
JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, APRIL 2013 1

Two-dimensional Compressed Sensing using the
Cross-sampling Approach for Low-field MRI

Systems
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Abstract—A compressed sensing method using a cross sam-
pling and self-calibrated off-resonance correction is proposed.
Estimation of the magnetic field inhomogeneity based on image
registration enables the off-resonance correction with no addi-
tional RF pulses or acquisitions. In addition to this advantage,
a fast and straightforward calculation was achieved by using
the first-order components of the magnetic field inhomogeneity.
Imaging experiments using a phantom and a chemically fixed
mouse demonstrated practical benefits in improving blurring and
artifacts in MR images in low field MRI systems.

Index Terms—Magnetic resonance imaging, Compressed Sens-
ing, Magnetic field inhomogeneity.

I. INTRODUCTION

COMPRESSED sensing (CS) [1]–[4] enables fast mag-
netic resonance (MR) imaging by using the sparsity of

the signal and its incoherent undersampling. Currently, Carte-
sian undersampling along one phase-encoding direction (1D
Cartesian) is widely used in two-dimensional (2D) or three-
dimensional (3D) CS. In addition to the fact that the trajectory
is simple, it is robust to magnetic field inhomogeneities, sus-
ceptibility effects, and field gradient imperfection. However,
in 2D imaging, performing CS reconstruction is ineffective
because the trajectory is only incoherent in one direction.

To achieve better incoherent sampling, non-Cartesian tra-
jectories such as radial and spiral were proposed [5], and
such pseudorandom sampling trajectories are better suited
for CS reconstruction. However, in these cases, off-resonance
effects and trajectory errors caused by fast-switching readout
gradients result in distortion, blurring, and intensity variation
over the MR images [6]. To solve these problems, the use of a
dynamic shimming system and a high-precision gradient con-
trol system are required, but there are difficulties in developing
such systems.

Recently, a cross-sampling trajectory, which uses two or-
thogonal readout gradients, was proposed [7], [8]. The tra-
jectory enabled better incoherent sampling with less com-
plicated gradient switching. Therefore, problems caused by
low incoherence and gradient imperfections were reduced.
However, there were still difficulties regarding magnetic field
inhomogeneities.
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To solve these difficulties, CS approaches with off-
resonance correction have been proposed [9], [10]. These algo-
rithms are based on time-segmented and frequency-segmented
approximations [11]–[14] and give robust reconstruction even
in inhomogeneous magnetic fields. However, these algorithms
require additional scans or RF pulses to obtain magnetic field
distribution.

This paper deals with CS for MRI systems using a perma-
nent magnet. Generally, permanent magnets have the problem
of low stability of their magnetic field because of the strong
dependence of their magnetization on temperature. Therefore,
this property makes it difficult to implement the shimming
and achieve high homogeneity of the field. For this reason,
a practical CS approach is still a challenge for permanent
magnets. However, in this case, the problem would not be so
complicated if the field map could be obtained because there
is a smaller susceptibility effect under such low-field (typically
less than 2T) systems.

In this study, we proposed a new cross-sampling approach
with first-order k-space trajectory correction [15], [16] for
CS reconstruction. Our approach reduced off-resonance effects
due to inhomogeneous magnetic fields and phase errors caused
by pulse sequence or hardware imperfections. The magnetic
field distribution was estimated by using an image registration-
based method [17]. Imaging experiments of a phantom and a
chemically fixed mouse using a 1.0 T MRI system demon-
strated the usefulness of our method with its computational
simplicity.

II. THEORY

A. Cross-sampling Approach

In the cross-sampling approach [7], undersampled datasets
can be obtained by using two orthogonal readout gradients,
for example, Gx and Gy as explained in Fig. 1(a). Then, the
undersampled dataset sx using the Gx readout is

sx(kx, ky) =

∫∫
m0(x, y)exp{−2πi(kxx+kyy)}dxdy, (1)

where m0(x, y) represents the spin density in a 2D cross
section in Cartesian coordinates (x, y), and kx and ky are the
k-space coordinates. In the Cartesian sampling, the gradient
pulse can be assumed as constant amplitude. Then, kx and ky
are expressed as
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′
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′
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2π
)n∆Gyt

