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ABSTRACT 

EXPERIMENT_A_L ST1JDY OF HIGHLY TR.ANSIENT 

THER.IviO-FLUID DYNAlviiC PHENOI\1ENA IN He II 

by Ta.keshi Shirna.za.ki 

Highly transient therrno-fluicl dyna.rnic phenon1ena are experin1enta.lly investigated 

\Vith a. superconductive ternperature sensor. The characteristic tirne of quantized vor-

tex developrnent \,vhich is one of the governing pa.rarneters of the highly transient heat 

transport phenon1ena in He II is rnea.sured by analyzing the ternpera.ture profile data.. 

The result suggests partial ina.dequa.cy of the vortex developrnent equation presented by 

Vinen. It is found that the wave height variation of the second sound therrnal shock wave 

\,veil agrees with the prediction by the equal area. rule if the effect of quantized vortex 

bnes is neglected. Arnong three rna.jor heat transport processes, the second sound wa.ve 

n1ode, the restricted therrna.l counterflow a.nd evaporation, each contribution to the hea.t 

transport is quantitatively investigated. As a. result, their contributions a.re found to be 
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uniquely treated if the pa.ra.n1eter qpi J-1 \V here qP is the heat flux and t H is the heating 

b1ne is introduced. 
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Chapter 1 

INTRODUCTION 

The starting point of the study of liquid heliurn is the liquefaction of heliurn. Heliurn 

had been left as the last liquid which had not been able to be liquefied. But finally heliurn 

was successfully liquefied by Onnes in 1908. Through the so-called liquefaction cornpeti-

bon low ten1perature production technique was greatly developed. Then low ten1perature 

physics developed strikingly during this period. Superconductivity wa.s also discovered 

in 1927 by Onnes and the superfluidity of heliurn was discovered by Kapitza. in 1927. 

Superconductivity and super:Huidity are the typica.l phenornena \Vhich are regarded as the 

appearance of quantun1 effect in rnacroscopic level. Superfluidity is the unique property of 

He II. For instance He II flows through an extrernely fine channel without any a.ppreciable 

pressure drop as if it \vere an inviscid fluid. Its apparent thennal conductivity is several 

hundreds tirnes higher than that of pure copper. It has several attractive properties for 

cryogen, and so it is expected to be the eff-icient coolant for superconducting nJa.gnets 

and space- borne infrared telescopes. A deep understanding of heat transport properties 

of su perfl uid heliurn is indispensable for such practical applications. 

The unique properties which a.re interesting frorn the point of view of both quanturn 
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physics and practical engineering are generally explained by the phenon1enological rnacro

scopic theory pres en ted by Landau [1]. His phenornenological theory called the Landau 

two-fluid equations is the rnost successful theory to explain the superfluidity until now. 

He II is considered as being cornposed of bvo different fluid cornponents, the nonnal fluid 

and superfluicl cornponents in this nwdel. The nonna.l fluid cornponent behaves nothing 

but an orchnary classical N avier-Stokes fluid which has finite viscosity and entropy \vhile 

the superfluid cm11ponent does not. It has no viscosity and entropy. Since the super

fluid con1ponent has no viscosity, those bvo cornponents can flow vvithout any appreciable 

interactions \vith each other. The bvo-fluid equations can give both qualitatively and 

quantitatively satisfactory explanations of steady heat transport phenornena. in He II as 

long as the superHuid breakdown does not occur. The two-fluid equations lose its valid

ity in the superfluid brea.kdo\vn state, in vvhich quantized vortices are generated and the 

rnutua.l friction force between the nonna.l fluid cornponent and quantized vortices arises. 

The quantized vortices are generated and develop when the relative velocity between the 

nonnaJ Huid and superfluid cornponents exceeds a. certain threshold value. This situa

tion corresponds to a. hea.t Hux which exceeds a. threshold value is fed frorn a heat source 

to He II. The Gorter-IVIellink n1utua.l friction tern1 [2] is usually introduced to the two

fluid equations to take account of the effect of the n1utual friction force. However, the 

approach is found to be only va.lid to steady or quasi steady thenno-fluid dyna.n1ic phe

nornena.. In the highly transient therrno- fluid dyna.n1ic phenon1ena. where the tirne-sca.le 

of bulk thenno-fluid dynarnic behavior gets to be con1pa.rable to or shorter than that of 

the evolution of quantized vortices, the effect of the developrnent and decay of quantized 

vortices should be taken into account. The process of vortex developinent and decay was 
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treated on the basis of a. phenon1enologica.l approach by Vinen [3][4][5] and nurnerica.lly 

by Sclnvartz [6]. But those fonnulae ca.n not cornpletely explain son1e of extrernely conl

plica.ted behaviors of quantized vortices so the exact fon11 of the fonnula.e are still under 

consideration. Further investigations are still required to reveal the cornplete n1echa.nisrn 

of highly transient heat transport phenornena in He II. The Vinen vortex line density 

equation is widely used in the study of transient thenno-fluicl dyna.rnic phenomena. in He 

II. Ho\vever the inadequacy of the equation especially in the case of intense pulsed heating 

has been pointed out these clays. 

As a. result of the two-fluid nature, there exist bvo different rnodes of traveling sound 

vvaves. One is the first sound wave and the other is the second sound wave. First sound 

wave is the sa.rne as the ordinary sound wave. It is a pressure v,rave. The two fluid 

cornponents rnove together in phase so He II rnoves with the sarne velocity of the corn

ponents. On the other hand the hvo f-luid con1ponents rnove in counter phase i.e. the 

tv,ro cornponents rnove tov,rards the opposite directions with the sarne speed so there is no 

net n1overnent of He II as a whole in the case of the second sound wave. It can be said 

that the second sound \Va.ve is a traveling disturbance of entropy or a thern1a.l wave. The 

second sound wave \Vith finite an1plitude nonlinearly develops into a thennal shock wave. 

It should be noted that due to the second sound wave, heat fed to He II fr01:n a heat 

source can be transported in a. \Va.ve nwde different fron1 the usual diffusion process in He 

II. Propagation of the second sound wave or the thennaJ shock wave being a the typical 

exarnple of the highly transient heat transport phenornena has been investigated by rnany 

researchers. Pioneering works on the propagation of the thern1a.l shock wave and the effect 

of the interaction with quantized vortices have been carried out by Liepn1ann and Laguna 
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at California. institute of technology [7]. Recently the theoretical investigations not only 

of the propagation of the second sound vva.ve but also of the superfluid hydroclynarnics 

·vvith the effect of quantized vortices have been carried out by Nernirovskii at the Insti

tute of the ThenTlophsics [8]. And extensive experirnenta.l and rn1n1erica.l investigations of 

thern1a.l shock \vave and ta.ngled rnass of quantized vortices are carried out by the group 

of the l\llax-Planck-Institut [9]. 

Through those investigations, the developrnent and the decay of the quantized vor

bces are recognized as governing phenon1ena. on transient heat transport. The high density 

quantized vortices cause dissipative effect on the heat transport in He II. But son1e aspects 

of the efl'ects of quantized vortices on the heat transport still ren1a,jn open quesbons. The 

propagation property of a thenna.l shock \va:ve and its interaction with quantized vortices 

have been investigated in a. couple of experin1ents [10] but the resolution of the rneasuring 

devices used in those experin1en ts such as a ternperature sensor and a visualizing tech-

nique are not sufficient to detect the con1plete shape of a propagating thennal shock wave. 

The objective of this study is to experin1enta.lly investigate the highly transient 

thern1o-fiuid dynarnic phenmnena. in superfluid heliurn for the practical application of 

He II. In this study a. thin filn1 superconductive ten1perature sensor which possesses high 

ternperature sensitivity and quick response tirne is used. It allows a high resolution tern

perature rneasuren1ent both in tirne and space. Cornplete wave forn1 variation of a. thern1al 

shock \Vave during propagation can be rnea.sured \vith the superconductive ternpera.ture 

sensor. The propagation property of a thern1a.l shock wave is investigated by the direct 

rnea.suren1ent of the wave forrn variation. The experirnental results are cornpared with a 

theoretical prediction. I\1oreover, a thennal shock wave is utilized as a. probe to diagnose 
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the behavior of quantized vortices. The defon11ation of a. then11a.l shock 1va.ve clue to the 

interaction with quantized vortices is carefully observed to n1easure the characteristic tin1e 

of the developrnent of quantized vortices IV hich is one of the n1ost in1portant governing 

paran1eters of the highly transient heat transport phenornena. The cha.ra.cteristic tirne 

in the case of very large heat flux heating in vvhich the characteristic tirne had not been 

rnea.surecl in the other experirnents is a.tternpted to be n1easurecl. The developrnent of 

quantized vortex lines in these cases is found to have different cha.racterisbcs fro111 that in 

the case of sn1a.ll heat flux heating. In the case of a. pulsed heating with a. large heat flux, 

high density quantized vortices are generated and a. therrnaJ boundary layer is fonned 

in the vicinity of a. heating surface. Even boiling in the layer is observed in sorne case. 

