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ABSTRACT

EXPERIMENTAL STUDY OF HIGHLY TRANSIENT

THERMO-FLUID DYNAMIC PHENOMENA IN He II

by Takeshi Shumazaki

Highly transient thermo-fluid dynamic phenomena are experimentally investigated
with a superconductive temperature sensor. The characteristic time of quantized vor-
tex development which is one of the governing parameters of the highly transient heat
transport phenomena in He II is measured by analyzing the temperature profile data.
The result suggests partial inadequacy of the vortex development equation presented by
Vinen. It is found that the wave height variation of the second sound thermal shock wave
well agrees with the prediction by the equal area rule if the effect of quantized vortex
lines is neglected. Among three major heat transport processes, the second sound wave
mode, the restricted thermal counterflow and evaporation, each contribution to the heat
transport 1s quantitatively investigated. As a result, their contributions are found to be

1

uniquely treated if the parameter ¢,1} where ¢, is the heat flux and ty is the heating

time is introduced.
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Chapter 1

INTRODUCTION

The starting point of the study of liquid helium is the liquefaction of helium. Helium
had been left as the last liquid which had not been able to be liquefied. But finally helium
was successfully liquefied by Onnes in 1908. Through the so-called liquefaction competi-
tion low temperature production technique was greatly developed. Then low temperature
physics developed strikingly during this period. Superconductivity was also discovered
in 1927 by Onnes and the superfluidity of helium was discovered by Kapitza in 1927.
Superconductivity and superfluidity are the typical phenomena which are regarded as the
appearance of quantum effect in macroscopic level. Superfluidity is the unique property of
He II. For instance He Il flows through an extremely fine channel without any appreciable
pressure drop as if it were an inviscid fluid. Its apparent thermal conductivity is several
hundreds times higher than that of pure copper. It has several attractive properties for
cryogen, and so it is expected to be the efficient coolant for superconducting magnets
and space-borne infrared telescopes. A deep understanding of heat transport properties
of superfluid helium is indispensable for such practical applications.

The unique properties which are interesting from the point of view of both quantum



physics and practical engineering are generally explained by the phenomenological macro-
scopic theory presented by Landau [1]. His phenomenological theory called the Landau
two-fluid equations is the most successful theory to explain the superfluidity until now.
He I1 is considered as being composed of two different fluid components, the normal fluid
and superfluid components in this model. The normal fluid component behaves nothing
but an ordinary classical Navier-Stokes fluid which has finite viscosity and entropy while
the superfluid component does not. It has no viscosity and entropy. Since the super-
fluid component has no viscosity, those two components can flow without any appreciable
interactions with each other. The two-fluid equations can give both qualitatively and
quantitatively satisfactory explanations of steady heat transport phenomena in He II as
long as the superfluid breakdown does not occur. The two-fluid equations lose its valid-
ity in the superfluid breakdown state, in which quantized vortices are generated and the
mutual friction force between the normal fluid component and quantized vortices arises.
The quantized vortices are generated and develop when the relative velocity between the
normal fluid and superfluid components exceeds a certain threshold value. This situa-
tion corresponds to a heat flux which exceeds a threshold value is fed from a heat source
to He II. The Gorter-Mellink mutual friction term [2] is usually introduced to the two-
fluid equations to take account of the effect of the mutual friction force. However, the
approach is found to be only valid to steady or quasi steady thermo-fluid dynamic phe-
nomena. In the highly transient thermo-fluid dynamic phenomena where the time-scale
ot bulk thermo-fluid dynamic behavior gets to be comparable to or shorter than that of
the evolution of quantized vortices, the effect of the development and decay of quantized

vortices should be taken into account. The process of vortex development and decay was



treated on the basis of a phenomenological approach by Vinen [3][4][5] and numerically
by Schwartz [6]. But those formulae can not completely explain some of extremely com-
plicated behaviors of quantized vortices so the exact form of the formulae are still under
consideration. Further investigations are still required to reveal the complete mechanism
of highly transient heat transport phenomena in He Il. The Vinen vortex line density
equation is widely used in the study of transient thermo-fluid dynamic phenomena in He
[1. However the inadequacy of the equation especially in the case of intense pulsed heating
has been pointed out these days.

As a result of the two-fluid nature, there exist two different modes of traveling sound
waves. One 1s the first sound wave and the other is the second sound wave. First sound
wave 1s the same as the ordinary sound wave. It is a pressure wave. The two fluid
components move together in phase so He II moves with the same velocity of the com-
ponents. On the other hand the two fluid components move in counter phase l.e. the
two components move towards the opposite directions with the same speed so there is no
net movement of He II as a whole in the case of the second sound wave. It can be said
that the second sound wave is a traveling disturbance of entropy or a thermal wave. The
second sound wave with finite amplitude nonlinearly develops into a thermal shock wave.
It should be noted that due to the second sound wave, heat fed to He II from a heat
source can be transported in a wave mode different from the usual diffusion process in He
II. Propagation of the second sound wave or the thermal shock wave being a the typical
example of the highly transient heat transport phenomena has been investigated by many
researchers. Pioneering works on the propagation of the thermal shock wave and the effect

of the interaction with quantized vortices have been carried out by Liepmann and Laguna



at California institute of technology [7]. Recently the theoretical investigations not only
of the propagation of the second sound wave but also of the superfluid hydrodynamics
with the effect of quantized vortices have been carried out by Nemirovskii at the Insti-
tute of the Thermophsics [8]. And extensive experimental and numerical investigations of
thermal shock wave and tangled mass of quantized vortices are carried out by the group
of the Max-Planck-Institut [9].

Through those investigations, the development and the decay of the quantized vor-
tices are recognized as governing phenomena on transient heat transport. The high density
quantized vortices cause dissipative effect on the heat transport in He I1. But some aspects
of the effects of quantized vortices on the heat transport still remain open questions. The
propagation property of a thermal shock wave and its interaction with quantized vortices
have been investigated in a couple of experiments [10] but the resolution of the measuring
devices used in those experiments such as a temperature sensor and a visualizing tech-
nique are not sufficient to detect the complete shape of a propagating thermal shock wave.

The objective of this study is to experimentally investigate the highly transient
thermo-fluid dynamic phenomena in superfluid helium for the practical application of
He II. In this study a thin film superconductive temperature sensor which possesses high
temperature sensitivity and quick response time 1s used. It allows a high resolution tem-
perature measurement both in time and space. Complete wave form variation of a thermal
shock wave during propagation can be measured with the superconductive temperature
sensor. The propagation property of a thermal shock wave is investigated by the direct
measurement of the wave form variation. The experimental results are compared with a

theoretical prediction. Moreover, a thermal shock wave is utilized as a probe to diagnose



the behavior of quantized vortices. The deformation of a thermal shock wave due to the
interaction with quantized vortices is carefully observed to measure the characteristic time
of the development of quantized vortices which 1s one of the most important governing
parameters of the highly transient heat transport phenomena. The characteristic time
in the case of very large heat flux heating in which the characteristic time had not been
measured in the other experiments is attempted to be measured. The development of
quantized vortex lines in these cases is found to have different characteristics from that in
the case of small heat flux heating. In the case of a pulsed heating with a large heat flux,
high density quantized vortices are generated and a thermal boundary layer is formed
in the vicinity of a heating surface. Even boiling in the layer is observed in some case.
The thermal situation resembles that upon a superconducting magnet quench. The study
of the heat transport phenomena in such case is indispensable to investigate the stabil-
ity of superfluid cooled superconducting magnets. The heat transport property of He II
in such situation is quantitatively investigated including the effects of the second sound
wave mode heat transport which could not be measured by means of the conventional

temperature sensors.



Chapter 2

THEORETICAL BACKGROUND

2.1 Superfluid helium

The phase diagram of helium is schematically shown in Fig. 2.1. It 1s very interesting
to note that helium has two liquid phases. Helium liquefies at 4.2K, and at 2.17K liquid
helium exhibits another transition into the another liquid phase. The first liquid phase
between 4.2K and 2.17K is called He I which behaves like an ordinary viscous fluid.
The second liquid phase below 2.17K is called He II or superfluid helium having unique
properties called superfluidity. The transition temperature of 2.17K 1is called the A -
temperature, T and boundary line between He I and He II is named the A -line. One
of the unique properties of He II, the superfluidity, is superleak. It can flow through
extremely fine capillaries and narrow slit without producing any appreciable pressure
drop. It behaves like an inviscid fluid.

Unusual hydrodynamic behavior of He II is well explained in terms of the two-fluid
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model introduced by Tisza [12], which was then led to Landau tow-fluid equation [1]. In



this model He II is considered as a mixture of two fluid components, the normal fluid
component with non-zero viscosity and superfluid component with zero viscosity. The
normal fluid component can be considered to correspond to the excited portion of helium
s0 it associates with entropy ( see Fig. 2.2 ). On the other hand the superfluid component
corresponds to helium atoms which occupy the quantum ground state, Bose-Einstein
condensation phase, so it does not associate with entropy. The ratios of the normal fluid
density and superfluid density to the total density are given as a function of temperature.
Below T the density of superfluid component increases as helium temperature decreases.
Fig. 2.3 shows these density ratios as a function of temperature under saturated vapor
pressure condition. The superfluid component can flow freely in narrow channel though
the normal fluid component is clamped owing to its viscosity. Consequently, superfluid
helium seems to be able to flow extremely fine channel.

Another typical example of the superfluidity is the thermal counterflow. Suppose
two vessels containing He II are connected by a tube, one of which has a heater as
shown in Fig. 2.4. If the heater is switched on, the superfluid component flows towards
the heater due to the gradient of the chemical potential. It in contact with the heater
absorbs heat, and then it turns into the normal fluid component. The normal fluid
component flows towards the another vessel, being at the opposite end of the tube, owing
to mass conservation. The two fluid components flow towards the opposite directions
with the same speed. There is no net flow of He II in the flow system as a while. The
superfluid and normal fluid components flowing in the opposite direction in the tube
cause no mteraction with each other because the superfluid component has no viscosity.

As a result, heat is extremely efficiently transported by the normal fluid component. The



flow is called internal convection or thermal counterflow and is a key mechanism for the
apparently high thermal conductivity of He II. The relative velocity between the normal
fluid and superfluid components in the thermal counterflow is in proportion to the heat
flux from a heater as long as the applied heat flux is not so large. However if the heat flux
which is larger than a certain critical value is applied, the relative flow velocity exceeds
a threshold value and then quantized vortices are generated. Quantized vortices inferact
with the normal fluid component and generate mutual friction force. The relative velocity
can not be proportional to the heat flux. Dissipative effects arise in the flow. This is the

superfluid breakdown.

2.2 Landau two-fluid equations

The basic hydrodynamic equations for He Il in the case that dissipative effects
are absent are first introduced by Landau [1]. The equations consist of the law of the
mass, entropy and momentum conservations. Since superfluid helium consists of two
interpenetrating fluid components, two momentum equations are required. The densities
of the normal fluid and superfluid components are denoted by p, and p,, respectively.
And each component is assigned its own velocity field of @, and v,. The total density of
He I1, p 1s defined by p = p, + ps. The equation of conservation of mass is

dp

2 + divy =0, (2.1)

where ) = p, U+ p, U, . The total mass flow is expressed by the sum of the flows of normal
fluid and superfluid components.

Since dissipation is neglected and the entropy is transported only by the normal fluid



component, the equation of conservation of entropy takes the form

?_(a[;i). + div (,05{;71) = (. (22)

The flow of superfluid component is driven by the gradient of chemical potential.
The momentum equation for the superfluid component is

Do
: —~ 0 2.3
T Vp =0, (2.3)

where 1 is the chemical potential per volume of He II and its gradient is given as follows

VP
V=

B VA v R AL
p 2p

Here, the equation for the total momentum is mtroduced.

a7, OITy

= 2.4
ot 5.LA ’ ( )

where IT;; = P + paVniUngs + pPsVsiVsp 18 the momentum flux density tensor.
Now it is clear that the Landau two-fluid equations form a closed set of eight equations

for eight independent variables.