′
y,

(2)

where tx is the readout time for Gx, t′y is the gradient
duration time for Gy, n is the phase-encoding number, ∆Gy

denotes the step size of the phase-encoding gradient, and γ is
the gyromagnetic ratio of the proton, and the undersampled
dataset sy using Gy readout is

sy(kx, ky) =

∫∫
m0(x, y)exp{−2πi(kxx+kyy)}dxdy, (3)

where

kx = (
γ

2π
)

∫
Gx(t

′
x)dt

′
x

= (
γ

2π
)n∆Gxt

′
x,

ky = (
γ

2π
)

∫
Gy(tx)dty

= (
γ

2π
)Gyty,

(4)

t′x is the gradient duration time for Gx, ∆Gx denotes the
step size of the phase-encoding gradient, and ty is the readout
time for Gy . To maintain the consistency of the k-space
coordinate system between sx and sy, the gradient amplitude
and the duration should be adjusted according to the gradient
efficiencies for Gx and Gy . Then, a combined undersampled
k-space dataset s(k) can be expressed as

s(k) = P (k){sx(k) + sy(k)}, (5)

where sx and sy are undersampled datasets using the Gx

and Gy readout gradients, k is the k-space coordinate, and P
is a weighting function, defined in Eq. (6), to maintain data
consistency in the overlapped datasets R.

P (k) =

{
0.5 (k ∈ R)

1.0 (k /∈ R)
(6)

However, in practical scanning, k-space sampling is affected
by phase error caused by eddy currents and hardware imper-
fections [18]–[21]. The error is dependent on the characteristic
of gradient coils, the shape and material of the pole piece, etc.
Therefore, in this case, it is difficult to combine sx and sy as
in Eq. (5) because these datasets were acquired using different
gradient coils for readout. In this case, Eqs (1) and (3) can be
rewritten as

sx(tx) ≈
∫∫

m0(x, y)exp{−2πi∆ϕx}

× exp{−2πi(kxx+ kyy)}dxdy,

sy(ty) ≈
∫∫

m0(x, y)exp{−2πi∆ϕy}

× exp{−2πi(kxx+ kyy)}dxdy,

(7)

where ∆ϕx and ∆ϕy are phase errors caused by Gx and Gy,
respectively. To correct the error, a low-order phase correction
is often used [18], [20]. In this study, the phase error was
corrected using first-order components [18]. Thus, the phase
error was approximated as

∆ϕx ≈ c0x+ c1y,

∆ϕy ≈ c′0x+ c′1y,
(8)

where c0, c1, c′0, and c′1 are the constant coefficients. Then,
Eq. (7) can be expressed as

sx(tx) ≈
∫∫

m0(x, y)exp{−2πi((kx + c0)x+ (ky + c1)y))}dxdy,

sy(ty) ≈
∫∫

m0(x, y)exp{−2πi((kx + c′0)x+ (ky + c′1)y)}dxdy,
(9)

From this equation, it is clear that the linear components of
the phase error result in a bulk shift of the k-space. Therefore,
the phase error can be corrected by centering the k-space
peaks.

B. Self-calibrated Cross-sampling Approach

In addition to the phase error caused by pulse sequence
or hardware imperfections, the NMR signal is modified by
an inhomogeneous magnetic field B0, which causes intensity
variation and image distortion. In such cases, sx and sy can
be approximated as

sx(tx) ≈
∫∫

m0(x, y)exp{−2πi∆ϕx}

× exp{−2πi(kxx+ kyy +∆B0(x, y)tx)}dxdy,

sy(ty) ≈
∫∫

m0(x, y)exp{−2πi∆ϕy}

× exp{−2πi(kxx+ kyy +∆B0(x, y)ty)}dxdy.
(10)

As seen in Eq. (10), performing cross sampling is challeng-
ing because the equation includes undesirable terms to prevent
reconstructing the correct image.

Therefore, in this study, CS reconstruction with self-
calibrated k-space correction was performed as explained
below (see also Fig. 1(b)).