The thernw.l situation resernbles that upon a superconducting nw.gnet quench. The study 

of the heat transport phenon1ena in such case is indispensable to investigate the stabil

ity of superfluid cooled superconducting rnagnets. The heat transport property of He II 

in such situabon is quantitatively investigated including the effects of the second sound 

wave nwde. heat transport which could not be rneasured by n1ea.ns of the conventional 

ten1pera.ture sensors. 
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Chapter 2 

THEORETICAL BACKGROUND 

2.1 Superfluid helium 

The phase diagrarn of heliun1 is schernatically shown in Fig. 2.1. It is very interesting 

to note that heliun1 has two liquid phases. Heliun1 liquefies at 4.21{, and at 2.17 1{ liquid 

heliun1 exhibits another transition into the another liquid phase. The first liquid phase 

bebveen 4.21{ and 2.17 1{ is called He I which behaves like an ordinary viscous fluid. 

The second liquid phase below 2.17 1{ is called He II or superfluid heliun1 having unique 

properties called superfluidity. The transition ten1perature of 2.171{ is called the A -

ternperature, T>. and boundary line between He I and He II is nained the A -line. One 

of the unique properties of He II, the superfluidity, is superleak. It can flow through 

extren1ely fine capillaries and narrow slit without producing any appreciable pressure 

drop. It behaves like an inviscid fluid. 

Unusual hydrodynarnic behavior of He II is well explained in tenns of the two-fluid 

rnodel introduced by Tisza. [12], which was then led to Landau tow-fluid equation [1]. In 
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this rnodel He II is considered a.s a. n1ixture of t'vvo fluid cornponents, the non11a.l fluid 

con1ponent 1vith non-zero viscosity a.nd superfluid con1ponent 1vith zero viscosity. The 

norn1a.l fluid con1ponent ca.n be considered to correspond to the excited portion of heliunJ 

so it associates vvith entropy (see Fig. 2.2 ). On the other hand the superfluicl con1ponent 

corresponds to heliurn a.torns 1vhich occupy the quantun1 ground state, Bose-Einstein 

condensa.bon phase, so it does not associate 1vith entropy. The ratios of the nonnal fluid 

density and superfluid density to the total density are given as a. funcbon of ternpera.ture. 

Belcnv T,\ the density of superfluid co1nponent increases as heliurn ten1perature decrea.ses. 

Fig. 2.3 shows these density ratios a.s a. function of ten1pera.ture under saturated vapor 

pressure condition. The superfluid cornponent can flo1v freely in na.n'OVi' channel though 

the norrnal Huid cornponent is clarnped o1ving to its viscosity. Consequently, superfluid 

heliurn seen1s to be able to Hov,r extren1ely fine channel. 

Another typical exarnple of the superfluidity is the thennal counterflow. Suppose 

two vessels containing He II are connected by a tube, one of which has a heater as 

sho1vn in Fig. 2.4. If the heater is switched on, the superfluid cornponent Hows towards 

the heater due to the gradient of the chernical potential. It in contact with the heater 

absorbs heat, and then it turns into the norn1al Huid con1ponent. The norrna.l Huid 

con1ponent Hows towards the another vessel, being a.t the opposite end of the tube, owing 

to n1ass conservation. The bvo fluid con1ponents How towards the opposite directions 

1vith the sa.rne speed. There is no net flo1v of He II in the How systen1 as a. while. The 

superfluid and norrna.l fluid cornponents flowing in the opposite direction in the tube 

cause no interaction 1vith each other because the superfluid cornponent has no viscosity. 

As a. result, heat is extrernely efficiently transported by the nonna.l fluid cornponent. T'he 
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flo\v is called internal convection or thern1a.l counterflow and is a. key rnecha.nisn1 for the 

apparently high thenna.l conductivity of He II. The relative velocity bebveen the norrna.l 

fluid and superfluid cornponents in the thenna.l counterflo\V is in proportion to the heat 

flux fron1 a. heater as long as the applied heat flux is not so large. Ho\vever if the hea.t flux 

\V hi ch is larger than a certain critical value is applied, the relative flo\v velocity exceeds 

a threshold value and then quantized vortices are generated. Quantized vortices interact 

\vith the nonna.l fluid cornponent and generate n1utuaJ friction force. The relative velocity 

can not be proportional to the heat flux. Dissipative effects arise in the flovl. This is the 

superfluid breakdo\vn. 

2.2 Landau two-fluid equations 

The basic hydrodynarnic equations for He II in the case that dissipative effects 

are absent are f-irst introduced by Landau [1]. The equations consist of the law of the 

rnass, entropy and n1ornenturn conservations. Since superfluid heliurn consists of bvo 

interpenetrating fluid cornponents, two rnornentun1 equations are required. The densities 

of the non11aJ fluid and superfluid cornponents are denoted by Pn and Ps, respectively. 

And each con1ponent is assigned its own velocity field of ~" and V.s. The total density of 

He II, p is def-ined by p = Pn + Ps· The equation of conservation of 1nass is 

fJp _. - + divJ· = 0 
fJt ' 

(2.1) 

where J = Ps Vs + Pn ifn . The total n1ass flow is expressed by the surn of the flows of norrnal 

fluid and superfluid con1ponents. 

Since dissipation is neglected and the entropy is tra,nsported only by the nonnal fluid 
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con1ponent, the equation of conservation of entropy takes the f'orrn 

(2.2) 

The flo\V of superfluid cornponent is driven by the gradient of chernical potential. 

The rnornenturn equation for the supediuid cornponent is 

Dv 
--

8 +\7 =0 
Dt JJ ' 

(2.3) 

where fJ, is the chernical potential per volurne of He II and its gracbent is given as follows 

V P S''\7T Pn \7 (-+ -+ )2 V jJ = -- - ,_ V . - - V Vr~ - V 8 • 

(J 2p 

Here, the equation for the total n1on1enturn is introduced. 

(2.4) 

\Vhere nik:::::: P8ik + fJnVniVnk + PsVsi'Vsk is the rnornentunl flux density tensor. 

Novv it is clear that the Landau t\ivo-fluid equations fonn a closed set of eight equations 

for eight independent variables. 

2.3 Quantized vortices 

\iVhen the relative velocity between the nonnal fluid and superfluid con1ponents Vns 

exceeds a. certain critical value ( it is approxin1a.tely several Tn) s though it depends on the 

size of a. flow channel ), quantized vortices are generated. T'he nonnal fiuid cornponent 

interacts with quantized vortices and nrutual friction force arises. As a result, energy 

dissipation gets to be significant in the He II flow, that is to say superfluid breakdown. 

The appearance of quantized vortex lines in He II is one of the rna.croscopic n1a.nifestation 
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of quantun1 effects. One of the striking feature of thern is that the circulation around a 

vortex line is quantized with quantun1 rnnnber of 1 

h 
r;,= -n, (n. = 1), (2.5) 

rn4 

\vhere h is the Planck consta.nt, n~4 is the rnass of a heliurn atorn and n is the quantun1 

rnunber. That is why vortex lines in He II are called quantized vortex lines. It is kno\vn 

that the radius of vortex core is 1.3A. The origin of quantized vortex lines is still an open 

question. 

It has been sta.ted that the Gorter- IVIellink rnutua.l friction terrn Fns [2] could be 

added to the nloinentlnn equations to taJ<e the Inutual friction into account, 

(2.6) 

where A(T) is the Gorter-Mellink constant, v0 is the critical relative velocity. This ap-

proach can give appropriate results both qualitatively and quantitatively for steady or 

quasi-steady thenno-fiuid dynan1ic phenornena,. It is, however, known that this approach 

loses applicability for highly transient cases. \iVhen the ti1ne scale of the bulk thenno-fiuid 

dyna1nic pheno1nena becon1es con1parable to or shorter than that of the characteristic tin1e 

of evolution of vortex tangle, the develop1nent and decay of quantized vortices should be 

taken into account. The behavior of quantized vortices was first noted by Feyn1ann [13) 

and then was fonnulated by Vinen [3)[4)[5) frorn phenornenorogical consideration. Vinen 

observed the ten1perature gradient and variation in the attenuation of second sound wave 

in a long rectangular channel when the \Veal heat current ( qP::; 0.4VVjcrn2 ) is applied. 

