± 35 220 ± 36 249 ± 18 237 ± 17 0.24 

Mean decrease in local impedance, Ω - 40 ± 11 - 44 ± 15 0.45 

Data are expressed as mean ± standard deviation. WKY indicates Wistar-Kyoto rats; SHR, 

spontaneously hypertensive rats; Sham, sham operation; RDN, radiofrequency renal 
denervation. 



Figure 1A. Systolic blood pressure (mmHg)
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Figure 1B. Diastolic blood pressure (mmHg)
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Figure 2. Heart Rate (bpm)
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Figure 3. Urine output (mL/day)
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Figure 4. Urinary norepinephrine excretion (ng/day)

0

200

400

600

800

1000

1200

1400

0 M 1 M 3 M

U
rin

ar
y 

no
re

pi
ne

ph
rin

e 
ex

cr
et

io
n

(n
g/

da
y)

Time after the radiofrequency renal denervation or sham operation

WKY-Sham WKY-RDN

SHR-Sham SHR-RDN

] N.S.

] N.S.



0

200

400

600

800

1000

1200

1400

1600

WKY-Sham WKY-RDN SHR-Sham SHR-RDN

Pl
as

m
a 

no
re

pi
ne

ph
rin

e 
(p

g/
m

L)
Figure 5. Plasma norepinephrine (pg/mL)

N.S.

N.S.#† #†



0

5

10

15

20

25

30

35

40

45

50

WKY-Sham WKY-RDN SHR-Sham SHR-RDN

Pl
as

m
a 

re
ni

n 
ac

tiv
ity

 (n
g/

m
L/

hr
)

Figure 6. Plasma renin activity (ng/mL/hr)

N.S.

*#†



0

50

100

150

200

250

300

350

400

WKY-Sham WKY-RDN SHR-Sham SHR-RDN

Re
na

l t
is

su
e 

no
re

pi
ne

ph
rin

e
(n

g/
g 

ki
dn

ey
)

Figure 7. Renal tissue norepinephrine (ng/g kidney)

*

*#†



Figure 8. Renal Nerve Bundle
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