To improve the trajectory distortion caused by the field
inhomogeneity, the linear field correction method [15], which
corrects the distortion by using the first-order components of
the inhomogeneity, was used. The trajectory can be appropri-
ately corrected using this algorithm because there are fewer
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Fig. 1. (a) Procedure for cross sampling approach with phase error correction.
(b) Procedure for our proposed method based on the first order inhomogeneity
correction and image registration.

high-order components, such as susceptibility effects in low-
field MRI systems. In this method, ∆B0 was assumed to be
approximated by its linear terms as Eq. (11):

∆B0 = αx+ βy, (11)

where α and β are the coefficients of the polynomial. The
constant term of the inhomogeneity can be neglected because
it can generally be corrected using NMR lock during the
scanning. Then, Eq. (10) can be expressed as

sx(tx) ≈
∫∫

m0(x, y)exp{−2πi∆ϕx}

× exp{−2πi(kxx+ kyy + (αx+ βy)tx)}dxdy

=

∫∫
m0(x, y)exp{−2πi∆ϕx}

× exp{−2πi((kx + αtx)x+ (ky + βtx)y)}dxdy

=

∫∫
m0(x, y)exp{−2πi∆ϕx}

× exp{−2πi(k′xx+ k′yy)}dxdy,

sy(ty) ≈
∫∫

m0(x, y)exp{−2πi∆ϕy}

× exp{−2πi(kxx+ kyy + (αx+ βy)ty)}dxdy

=

∫∫
m0(x, y)exp{−2πi∆ϕy}

× exp{−2πi((kx + αty)x+ (ky + βty)y)}dxdy

=

∫∫
m0(x, y)exp{−2πi∆ϕy}

× exp{−2πi(k′′xx+ k′′yy)}dxdy,
(12)

where k′x and k′y are k-space coordinates in sx distorted by
the ∆B0, and k′′x and k′′y are distorted k-space coordinates in
sy . Thus, the corrected k-space (kx, ky) can be expressed as
Eq. (13):

kx = k′x − αtx

ky = k′y − βtx
(13)

In the case of sy , the k-space can also be corrected as:

kx = k′′x − αty

ky = k′′y − βty
(14)

Equations (13) and (14) indicate that the k-space distortion
caused by the linear order inhomogeneity can be corrected by
using simple regridding if the value of ∆B0 can be obtained.

In this study, the distribution ∆B0 was estimated without
additional scans or RF pulses by using the registration-based
method [17]. The MR images mx and my , acquired using
the Gx and Gy gradients in ∆B0, were distorted along their
readout direction as the following equations:

mx(x
′, y) = m0(x+

∆B0

Gx
, y)

= m0(x+
αx+ βy

Gx
, y)

(15)

my(x, y
′) = m0(x, y +

∆B0

Gy
)

= m0(x, y +
∆B0

Gy
)

(16)

where x′ and y′ are distorted coordinates in mx and my ,
respectively. Then, the coefficients α and β for ∆B0 can be
estimated by solving the following equation:
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argmin
α,β

∑(
|mx(x−

αx+ βy

Gx
, y)|−|my(x, y−

αx+ βy

Gy
)|
)2

(17)
In this study, the L-BFGS algorithm, provided by the

ALGLIB [22], was used to solve the equation. Generally,
implementing a robust registration is difficult because of
the many parameters that are required to solve this kind of
problem. On the other hand, this approach gives a stable
solution with less computation cost because the distortion
directions for mx and my are fixed.

After the k-space correction, ∆ϕx and ∆ϕy should be
corrected by centering the k-space peaks [15].

Finally, a corrected k-space dataset can be obtained by
using Eq. (5) with corrected coordinates, as shown in Eqs
(13) and (14). In this study, the regridding was performed
using the convolution kernel of Kaiser-Bessel (kernel width =
5). Then, the weighting function P should also be calculated
using corrected coordinates.

The corrected k-space dataset s′ was reconstructed using
the L1 norm and total variation (TV) minimization [3], [4].
The dataset was sparsified in the wavelet domain to solve the
L1 norm minimization problem. Finally, the MR image m was
reconstructed by solving the following equation:

argmin
m

{1

2
∥Fum− s′∥+ λ1∥m∥TV + λ2∥Wm∥1

}
(18)

where λ1 and λ2 are constant parameters for L1 and TV
regularization, ∥∥TV and ∥∥1 denote the TV and L1 norm
operators , Fu is a partial Fourier transform, and W is
a wavelet transform using the Daubechies 2 basis. In this
study, λ1 and λ2 were set as 0.001 and 0.02. This equation
was solved by using the fast composite splitting algorithm
proposed by Huang [3]

C. Evaluation for Trajectory Incoherence

To evaluate the incoherence of sampling trajectories, the
point spread function (PSF) and the transformed PSF (TPSF)
were used [1], [2], [23]–[26].