2.3 Quantized vortices

When the relative velocity between the normal fluid and superfluid components v,
exceeds a certain critical value ( it is approximately several m/s though it depends on the
size of a flow channel ), quantized vortices are generated. The normal fluid component
interacts with quantized vortices and mutual friction force arises. As a result, energy
dissipation gets to be significant in the He II flow, that is to say superfluid breakdown.

The appearance of quantized vortex lines in He II is one of the macroscopic manifestation



of quantum effects. One of the striking feature of them is that the circulation around a

vortex line is quantized with quantum number of 1

K = ——h—n (n=1), (2.5)

Mg

where h is the Planck constant, my4 is the mass of a helium atom and n is the quantum
pumber. That is why vortex lines in He IT are called quantized vortex lines. It is known
that the radius of vortex core is 1.3A. The origin of quantized vortex lines is still an open
question.

It has been stated that the Gorter-Mellink mutual friction term F,, [2] could be

added to the momentum equations to take the mutual friction into account,
l 2 5@
Ezs - /)nP.sA(T) <'U71$ - DO) Vnssy (26)

where A(T') is the Gorter-Mellink constant, vy Is the critical relative velocity. This ap-
proach can give appropriate results both qualitatively and quantitatively for steady or
quasi-steady thermo-fluid dynamic phenomena. It is, however, known that this approach
loses applicability for highly transient cases. When the time scale of the bulk thermo-fluid
dynamic phenomena becomes comparable to or shorter than that of the characteristic time
of evolution of vortex tangle, the development and decay of quantized vortices should be
taken into account. The behavior of quantized vortices was first noted by Feymann [13]
and then was formulated by Vinen [3][4][5] from phenomenorogical consideration. Vinen
observed the temperature gradient and variation in the attenuation of second sound wave
in a long rectangular channel when the weak heat current ( ¢, < 0.4W/cm? ) is applied.
The characteristic time of vortex development 7., is empirically found to be given as a

function of applied heat flux as follows

Toinen = ¢'(T5)q, >, (2.7)
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where a/(Tg) is the factor experimentally obtained as a function of temperature. It is
observed that quantized vortices start to decay when heater is switched off. Vinen deduced
the vortex line density equation which is the dynamic balance equation of generation and

decay of vortex lines,
dL

- = o |V L3 — BL? + v [‘UMIS/Q , (2.8)

where L is the vortex line density which is defined as the total vortex line length per
unit volume. a and 3 are the growth and decay coeflicients given by Vinen, and v is
calculated from experimental value of ¢/(Tg) and thermodynamical properties of He II.
The first term of the right hand side of this equation describes the generation of quantized
vortices and the second one does the decay of quantized vortices. The third term is the
source term of the vortex. Without this term the vortex density never develops if the
initial vortex density L = 0. The Vinen vortex line density equation has been widely used
in many investigations but, in these days, its inadequacy to the cases of large heat flux is

pointed out.

2.4 Propagation of wave in He II

The structure of the two-fluid Eq.s (2.1)-(2.4) suggests that there are two kinds of
propagating wave modes. The first experimental confirmation was provided by Peshkov
[14] in 1944. Tt was the first striking evidence of the applicability for the two fluid idea.

The following notations are introduced to investigate the propagation of small dis-
turbances [15]. The small deviation from a steady state is denoted by é and the constant

equilibrium value is denoted by subscript zero in which 0, = v, =0 .

p=po+op(rt), s=s0+ 6s(1t),
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P=Py+6P(rt), T=To+6T(71),
Ty = 80, (Fot), T, = 60, (7)1). (2.9)

Using above notations and neglecting all terms quadratic in the small quantities the

two-fluid equations are linearized and become as follows.

%61/)" +pn,0v ) 5/571 + /)S,Ov : 653 - 07 (210)
Y dbp ..
Po aff +So_éi_ + posoV - 80, = 0, (2.11)
6617 ‘oal l R
hAE: —5oV8T + — + VOP = 0, 2.12
It 0 P (2.12)
09t %% _ _vep. (2.13)

T, + Sy
Pn0=g7 Ps0—F, a1
Now longitudinal traveling waves with the frequency w and the wave number kq are
mtroduced to investigate the response of He Il to small disturbances.
T =Ty + Texp (thoa — iwt),

P = Py+ Plexp (thox —iwt),

U, = vnexp (ikox — iwt) €y,
U, = wv.exp (thowr — iwt) &, (2.14)

where €, is a unit vector in the 2 direction. A set of four homogeneous equations are
obtained by substituting these expressions of monochromatic wave into Eq.s (2.10)-(2.13).

Then we get

- 9p ap,.., . . _
—iw PP —Zwé_fjl + thopaov, + thops v, = 0, (2.15)
—iwdspr 00 - 16

WP —w 57 + 1koposov,, (2.16)

iBP ks — ] = 0, (2.17)

iko]’w "iw/)7L,DU:1 - Z.LU/)&QU; = 0. (2.18)
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The set of the equations requires that its determinant must vanish for the existence of a
. . . . . . . L . *2 . ‘. ! ( .
non-trivial solution. Then a dispersion law in quadratic in u* is derived. ( see appendix

A for the derivation )

2,2 5,2
W R D (2.19)
'u,% U3 Cp
where
o 7 s Co =T Js
v=*'\er) > " \ar),
»
2 a0 27
ké a/) /)77,(/\/

S

It should be noted that the right hand side of Eq. (2.19) can be neglected at temperatures

and pressures under consideration. Then the solution of Eq. (2.19) is given

IP 1/2

(‘27; 1/2
u=uy = Ps? ~ ‘ (2.22)
pnc\/ s

Two modes of propagating waves having different propagation speeds are obtained. Here,

u; and u, are called the first and second sounds, respectively. The first sound wave
corresponds to an ordinary sound in Euler fluid. It is important to note that in this
sound wave mode the normal fluid and superfluid components move in phase. It is a
propagating density fluctuation having a propagation speed of approximately 230m/s.
The propagation speed of first sound wave as a function of temperature is shown in Fig.
2.5. On the other hand the second sound wave is a quite unique sound which appears
only in He II. There is no center of mass motion but a relative motion between the normal
fluid and superfluid components. Since the normal fluid component associates with the
entropy and the superfluid component does not, the second sound wave can be regarded
as a propagating entropy fluctuation or a thermal wave. Its propagating speed is a strong

13



function of temperature but typically is 20m /s as shown in Fig. 2.6 . It is very interesting
to note that heat can be transported in a wave form in He II. Internal convection (thermal

counterflow ) can be regarded as the second sound wave of frequency zero.

2.5 Thermal shock wave

The expressions of the propagation speed of two independent linear wave modes are
obtained by linearizing the two-fluid equations in the last section. Within this approxi-
madtion all the points of the wave profile are assumed to propagate with the same speed.
But this assumption can be applied only when the amplitude of the wave is small. For
the wave with finite amplitude, the nonlinear terms of the two-fluid and thermodynamic
equations are not negligible and provide the different propagation speed for the point of
different amplitude in the wave. Then the points with higher propagation speed catch
up the points with slower propagating speed through propagation. As a result, the wave
steepens the some portion of the wave profile and ultimately becomes a shock wave.

The propagation speed with nonlinear effects can be investigated by solving the two-
fluid and thermodynamic equations up to second order in the deviation from the equilib-
rium state [15]. The two-fluid equations on the one dimensional case can be written in

following form by keeping the terms up to second order.

dp P dp oT 8p dw dv dp _
YoPor 3T ox  awor TPax T os T (2.23)
ds Js dps | OP s Js dps | OT
iEp T Ptgp T ap} 3 {P T e T 0T | B
Js Jw
+ { 2uwpd 5+ s 5} B = 0, (2.24)
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9on/0) ;} or _ |,0n/o) | OT
[uw ( 7 ox ik orT ° oz
dv N pn Paps pn | Ow o
b —qy — Lo - e w— iyl Z2 =
+ {U u— w} 5 + { ; U 2 w ; v} 50 0, (2.25)
ar v 2ppps Ow

(2.26)

Y

— + [—pu+pv] o + wo—=10

dx oz p dx
where w = v, — v, 1s the relative velocity between normal fluid and superfluid components,
v is the velocity of the net mass flow of He II. Again the longitudinal traveling wave with
frequency w and wave number ky are introduced. The Eq.s (2.23), (2.24), (2.25) and
(2.26) become a set of four homogeneous equations in the four unknown variables F’,
T, v and w'. In order for the existence of the nontrivial solution of the homogeneous
equations the determinant must vanish. It is the same situation as the derivation of the
sound propagation speed in first order of deviation from the equilibrium state in the last

section. Then the equation of dispersion law is give by

o ‘ . 20, s dp, [ Os -
(v’ —u)(u’ — i) + 2w [— St T (aT)

ap\ 12 s 0p, [0s\ T
2uw | =—= — — — = 0. 2.27
o (ap) o . o7 \aT (2.27)
Two modes of propagating waves are obtained.
v o= (2.28)
20, s Opy (057 .
U = Ug-+ iy P - o T (5T> w (229)

[t can be seen that there is no difference in the expressions of first sound wave between
those in the first order and the second order. However several correction terms which are
linear in the equilibrium relative velocity w are added to the second sound wave in the
first order. In Eq. (2.29), the second term of the right hand side which is evaluated by
the values in the equilibrium state gives the correction of the deviation of the propagation

15



speed of the point with relative velocity of w from the u, which is evaluated in the first
order. It is practically convenient that all terms in Eq. (2.29) are evaluated by the values
in the equilibrium state. uy can be expressed by

Ouy dT Juy dP

oT dw' " T AP dw

(2.30)

Uy = U0 T

where uy o is the propagation speed of second sound wave In the equilibrium state. Irom

Eq.s (2.15) and (2.18) the relation between 77 and v) can be obtained.

a/) ké D/ ()/J / k
7 _ 9
(@P w2> Pt 8TT 0 (2.31)

From Eq. (2.17) P’ can be written
/ / l all
P = pou(v, + —soT"). (2.32)
U

Substituting this into Eq. (2.31)

9
L=, (2.33)

_?ﬁ l ( , ! + ., jﬁ/
2 | (Pouvs T poso )JraT-»

ar

The relation between 7" and v/ is obtained.

pol (1 — u? 0]3)
2

1= : 2.34
u? 59 — pos <1 —u 0g> | :
agr — Poso " JP
Since at most temperature (i.e. T > 0.8K )
) <1 2.3
87‘1 9 ( ’ 5)

1t can be ignored in the present order of the approximation. From Eq. (2.34) the following

relation is obtained at lowest order



Using the identity

Eq. (2.36) becomes

] ('UI - ﬁw) : (2.37)
For second sound wave, pressure variation can be neglected and the velocity of the net
mass flow of He IT v ~ 0. Substituting Eq. (2.37) into Eq. (2.30), u is evaluated by the

values in the equilibrium state.

w. (2.38)

u=1uyp+

Pty Ouy  2p s Opn [ Os -
+ == +———= —
ps ar  p  p, 0T \OT

Using Eq.s (2.20) and ignoring small terms, final form of the propagation speed of the
second sound wave in the second order of the deviation from the equilibrium state 1s

obtained.

sT | 9 . s
U= Uy + 2 {L log (’Uz}iiﬂ V. (2.39)
) CV

Here the coefficient of v, 1s written

sT | 0 5 s
=2 D oe [wBZ2 )], 2.40
b=z [aTIOO (%GTH (240)

B is called steeping coefficient which represents the intensity of the nonlinear effect on
the propagating speed of the point with a certain amplitude. The variation of B as
a function of temperature is given Fig. 2.7. The sign of the nonlinear coefficient of
propagation speed of disturbance in aerodynamics usually takes positive. And the case
in which coefficient takes negative is quite unusual. The normal fluid velocity v, and the

temperature variation AT are related to the applied heat flux ¢, by the equations,
Ua = gp/psT,

AT = [)CP'U,Q:(). (241)
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Then the relation between v, and AT are given by

Uz,oCJ‘J

— AT (2.42)
sl

Uy =

Substituting Eq. (2.42) into Eq. (2.39), it is rewritten in terms of AT

d 5 0s
2

— loe AT. 2.43
—log (2.43)

U = Up T Uzp

It is very interesting that B can be both positive and negative depending on the tempera-
ture in He II. The reason of the existence of the nonlinear coefficient with negative sign 1s
the strong temperature dependence of the physical property of He IL. When B is positive
the points with larger amplitude travel faster than those with smaller amplitude. Wave
peak will catch up troughs through propagation. As a result discontinuity is formed at
the leading edge of a traveling wave form. This is called frontal shock wave and is familiar
in the aerodynamics. The schematic drawings of a frontal thermal shock wave i1s shown in
Fig. 2.8. On the other hand when B is negative, the points with smaller amplitude will
catch up those with larger amplitude. Then the discontinuity is formed at the trailing
edge of the wave profile. This is called back shock wave which is hardly seen in aerody-
namics (see Fig. 2.8). There can exist one more interesting form of a thermal shock wave
in He II. At T = 1.87TK B vanishes and B changes its sign when temperature crosses
Tp = 1.87TK. If the second sound wave with sufficiently large amplitude to cross the
temperature Tp = 1.87K is generated at just below the temperature, the discontinuities
are formed on both sides of the wave profile. It is also shown in Fig. 2.8. This is called

double shock wave.
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2.6 Wave form variation through propagation

The propagation speed of a thermal shock wave is given by one half the sum of

the speed of sound on the both leading and trailing edges of the shock wave, that is Eq.