The characteristic ti1ne of vortex develop1nent Tvir~en is ernpirically found to be given as a 

function of applied heat flux as follows 

' - '(1' ' -3/2 
T.U?.'nen - a -B )qp ' (2.7) 
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\Vhere a'(TB) is the factor experin1enta.lly obtained a.s a. function of ten1perature. It is 

observed that quantized vortices start to decay when heater is switched off. Vinen deduced 

the vortex line density equation \V hich is the clyna.Inic balance equation of generation and 

decay of vortex lines, 

dL :3/2 2 I 15/2 dt = 0' I Vns I L - fJ L + / Vns 1 (2.8) 

where L is the vortex line density \Vhich is defined a.s the tota.] vortex line length per 

unit vohnne. a and f3 are the gro\vth and deca.y coefficients given by Vinen, a.nd '"'/ is 

calculated frmTl experirnenta.l value of a' (18) and thennodynan1jcal properties of He II. 

The first tenn of the right hand side of this equation describes the generation of quantized 

vortices and the second one does the decay of quantized vortices. The third terrn is the 

source tenn of the vortex. \Nithout this tenn the vortex density never develops if the 

initial vortex density L = 0. The Vinen vortex line density equation has been widely used 

in rnany investigations but, in these days, its inadequacy to the cases of large heat flux is 

pointed out. 

2.4 Propagation of wave in He II 

The structure of the two-fluid Eq.s (2.1)-(2.4) suggests that there are t\vo kinds of 

propagating \Vave 1nodes. The f-irst experin1ental confinnation \Vas provided by Peshkov 

[14] in 1944. It was the f-irst striking evidence of the applicability for the two fluid idea. 

The following notations are introduced to investigate the propagation of s1nall dis-

turbances [15]. The srnall deviation frorn a steady state is denoted by 8 and the constant 

equilibriun1 va.lue is denoted by subscript zero in \vhich i}
5 

= iln = 0 . 

P =Po+ 8p (i?, -t), S = So + 8 S (?"::', t) , 
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P=Po+8P(r,t), T = T'o + 8T ( 17 , t) , 

(2.9) 

Using above notations and neglecting all tenns quadratic in the s1na.ll quantities the 

two-fluid equations are linearized and becon1e a.s follcnvs. 

a8p 
3t 

a8s 
Po 3t 

a8·7;5 
CJt 

a8p (--> +so-.- + poso V · uvn = 0, 
at 

1 
-so\78T +- + \78P = 0, 

Po 

a811, + = -\78P 
+Ps,o at · 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

No\V longitudinal traveling waves \Vith the frequency w and the wave nu1nber k0 are 

introduced to investigate the response of He II to s1na.ll disturbances. 

T = T0 + T'exp ( ik0x- iwi), 

P = P0 + P'exp (ik0x- iwt), 

175 = v~exp (iko:r:- ·iwt) C.T, (2.14) 

where C.1: is a. unit vector in the x direction. A set of four ho1nogeneous equations are 

obtained by substituting these expressions of nwnochro1natic wa.ve into Eq.s (2.10)-(2.13). 

Then we get 

. .0l_p, 
-zwap 

. apsp, 
-zw ap 

ik0 P' 

(2.15) 

(2.16) 

. 7 1'' · I -zrvoso - zwv
8 

= 0, (2.17) 

· I · I -zw Pn,OVn - ZW Ps,oV8 = 0. (2.18) 
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The set of the equations requires that its deten11inant n1ust vanish for the existence of a 

non-tJivia.l solution. Then a dispersion la\V in quadratic in u 2 is derived. ( see appendix 

A for the derivation ) 

_ Cv 
=1--, 

Cp 
(2.19) 

(2.20) 

It should be noted that the right hand side of Eq. (2.19) can be neglected a.t ten1peratures 

and pressures under consideration. Then the solution of Eq. (2.19) is given 

'U = U1 ( ~p)l/2 8p 
s 

(2.21) 

( 
2]')1/2 PsS -

PnCv s 

(2.22) 

T\vo nwdes of propagating \va:ves having different propagation speeds are obtained. Here, 

u 1 and u 2 are called the first and second sounds, respectively. The first sound vvave 

corresponds to an ordinary sound in Euler fluid. It is in1porta.nt to note that 1n this 

sound wave rnode the nonna.l fluid and superfluid cornponents n1ove in phase. It 1s a. 

propagating density fluctuation having a. propagation speed of a.pproxirna.tely 230n~ / s. 

The propagation speed of first sound wa.ve a.s a. function of ten1pera.ture is shown in Fig. 

2 . .5. On the other ha.nd the second sound wave is a. quite unique sound which appears 

only in He II. There is no center of rna.ss n1otion but a. relative rnotion between the norn1aJ 

fluid a.nd superfluid cornponents. Since the nonnaJ fluid con1ponent associates with the 

entropy and the superfluid con1ponent does not, the second sound wave can be regarded 

a.s a. propagating entropy fluctuation or a. therrna.l \Vave. Its propagating speed is a strong 
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function of ternperature but typically is 20nt,/ s as shovn1 in Fig. 2.6 . It is very interesting 

to note that heat can be transported in a. vva.ve fonn in He II. Internal convection ( thern1a.l 

counterflmv ) can be regarded as the second sound \vave of frequency zero. 

2.5 Thermal shock wave 

The expressions of the propagation speed of bvo independent linear wave rnodes are 

obtained by linearizing the two-fluid equations in the last section. \i\/ithin this approxi-

rna.tion all the points of the \va.ve profile are assurned to propagate vvith the sa.n1e speed. 

But this a.ssurnption can be applied only vv hen the arnplitude of the \Va.ve is srnall. For 

the vvave \vith f-inite an1plitude, the nonlinear tenns of the two-fluid and therrnoclynarnic 

equations are not negligible and provide the different propagation speed for the point of 

different arnplitude in the \va:ve. Then the points with higher propagation speed catch 

up the points \vith slower propagating speed through propagation. As a result, the wave 

steepens the son1e portion of the \Vave profile and ultinw.tely becornes a shock vv ave. 

The propagation speed with nonlinear effects can be investigated by solving the two-

fluid and thern1odynan1ic equations up to second order in the deviation frorn the equilib-

riurn state [l.S]. The tv,ro-fluid equations on the one dirnensional case can be written in 

follo\ving forrn by keeping the terrns up to second order. 

ap ap ap aT ap aw av ap 
- u--- v,-- - 2uw---- + p- + v- = 0 

ap ax aT ax aw 2 ax ax ax ' 

[ 
as as ap,l ap 

-pu ap + PVn ap + 'WS ap ax + 

+ 
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[ 
as as ap,l aT 

p-up aTPVn ax + ws aT ax 

[ 
as l aw -2uwp-, -

2 
+ (J 8 S - = 0, 

aw ax 

(2.23) 

(2.24) 



[
uw fJ(pn/ P) + l] 

8P P 
~p + [·u 8(~n/ p) _ s] ~T 
8:c 8T ox 

+ [v - u - Pp" ·w J 8v + [Pnu _ PnPsw _ Pnv] ~w = O, 
8:c p p2 p ox 

( 2.25) 

8P [ J 8v 2PnPs ow_ -.- + -pu + pv -. + --w-.- = 0, 
8:c ox p ox 

(2.26) 

\vhere w = Vn- Vs is the relative velocity bebveen norrna.l fluid and superfiuid cornponents, 

v is the velocity of the net rna.ss flo\v of He II. Again the longitudinal traveling wave with 

frequency w and \Va:ve nun1ber k0 are introduced. The Eq.s (2.23), (2.24), (2.25) and 

( 2. 26) becorne a set of four hon1ogeneous equations in the four unlo10Vin variables P', 

T', ·v' and w'. In order for the existence of the nontrivial solution of the hornogeneous 

equations the detenninant rnust vanish. It is the sa.rne situation as the derivation of the 

sound propagation speed in first order of deviation fro111 the equili bri urn state in the last 

section. Then the equation of dispersion law is give by 

2 2 2 2 .. :3. l2Ps S Opn (OS)-lj ( u - u 1 ) ( 'U - ·u2 ) + 2 u w -- + - ';)fTl ';}]' 

p Pn 01 0 

+ 2·uw ( 8p) -l r 2ps - ~ Opn (OS) -ll = 0 
8 P l p Pn 8T 8T j . (2.27) 

Two rnodes of propagating \va.ves are obtained. 