The PSF, known as impulse response, implies the energy
leaking from the source pixel to other pixels [1], [2], [23],
[24]. The PSF was defined as

PSF (i, j) = F−1
u Fu(i, j), (19)

where Fu and F 1
u show forward and inverse partial Fourier

transform, respectively. For example, under full sampling, the
energy of the PSF doesn’t leak to other pixels, PSFi=j = 1
and PSFi ̸=j = 0. On the other hand, the energy is blurred
when the undersampled trajectory is used, PSFi=j ̸= 1
and PSFi ̸=j ̸= 0. Hence, for successful reconstruction it
is necessary to achieve a trajectory with less energy leaking
because the leaking causes aliasing artifacts and blurring in the
image domain. The incoherence was evaluated by comparing
the PSF maps, and the standard deviation of the sidelobe-to-
peak ratio (SPR) [1] of the PSF defined as Eq. (20).

Fig. 2. (a) 1D Cartesian trajectory (R=2.5) and (b) cross sampling trajectory
(R=2.5).

SPR(i, j) = |PSF (i, j)

PSF (i, i)
|, (20)

where i ̸= j.
In addition to the incoherence in the image domain, it is

important to evaluate the incoherence in the transform domain
because the L1 penalty is applied to the transformed signals.
In this case, the TPSF [1], [2], [25], [26], as defined in Eq.
(21), is often used to measure the incoherence in the transform
domain:

TPSF (i, j) = W−1F−1
u FuW (i, j), (21)

where W and W 1 are the forward and inverse wavelet
transforms. In this study, five-level wavelet (Daubechies 2
basis) decomposition along three different orientations of z
(LH), y (HL), and the diagonal direction (HH) was used as
described in Fig. 3. The incoherence was also evaluated by
calculating the standard deviation of the SPR of the TPSF
[26]. Then, the SPR of the TPSF can be calculated as

SPR(i, j) = |TPSF (i, j)

TPSF (i, i)
|, (22)

where i ̸= j. Obtaining the random and small energy
leaking distribution is also necessary in order to implement
a better L1-penalized reconstruction.

III. EXPERIMENTS

Imaging experiments were performed using a water phan-
tom and a chemically fixed mouse to show the robustness
and usefulness of our method. The water phantom comprised
glass capillaries with 2.5 mm outer diameter (o.d.) and 2.0
mm inner diameter (i.d.) and a test tube (30.0 mm o.d., 28.8
mm i.d.) filled with CuSO4 solution. To verify the accuracy of
the estimated magnetic field, the field was measured using the
phase shift method [27] (a 2D spin echo with the repetition
time (TR) = 100 ms, the echo time (TE) = 20 ms, matrix size
= 256 × 256, FOV = (30.72 mm)2, and the phase shift time
= 1 ms ) with the test tube (28.8 mm i.d.) filled with CuSO4

solution. The chemically fixed mouse was stored in a plastic
test tube (29.0 mm o.d.) filled with formalin solution. A 1.0 T
permanent magnet MRI system with a 90 mm gap width was
used for the experiments [28]. A solenoid volume RF coil with
32 mm i.d. was used for transmit and receive.
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Fig. 3. Five-level Daubechies wavelet decomposition.

MR images were acquired with full sampling, random 1D
Cartesian (Fig. 2(a)) and random cross sampling (Fig. 2(b)).
In this study, Gy and Gz were used for the readout and
phase-encoding gradient in the 1D Cartesian trajectory. The
CS reconstruction was used for the undersampled datasets;
a reduction factor of 2.5 was used for the undersampled
trajectories.

MR images of the phantom and mouse were acquired with a
2D SE sequence (TR was 200 ms, TE was 20 ms, the number
of excitations was 4 for the phantom and 9 for the mouse,
the matrix size was 2562, the field of view (FOV) was (30.72
mm)2, and the slice thickness was 2 mm).