1 ‘T 0 K
U= uzg + i {07 log <u§§%>} v,,. (2.44)

For simplicity it is rewritten as

(2.39), as

u = Uy + Bu,/2. (2.45)

Substituting Eq. (2.42) into Eq. (2.44), the propagation speed of a thermal shock wave

is given in terms of the temperature variation AT".

1 ) Js A
U= Uyg + - UZO !}57;1 <u2 )T)} AT. (246)

For simplicity it 1s rewritten as
U = U0 + ])AT/Z, (247)

where

1 J 9 1o 05

b = u.

20 g7 e\ "ar

Without any dissipative effects, the energy within a thermal pulse is conserved through
propagation and the wave form variation occurs only due to the hydrodynamic nonlin-
earity. It is known that the propagation of a second sound wave with a finite amplitude
1s subjected to the Burgers equation in the former work of approximation in the second
order of the smallness from equilibrium state [10][24].

dv, v,
oz ox?’

+ (UQ,O -+ B'Un) (248)

/U'fb
ot
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where

f

Ps 4 PV 2 P <
= 5 — 2p(1 + p°(s + , 2.49
to 200 (377 + (o= 2pC + G psC’) ( )

where 17, (1, (2 and (3 are the viscosity coefficients. The equal area rule which is equivalent
to the result of the Burgers equation can be applied for the wave form variation through
propagation. The wave form variation ol a trapezoidal heat pulse is considered on the
basis of the equal area rule in the following. The process of wave form variation is divided
into two stages bounded by the formation of a triangular profile.

The wave form variation before the formation of a triangular profile in the case
of positive B-factor is schematically drawn in Fig. 2.9. This profile shows the spatial
distribution of temperature. Suppose a trapezoidal heat pulse with an initial amplitude
of ATy. The wave is propagating from left side to right side. The spatial length of the
rising, the plateau and the falling portions of the wave profile are denoted by [,, [, and [,

respectively. The time duration corresponding to those portions are given using u; o by

lu, ]L
ishol = - s
2.0 U2.0
Ly
./‘"[)ZU.[, = E— (250)
U0

The propagation speed at the points B: uy ¢ + ATy, and at A: uy 5 do not change through
the process. But those of the points C: uy g + AT, and D: uy g change to ugg + bAT,/2
when temperature discontinuity is formed. The point C travels with the speed of bAT
relative to the point D so the point C catches up the point D during propagation. The
time interval denoted by fc_p is

uQ,Otshol

lewp =
That when the point B catches up the points C and D, the trapezoidal profile becomes
the triangular profile. tp_.p which is the time interval needed for the point B to catch
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up the points C and D is considered next. Since the propagation speed at the point D
changes from us g to uy g + bAT'/2 at which the point C catches up, tg_p 1s divided into
tg—.p1 and tp_ps in the evaluation. The point B travels with the speed of bAT, relative

to the point D so 15 p;y 1s given by

lp—p1 = to—p = Lyl
. u?,Otsho/ oy (2 52)
{)Aﬂ) plat s .

Initial distance between the point D and the point B is (£:,0 + fpas)u20 and the relative
speed of the point B to the point D becomes bATy/2 after the formation of discontinuity.

Then the following equation is obtained.

(tshol + t])la.t)IUZ,O = iB—;leAjjo + fB—ﬂDZbATO/z (253)
tp_p2 15 given by
2 U2 0 shol
lp_p2 = Lono plat ) = | === — . y
B—D2 bAT, (tshot + tprar)uap < bAT, Lol t) bAfo}
2
- N [(u2,0 + DATY)t p1ai]
2”2,0t)la.i P
= _—b‘&i%ﬁ + 2 pias- (2.54)

As a result the total time #;,4pe 4 needed to change a trapezoidal heat pulse into a

triangular profile is

U208 shol 23 ol pla;
brape—iri = Lshot + prar + ETO— — Tplar + ————~62)Tp1 " 2t
0
uz’o - A4 3 L p
= tart (tshot + 2tp1at) + 2lptar + Lot (2.55)

The propagating distance Zirape—ri Of the heat pulse through the wave form change from

trapezoidal to triangular is given by

_ AT,
At'/'a,y)e—-r‘h'i = Kt,slwl + 75ly)lu.i) + iB—‘rD].} u2,0 + Z'B——-'r.DTZ <u2,0 + 9 O)
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U208 shol 2usolplar | o, bATY
= [(i’sh,oz + Lpiat) + _EPAT - z’[)la.{} Uz + (“‘gﬁ + 20000 ) | U20 F 5

, U20 2“%0 . PR
- : 0 43, BAT, | .10, 2.56
U2 0l shol <l + bAT0> + <bATO + 3usp + o) plat ( )

The wave length of the final triangular profile [y is

bAT,
2
bATg 2‘11,2507;7)1@
2 ( bAT,

Z

L = (ptar + 2tsnor) a0 + ( YiB—pD

= ('/J'plu,i + 27//5/2,0[)”2,0 + + 21/])[(11‘,)

= (Z’U,Q’g + Z)AT@)lp[M + 2’11/-270'/;5/10[. (257)

Next it is considered that the variation of the wave height after the formation of
a triangular profile on the basis of the equal area rule [1]. The triangular wave profile
ABC with a height of ATy and a length of [; is shown in Fig. 2.10. If each point
of the wave profile moves with the speed given by Eq. (2.43), the wave ABC should
becomes profile A’B’C’ through propagation keeping its initial wave height. Since the
profile A’B’C’ violates the single value nature of a profile, the profile A’DE is obtained.
As there is no energy dissipation, the area of the profiles ABC and A’DE must be equal.
The discontinuity DE moves with the speed given by Eq. (2.47).

Angle 0 is
ATy
Ul + (bATO) ti7‘i(z]’

tan 6§ = (2.58)

where 1., 1s the time after the formation of a triangular profile. Using angle 0, area of

the A A’DE is given by

Lo, AT

, 2.59
2 i + (bATG) L)’ ( )

1
Suipr = 512 tan =

where [ is the length of the wave at time #;,5, . According to the equal area rule A ABC

=A A'DE

| 1, ATy
—LAT, = =1 ‘ -
2 1 0 2 []1 + (bATO) t-m'u.] ( 60)
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Then the wave length [ is
D=1 [+ (bATY) toria/ 1) . (2.61)
A ABC = A A’DE can also be described in terms of AT . Since ATl = ATyl
AT L+ (bATY) i/ 1]? = ATol,

AT = ATy [1 + (bATy) tyyin/ 1] (2.62)

To compare with the experimental results, #;,4, 1s written in terms of propagating distance

of a wave after the formation of a triangular profile Z,,,, .

Za,t

T 2.63
trea LLZO—f'bATo/Z ( Y )

Substituting Eq. (2.63) into Eq.s (2.61) and (2.62) the wave height and the length at

Ziria arve obtained by

/2

| (bATY) Zuria r .
=1 , 2.64
! Ii ll (UQ,O + bATO/2> ( )

—_ /2

(bATY) Ziria } ! .
AT = ATy |1 + : . 2.65
0 [ ]l (U;z’() + Z)Afo/z) ( )

2.7 Dresner’s analytical approach

Steady or quasi-steady heat transport phenomena in the superfluid breakdown state
are analytically investigated by Dresner [25]. He investigated one-dimensional time vari-
ation of the temperature distribution near a planar heat source on the basis of the energy
conservation law and the Gorter-Mellink relation when a pulsed heating is carried out.
The Gorter-Mellink relation gives the equation which relates the heat flux and the tem-
perature gradient for a fully developed superfluid turbulent flow in which the dense vortex
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lines are generated.

¢ = —k(VT)3, (2.66)
where
g : heat flux,
VT - temperature gradient,

o

thermal conductance parameter.

The equation of energy conservation is written as

V~q+5£ =0, (2.67)

where s 1s the volumetric heat capacity, ¢ is the time after the onset of heating. Substitut-
ing Eq. (2.66) into Eq. (2.67), the governing equation of the heat transport in superfluid
turbulent flow is obtained.

r

0z

g (oT\®  aT |
S (2.68)

= 5§—
0z at’
where z is the distance from a heater. The boundary and initial conditions for the pulsed

heating from a planar heat source are

/jw s(T = Tp)dz = O, (2.69)
T (2,0) = Tg, (2.70)
T (co,t) = T, (2.71)

where () is the total amount of heat applied from a planar heat source. The particular

solution of Eq. (2.68) being subject to the boundary conditions is

(kt/s)*"* (T — Tg) _ 438
(Q/s)’ (21 4 b4)/*

(2.72)
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v o= 2(Qfs)] (kt/s)™",

b o= 2[(1/4)] /3V37 = 2.855.

According to Eq. (2.72) experimental data of time variation of the temperature distribu-
tion can be reduced to a single curve if the similarity parameters of

O = AT,

_143/2

\I} - 4// / N
where AT is the temperature variation from the equilibrium temperature. The curve in
Fig. 2.11 shows an example of the solution of Eq. (2.68) for the conditions of Ts = 1.70/
and Q = 40 x 107%J/em?*. The curve is composed of two asymptotic lines. Substituting

the similarity parameters of ® and ¥ into Eq. (2.72), it becomes

o 4/3\/§k_3/23_1/2C22
o (Q4s2k=5T1 + 54)1/2

(2.73)

If temperature is fixed, /&', s and b are constant. Here, if U becomes very large corre-
sponding to the case ¢ is small, 1.e. just after the end of heating, an asymptotic solution
to Eq. (2.73) can be written as

O = 4/3V3E* 5732 g2 (2.74)

J(T)

where f(7T') is a temperature dependent factor. ® can be regarded as a function only of

U=% and corresponds to the portion of the line which has an inclination of —2 in a double
logarithmic plot. In the other extreme case of very small W where ¢ is large, i.e. long after
the end of heating, Eq. (2.73) becomes asymptotically

O =4/3V3- b2k Q2 (2.75)
9(T)




where ¢(T') is also another temperature dependent factor. In this case ® is constant if the
total amount of applied heat is given. It corresponds to the horizontal portion of a curve.
The comparison of this result with the experimental results and relating discussion

will be given in Section 5.8.
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Chapter 3

SUPERCONDUCTIVE

TEMPERATURE SENSOR

3.1 Principle of a superconductive temperature sen-

sSor

A superconductive temperature sensor which has high temperature sensitivity and
short response time is used to detect highly transient heat transport phenomena in He II.
Fig. 3.1 shows the picture of the superconductive sensor. This sensor measures tempera-
ture variation by utilizing the abrupt change of resistivity of thin superconductive metal
film due to superconducting transition. This type of sensor was originally developed by
the group at Max-Planck-Institut [20]. Superconducting phenomena occurs in a number
of materials such as metals and oxides when all the temperature, magnetic field and cur-
rent density are below certain critical values. The electrical resistivity of the material
vanishes, and Meissner effect appears in the superconductive state. If one of these three
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quantities exceeds a critical value, superconductive transition from superconductive state
to normal state occurs.