(2.28) 

[
2Ps s 8pn ( 8s) -lj 

?12 + - - --- - w 
p Pn 8T 8T 

(2.29) 

It can be seen that there is no difference in the expressions of first sound wave between 

those in the first order and the second order. Ho\vever several correction ten11s which are 

linear in the equili briurn relative velocity w are added to the second sound wave in the 

first order. In Eq. (2.29), the second tenn of the right hand side which is evaluated by 

the values in the equilibriurn state gives the correction of the deviation of the propagation 
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speed of the point 'vvith relative velocity of w fron1 the u2 \Vhich is eva.lua.tecl in the first 

order. It is practically convenient that all terrns in Eq. (2.29) a.re eva.lua.ted by the values 

in the equih briurn state. u 2 can be expressed by 

8·u·) dT 8u.) clP 
·u2 = u2,0 + :::JT- -l-w + :::1]; -d w, 

o c·w o. w 
(2.30) 

where u 2,0 is the propa.ga.tion speed of second sound wave in the equilibriurn state. Fro111 

Eq.s (2.15) and (2.18) the relation between T 1 and v~ can be obtained. 

__!!_ - />
0 P 1 + _!!_ T 1 = 0 ( 

8 k')) 8 
8P w 2 8T 

(2.31) 

Fron1 Eq. (2.1 7) P 1 can be \vritten 

P I ( I 1 rpl) = pou V 8 + -s0 J. . 
u 

(2.32) 

Substituting this into Eq. (2.31) 

( 
8 (J 1 ) . 1 ,--,1 8 (J r 

8
p - u 2 (po·uvs + poso1 ) + 

8
T T = 0. (2.33) 

The relation bebveen T 1 a.nd v~ is obtained. 

(
. 2 8p) 

T
1 

= pou 1 - u CfP 

' 2 8 p . (1 2 8 p ) u HT- paso - u 8P 
(2.34) 

Since at n1ost ten1perature ( i.e. TB > 0.8]( ) 

(8p) . 
8T << 1' (2.35) 

it can be ignored in the present order of the a.pproxirnation. Fron1 Eq. (2.3,.t) the foJlo\ving 

relation is obtained at lo\vest order 

Tl-- u2, I - us. 
s 

(2.36) 
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Using the identity 

Pn 
V 8 = ·v- -w, 

p 

Eq. (2.36) becon1es 

T' U2 ( 1 Pn ) = -- v- -w . 
.s p 

( 2.3 7) 

For second sound 1v ave, pressure va.ria.tion can be neglected and the velocity of the net 

rnass flo1v of He II ·v ~ 0. Substituting Eq. (2.37) into Eq. (2.30), u is evaluated by the 

values in the equilibriurn state. 

r
Pn'U2 i)u2 2p .S 8 Pn ( 8.s) -l J 

u = u 2 .0 + -- + -.- +-- --.- -.- w. 
· p.s 8T p Pn 8T 8T 

(2.38) 

Using Eq.s (2.20) and ignoring srna.ll tenns, final fonn of the propagation speed of the 

second sound wave in the second order of the deviation frorn the equilibriurn state is 

obta.ined. 

(2.39) 

Here the coefficient of Vn is 1vritten 

.sT [ 8 ( 3 8.s ) l B = Cv 8T log v2 8T . (2.40) 

B is called steeping coefficient which represents the intensity of the nonlinear effect on 

the propagating speed of the point with a certain arnplitude. The variation of B as 

a function of tern perature is given Fig. 2. 7. The sign of the nonlinear coeff-icient of 

propagation speed of disturbance in aerodynarnics usually takes positive. And the case 

in which coefficient takes negative is quite unusual. The norn1al fluid velocity v.a and the 

ten1perature variation 6.T are related to the applied heat flux qP by the equations, 

(2.41) 
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Then the relation between Vn and 6.T are given by 

(2.42) 

Substituting Eq. (2.42) into Eq. (2.39), it is revnitten in tenns of 6.T 

[8 ( 3 8s)] u = u2 o + ?J2 o -lo0o- ·u .• - 6.T. 
' ' DT L DT 

(2.43) 

It is very interesting that B can be both positive and negative depending on the ternpera.-

ture in He II. T'he reason of the existence of the nonlinear coefficient \vith negative sign is 

the strong ternperature dependence of the physical property of He II. \A/hen B is positive 

the points \vith larger an1plitude travel faster than those \Vith sn1aller arnplitude. Wave 

peak: will catch up troughs through propagation. As a. result discontinuity is forrned at 

the leading edge of a. traveling wave forrn. This is called frontal shock wave and is fa.n1iliar 

in the a.erodyna.rnics. The schen1atic drawings of a. frontal thern1al shock wave is shovn1 in 

Fig. 2.8. On the other hand when B is negative, the points with srna.ller arnplitude will 

catch up those \vith larger a.rnplitude. Then the discontinuity is fonned at the trailing 

edge of the vvave profile. This is called back shock \vave which is hardly seen in aerody-

na.rnics (see Fig. 2.8). There can exist one n1ore interesting forrn of a. therrna.l shock wave 

in He II. At Ts = 1.87]{ B vanishes and B changes its sign when ternpera.ture crosses 

Ts = 1.871{. If the second sound wa.ve with sufficiently large a.rnplitude to cross the 

ternperature T's = 1.87]{ is generated at just below the ternperature, the discontinuities 

are fon11ed on both sides of the wave prof-ile. It is also sho\iVn in Fig. 2.8. This is called 

double shock wave. 
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2.6 Wave form variation through propagation 

The propagation speed of a. therrna.l shock \vave 1s grven by one half the surn of 

the speed of sound on the both leading and trailing edges of the shock \vave, that is Eq. 

( 2. :3 9) , as 

(2.44) 

For sirnplicity it is revnitten as 

(2.45) 

Substituting Eq. (2.42) into Eq. (2.44), the propa.ga.bon speed of a. thenna.l shoclz \vave 

is given in tenns of the ten1pera.ture va.ria.bon 6.1'. 

(2.46) 

For sirnplicity it is revnitten as 

u = ·u2,o + btJ.T /2, (2.47) 

where 

\Vithout any dissipative effects, the energy within a therrnal pulse is conserved through 

propagation and the wave fon11 variation occurs only due to the hydrodynan1ic nonlin-

ea.rity. It is knc)\ivn that the propagation of a second sound wave with a finite arnplitude 

is subjected to the Burgers equation in the forn1er work of approxin1ation in the second 

order of the sn1a.llness fron1 equilibriurn state [10)[24). 

(2.48) 
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where 

P s ( 4 ~ . - 2 Pn X ) 
/J2 = -

2
- -

3
17 + (2- 2p(I + p (3 + c , 

PPn Ps 
(2.49) 

Yvhere 17, ( 1 , ( 2 and ( 3 are the viscosity coefficients. The equal area. rule vlhich is equivalent 

to the result of the Burgers equation can be applied for the \va.ve forrn variation through 

propagation. The \va.ve forrn variation of a. trapezoidal heat pulse is considered on the 

basis of the equal area rule in the folloYving. The process of wave forrn variation is divided 

into bvo stages bounded by the forn1a.tion of a triangular prof-ile. 

The wave fonn variation before the forrna.tion of a triangular prof-ile in the case 

of positive B-factor is schen1atically dra\vn in Fig. 2.9. This prof-ile shows the spatia] 

distribution of ternperature. Suppose a trapezoidal hea.t pulse \i\rith an initia.l a.rnplitude 

of l:lT0. The wave is propagating frorn left side to right side. The spatial length of the 

rising, the plateau and the falling portions of the wave profile are denoted by la, h and lCl 

respectively. The tirne duration corresponding to those portions are given using ·u 2 ,0 by 

lplat (2.50) 

The propagation speed at the points B: u 2 ,0 + bl:lT0 , and at A: u 2 ,0 do not change through 

the process. But those of the points C: u2,0 + bl:lT0 and D: u 2 ,0 change to u 2,0 + bl:l10/2 

when ten1pera.ture discontinuity is forn1ed. The point C travels with the speed of b6T0 

relative to the point D so the point C catches up the point D during propagation. The 

tirne interval denoted by tc-+D is 

(2.51) 

That when the point B catches up the points C and D, the trapezoidal profile becon1es 

the triangular profile. t B-+D which is the tirne interval needed for the point B to catch 
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up the points C and D is considered next. Since the propagation speed at the point D 

changes frorn u 2,0 to u 2,0 + b6T /2 at which the point C catches up, tB..-..-.D is divided into 

tB-+Dl and tB-+D 2 in the evaluation. The point B travels vvith the speed of b6T'o relative 

to the point D so tB~Dl is given by 

(2.52) 

Initial distance bebveen the point D and the point B is (tshol + tplot)u 2 ,0 and the relative 

speed of the point B to the point D becornes b6T0/2 after the fonnation of discontinuity. 