To demonstrate the incoherence of the random 1D Carte-
sian and random cross-sampling trajectories, PSF and TPSF
analyses were used.

IV. RESULTS

Figure 4 shows MR images of the phantom acquired and
reconstructed with (a) full sampling and the standard 2D FT
method, (b) 1D Cartesian sampling and the conventional CS
method, (c) random cross sampling and the conventional CS
method, and (d) random cross sampling and the CS with the
proposed k-space correction. As shonw in Fig.(b), the MR
image with 1D Cartesian sampling is blurred along the phase-
encoding direction. The MR image reconstructed using our
approach (Fig.(d)) shows a relatively sharp edge with fewer
artifacts, while the image without k-space correction is blurred
and distorted due to the inhomogeneous magnetic field.

Figure 5 (a) and (b) shows the measured peak-to-peak (PP)
and estimated PP (7.9 and 7.8 ppm, respectively) ∆B0 distri-
butions. The difference (Fig. 5(c)) between these distributions
indicated that the estimated result approximately agreed with
the measured one because non-linear minor components still
remained (PP = 3.0 ppm).

Figure 6(a) shows a coronal scout MR image of the
chemically fixed mouse that demonstrates the slice position.
Figure 6(b)(e) shows MR images of the mouse acquired and
reconstructed with (b) full sampling and the standard 2DFT
method, (c) 1D Cartesian sampling and the conventional CS
method, (d) random cross sampling and the conventional CS
method, and (e) random cross sampling and CS with the
proposed k-space correction. In the MR image with 1D Carte-
sian sampling, some structures along the readout direction, for
example those indicated by arrows in Fig. 6, became unclear.

Fig. 4. MR images of the phantom acquired and reconstructed with (a) full sampling and the standard 2D Fourier transform method, (b) 1D Cartesian
sampling and the conventional CS method, (c) random cross sampling and the conventional CS method, and (d) random cross sampling and the CS with the
proposed k-space correction. The upper and lower images are whole and enlarged view.
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Fig. 5. (a) Measured and (b) estimated ∆B0 distribution. (c) The difference between (a) and (b).

Fig. 6. (a) A coronal scout image of the chemically fixed mouse. MR images of the mouse acquired and reconstructed with (b) full sampling and the standard
2DFT method, (c) 1D Cartesian sampling and the conventional CS method, (d) random cross sampling and the conventional CS method, and (e) random cross
sampling and the CS with the proposed k-space correction.

In addition, there is an aliasing artifact in the image because
the k-space data along the phase-encoding direction were
insufficient. The MR image shown in Fig. 6(d) using cross
sampling without k-space correction was blurred because of
the off-resonance effects. In contrast, the MR image obtained
using cross sampling with the k-space correction (Fig. 6(e))
gave finer structures than the other approaches.

Figure 7(a) and (b) shows PSF for 1D Cartesian and cross
sampling trajectories. The standard deviation values of SPR
of PSF for 1D Cartesian (4.6 × 10−3) and cross sampling
(4.8 × 10−3) were almost same because the value obeys
the number of sampling point in this case [1]. However,
the important point to note is that all interference of PSF
for the 1D Cartesian trajectory concentrated on the phase-
encoding (kz) axis. On the other hands, the interference for
the cross sampling trajectory was dispersed mainly along the
two directions (ky and kz) as shown in Fig. 7(b). Figure
7(c) shows central line profiles of the distributions along the
phase-encoding direction. As clearly shown in Fig. 7(c), the
interference along the phase-encoding direction for the 1D
Cartesian trajectory ( − 1.2dB) is much larger than that of
the cross sampling trajectory ( − 1.7dB). These results offer

the possibility of severe blurring and aliasing artifacts along
the phase-encoding direction when 1D Cartesian sampling was
used, namely some structure along the direction might be
unclear, for example, that indicated by a green arrow in Fig.
6(c).

Table I and II shows the standard deviation of SPR of TPSF
for 1D Cartesian and cross sampling. From these tables, it
is clear that the energy leaking of the cross sampling was
much smaller than that of the 1D Cartesian in most of the
components. In particular, cross sampling has an advantage in
the mid- and low-resolution components to sparsify the signal.
Figure 8 shows the TPSF (resolution level = 3) for the 1D
Cartesian trajectory (ac) and cross sampling (df). As clearly
shown in Fig. 8(a-c), the 1D Cartesian trajectory tends to give
large interferences along the phase-encoding direction in the
transformed domain, and this might make it difficult to sparsify
the transformed signal in some cases.