Superconductors can be classified into two types, type I superconductor and type
[T superconductor. Type I superconductor is pure metal, and type II superconductor is
alloys and oxides. The former exhibits an almost discontinuous change from normal state
resistivity to that of superconductive state, and vice versa. Fig. 3.2 shows the ideal re-
sistivity variation of type I superconductor. The latter exhibits gradual superconductive
transition (see Fig. 3.3). If one of the quantities exceeds a threshold value, the super-
conductive state breaks down and then resistivity gradually increases up to the normal
Ohmic resistivity as the increase of the quantity. It is well known that pure tin is a type |
superconductor. Its superconductive transition occurs near 3.7K within the temperature
range of no more than 107 K. It exhibits quite a sensitive resistivity change to tempera-
ture variation within the temperature range. Tin is utilized for a sensitive bolometer for
the detection of infrared radiation. The temperature sensor for temperature measurement
ot highly transient thermo-fluid dynamic phenomena such as a thermal shock wave in He
IT would require the superconductive transition to occur within several hundreds m K at
arbitrary temperatures below T = 2.17K.

Superconductive transition of type Il superconductor is adequate for the tempera-
ture measurement in He II. In the present study thin metal film consisting of gold and
tin is used. Gold which does not become a superconductor acts as impurities for tin and
depresses the superconductive transition of the film. The transition can be made more

gradual at below T'.
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3.2 Superconductive temperature sensor

Fig. 3.4 shows a schematic drawing of a superconductive temperature sensor. It
quite resembles a conventional hot wire probe in shape to be used for the flow velocity
measurement in aerodynamic experiments. The temperature variation is measured with
a tiny sensing element on which surface a superconductive thin film is formed. It consists
of gold and tin. Tin film with a thickness of 980A is fabricated on 230A of gold film by
vacuum deposition on a side surface of quartz fiber with a length of 1.3mm and 40um
in diameter. The quartz fiber is glued with silver paste between metal needles. This
shape can minimize disturbances to flow field to be measured. Since the heat capacity
of the sensing element itself is quit small, the response time of the sensor is very short
( not more than 10ps ). Fig. 3.5 shows a typical static voltage-current characteristic of
the sensor taking the temperature as a parameter. The voltage drop across the sensing
element is measured while gradually increasing the biased current I with keeping the
temperature constant. The each curve goes horizontally from the origin until the bias
current reaches a critical value which depends on the temperature. When the current
reaches the critical value, the curve starts to rise. Generally the critical value becomes
larger for the lower temperature. The current at which the variation of the voltage drop
with the temperature increase is steepest is selected as the optimum bias current. Fig.
3.6 shows the typical variation of the voltage drop with the temperature taking the biased
current as a parameter. The gradient of the curve give the sensitivity of the sensor. It
can be seen that the higher biased current yields the higher sensitivity and also the region
of high sensitivity shifts to lower temperature region.
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3.3 Calibration of a superconductive temperature

Sersor

It is difficult to produce the superconductive temperature sensors which have the
same characteristics. Every superconductive temperature sensor must be calibrated by
a dynamical method at the beginning of experiment. Constant current is applied to a
temperature sensor. The resistivity change due to temperature variation is measured as
a voltage drop across a sensing element. The dynamical calibration is carried out by
measuring a weak ( < 10W/em? ) and short ( < 100pus ) second sound heat pulse emitted
from a planar heater with a calibrating temperature sensor fixed at a distance of 5mm
from the heater. The theoretical temperature amplitude, AT}je for applied heat flux ¢,

is given by the simple acoustic theory of second sound.
Aﬂheory = Qp/PC2OCP. (31)

Since the relation holds only if any kinds of second sound wave attenuation is negligible,
1t 1s required to use a weak and short heat pulse and short distance of a temperature
sensor from a heater. Detected voltage drop is compared with a theoretical temperature

amplitude and then calibration coefficient ¢ is obtained by the following equation.
g - AV/ATllwm'yy (32)

where AV is the detected voltage drop across a sensing element.

The working range of a temperature sensor, which should be around the supercon-
ducting transition temperature, is roughly determined by the ratio of the thicknesses of
gold and tin layers. It can be easily understood that higher ratio of tin layer results in

30



higher transition temperature. The optimum thicknesses of gold and tin layers for the
present experiment determined from the numerous preliminary experiments are 230A of
gold and 9804 of tin. Fine trimming of the working temperature is made by adjusting the
bias current to a temperature sensor. The bias current should practically be small enough
to minimize the self heating from a sensing element which has finite electrical resistance.
Typically the bias current is selected to be between 1 and 3mA. The sensitivity is at-
tained as large as 100pV/m K. It is better by one order than that of a carbon resistance

thermometer.
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Chapter 4

EXPERIMENTAL SETUP

4.1 He II dewar and evacuation system

The picture of whole experimental setup is shown in Fig. 4.1. Fig. 4.2 shows the
schematic illustration of the dewars, one is set inside of the other, and the evacuation
system. The dewar is a cylindrical glass container having evacuated between the double
walled space for thermal insulation. And also the inside wall is silvered to reduce radiation
heat input from outside environment. Narrow unsilvered slit of 1em in width is made on
both side of wall from top to bottom for direct visual observation. He Il is contained in
the inner dewar. Liquid nitrogen inside of the outer dewar reduces the direct incident of
thermal radiation from ambient temperature environment to He II. Experimental appa-
ratus 1s hung by stainless tubes from the flange which is supported on the top of He II
dewar.

He II bath temperature can be reduced by reducing the vapor pressure by pumping
off along to the saturated vapor pressure curve. He II dewar is connected to a mechanical
vacuum pump ( 500//man. ) via a control valve and a pressure regulating valve. The He
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[T bath pressure signal is transferred to the pressure regulating valve controller. The He

I bath temperature is controlled by regulating the vapor pressure.

4.2 Main assembly and data acquisition system

Fig. 4.3 is the picture of the cryogenic flange inserted into the He II dewar. Fig. 4.4
is the picture of the main assembly of the experimental apparatus. Schematic drawing of
main assembly of the experimental apparatus immersed in a He II bath is shown in Fig.
4.5. It consists of three main parts, a planar thin film heater, a cylindrical thermal shock
tube and a superconducting temperature sensor. The planar heater, square Ni/Cr thin
film, 27 x 27mm and 400A in thickness, is formed on a Pyrex grass substrate by means of
vacuum deposition. Copper electrode of 50004 is also fabricated along both sides of the
Ni/Cr film. Typical electrical resistance of the heater 1s 30€2. The pulsed heating is done
by means of Joule heating.

The cylindrical thermal shock tube which is made of Teflon is 150mm in length,
25mm in diameter and 35mm in outer diameter. The bottom portion of the tube in
contact with the heater is shaped into a knife edge to minimize the heat capacity of the
portion and to maintain tight seal with the heater surface. The tube maintains the one
dimensional character of a thermal pulse. The superconductive temperature sensor is
introduces from the upper end of the thermal shock tube. It is mounted on the movable
temperature sensor mount so the distance from the heater to the sensor can be varied
between 0.1 and 150mm with a 0.1mm step parallel to the shock tube axis.

Fig. 4.6 shows the block diagram of the whole experimental data acquisition system.
Trapezoidal current pulse from a programmable arbitrary wave form generator is fed to
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the heater via a high speed power amplifier, and pulsed heat flux is applied to He II. Rising
time of the trapezoidal current pulse from zero to a constant value and falling time are
fixed to be 6us. Total heating time , 1y, is varied arbitrary from 30us to 4000us depending
on the purpose of measurement. The superconductive temperature sensor has two pairs
of shielded lines which are also shielded by doubled stainless tubes. One 1s for a constant
current supply and the other is connected to the low noise amplifier. The temperature
variation due to the pulsed heating by the heater is detected with the temperature sensor
and the signal is amplified by a factor of 100 with the low noise amplifier. All signals
are transmitted to a personal computer via a digital oscilloscope to be stored on a floppy
disk. Through the whole experimental runs, each successive measurement i1s carried out
after a rest time of 120s to minimize the uncertainty in the effect of residual vortex lines
generated by former heating. It is well known that residual vortex lines considerably affect

the vortex development especially in the case of intense heating [18].
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Chapter 5

RESULTS AND DISCUSSION

5.1 Three types of thermal shock wave

There are three types of thermal shock waves in He II according to the sign of the
steeping coefficient defined by Eq. (2.40). These are a frontal shock wave, a back shock
wave and a double shock wave as given in Fig. 5.1, 5.2 and 5.3, respectively, which are
measured with a superconductive temperature sensor fixed at a distance of z from a planar
thin film heater placed at the bottom of the shock tube. These waves are generated by a
trapezoidal heat pulse of gy = 30us. The frontal shock wave in Fig. 5.1 is measured at
temperature Ty = 1.T0K. A temperature discontinuity is clearly observed at the front of
a propagating wave profile. Back shock wave in Fig. 5.2 is observed at 15 = 2.06K. A
discontinuity is formed at the back of a wave profile. Slight disturbance on the wave profile
1s just a electrical noise. Double shock wave in Fig. 5.3 is observed at 75 = 1.86 K which is
slightly below the temperature at which the steeping coefficient vanishes. It is practically
difficult to generate a pure double shock wave, because rather strong heat pulse is required

for a wave profile extending both higher and lower temperatures than the temperature at



which the steeping coefficient vanishes and, furthermore, a long propagation distance is
also required for a profile to form two temperature discontinuities due to weak nonlinearity
in this temperature region as seen from Fig. 2.7. The large heat flux heating tends to
generate high density quantized vortex lines to cause wave profile deformation due to the
interaction with quantized vortices during propagation. The wave profile given in Iig.
5.3 may be the best example for the double shock wave.

These results demonstrate that the superconductive temperature sensor possesses a
sufficient temperature sensitivity and a short response time to measure the temperature
variation associated with a thermal shock wave.

Multiple thermal shock wave profiles generated by trapezoidal heat pulses of a number
of values of the heat flux are shown in Fig. 5.4, where all the profiles are superposed by
synchronizing at the wave front. Bath temperature Tg 1s 1.69K in order to produce the
frontal shock waves and the heating time 1 is selected to be 100ps. Heat flux ¢, is varied
from 20 to 40W/cm?. The superconductive temperature sensor is fixed at a distance z of
S5mm from the heater. When the applied heat flux is small, the measured wave profile is
almost trapezoidal except the wave front steepening due to the hydrodynamic nonlinear
effect. The measured shock wave height is found to be in proportion to the applied heat
flux and to agree with the theoretical value obtained by Eq. (3.1) as long as the heat flux
is sufficiently small. As the applied heat flux increases, additional wave deformation owing
to the mteraction with quantized vortices generated near a heater becomes to be apparent.
And the wave height loses the linear dependence on heat flux. The slight temperature
rises following the main wave profiles are also observed as heat flux increases. These come

from the dissipative effect.
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Similar result for back shocks measured at T = 1.90K is shown in Fig. 5.5. The
result obtained at T = 2.10K is also shown in Fig. 5.6. The results are qualitatively the
same as Fig. 5.4 but the wave deformation due to the interaction with quantized vortex

lines becomes more noticeable than that at lower heat flux.

5.2 Measurement of characteristic time of quantized

vortex development

The characteristic time of quantized vortex development i1s measured as a function
of applied heat flux and temperature by analyzing the thermal shock wave deformation
data. Quantized vortex lines are generated when the relative velocity v, exceeds a critical
value. The vortex lines need finite development time in order to reach very high density
enough to cause significant wave form deformation. If the quantized vortex line density
1s not sufficiently high to cause an appreciable wave form deformation, a thermal shock
wave profile changes only as a result of hydrodynamic nonlinear effect, that is to say the
plateau portion of a trapezoidal thermal pulse does not decline. On the other hand, if the
density of quantized vortex becomes high enough to cause strong interaction, a thermal
pulse is deformed through the thermal boundary layer and thus a partial declination in
the plateau portion is observed as illustrated in Fig. 5.7. The time duration #,, in the fig-
ure from the wave front to the point at which the wave height begins to reduce is defined
as the characteristic time. The decision of t,, 1s rather a difficult procedure in the case of
small heat flux as the wave height only gradually reduces due to the gradual development
of quantized vortex lines. The noise superposed on measured wave profiles also makes it
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difficult. Therefore the end point of ¢,. is defined as the point at which the reduction of
wave height exceeds 30 of the data fluctuation in the plateau portion.