Then the follo\ving equation is obtained. 

(2.53) 

tB-+D 2 is given by 

(2.54) 

As a. result the total tirne needed to change a. trapezoidal heat pulse into a 

triangular profile is 

(2.5.5) 

The propagating distance Ztrupe-+tTi of the heat pulse through the wave fonn change fro111 

trapezoidal to triangular is given by 
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(2.56) 

The wave length of the final triangular profile 11 is 

l] 

( 2.5 7) 

Next it is considered that the variation of the \Vave height after the forn:1ation of 

a. triangular profile on the basis of the equal area rule [1]. The ti·iangular wave profile 

ABC \vith a height of 670 and a length of 11 is shovn1 in Fig. 2.10. If each point 

of the \va.ve profile rnoves \vith the speed given by Eq. (2.43), the wave ABC should 

becornes profile A 'B 'C' through propagation keeping its initial Vl ave height. Since the 

profile A'B'C' violates the single value nature of a profile, the profile A'DE is obtained. 

As there is no energy dissipation, the area of the prof-iles ABC a.nd A'DE rnust be equal 

The discontinuity DE n1oves vvith the speed given by Eq. (2.4 7). 

Angle () is 

6T0 tan() = -------
[lr + ( b6To) i-tria]' 

(2.58) 

\V here itrio. is the tirne after the fonnation of a. triangular profile. Using angle (), area. of 

the~ A'DE is given by 

' 1 2 1 2 670 
SA'DE = -l tane = -l · -------

2 2 [ lr + ( b6To) it,.ia]' 
(2.59) 

where l is the length of the wave at tirne itria According to the equal area. rule ~ ABC 

= ~ A'DE 

(2.60) 
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Then the wave length l is 

(2.6 ]_) 

L ABC= A'DE can a.lso be described in terrns of ~T . Since ~Tl = ~Tol1 

(2.62) 

To cornpare \vith the experirnental results, itria. is vvritten in tern1s of propagating distance 

of a. \vave after the forrnation of a triangular prof-ile Zt 1·ia 

(2.63) 

Substituting Eq. (2.63) into Eq.s (2.61) and (2.62) the wave height and the length a,t 

Ztria are obtained by 
-, 1/2 

l _ l [· (b~7o) Ztriu. l 
'- '1 ]_ + -, ' 

l1 (u2,o + b~1o/2) 
(2.64) 

[ 
(bliTo)Zt 1·iu. l-1

/
2 

liT = liTo 1 + -------
h ( u2,o + b~To/2) 

(2.65) 

2. 7 Dresner's analytical approach 

Steady or quasi-steady heat transport pheno1nena in the super:Buid breakdovn1 state 

are analytically investigated by Dresner [25]. He investigated one-din1ensional tin1e vari-

ation of the te1nperature distribution near a planar heat source on the basis of the energy 

conservation law and the Gorter-Mellink relation when a pulsed heating is carried out. 

The Gorter-l\1ellink relation gives the equation which relates the heat flux and the ten1-

perature gradient for a fully developed super:Buid turbulent flow in which the dense vortex 
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lines are generated. 

1 

q = -k(\7T)3, (2.66) 

\vhere 

q hea.t flux, 

\lT ternperature gradient, 

k thern1al conductance para.rneter. 

The equabon of energy conservation is \Vritten as 

aT 
\7 · q + s- = 0. 8t ' 

(2.67) 

\Vhere s is the volun1etric heat capacity, tis the bnre after the onset of heating. Substitut-

ing Eq. (2.66) into Eq. (2.67), the governing equation of the heat transport in superfluid 

turbulent flow is obtained. 

k-a (-aT) t. = 5 _8T 
8z 8z 8t' 

(2.68) 

1vhere z is the distance frorn a heater. T'he boundary and initial conditions for the pulsed 

heating frorn a planar heat source are 

!
·+OJ 

·-OJ s(T-TB)dz=Q, (2.69) 

T(z,O) = TB, (2.70) 

(2.71) 

where Q is the total arnount of heat applied frorn a planar heat source. The particular 

solution of Eq. (2.68) being subject to the boundary conditions is 

(ktjs) 312 (T- TB) 
(Q/s)2 
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(2.72) 



x: 
-3/2 z ( q 1 s) 1 ( kt 1 s) , 

b 2 [r (114)] 2 l3v:;;:; = 2.855. 

According to Eq. (2.72) experin1enta.l data of tirne variation of the ten1perature distribu-

tion can be reduced to a single curve if the sirnila.rity pararneters of 

(I) = 6.T{3/2, 

1Tr _ /' ~-1:3j2 
'!' -~ (, ' 

\Vhere 6.T is the ternpera.ture variation frorn the equilibriurn ternpera.ture. The curve in 

Fig. 2.11 shows an exarnple of the solution of Eq. (2.68) for the conditions of Ti3 = 1. 701( 

and Q = 4.0 x 10-3
.] I crn 2

. The curve is cornposed of t\vo asyrnptotic lines. Substituting 

the sirnilarity paran1eters of (I) and W into Eq. (2.72), it becornes 

(2.73) 

If ternperature is f-ixed, ]{, s and b are constant. Here, if W becornes very large corre-

sponcling to the case t is srna.ll, i.e. just after the end of heating, an asyn1ptotic solution 

to Eq. ( 2. 73) can be \Vritten as 

(I) = 4l3/3k3/2 s-3/2 w-2' 

f(T) 

(2.74) 

\V here f ( T) is a ternperature dependent factor. (I) can be regarded as a function only of 

w- 2 and corresponds to the portion of the line which has an inclination of -2 in a double 

logarithrnic plot. In the other extrerne case of very srnall W \Vhere tis large, i.e. long after 

the end of heating, Eq. (2. 73) becon1es asyrnptotically 

(I) = 413/3. b-2 k-3/23-l/2 Q2' 

g(T) 
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vvhere g(T) is also another ternperature dependent factor. In this case <P is constant if the 

total a.rnount of applied heat is given. It corresponds to the horizontal portion of a. curve. 

The cornpa.rison of this result \Vith the experirnenta.l results a.ncl relating discussion 

vvill be given in Section 5.8. 
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Chapter 3 

SUPERCONDUCTIVE 

TEMPERATURE SENSOR 

3.1 Principle of a superconductive temperature sen-

sor 

A superconductive tern perature sensor which has high te1nperature sensitivity and 

short response tirne is used to detect highly transient heat transport phenornena. in He II. 

Fig. 3.1 shov.rs the picture of the superconductive sensor. This sensor n1easures ternpera

ture variation by utilizing the abrupt change of resistivity of thin superconductive n1eta.l 

filn1 clue to superconducting transition. This type of sensor was originally developed by 

the group a.t Max-Planck-Institut [20]. Superconducting phenon1ena. occurs in a. nurnber 

of n1aterials such as n1etals and oxides when all the ternperature, n1agnetic field and cur

rent density are belo\v certain critical va]ues. The electrical resistivity of the rnaterial 

vanishes, and TVIeissner effect appears in the superconductive state. If one of these three 
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quantities exceeds a. critical value, superconductive transition fron1 superconductive state 

to norrna.l state occurs. 

Superconductors can be classified into bvo types, type I superconductor and type 

II superconductor. Type I superconductor is pure nretal, and type II superconductor is 

a.lloys and oxides. The fonner exhibits an ahnost discontinuous change frorn norrnaJ state 

resistivity to that of superconductive state, and vice versa. Fig. 3.2 shows the ideal re

sistivity variation of type I superconductor. The latter exhibits gradual superconductive 

transition (see Fig. 3.3). If one of the quantities exceeds a threshold value, the super

conductive state breaks do\vn and then resistivity gradually increases up to the nonDaJ 

Olunic resistivity as the increase of the quantity. It is \Vell known that pure tin is a type I 

superconductor. Its superconductive transition occurs near 3.71{ within the ten1perature 

range of no rnore than 10-3
]{. It exhibits quite a sensitive resistivity change to tenrpera

ture variation \vithin the ternperature range. Tin is utilized for a sensitive bolorneter for 

the detection of infrared radiation. The tenrperature sensor for tenrperature rneasurernent 

of highly transient thern1o-iiuid dynarnic phenornena such as a therrna.l shock wave in He 

II \Vould require the superconductive transition to occur within several hundreds rnl{ at 

arbitrary ten1peratures below 1), = 2.17]{. 