V. DISCUSSION

To remove the off-resonance effect, passive and active
shimming approaches are widely used. Generally, shimming
is performed to obtain a homogeneous magnetic field in
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Fig. 7. A PSF for (a) the 1D Cartesian and (b) the cross sampling. (c) Profiles
of the PSF along the phase-encoding direction for the 1D Cartesian and the
cross sampling.

the sample volume. However, the linear components of the
inhomogeneity often remain in the 2D excitation area because
the susceptibility effect of the imaging object induces an
inhomogeneous magnetic field. In this case, dynamic shim-
ming [29], [30], or slice-by-slice shimming, is a desirable
solution, although it requires shim coils with high-speed
switching power supplies. However, ∆B0 maps for each slice
area must be acquired before scanning for the shimming. In
contrast, our approach can correct the off-resonance effect
without additional hardware and acquisitions. Therefore, for
example, multi-slice two-dimensional MR imaging can be
effectively performed without additional shimming by using

TABLE I
THE STANDARD DEVIATION VALUE OF SPR OF TPSF FOR 1D CARTESIAN.

Level HL HH LH
1 6.3×10−3 6.3×10−3 3.6×10−3

2 5.4×10−3 5.4×10−3 2.4×10−3

3 3.5×10−3 3.5×10−3 1.4×10−3

4 1.7×10−3 1.7×10−3 9.8×10−4

5 1.2×10−3 1.2×10−3 6.4×10−4

TABLE II
THE STANDARD DEVIATION VALUE OF SPR OF TPSF FOR RANDOM CROSS

SAMPLING.

Level HL HH LH
1 4.7×10−3 1.5×10−3 4.8×10−3

2 2.4×10−3 7.2×10−3 2.5×10−3

3 9.9×10−4 2.5×10−4 9.5×10−4

4 3.9×10−4 6.2×10−4 4.0×10−4

5 2.2×10−4 3.7×10−4 2.1×10−4

this approach.
Our method is applicable to low-field MRI systems, such as

permanent magnet MRI, because the off-resonance effects are
mainly induced by the inhomogeneous magnetic field. How-
ever, it is difficult to correct the k-space distortion using our
approach in high-field MRI systems because the susceptibility
effect results in high-order off resonance.

To perform straightforward and fast reconstruction, the first-
order inhomogeneity correction was used in this study. It is
possible to estimate second- and third-order ∆B0 distribu-
tion using the image-registration-based method [17], and the
off-resonance effect from these higher-order inhomogeneous
components can be corrected using the frequency-segmented
method [13], [14]. With the higher-order correction, we can
correct more complicated inhomogeneous fields induced by

Fig. 8. TPSF for (ac) 1D Cartesian and (df) random cross sampling.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMI.2014.2326864

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, APRIL 2013 8

the sample. In addition, correction with other sequences, such
as gradient echo and EPI, which is sensitive to the field
inhomogeneity, will be available. However, in such a case,
the intensity correction [31] will be required in addition to the
k-space correction.

The cross-sampling trajectory we used in this study appears
to be too sparse in the corners of the k-space. Therefore,
accurate reconstruction of MR images might become difficult
in some cases. As clearly shown in Tab. II, this trajectory is
not effective to sparsify the high-resolution components along
the diagonal direction. However, in such cases, optimizing the
approach of the sampling trajectory [1], [32], [33] will improve
the reconstruction quality.

VI. CONCLUSION

In this study, a CS reconstruction method using a cross
sampling and self-calibrated off-resonance correction was
proposed. Estimation of the magnetic field inhomogeneity
∆B0 based on the image registration enables correction with
no additional RF pulses or acquisitions. In addition, a fast
and straightforward calculation was achieved by using the
first-order components of the magnetic field inhomogeneity.
Imaging experiments using a phantom and a chemically fixed
mouse demonstrated practical benefits in improving blurring
and artifacts in MR images in low-field MRI systems.
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