Measured wave profiles at Tp = 1.7T0K and z = 10mm are shown in Fig. 5.8. The
heating time is fixed at £y = 1000ps. The heat flux ¢, is varied from 5 to 26 em?. Tt
can be observed from this figure that the point where the reduction becomes noticeable
gets to close to the wave front as heat flux increases. It is interesting to note that the wave
form for g, = 26W/em? becomes even considerably shorter than ¢y and is accompanied
with 7thermal tail 7 that is a slightly high temperature region than the equilibrium tem-
perature. This interesting feature is discussed in detail later. Another example of wave
profiles measured at different temperature, s = 1.90K is shown in Fig. 5.9. The wave
deformation seems to occur for smaller heat flux than the former case of Tz = 1.70K.

Fig. 5.10 shows the result of 7, as a function of applied heat flux ¢, for two different
temperatures, and Fig. 5.11 is their double logarithmic plot. Experimental data obtained
at 1.70K are represented by closed diamonds and the data at 1.90K by open circles in
the figures. The data points are obtained two independent experimental runs for both
cases. Solid and broken lines are the linear regression results, of which inclinations are
—2.2at 1.70K and —2.0 at 1.90K. It may be concluded from the data that 7, is inversely
proportional to qﬁ

Further measurement results measured at temperatures between 1.60K and 2.03K
are shown in the same double logarithmic plot together with corresponding linear re-
gression results in Fig. 5.12. It should be mentioned that the data obtained at lower
temperatures appear in the upper region in the Fig. 5.12. As the temperature rises, the

data shift towards the lower region. It means that the development of quantized vor-
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tices becomes faster as the temperature rises. From many experimental results for the
heat flux ranging from 5 to 40W/em?, it is found that the relation between t,, and gy 1s
approximately given by

te = ' (Ts)gq, ?, (5.1)

and it can be written in the other form
1
gptie = c(Tn), (5.2)

where ¢(Tg) and ¢(Ts) are temperature dependent coefficients given experimentally. Fig.
5.13 shows the variation of ¢(Tg) with the temperature. It decreases monotonically with
the rise of temperature. It seems that this result is quit important because it is obtained
at the heat flux range, intermediate to large values, which had not been obtained in
previous experiments. In the report by Vinen [3] [4][5]the relation between 1,. and g, is
given by Eq. (2.7) for very small heat fluxes ( ¢, < 0.4W/cm? ), which has a different
functional form from Eq. (5.1).

The discrepancy between the result of the Vinen vortex line density equation and
experimental result for the case of large heat flux with respect to the characteristic time for
vortex development has been pointed out in a couple of numerical simulations of thermal
shock wave propagation [21]. It is reported that the vortex line density equation needs
a finite initial condition Ly which defines the initial vortex line density in undisturbed
He IT in order to reproduce the measured thermal shock wave deformation owing to the
interaction with quantized vortices. The introduction of initial vortex line density Ly is
quite popular in numerical simulation of propagating thermal shock wave but the physical
meaning of Ly is not clear. For instance, the value of Ly which gives sufficient numerical
result is apparently too large for the value of the undisturbed He II considering the final
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value of the vortex line density. The typical final equilibrium value of the vortex line
density is 107¢m/em® while Ly needs to be as high as 10%cm/cm®. If Ly is set to be zero,
v of the source term in Eq. (2.8) needs to be several thousands times larger than that
obtained by Vinen [22]. Present experimental results imply that the Vinen vortex line

density equation needs appropriate modification in the case of the large heat flux heating.

5.3 Wave form variation through propagation

Wave form variation during propagation is measured with a superconductive tem-
perature sensor by changing the distance between a temperature sensor and a heater.
The results are shown in Fig.s 5.14 and 5.15. Each wave profile is measured with a tem-
perature sensor fixed at a distance z as indicated beneath each profile and is drawn at
the corresponding location which is calculated by supposing that the full scale of the
abscissa corresponds to z = 100mm in each figure. Fig. 5.14 shows the result under the
conditions of Tg = 1.69K, g, = 9W/cm? and ty = 30us. Since the heat flux is relatively
small and the heating time is short, each profile is free from the influence of quantized
vortices. A trapezoidal wave form is observed in the vicinity of a heater (z = 1.5mm),
and is deformed only due to the hydrodynamic nonlinear effect during propagation. The
trapezoidal profile first steepens at the wave front to result in the formation of a tem-
perature discontinuity. The plateau portion diminishes through further propagation and
finally the wave form becomes triangular. The triangular profile further changes according
fo the Burgers equation which is approximated by the equal area rule. Fig. 5.15 shows
the result for the higher heat flux of g, = 40W/em? at the same temperature as the last
example. The profile changes more quickly than in Fig. 5.14. It is caused not only by
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the stronger nonlinear effect because of the higher temperature amplitude but also by
the interaction with quantized vortices. The wave height even in the very vicinity of the
heater becomes lower than the theoretical value due to the effect of the interaction with
quantized vortices. Iig.s 5.16 and 5.17 show the results of propagating back shock waves.
The trapezoidal profile forms temperature discontinuity at the back of wave profile and
is deformed into a triangular profile through propagation.

Fig. 5.18 shows the wave height variation during propagation. Ordinate represents
the normalized wave height by the theoretical value at z = 0 given by Eq. (3.1). Abscissa
is the distance from a temperature sensor to a heater at z = 0. Several experimental
data are plotted by taking the applied heat flux as a parameter. Solid lines represent the
theoretical wave height variation given by Eq.s (2.56) and (2.65) on the basis of the equal
area rule. The location of the formation of a triangular profile seems to slightly deviate for
small heat flux cases. But generally the experimental data agree well with the theoretical
value. The double logarithmic plot of Fig. 5.18 is shown in Fig. 5.19. The agreement of
the experimental data with the theoretical result becomes more clearer. The variation of
wave height after the formation of a triangular profile obeys a square root relation to z in
the region. The similar result of a back shock wave is shown in Fig.s 5.20 and 5.21. In the
case of an intense heating such as ¢, = 40W/cm? the wave height is decreased even in the
very vicinity of a heater by the strong interaction with high density quantized vortices
in the region but it varies approximately with theoretical prediction in the later stage of
propagation.

It is found that the experimental data of the variation of a thermal shock wave height

during propagation fairly well agree with the theoretical prediction by the equal area rule
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in the both cases of a frontal and back shock waves. However, strictly speaking, there are
slight systematical discrepancies between the experimental data and the theoretical pre-
diction. The experimental data of frontal shock waves tend to deviate slightly downward
from the prediction in particular for small g,. On the contrary, those of back shock waves
deviate upward. The deviation may be caused by the self-focusing of a thermal shock
wave owing to nonuniform heating. There is a possibility of the occurrence of nonuniform
heating in a local region along the contact line of the heater and the bottom end of the
cylindrical shoc]s:.tube side wall.

In addition, the experimental data are compared with the result obtained by solving
the two-fluid equation system numerically [27]. Fig. 5.22 shows the comparison among
the experimental data, the numerical result and the analytical solution on the basis of
the equal area rule in the case of relatively small g, where the effect of quantized vortex
lines 1s small. They well agree with each other. It can be also concluded that the equal
area rule well approximates the solution of the two-fluid equation.

The variation of the wave length during propagation is plotted in Fig. 5.23. It seems
that the plot is more convenient to understand the wave deformation. The variation of
the wave length can be divided into three stages. It does not change before the forma-
tion of a temperature discontinuity. This is the first stage. The wave length starts to
change just after the formation of a temperature discontinuity prior to the completion
of a triangular wave form where the wave height starts to change. The variation of the
wave length is linear to the propagation distance since the height of the wave does not
change in this stage. In the final stage the triangular profile changes its height and length

with conserving energy as given by Eq.s (2.65) and (2.64). The each solid lines which
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represents the theoretical prediction in the figure consists of three curves. For instance,
the end point of the first stage z; and second stage z; are z; = 12.7mm and 2z, = 76.5mm
for ¢, = 3.2VV/cm2 and z; = 4.6mm and z; = 27.9mm for ¢, = 9.0W/em?, respectively.
The variation of the amount of heat transported in the form of a thermal shock wave
is investigated. The amount of heat passing through unit area is calculated by integrating
m

the measured wave profile. This quantity is nothing but the area of a wave profile in a

AT —t diagram. It is defined by the following equation.
1’”)
Ew = CQO/)C]J / AT('[)(H , (5.3)
Jo

where t,, is the twice half value width of the measured wave profile in time. The definition
is schematically illustrated in Fig. 5.24. The integration is carried out from the wave front
to the point corresponding to ¢t = t,,. The initial heat pulse from is schematically shown

in Fig. 5.25 and the total amount of heat fed from a hater 1s given by
Ew,O = Qp(il + 212 + 1'3)/27 (54)

where #; 1s the rising time, #; is the time duration of the constant current portion and
I3 1s the falling time. It is clear that the heating time #y is equal to #; + t5 + £3. The
results are plotted in Fig. 5.26. It is found that the whole applied heat is transported by
a thermal shock wave when the heat flux is not so large ( in the cases of ¢, = 3.2 and
9.0W/em? ). The amount of heat almost does not change during propagation. In the
case of the large heat flux heating, ¢, = 40W/cm? since the wave height is suppressed due
to the interaction with quantized vortex lines in the very vicinity of a heater only part
of input heat is transported by a thermal shock wave. However, out of this region it is
hard to observe the dissipative effect due to the interaction with quantized vortex lines.
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It means that the effect of the self-induced vortices is substantially negligible under the

present heating condition.

5.4 Wave deformation and limiting profile

Ilig. 5.27 shows the superposed wave profiles generated under various initial heating
conditions of g, and tf. The applied heat flux from a heater is varied from 5 to 40W/cm?
and the heating time is selected to be 500us and 1000us. This figure shows the wave
deformation due to the interaction with quantized vortices. As long as the heat flux is
below a critical value and heating time is short, the wave form is free from the influence
of the interaction with quantized vortices( see wave forms 1 and 2 ). The wave height is
exactly equal to the value given by the simple acoustic theory and the length of it is just
same as L. Wave form changes only because the hydrodynamic nonlinearity for small ¢,,.
The deformation of a wave form becomes noticeable when the heat flux or the heating
time becomes sufficiently large or long. In the case of wave form 3, heating time is rather
long, 1000us, though the heat flux is not so large. It is seen that the wave height at
the wave front is nearly equal to the theoretical value given by Eq. (3.1), but gradually
diminishes towards the trailing edge, and that the length becomes longer than the initial
heat pulse, and moreover a diffusive tail is formed almost continuously following the main
body of a propagating thermal pulse. Wave form 4 shows the wave deformation in the
case of higher heat flux and shorter heating time than in the case of wave form 3. The
wave height diminishes more rapidly than that of wave form 3.

Further increase in the heat flux leads to quite an interesting feature, the formation
of limiting profile. Intense pulsed heating makes quantized vortex lines develop to very
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high density in quite a short time. As a result of the rapid development of quantized
vortices, a thermal wave form is subjected to the strong interaction with vortices even
from the wave front and then it becomes considerably shorter than tg as shown by the
wave forms of 5 and 6. Moreover, these two wave forms found to be almost coincide with
cach other in spite of the big difference in the heating time. This kind of tendency is also
reported in another experiment [17]. The unique wave form is named the limiting profile.
The wave shape 1s determined only in the initial stage of heating and is not affected by
subsequent heating and so the wave form becomes insensitive to the difference in heating
time. Typical limiting profiles measured at Ty = 1.70K of a frontal shock temperature
region and 1.90K of a back shock are shown in Fig. 5.28 where both onset times of heating
are synchronized. It is seen the propagation speed of a frontal shock wave is faster than
that of a back shock wave. It can be also seen that the difference in the locations of
temperature discontinuities which are formed at the wave front at T = 1.70K and at
back of the profile at Ty = 1.90/. The general features of a limiting profile can be
summarized as follows almost independently of the temperature; the profile is formed for
¢y > 30W/em?, it is almost independent of the heating time longer than approximately
200ps, the profiles is almost triangular and the half value width is approximately 100/us.