Superconductive transition of type II superconductor is adequate for the ten1pera

ture rneasurernent in He II. In the present study thin rnetal filnr consisting of gold and 

tin is used. Gold which does not beconre a superconductor acts as irnpuri ties for tin and 

depresses the superconductive transition of the filn1. The transition can be rnade rnore 

gradual at belo\V T>-. 
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3.2 Superconductive temperature sensor 

Fig. 3.4 shuvvs a schernatic dra.\ving of a. superconductive tenrperature sensor. It 

quite resernbles a. conventional hot \Vire probe in shape to be used for the iio\v velocity 

rnea.surernent in a.erodyna.rnic experirnents. The ternpera.ture variation is rnea.sured with 

a tiny sensing elernent on \Vhich surface a. superconductive thin filrn is fonnecl. It consists 

of gold and tin. Tin filnr with a. thickness of 980A is fabricated on 230A of gold :filrn by 

vacuunr deposition on a. side surface of quartz fiber \vith a. length of l.3nzxn and 40j-Ln?, 

in dia.nreter. The quartz fiber is glued with silver paste between rnetaJ needles. This 

shape can nrinin1ize disturbances to iio\i\' field to be rneasured. Since the heat capacity 

of the sensing elenrent itself is quit srnall, the response tirne of the sensor is very short 

( not rnore than 10 f-LS ) . Fig. 3 . .S shows a typical static voltage- current characteristic of 

the sensor taking the tenrperature as a pararneter. The voltage drop across the sensing 

elernent is rneasured while gradually increasing the biased current I with keeping the 

ternperature constant. The each curve goes horizontally frorn the origin until the bias 

current reaches a critical value which depends on the tenrperature. \iVhen the current 

reaches the critical value, the curve starts to rise. Generally the critical va.lue becornes 

larger for the lower tenrperature. The current at which the variation of the voltage drop 

with the tenrpera.ture increase is steepest is selected as the optirnun1 bias current. Fig. 

3.6 shows the typical variation of the voltage drop with the ternperature taking the biased 

current as a pa.ra111eter. The gradient of the curve give the sensitivity of the sensor. It 

can be seen that the higher biased current yields the higher sensitivity and also the region 

of high sensitivity shifts to lower ternpera.ture region. 
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3.3 Calibration of a superconductive temperature 

sensor 

It is difficult to produce the superconductive ten1perature sensors -vvhich have the 

san1e characteristics. Every superconducti've ten1perature sensor n1ust be calibrated by 

a dynan1ical rnethod at the beginning of experirnent. Constant current is applied to a 

ten1pera.ture sensor. The resistivity cha.nge clue to ten1pera.ture variation is n1easurecl as 

a. voltage drop across a sensing elen1ent. The clynanrical calibration is carried out by 

rneasuring a \vea.k ( ~ 10VV/ c1n 2 ) and short ( ~ 100f1,S ) second sound heat pulse ernitted 

fron1 a planar heater with a calibrating ternpera.ture sensor fixed at a. distance of 5rn7n 

frorn the heater. The theoretical ternperature an1plitude, 6Ttlwory for applied heat Hux qp 

is given by the sin1ple a.coustic theory of second sound. 

(3.1) 

Since the relation holds only if any kinds of second sound \Vave attenuation is negligible, 

it is required to use a weak and short heat pulse and short distance of a ten1perature 

sensor frorn a heater. Detected voltage drop is cornpared with a. theoretical ternpera.ture 

arnplitude and then calibration coefficient ~ is obtained by the following equation. 

(3.2) 

where 6 V is the detected voltage drop across a sensing elen1<~nt. 

The \Vorking range of a ten1perature sensor, which should be around the supercon

ducting transition ten1pera.ture, is roughly detern1inecl by the ratio of the thicknesses of 

gold and tin layers. It can be easily understood that higher ratio of tin layer results in 
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higher transition ternpera.ture. The optirnurn thicknesses of gold a.nd tin layers for the 

present experirnent deten11ined fron1 the nun1erous prelirnina.ry experin1ents are 230A of 

gold and 980A of tin. Fine trinn11ing of the worl\:ing ternpera.ture is rnade by adjusting the 

bias current to a. ternperature sensor. The bias current should practically be srnall enough 

to rninirnize the self heatJng frorn a. sensing elernen t \V hich has f1ni te electri ca.l resistance. 

Typically the bia.s current is selected to be betvveen 1 and 3rnA. The sensitivity is a.t

ta.inecl as la.rge as 100 fJ 11/ rrtl{. It is better by one order than that of a. carbon resistance 

therrnorneter. 
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Chapter 4 

EXPERIMENTAL SETUP 

4.1 He II dewar and evacuation system 

The picture of ·vvhole experin1enta.l setup is shovvn in Fig. 4.1. Fig. 4.2 shows the 

schen1a.tic ill ustra.tion of the de1va.rs, one is set inside of the other, and the evacuation 

systen1. The de1var is a. cylindrical glass container having evacuated bet1veen the double 

walled space for thennal insulation. And also the inside wall is silvered to reduce radiation 

heat input frorn outside environn1ent. Na.rrovl unsilvered slit of lent in width is n1ade on 

both side of 1vall frmn top to botton1 for direct visual observation. He II is contained in 

the inner de1var. Liquid nitrogen inside of the outer dewar reduces the direct incident of 

thennal radiation frorn arnbient ten1pera.ture environrnent to He II. Experin1enta.l appa

ratus is hung by stainless tubes frorn the flange 1vhich is supported on the top of He II 

dewar. 

He II bath ten1perature can be reduced by reducing the vapor pressure by purnping 

off along to the saturated vapor pressure curve. He II dewar is connected to a. rnechanical 

vacuurn purnp ( 500l/min. ) via a control valve and a pressure regulating valve. The He 
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II bath pressure signal is transferred to the pressure regulating valve controller. The He 

II bath ternperature is controlled by regulating the vapor pressure. 

4.2 Main assembly and data acquisition system 

Fig. 4.3 is the picture of the cryogenic f-lange inserted into the He II de\var. Fig. 4.4 

is the picture of the rnain assernbly of the experirnental apparatus. Schen1a.bc drawing of 

rnain a.ssernbly of the experirnenta.l apparatus irnn1ersed in a He II bath is shown in Fig. 

4.5. It consists of three nrain parts, a planar thin filnr heater, a cylindrical thennaJ shock: 

tube and a superconducting ternpera.ture sensor. The planar heater, square Ni/ Cr thin 

filrn, 27 x 27rnnr and 400A in thickness, is fonned on a Pyrex grass substrate by rneans of 

vacuurn deposition. Copper electrode of 5000A is also fabricated along both sides of the 

N i / Cr fihn. Typical electrical resistance of the heater is 300. The pulsed heating is done 

by rneans of Joule heating. 

The cylindrical thenna.l shock tube which is Inade of Tef-lon is 150rnnt, in length, 

25n1rn in dia.Ineter and 35nan in outer dia.rneter. The botton1 portion of the tube in 

contact \vith the heater is shaped into a knife edge to rninirnize the heat capacity of the 

portion and to rnaintain tight seal with the heater surfa.ce. The tube Ina.irrta.ins the one 

dinrensional character of a thenna.l pulse. The superconductive ternperature sensor is 

introduces fror11 the upper end of the therrnal shock tube. It is n1ounted on the nrova.ble 

ternpera.ture sensor rnount so the distance fronr the heater to the sensor can be varied 

bebveen 0.1 and 150rnrn with a. O.lrnrn step pa.rallel to the shock tube axis. 

Fig. 4.6 shovvs the block diagra.nr of the whole experirnental data acquisition systenr. 