In the case of an intense heating a thermal boundary layer is formed in the vicinity
of a heater due to accumulation of dense quantized vortices. In the boundary layer heat
is not transported by the efficient pure thermal counterflow mechanism within a second

sound thermal pulse.
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5.5 Highly transient heat transport in a second sound

wave mode

The amount of heat transported by a second sound wave is investigated under the
various heating conditions. The result obtained at Ts = 1.70K is shown as a function of
applied heat flux ¢, in Fig. 5.29. Ordinate and abscissa represent £, and g,, respectively.
Two experimental data for ty = 500ps and 1000us are plotted. The solid lines in Fig.
5.29 represent the total amount of initial heat fed from a heater. Experimental data
coincide with the solid lines when the heat flux is small. It means applied heat is wholly
transported by the second sound wave mode as long as the superfluid breakdown does
not occur in this situation. As the applied heat flux increases, superfluid break down
occurs. The wave profile is deformed through the interaction with quantized vortices.
The amount of heat transported by the second sound wave mode deviates downwards
from the solid lines. It can be seen that the deviation occurs at lower heat flux for the
longer heating time. With a further increase in the heat flux, the amount of heat reaches
maximum value and then gets to decrease. The drastic decrease of the amount of heat in
spite of still increasing heat flux is caused by the onset of boiling on a heater surface.

It is found that in the very large heat flux region, the amount of heat loses the
dependence on the heating time, and so the experimental data of different heating time
almost coincide with each other. In this case the wave profiles turn into the limiting
profile. The wave form becomes considerably shorter than that of the applied heat pulse,
so only limited amount of heat is transported by the second sound wave mode. The
experimental data obtained at different temperature of 1.95K is shown in Fig. 5.30 where
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the experimental data for three different heating times ( 200,500 and 10005 ) are plotted.
Qualitatively the same results are obtained except that the data for ¢ = 200us deviate
upward from those of other longer heating times at the very large heat flux region. Since
the heating time of 200us is almost the same as the length of a limiting profile, it is not
sufficiently long to form a full limiting profile.

The temperature dependence of the amount of heat transported in the second sound
wave mode is shown in Fig. 5.31. Temperature is varied from 1.60 to 2.05K and heating
time 1s fixed at 1000ps. Solid line represents the total amount of input heat from a heater.
Ilig. 5.32 shows the similar result but heating time is selected to be 500us. The amount
of heat shows the clear temperature dependence. It is seen that the heat flux at which
the amount start to deviate from the solid line becomes lower as the temperature rises.
It 1s also found that the amount of heat strongly depending on the temperature arises
within the heat flux range approximately between 10 to 30W/em?. This dependency
becomes more prominent at temperatures above 1.95K. The temperature dependence
may be resulted from the dependence of the rate of development of quantized vortex
on the temperature. This kind of tendency is also observed in the experiments of the

visualization investigation of the onset of boiling [26]. The onset of boiling becomes

abruptly fast if the temperature rises above T = 2.0 in that experiment.

5.6 Formation of a thermal boundary layer

The heat which is not transported in the second sound wave mode accumulates in
the vicinity of a heater, that is the thermal boundary layer, and raises the temperature
in the layer. Afterward heat is transported through the layer by the restricted thermal
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counterflow which is the thermal counterflow affected by the dense quantized vortices.
Because of the mutual friction force due to the interaction between dense quantized vor-
tices and the normal fluid component, the relative velocity in the counterflow can not be
larger than a critical value. The temperature rise as a result of the formation of a ther-
mal boundary layer can be recognized as the secondary temperature rise following the
thermal shock wave profile. Fig. 5.33 shows the superposed transient temperature traces
measured at different locations of a temperature sensor. The distance from a heater to
a sensor 1s varied between 0.5 to 30mm as indicated in this figure. Ordinate represents
the temperature rise and the abscissa is the time. The point corresponding to the onset
of heating is marked by 7 Heater ON” on the abscissa. Each of the traces consists of the
propagating thermal shock wave as an initial spiky triangular profile and the secondary
gradual temperature rise which indicates the thermal boundary layer reaches the sensor
location. The peak of secondary temperature rise moves away from a heater at a speed
of the order of 1m/s. It is much slower than the propagation speed of the second sound
wave, of the order of 20m/s. The temperature rise continues over 20ms. It implies that
the decay of quantized vortices is quite slow as compared with the time of its develop-
ment. Moreover the third temperature rise is also detected at approximately 18ms after
the onset of heating with the temperature sensor fixed at a distance of 0.5mm from a
heater in Fig. 5.33. This is the signal of the onset of boiling on the heater. At the first
glance, it is a little strange that boiling signal is detected at 17ms after the end of pulsed
heating. But it can be understood in the following way. The onset time of boiling must be
carlier than 18ms, in fact, 18ms is just a time which is needed to develop the vapor film

reaching the location of the temperature sensor, 0.5mm. The vapor layer development is
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a rather slow process.

The visualization study of the onset of boiling by Schulieren method and shadow-
graph [26] gives the onset time of boiling in the case of a vertical transparent planer heater.
The typical result is shown in Fig. 5.34. According to the result of this study, spotwise
transient nucleate boiling first appears at several tens ps after the onset of heating, and
the onset of film boiling is observed after several ms under the similar heating condition
of present heating. The appearance of the third temperature rise is not reproducible,
though the thermal shock wave and the secondary temperature rise are reproducible. It
1s understood that boiling is a rather random phenomena in both time and space. The
signal of the third temperature rise can be detected up to z = 10mm in the present
heating condition. Fig.s 5.35 and 5.36 are the results obtained for different heat fluxes
of 26W/em? and 15W/em?, respectively. It is clearly seen that the development of the
secondary temperature rise becomes small and is not detected far from a heater. In the
case of ¢, = 15W/em? shown in Fig. 5.36 the clear secondary temperature rise is only
observed at z = Ilmm and 2mm.

The time variation of the temperature distribution near a heater including a thermal
boundary layer reconstructed from the data presented in Fig.s 5.33 | 5.35 and 5.36 are
shown in Fig.s 5.37, 5.38 and 5.39, respectively. The ordinate and abscissa represent the
temperature rise from an equilibrium temperature and the distance from a heater. The
time after the onset of heating ¢p is taken as a parameter. The temperature distribu-
tions are plotted up to tp = 8ms every lms after the end of heating. The temperature
Ty = 1.70K and the heating time ¢ty = 1000ps are fixed but the heat flux is varied among

those figures. The result obtained for ¢, = 40W/cm? is shown in Fig. 5.37. The thermal
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boundary layer with a large temperature gradient is clearly observed in the vicinity of a
heater for several ms after the onset of heating ( tp = 2 — 5ms ). The thermal boundary
layer is formed because of the accumulation of dense quantized vortices generated by the
large heat flux heating. It should be noted that the thermal shock wave has already
reached at a distance of 40 to 80mm from a heater in those times so it is not seen in this
figure. The thickness of the thermal boundary layer can be defined as 6mm. The result
for ¢, = 20W/em? in Fig. 5.38 also shows the formation of a thermal boundary layer
but its temperature and thickness are lower and thinner than those given in Fig. 5.37.
The thermal boundary layer gradually diminishes its peak temperature and, at the same
time, expands outward from a heater with the laps of time. The time variation of the
temperature distribution in the thermal boundary layer resembles that caused by usual
diffusion process. It is found from the experimental fact that the heat transport process
i the thermal boundary layer in which the restricted thermal counterflow is a governing
heat transport process resembles the usual diffusion process. The result of rather small
heat flux of ¢, = 15W/cm? shown in Fig. 5.39 exhibits a different time variation of the
temperature distribution. The range of the ordinate is reduced appropriately. Because
the applied heat flux is not sufficiently large to generate dense quantized vortices, major
part of the input heat is transported in the second sound wave mode and an only thin
thermal boundary layer is formed in a quite short period just after the end of a heating.
Experimental data up to tp = 3ms are plotted in this figure. It is clearly seen that the
shape of the traveling thermal shock wave does not become a limiting profile and major
part of input heat is transported in the form of a wave. This tendency is suggested by

the transient temperature traces in Fig. 5.36.
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The result at for different temperature of T = 1.90K is also shown in Fig. 5.40. The
temperature variation is qualitatively the same as that of T = 1.70K but quantitatively
Is not quite same in both the maximum temperature and thickness. The peak tempera-
ture becomes lower and the thickness of the layer gets to be thinner. It may be because
the temperature dependence of the heat capacity, quantized vortex lines development rate
and the decay rate.

Finally it should be noted that the temperature slightly drops in the very vicinity of
a heater in the later phase. The reason of the temperature drop is still an open question
but it may strongly relates to the drift and decay of the quantized vortex tangle at a

heater toward outward from a heater.

5.7 Highly transient heat transport through a ther-

mal boundary layer

[t 1s seen from the discussions in the former sections that there are three heat trans-
port processes involved in highly transient heat transport in He Il in the case of large heat
flux heating. The first is the second sound wave mode which is the predominant process
when applied heat flux is not large enough to generate dense quantized vortices. The
second one is the heat transport by the restricted thermal counterflow under the influence
of high density quantized vortices which is the governing heat transport process through
a thermal boundary layer. The third one is boiling on a heater. The heat consumed in
boiling process is further transported outward by the restricted thermal counterflow in
the later stage. It is, however, more appropriate to regard the heat is stored in the vapor
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layer formed in the vicinity of a heater in the consideration in the present time scale. The
amount of heat transported by the restricted thermal counterflow is calculated from the
experimental result of the time variation of a temperature distribution in the vicinity of
a heater. The amount of heat consumed for the boiling is defined as the heat which does
not transported by the other two processes.

The contribution of those processes are shown in Fig. 5.41, where the filled symbols
indicate the boundary between the second sound wave mode and the restricted thermal
counterflow, and the open symbols indicate that between the restricted thermal counter-
flow and the evaporation. These results are obtained under the condition T = 1.70K
and 1y = 1000ps. If the heat flux is less than 5W/cm?, the entire heat is transported
in the second sound wave mode. When the heat flux increases beyond 5W/cm?, super-
fluid breakdown occurs and some portion of heat generated by a heater accumulates in
a thermal boundary layer and then is transported outward from a heater region by the
restricted thermal counterflow. Above 15W/cm?, the onset of boiling is observed on a
heater surface and input heat begins to be consumed in evaporation. The contribution
of the second sound wave mode decreases and those of the restricted thermal counterflow
and evaporation increase as the heat flux increases. In this figure a set of the experimental
result obtained at Tg = 1.90K and ¢, = 40W/cm? is also plotted for comparison. At
the higher temperature, the superfluid breakdown occurs at lower heat flux and the con-
tribution of the restricted thermal counterflow and evaporation becomes more significant
even at lower heat flux than at lower temperatures, that is the boundaries between the
three contributions as given in Fig. 5.41 shift leftwards. Fig. 5.42 shows the similar re-

sult, where the ordinate is absolute amount of heat transported by those processes. Here
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most ol the data are those obtained at Tg = 1.70K, ty = 1000us, but some data for
tyy = 2000ps are added for reference, which are denoted by squares. The total amount
of heat applied from unit area of a heater is represented by broken lines for two cases of
heating times. It is seen that the contribution of the second sound wave mode decreases

2. On the other hand the contributions of the restricted

abruptly above ¢, = 15W/em
counterflow and evaporation increase with the increase of the heat flux. It can be also
seen that the amount of heat transported by the second sound wave mode in the case
of 1y = 2000us, g, = 20W/cm? is almost the same as that in the case of ty = 1000us,
¢, = 20W/em? because the wave form is reduced to a limiting profile losing their depen-
dence on the heating time for large heat flux.

The ratio of the amounts of heat transported by those three processes to the total
input heat are plotted for different heating times of ty = 1, 2 and 4ms in Fig. 5.43. It is
seen that the two boundaries dividing three processes vary with the heating time. How-
ever, it is found that the dependence of the boundaries on ¢ can be almost eliminated if

a variable

12
Gplpr

is taken as the abscissa as shown in Fig. 5.44. Several curves are found to reduce to almost
universal two boundaries irrespectively of the heating time. It is seen from the figure that
the second sound wave mode is only mechanism of the highly transient heat transport
: , 1/2 . o : o therr
when q,pti-.l/z < 0.2. When qpth{ exceeds 0.2, the contribution of the restricted thermal
. 1/2 T »
counterflow arises. If q,ptH/ become larger than 0.5, boiling in the thermal boundary
layer on a heater occurs and the contributions of the restricted thermal counterflow and
. L : . S TS,
evaporation become more significant with the increase of g,y In this figure a broken
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and a dotted broken lines are drawn to indicated specific values of qpi}f. The dotted
broken line indicates the value of q,[)t}f = 0.23 at which quantized vortex lines appear
to induce the superfluid breakdown as discussed in Section 5.2. According to the Fig.
513, ¢(Tp) = 0.23 gives the characteristic time of quantized vortices development at
Ty = 1.70K. The value of qpf}]/Q indicated by this dotted broken line well coincide with
the value at which the contribution of the restricted thermal counterflow arises. A broken
line represents the criterion of onset of boiling obtained empirically by Tsoi and Lutset [23]
The value is also consistent with the value at which the contribution of the evaporation

arises.

5.8 Comparison of experimental results with an an-

alytical solution by Dresner

Applied heat is transported by such three processes as the second sound wave mode,
the restricted thermal counterflow and consumption for evaporation. It is seen that
the thermal behavior in the restricted thermal counterflow region including the thermal
boundary layer resembles that in the usual diffusion process. The experimental data are
compared with the analytical result Eq. (2.72) introduced by Dresner in Fig. 5.45. The
broken line shows the analytical solution obtained in terms of the total heat input @. It
does not agree with the experimental data. The consequence indicates that the accurate
estimation of @ is essential to make a comparison between them as Dresner’s formula-
tion does not consider the contributions of second sound wave mode heat transport and
evaporation. To make a fair comparison, the only contribution of the restricted thermal
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counterflow needs to be extracted from total heat transport. According to the Fig. 5.44
the amount of heat transported by restricted thermal counterflow mechanism is 22% of
the total amount. The solid line represents the analytical solution obtained by substitut-
ing 22% of the input heat for @ in Eq. (2.72). The curve shows a fair agreement with the
experimental data. IYig. 5.46 shows the similar result in the case of ¢, = 20W/em?. The
amount of heat transported by the restricted thermal counterflow is 27% of the total heat
amount. The broken line goes far above the experimental data but the solid line agrees

with the experimental data.

5.9 A series of highly transient therm-fluid dynamic

phenomena after a pulsed heating

The results obtained by the high resolution temperature measurement of the highly
transient thermo-fluid dynamic phenomena in He I1 contribute to the total understanding
of a series of transient thermo-fluid dynamic phenomena. Combining the results obtained
in the present study with the other two studies such as the visualization study of the
transient thermo-fluid dynamic phenomena in He 11 with a laser photography interfer-
ometer by lida et al. [28] and the visualization study of transient boiling phenomena in
He II by Katsuki et al. [26]. in our laboratory, the general view of a series of transient
thermo-fluid dynamic phenomena in He II are obtained and is schematically drawn in
Fig. 5.47. The ordinate represents the magnitude of the physical quantity of the each
phenomenon. It represents the propagation distance for the first and second waves. It
represents the vortex line density and the thickness of the thermal boundary layer for
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the quantized vortex line development and the formation of a thermal boundary layer,
respectively. For boiling the ordinate represents the radius of the vapor bubble and the
thickness of the vapor layer. The abscissa represents the logarithmic time t after the
onset of the mtense pulsed heating. In the case of the intense heating, the following a
serles of transient thermo-fluid dynamic phenomena are occur. The first sound and the
second sound waves are generated just after the onset of the heating. Since only part of
heat is transported by the second sound wave, dense quantized vortices are generated in
the vicinity of a heater. The thermal boundary layer is formed due to the accumulation
of quantized vortices and the transient nucleate boiling 1s also observed just after the
beginning of the formation of the thermal boundary layer. In the later stage, the film
boiling is observed. Depending on the temperature and the hydrostatic pressure, audible
noise can be heard that is called noisy boiling. Those physical quantities are functions of
the heat flux and temperature. Generally, if the heat flux becomes large those quantities

increase more rapidly.
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Chapter 6

CONCLUSION

Experimental investigation of highly transient thermo-fluid dynamic phenomena in
He II is carried out with a superconductive temperature sensor. The following conclusions

are obtained through the present investigation.

1. The characteristic time of quantized vortex development ,. in the case of strong
heating is obtained by analyzing the deformation of the measured thermal pulse pro-
file. The result is expressed in terms of ¢, and a temperature dependent coefficient
¢(Tg) by the eguation,

1

gptie = c(Tp).

This relation is different from the empirical result for very small heat fluxes obtained
by Vinen. This new experimental fact may partly question the validity of the Vinen

vortex line density equation in the case of strong heating.

2. The variation of the second sound wave height due to the hydrodynamic nonlinearity
is found to well agree with the prediction by the equal area rule. The variation of
wave length is found to be more susceptible to the nonlinear hydrodynamic feature
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than the variation of wave height.

Heat applied from a heater is wholly transported in the second sound wave mode

when applied heat flux is sufficiently small.

In the case of strong heating a second sound wave is deformed by the interaction
with quantized vortices. When the heat flux becomes considerably large, a thermal
pulse is reduced to a unique very short triangular profile called the limiting profile
irrespectively of the heating time, which appears when ¢, > 30W/cm? and iy >

200ps. Its half value width is approximately 50 ~ 100us.

A thermal boundary layer 1s formed due to the accumulation of dense quantized
vortices in the vicinity of a heater for large heat flux. The thickness of the layer is
found to be 5 ~ 10mm. The decay of the layer is very slow (>> several tenth ms)
compared with its quick formation, which may imply that the decay of quantized

vortices 1s very slow.

The transient heat transport through a thermal boundary layer is found to be gov-
erned by the restricted thermal counterflow mechanism by dense quantized vortices
which apparently resembles the ordinary thermal diffusion process. Thus boiling

may be observed in the thermal boundary layer.

The contribution of the second sound wave mode to the transient heat transport
decreases as the increase of the heat flux, and the contributions of the other two

processes, the restricted thermal counterflow and boiling replace it.
The relative contributions of the three heat transport processes are found to be

1
uniquely treated if the parameter ¢,tg is introduced.
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9. It is found that Dresner’s analytical approach can only be applied in highly tran-
sient case for the restricted thermal counterflow portion only if the amount of heat

transported by the restricted thermal counterflow is evaluated quantitatively.



Appendix A

Propagation speed of sound in He 11

Coefficient of the four homogeneous equations (2.15)-(2.18) in Section 2.4 can be

rewritten in the following form.
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Determinant of [A] must vanish in order for there to exist a non-trivial solution of the

four homogeneous equations and is calculated as follows,
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Then |A] can be simplified as the following form,
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Again 1t must vanish in order for there to exist a nontrivial solution,

Al =0 (A7)

If both side of Eq.(A.7) is divided by ki, we get following equation.

w* dps Dp L w" Dps Jp w” dps ) w? ) dp
2 n— T PS5
Moror" T oaror 2 or " T w2 ar
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woo @00 W 0p
+ kzpos appb—i- k?_bpSa_T——"S pps

= 0. (A.8)

Here, the subscript 0 1s abbreviated. According to chain rule, we have

dps [ 0s [ Op
ap =+ (a5),+*(37), 49

Here, the following equations are introduced.

9 o 2
, _ W 5 OP) 5 pssTT
Y N k(%7 = (ap 57 e /)nC'V ’
0s 0s
Cy =T |— =T =—] . A,
' <aT>,,’ ' <5T>p (A.10)

And according to thermodynamic identities

(57), (35),~ (3), (58, = (37), (50 = (55), (55,
(A.11)

Using those Eq.s (A.10) and(A.9) , Eq.(A.8) can be written into the following form.

o ((22),(22) - (2) (20)] (280, (22)- (22).(22)

) (&) <@/)> L P Op P 20p ps Op
_ _(25) (%0 [ 00 P00 ps Op
we\TP\ar), " \ar ), T e T ot ap” T toT

— st =0, (A.12)

Pn

Using the fundamental identity of two-fluid equation

p=pPnTt Ps <A13>
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We have

P Op /)50/) _ s p |
On aT—'_ @T — PnaT( /0’\‘"/)5)
0/)

Substituting Eq.s (A.11) and (A.13) into Eq. (A.12) and dividing both side of the

equation by p, the equation can be simplified as follows.

| 2 | (OS5 5" Ps a2 _ )
! <8T>p<ap> — Karr)p* 2 <@p>} +omst=00 0 (A5)

Then we get the following equation

5 | (OF ps o [ Os\ 7! Os\ 7' (OP\ ps -
4 2 s .2 5 2
1 — — st | == —— — ] =s°=0. (A.
ut—u Kap>s B /)ns <8T>p } + <8T>p (ap)s [an 0. (A.16)

Again using the thermodynamic Eq.s (A.10) , Eq.(A.16) can be written in the form,

. 5. o Cy o

4 2 9y 2 Vo2

ut — (u] 4 uy)u” + ek
P

BN DN
I

0. (A.17)

Finally the dispersion law Eq. (2.19) in Section 2.4 relating w and kg is obtained.

1 u2 1 ’LLQ _ 1 CV
u? u? N Cp
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Iigure 2.2 Two-fluid model.
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Figure 2.3 The ratio of the normal fluid density and superfluid density to the
total density as a function of temperature.
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Figure 2.4 Model of (hermal counterflow.
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[Figure 2.5 Propagation speed of the first sound wave as a function ol temper-

ature.
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Figure 2.6 Propagation speed of the second sound wave as a [unction of tem-
perature.
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Figure 2.7 Temperatire dependence of steeping coellicient B
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Figure 2.9 Schematic drawing of a nonlinear wave from variation through
propagation. Initial trapezoidal profile becomes triangular. This
figure shows the spatial temperature distribution associate with a
wave. Propagation speed of points on a wave profile are also indi-

cated.
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Figure 2.10 Schematic drawing of a nonlinear wave from variation after the

formation of a triangular profile.
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Figure 2.11 Example of the solution of Eq. (2.68) for the conditions of T =
1.70/ and Q = 40 x 1073J/cm?.
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[Figure 3.1 Picture of a superconductive temperature sensor.
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Migure 3.2 Ideal resistivity variation with temperature of type I superconduc-
tor. 1. 1s the critical temperature
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Iigure 3.3 Ideal resistivity variation with temperature of type Il superconduc-
tor. T,

by

is the critical temperature
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Figure 3.4 Schematic drawing of a superconductive temperature sensor.
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Figure 3.5 Typical voltage — current characteristics of a superconductive tem-

perature sensor. Temperature is taken as a parameter.
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igure 3.6 Typical voltage — temperature characteristics of a superconductive
temperature sensor. I is the bias current to a sensor.
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Iigure 4.1 General view of the whole experimental set up.
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Figure 4.9 Schematic illustration of the He 1I dewar and the evacuation sys-

tem.
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Figure 4.3 Picture of the cryogenic flange inserted into the He II dewar.
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Figure 4.4 Picture of the main assembly of the experimental apparatus im-
mersed in He II. Two superconductive temperature sensors are
mounted on the movable temperature sensor mount in this picture.
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Figure 4.5 Schematic drawing of the main assembly of the experimental ap-
paratus. It consists of three main parts, a planar Ni/Cr thin film
heater, a cylindrical thermal shock tube and a superconductive

temperature sensor.
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Figure 4.6 Block diagram of the whole experimental data acquisition system.
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Figure 5.1 Measured frontal shock wave profile with a superconductive tem-
perature sensor. This is the reproduction ol the wave observed with
a digital oscilloscope. Ty = L.70IC, 15 = 30418, 4 = IW/em? and

z = 10mm.
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Figure 5.2 Measured back shock wave profile. Ty = 2,051, 1 = 3018, ¢,
9W/em? and z = 5num.
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Figure 5.3 Measured double shock wave profile. 15 = 1L8GI, 1y = 3058,
g, = 5TW/em? and z = 10mmn.