Trapezoidal current pulse frorn a prograrnn1able arbitrary wave fonn generator is feel to 
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the heater via a. high speed po\ver a.rnplifier, and pulsed heat flux is applied to He II. Rising 

tirne of the trapezoidal current pulse frorn zero to a constant value a.nd falling tirne are 

fixed to be 6JJ,S. Total heating tirne, iH, is varied a.rbitra.ry frorn 30JJ,S to 4000ps depending 

on the purpose of n1ea.surernent. 1'he superconductive ten1pera.ture sensor has bvo pairs 

of shielded lines \·V hich a.re also shielded by clou bled stainless tubes. One is for a. constant 

current supply a.nd the other is connected to the low noise arnpbfier. The ternpera.ture 

va.ria.tion due to the pulsed hea.ting by the heater is detected \·vith the ten1perature sensor 

and the signal is a.rnplifiecl by a. factor of 100 \Vith the lo\v noise a.n1plifier. All signals 

a.re tra.nsr11itted to a. personal cornputer via. a. digital oscilloscope to be stored on a. floppy 

disk. Through the \vhole experin1enta.l runs, each successive rnea.suren1ent is ca.rried out 

after a. rest tin1e of 120s to rninirnize the uncerta.inty in the effect of residua.l vortex lines 

generated by forn1er hea.ting. It is well known tha.t residual vortex lines considerably affect 

the vortex cleveloprnent especially in the case of intense heating [18]. 
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Chapter 5 

RESULTS AND DISCUSSION 

5.1 Three types of thermal shock wave 

There are three types of thennal shock ·waves in He II according to the sign of the 

steeping coefficient defined by Eq. (2.40). These are a. frontal shock 1-va.ve, a. back shock 

1va.ve and a. double shock wave as given in Fig. 5.1, 5.2 and 5.3, respectively, which are 

rneasured 1vith a. superconductive ten1pera.ture sensor fixed at a distance of z fron1 a. planar 

thin filrn heater placed at the botton1 of the shock tube. These waves are generated by a. 

trapezoidal heat pulse of tH = 30p,s. The frontal shock wave in Fig. 5.1 is rneasured at 

ternperature T B = 1. 701{. A ternpera.ture discontinuity is clearly observed at the front of 

a. propagating wave profile. Back shock wave in Fig. 5.2 is observed at 'Il3 = 2.05]{. A 

discontinuity is fonned at the back of a wave profile. Slight disturbance on the wave proi1le 

is just a electrical noise. Double shock wave in Fig. 5.3 is observed at 1l3 = 1.86]{ which is 

slightly belo1v the ternpera.ture at which the steeping coefficient vanishes. It is practically 

difficult to generate a. pure double shock wave, because rather strong heat pulse is required 

for a 1vave profile extending both higher and lower ternpera.tures than the ten1perature at 
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\vhich the steeping coefficient vanishes and, furthernwre, a long propagatior1 distance is 

also required for a profile to forn1 two ternperature discontinuities due to \Veal: nonlinearity 

in this tern perature region as seen h-orn Fig. 2. 7. The large heat flux hea.ting tends to 

generate high density quantized vortex lines to cause \vave profile defonnabon due to the 

interaction \vith quantized vortices during propagation. The wave profile given in Fig. 

5.3 rnay be the best exarnple for the double shoclz \vave. 

These results den1onstrate that the superconductive ten1perature sensor possesses a 

sufficient ternpera.ture sensitivity and a. short response tin1e to rneasure the ternperature 

variation associated \vith a thern1a.l shock w a.ve. 

IVfultiple then11al shock \vave profiles generated by trapezoida.l heat pulses of a nurnber 

of values of the heat flux are shuvvn in Fig. 5.4, where all the profiles are superposed by 

synchronizing at the \va.ve front. Bath ten1perature lB is 1.691( in order to produce the 

frontal shock waves and the heating tin1e tHis selected to be 100!JS. Heat flux qJJ is varied 

fron1 20 to 40 W / crn 2
. The superconductive ten1pera.ture sensor is fixed a.t a. distance z of 

5?n,?n frorn the heater. \iVhen the applied heat flux is sn1a.ll, the rneasured wave profile is 

aln1ost trapezoidal except the wave front steepening due to the hydrodynarnic nonlinear 

effect. The rnea.sured shock \vave height is found to be in proportion to the applied heat 

flux and to agree Vlith the theoretica.l value obtained by Eq. (3.1) as long as the heat flux 

is sufficiently srna.ll. As the appbed heat flux increases, additional wave deforn1ation owing 

to the interacbon with quantized vortices generated JJear a heater becon1es to be apparent. 

And the wave height loses the linear dependence on heat flux. The shght ten1pera.ture 

rises following the rnain wave profiles are also observed as heat flux increases. These corne 

frorn the dissipative effect. 
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Sin1jla.r result for back shocks rnea.sured at 78 = 1.90]{ is shown in Fig. 5.5. The 

result obtained a.t TB = 2.10]{ is also shovn1 in Fig. 5.6. The results are qualitatively the 

sarne as Fig. 5.4 but the 'vva.ve deforrnation due to the interaction vvith quantized vortex 

lines becm11es rnore noticeable than that at lo\ver heat Hux. 

5.2 Measurement of characteristic time of quantized 

vortex development 

The characteristic tirne of quantized vortex developnrent is rneasured as a function 

of applied heat Hux and ternperature by a.na1yzing the thernral shock wave deforrnation 

data. Quantized vortex lines are generated \Vhen the relative velocity Vns exceeds a. criticaJ 

value. The vortex lines need finite developrnent tirne in order to reach very high density 

enough to cause significant \Vave forrn defon11ation. If the quantized vortex line density 

is not sufficiently high to cause an appreciable wave fornr deforrnation, a. then11al shock 

\Vave profile changes only a.s a. result of hydrodyna.n1ic nonlinear effect, that is to say the 

plateau portion of a. trapezoidal therrnal pulse does not decline. On the other hand, if the 

density of quantized vortex becornes high enough to cause strong interaction, a. then11aJ 

pulse is deforn1ed through the therrna.l boundary layer and thus a partial declination in 

the plateau portion is observed as illustrated in Fig. 5. 7. The tin1e duration tve in the fig

ure fron1 the wave front to the point a.t which the wave height begins to reduce is defined 

a.s the characteristic tirne. The decision of tve is rather a. difficult procedure in the case of 

snrall heat flux as the wave height only gradually reduces due to the gradual developrnent 

of quantized vortex lines. The noise superposed on rnea.sured wave profiles also n1akes it 
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difficult. Therefore the end point of t,Je is defined as the point at ·vv hich the reduction of 

\vave height exceeds 3CT of the data fluctuation in the plateau portion. 

Nleasured wave profiles at 1B = 1.701{ and z = lOrnrn are sho\vn in Fig. 5.8. The 

heating ti111e is fixed at tH = lOOOJ-Ls. The beat flux qP is varied fron1 5 to 261iV/c7n2
. It 

can be observed frorn this f-igure that the point \vhere the reduction becornes noticeable 

gets to close to the \vave front as heat flux increases. It is interesting to note that the Vi7a.Ve 

forrn for q7) = 26 VV / crn2 beconres even considerably shorter than t H and is a.ccornpanied 

\vith "therrna.l tail " that is a slightly high tenrpera.ture region than the equili briurn tern

perature. This interesting feature is chscussed in detail later. Another exa111ple of wave 

profiles n1easured at different ternperature, TB = 1.901{ is sho\vn in Fig. 5.9. The wave 

deforrnation seerns to occur for srna.ller heat flux than the fanner case of 1B = l. 701{. 

Fig. 5.10 sho\vs the result of fve as a function of applied heat flux qP for two different 

tenrperatures, and Fig. 5.11 is their double logarithrnic plot. Experin1enta.l data obtained 

at l. 701{ are represented by closed diarnonds and the data at 1.901( by open circles in 

the figures. The data points are obtained two independent experin1ental runs for both 

cases. Solid and broken lines are the linear regression results, of which inclinations are 

-2.2 at 1.701{ and -2.0 at 1.901\. It rnay be concluded frorn the data that fve is inversely 

proportional to q;. 
Further nreasurernent results rnea.surecl at ternperatures between 1.601{ and 2.031\ 

are shown in the sarne double logarithn1ic plot together with corresponding linear re

gression results in Fig. 5.12. It should be n1entionecl that the data obtained at lower 

ternpera.tures appear in the upper region in the Fig. 5.12. As the ternperature rises, the 

data shift to\va.rds the lower region. It rnea.ns that the cleveloprnent of quantized vor-
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tices becon1es faster as the ten1perature rises. Frorn nrany experin1ental results for the 

heat flux ranging fron1 .5 to 40VV/crn2, it is found that the relation betvveen iue and qP is 

a.pproxinra.tely given by 

( 5.1) 

and it can be \vritten in the other forn1 

1 

qpt3e = c(TB), (5.2) 

\vhere c' (1!3) and c(1s) are ternpera.ture dependent coeff-icients given experinrentally. Fig. 

5.13 sho\vs the variation of c(TB) with the tern perature. It decreases rnonotonically with 

the rise of tenrperature. It seen1s that this result is quit in1portant because it is obtained 

at the heat fiux range, inten11ediate to large values, which had not been obtained in 

previous experirnents. In the report by Vinen [3] [4] [5]the relation between tue and qP is 

given by Eq. (2.7) for very sn1all heat fluxes ( %.1 S 0.4Wjcrn2 
), which has a different 

functional fornr fron1 Eq. ( 5.1). 