93



Temp. rise AT (mK)

60

50
40
30
20
10

T T I
5 |
35
30 ]
25 ]
20 (W/cm?)
| | |

Time (100 ps/div)

[Figure 5.4 Multiple thermal shock wave profile generated by trapezoidal heat

pulses ol a number of values of the heal flux. The heat flux g, are
imdicated beneath the cach profile. All the profiles are superposed
by synchronized al the wave front. Ty = 1.69K | 15 = 100us, and

z = Smm.
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Multiple thermal shock wave profile generated by trapezoidal heat

pulses of a number of values of the heal flux. Tg = 1.90/K, t;; =
100715, and z = 10mamn.
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Figure 5.6 Multiple thermal shock wave profile generated by trapezoidal heat
pulses of a number of values. Tp = 2.10K, ty = 50us, and z =
2mm.
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30

Iigure 5.7 Schematical drawing of the definition of the characteristic time of
quantized vortex development 1,.. o is the standard deviation of
the data fluctuation.
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Iigure 5.8 Superposed measured wave profiles generated by various heat fluxes
as indicated in the figure. Ty = 1.70K, 1y = 1000ps and z =
10mm.
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[igure 5.9 Superposed measured wave profiles. T = 1.90/K, 15 = 500ps and
z = 10mm. ¢, is varied [rom 5 to 40W /cm?.
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0 15 20 25 30 35 40 45
(W/ecm?)

Variation of 1,, as a [unction of the apphed heat flux g, for two
different temperature ol 1.70 and 1.90/. Symbols represent the
experimental data. Solid and broken lines represent the results of
logarithmic regression. The equations ol the regression are also

shown.
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Figure 5.11 Double logarithmic plot of the data and the regression results in

Fig. 5.10.
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resulls. Inclination of the all lines are approximately —2.
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Figure 5.13 Measured variation of coeflicient ¢(Tg) with the temperature.
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Figure 5.14 Wave form variation of a frontal shock wave during propagation.

Each profile is measured with a temperature sensor fixed at a dis-
tance z, indicated beneath the form and is drawn at the correspond-
ing location which is calculated by supposing that the full scale of
the abscissa corresponds to z = 100mm. Ty = 1.69K, {;; = 30ps
and q, = 9W/cm?.
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Figure 5.15 Typical wave form variation of a [rontal shock wave during propa-
& . g

gation. Ty = 1.69/C, 1y = 3015 and ¢, = 40W /cm?.
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Figure 5.16 Typical wave form variation ol a back shock wave during propaga-
g Y1 & pag
tion. Ty = 2.051, 15 = 30ps and q, = 9W/cm?.

106



Temp. rise AT(mK)

1.5 10 20 z=40(mm) |

1 1 1 I I ] | I 1

Time (40us/div)

Figure 5.17 Typical wave form variation ol a back shock wave during propaga-
tion. T = 2050, 1y = 30ps and ¢, = 40 /cm?.
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Figure 5.18 Wave height variation of a [rontal shock wave during propagation.
Wave height is normalized by the theoretical height at z = Omm.
Experimental data are represented by symbols and the theoretical
predictions given by the equal arca rule arc indicated by sohd lines.

Ty = 1701 and 1;; = 30s.
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Figure 5.19 Double logarithmic plot of I'ig. 5.18.
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[Figure 5.20 Wave height variation of a back shock wave during propagation.

Wave height 1s normalized by the theorctical height at z = Omm.
IExperimental data are represented by symbols and the theoretical
predictions given by the equal arca rule are indicated by solid lines.
Teg =205 and 1;; = 30s.
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Iligure 5.21 Double logarithmic plot of Fig. 5.20.
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Figure 5.22 Comparison among the experimental data, the numerical result[24]
and the analytical solution on the basis of the equal area rule in
the case of thie influence of quantized vortex lines is negligible.
The open circle represents the experimental data. The wave profile
obtained by solving the two-fluid equations are drawn by solid line.
The broken line represents the theoretical prediction obtained on
the basis of the equal area rule, respectively. Tp = 170, t5 =
30us and q, = 9W/cm?.
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Figure 5.23 Variation ol the lenglh of a frontal shock wave during propagation.
Experimental data for two heal flux q, = 3.2 and 9.0W/em? are
plotted. The solid lines represent the theoretical predictions. The
length of the wave observed with a digital oscilloscope has the di-

mension of time. Initial length of the wave 1y is 30ps. T = 1.TON
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Figure 5.24 Definition of the amount of heat transported by a second sound
wave mode through unit area [, . The integration is carried out
from wave front (1 =0 ) to the twice half value with of the profile

(t=1,).
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Figure 5.25 Schematical drawing of the trapezoidal heat pulse form fed from a
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Figure 5.26

Variation of the amount of heat transported by a thermal shock
wave through propagation. Symbols and lines represent the ex-
perimental data and the total amount of heat fed from a heater,

respectively. Tg = 1.70K, 1y = 30pus.
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Figure 5.27 Superposed wave profiles generated under various initial heating
conditions of ¢, and {y as indicated in the figure. Tg = 1.70K
z = 30mm.
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Figure 5.28 Examples of limiting profile at 75 = 1.70/ and 1.90/". Both onset
time of heating are synchronized in the figure. ty = 1000us and
qp = 40W/em? in both cases. z = 30mm.
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Figure 5.29 Amount of heat per unit area transported in the second sound wave
mode. Experimental data obtained for two different heating time
are plotted. Solid lines represent the total amount of heat fed from
a heater. Tg = 1.70/{ and z = 30mm.
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[igure 5.30 Amount of heal per unit area transported in the second sound wave

mode. Experimental data obtained lor three different heating time
are plotted. Solid lines represent the total amount of heal fed from

a heater. T = 195K and z = 30mm.
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Figure 531 Temperature dependence of the amonnt, of heat, per unit arca trans-
ported in the sccond sound wave mode. Temperature is varied
between 1.60 and 2.05/. Heating time s fixed at 1y = 1000,

z = 30mm.

121



Energy (x10~J/cm?)

T T T T l T T

100 —
F AT =1.60(K)

Lo, =1.70(K)
v T =1.95(K)
2T =2.00(K)
6T =2.05(K)0

o

JE—
-

T T W w

O.l1 s .Z.L,.,Jl.oo
Heat Flux (W/cm?)

Figure 5.32 Temperature dependence of the amount of heal per unit area trans-
ported in the second sound wave mode. Temperature is varied
between 1.60 and 2.05K. Teating time is fixed al {5 = 500/,

z = 30mm.
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Figure 5.33 Superposed transient temperalure traces measured at various lo-
calion of a temperature sensor. The sensor location ranges [rom
z = 0.5 to 30mm. The onsel of heating is marked by ”"Heater ON?”
on the abscissa. Ty = 1.70/, 1;; = 1000ss and g, = 40W /cm?.
The third temperature vise which is the signal of the onset of
the boiling near the heater is detected with the sensor fixed at

== 0.5mn.
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Iligure 5.34 Onset time of the spotwise transient nucleate boiling (O-e), the
film boiling (&—4) and the noisy film boiling (0-m) at T = 1.80K
The laud acoustic noise caused during noisy boiling. The occur-
rence of it also depends on the temperature and the hydrostatic
pressure. (This figure is cited from [26])
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Figure 5.35 Superposed transient. temperalure braces measured al v
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arious lo-

cation of a temperature sensor. Ty = FTOKC, 1 = 10005 and

¢p = 26/ cm?.
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Figure 5.36 Superposed transient temperature traces measured al various loca-
tion of a temperature sensor. The secondary temperature is only
observed at z = 1 and 2mm. Ty = 1.70K, t = 1000us and

¢ = 156W/em?.
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[igure 5.37 Time variation ol temperature distribution near healer including
a thermal boundary layer, taking 1 as a parameter. 1p = 0 cor-
responds to the onsel of heating. Ty = L70K, 1y = 10005 and
¢y = 401 /em?.
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figure 5.38 Time variation of temperature distribution near healer including a
thermal boundary layer, taking 1p as a parameler. Ty = LTON,
1 = 1000ss and ¢, = 200/ /cm?.
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Iigure 5.39
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Time variation of temperature distribution near heater taking 1p
as a parameter. Since the applied heal flux is not sufficiently large
to generate dense quantized vorlices, major part of the input heat
is transported by a second sound wave in this case. Ty = 1.70/%,
{17 = 1000ss and ¢, = 15W/cm?.
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Figure 5.40 Time variation of temperature distribution near heater including

a thermal boundary layer, baking 15 as a parameter. 1 is quali-
tatively the same for Ty = 170K, hut quantitabively is nol quite
same. T'g = 1.90/V,
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Figure 5.41
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Heat flux (W/cm”)

Ratio of amount of heat transported by each process. Filled sym-
bols indicate the boundary between the second sound wave mode
and that of the restricted thermal counterflow. Open symbols in-
dicate the boundary between of the restricted thermal counterflow
and that of evaporation. Tg = 1.701{, t;; = 1000us. A set of points
obtained at Tp = 1.90/K (denoted by squares) is also included for

comparison.
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5.42 Absolute amount of heat transported by the three processes. Most

of data plotted are those obtained at Ty = 1.70JC, 1;; = 1000/,
with a pair of data for 1;; = 2000ss, ¢, = 20W /cm? (denoted
by squares) added for reference. Broken lines represent the total
amount ol heat transported per unit avea for two cases ol healing

time.
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Figure 5.43
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Heat flux q (W/cm?)

Ratio of amount of heat transported by the three processes for var-
ious heating time of {;; = 1, 2 and 4ms. Tilled symbols indicate the
boundary between the second sound wave mode and that of the re-
stricted thermal counterflow. Open symbols indicate the boundary
between the restricted thermal counterflow and that of evapora-
tion. Those boundaries are schematically drawn in the inset of the
figure. (O @) : 1Ly = 1ms, (VW) :ty = 2ms, (JM) : ty = 4ms
and Tg = 1.70I.
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Figure 5.44 Ratio of the amount of heat transported by each process. The
o
parameter of g,tf are introduced as the abscissa. The dotted bro-
1

ken line indicates the value of ¢,t3 at which quantized vortex lines
are dense enough to interact with a thermal shock wave accord-
mg to the Ig. 5.13.  The broken line represents the criterion
of the onsel of boiling obtained empirically by Tsoi and Lutset
(C@):ty =1ms, (VV):1ly = 2ms, (C)M) : ty = 4ms and
Tg =1.70K.
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IPigure 5.45
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\p

Comparison ol the experimental data and the analytical solution.
Experimental data obtained at the sensor location of, z of 1, 5 and
10mm are plotted. The theoretical curves represented by dotted
and solid Tes. The dotted line obtained by regarding the total
nput heat as ). According Lo the Tig. 544, 22% ol the applied
heat is transported by the restricted thermal counterflow in this
case.  The solid line represents the analytical solution obtained
by using the 22% ol the applied heat as Q. Ty = 170K, ¢, =
401/ c® and £y = 2000ps.
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IYigure 5.46 Comparison ol the experimental data and the analytical solution
in the casc ol q, = 201¢//em?. The amount of heal transported
by the restricted thermal counterflow is 27% in this case. Other
conditions are the same as those of Mg, 5.45.
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Iigure 5.47 Schematic drawing of a series of highly transient thermo-fluid phe-
nomena in e II occurring after the intense pulsed heating. The
ordinate represents the magnitude of the physical quantity of the
each phenomenon. It represents the propagation distance for the
first and second waves. It represents the vortex line density and
the thickness of the thermal boundary layer for the quantized vor-
tex line development and the formation of a thermal boundary
layer, respectively. Ifor the boiling the ordinate represents the ra-
dius of the vapor bubble and the thickness of the vapor layer. The

- abscissa represents the logarithmic time ¢ after the onset of the
intense pulsed heating.
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