The discrepancy between the result of the Vinen vortex line density equation and 

experirnental result for the case of large heat flux with respect to the characteristic tirne for 

vortex developrnent has been pointed out in a couple of nurnerical sin1ulations of then11al 

shock \Vave propagation [21]. It is reported that the vortex line density equation needs 

a finite initial condition La which defines the initial vortex line density in undisturbed 

He II in order to reproduce the n1easured thern1al shock wave deforrnation owing to the 

interaction with quantized vortices. The introduction of initial vortex line density La is 

quite popular in nurnerical sirnulation of propagating therrnal shock wave but the physical 

nreaning of La is not clear. For instance, the value of La which gives suff-icient nurnerical 

result is apparently too large for the value of the undisturbed He II considering the final 
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value of the vortex line density. The typical final equilibriun1 value of the vortex line 

density is 107crn)crrt3 \Vhile Lo needs to be as high as 106crn/c7n3. If L0 is set to be zero, 

"""( of the source tenn in Eq. (2.8) needs to be several thousands tirnes larger than that 

obtained by Vinen [22]. Present experirnental results irnply that the Vinen vortex line 

density equation needs appropriate rnodi:fication in the case of the large heat flux heating. 

5.3 Wave form variation through propagation 

\f./ave fonn variation during propagation is n1easured v,rith a superconductive ten1-

perature sensor by changing the distance bebveen a. ternperature sensor and a heater. 

The results are shown in Fig.s 5.14 and 5.1.5. Each wave prof-ile is n1easured \vith a tenl

perature sensor fixed at a distance z as indicated beneath each prof-ile and is drawn at 

the corresponding location which is calculated by supposing that the full scale of the 

abscissa corresponds to z = 100nun in each figure. Fig . .5.14 shows the result under the 

conditions of 1B = 1.69]{, qP = 91/V I cn~2 and tH = 30J-Ls. Since the heat flux is relatively 

sn1all and the heating tirne is short, each profile is free fron1 the influence of quantized 

vortices. A trapezoidal vva.ve forrn is observed in the vicinity of a heater ( z = 1 . .Srnrrt,), 

a.nd is defonnecl only due to the hydroclyna.n1ic nonlinear effect during propagation. The 

trapezoidal profile first steepens at the \vave front to result in the forrnation of a tenl

perature discontinuity. The plateau portion clirninishes through further propagation and 

f-inally the wave forn1 becornes triangular. The triangular profile further changes according 

to the Burgers equation which is approxirna.ted by the equal area rule. Fig . .S.l.S shows 

the result for the higher heat flux of qp = 40 vV I Cln 
2 at the sanle tenlperature as the last 

exarnple. The profile changes n1ore quickly tha.n in Fig. .5.14. It is caused not only by 

40 



the stronger nonlinear effect because of the higher te1nperature an1plitude but also by 

the interaction \vith quantized vortices. The \vave height even in the very vicinity of the 

heater becon1es Jo\ver than the theoretica.J value due to the effect of tbe interaction \vith 

quantized vortices. Fig.s 5.16 and 5.17 shovv the results of propagating back shock waves. 

The trapezoidal profile forrns ternpera.ture discontinuity at the back of \va:ve profile and 

is defonned into a triangular profile through propagation. 

Fig .. 5.18 sho\vs the wave height variation during propagation. Ordinate represents 

the nonnalized V/ave height by the theoretical value at z = 0 given by Eq. (3.1). Abscissa. 

is the distance frorn a. ternpera.ture sensor to a. heater at z = 0. Several experin1ental 

data. are plotted by taking the applied heat flux as a para.n1eter. Solid lines represent the 

tbeoretica.l \Vave height variation given by Eq.s (2.56) and (2.65) on the basis of the equal 

area. rule. The location of the forn1a.tion of a triangular profile seen1s to slightly deviate for 

srna.ll heat flux cases. But generally the experin1enta.l data. agree well \vith the theoretical 

value. The double logarithn1ic plot of Fig. 5.18 is sho\vn in Fig. 5.19. The a.greernent of 

the experirnenta.l data. with the theoretical result becon1es nwre clearer. The variation of 

\Va.ve height after the forrna.tion of a. triangular prof-ile obeys a. square root relation to z in 

the region. The sirnila.r result of a back shock wave is shown in Fig.s 5.20 and 5.21. In the 

case of an intense heating such as qp = 40MI/ crn 2 the V/a.ve height is decreased even in the 

very vicinity of a. heater by the strong interaction with high density quantized vortices 

in the region but it varies approxirnately with theoretical prediction in the later stage of 

propagation. 

It is found that the experirnental data. of the variation of a. therrna.l shock wave height 

during propagation fairly well agree with the theoretical prediction by the equal area rule 
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in the both cases of a frontal and back shock waves. However, strictly speaking, there are 

slight systernatica.l discrepancies bebveen the experirnental data. and the theoretical pre

diction. The experin1ental data of frontal shock 1vaves tend to deviate slightly downward 

frorn the prediction in particular for sn1all %)· On the contrary, those of back shock waves 

deviate up1va.rd. The deviation rnay be caused by the self-focusing of a therrna.l shock 

wave o1ving to nonunifon11 heating. There is a. possibility of the occurrence of nonunifon11 

heating in a local region along the con tact line of the heater and the bot torn end of the 

cylindrical shock tube side wall. 

In addition, the experirnenta.l data. are cornpared 1vith the result obtained by solving 

the two-fluid equation systern nurnerically [27]. Fig. 5.22 sho1vs the cornpa.rison arnong 

the experin1ental data, the nurnerica.l result and the analytical solution on the basis of 

the equal area rule in the case of relatively srnall %) where the effect of quantized vortex 

hnes is srna.ll. They well agree with each other. It can be also concluded that the equal 

area rule well approxirnates the solution of the two-fluid equation. 

The variation of the wave length during propagation is plotted in Fig. 5.23. It seerns 

that the plot is rnore convenient to understand the wave defonnation. The variation of 

the wave length can be divided into three stages. It does not change before the fornra

tion of a ternperature discontinuity. This is the first stage. The wave length starts to 

change just after the fonnation of a tenrperature discontinuity prior to the con1pletion 

of a triangular wave fonn 1vhere the wave height starts to change. T'he variation of the 

wave length is linear to the propagation distance since the height of the wave does not 

change in this stage. In the final stage the triangular profile changes its height and length 

1vith conserving energy as given by Eq.s (2.65) and (2.64). The each solid lines which 
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represents the theoretical prediction in the figure consists of three curves. For instance, 

the end point of the first stage zr and second stage z 2 are z1 = 12.7rnrn and z 2 = 76.5rnrrt 

for q
71 

= 3.21ifl/ crn2 and zr = 4,.6nun ;-u1d z2 = 27.9rnrn for qP = 9.0Hij ern\ respectively. 

The variation of the anwun t of heat trans ported in the fornr of a. therrnal shoclz \V ave 

is investigated. The e:unount of heat passing through unit area. is calculated by integrating 

the rneasured wave profile. This quantity is nothing but the area. of a. \Va.ve profile in a. 

6.T - t dia.gra.rn. It is defined by the following equation. 

( 5.3) 

\Vhere tw is the tvvice half value \vidth of the n1easurecl ,,vave profile in tin1e. The definition 

is schen1a.tlcaJly illustrated in Fig. 5.24. The integration is carried out frorn the \i\'a.ve front 

to the point corresponding to t = t 1w The initial heat pulse fronr is schen1a.tica.lly shown 

in Fig. 5.25 and the total arnount of heat fed frorn a. hater is given by 

(5.4) 

where t 1 is the rising tirne, t 2 is the tinre duration of the constant current portion and 

t:3 is the falling tirne. It is clear that the heating tirne t H is equal to t 1 + t 2 + t3 . The 

results are plotted in Fig. 5.26. It is found that the whole applied heat is transported by 

a. thennaJ shock wave when the heat flux is not so large ( in the cases of q71 = 3.2 and 

9.0Hij crn, 2 
). The arnount of heat a1nwst does not change during propagation. In the 

case of the large heat flux heating, qP = 40W/ crn2 since the wave height is suppressed due 

to the interaction with quantized vortex lines in the very vicinity of a heater only part 

of input heat is transported by a thenna.l shock wave. However, out of this region it is 

hard to observe the dissipative effect clue to the interaction with quantized vortex lines. 
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It rneans that the effect of the self-induced vortices is substantially negligible under the 

present heating condition. 

5.4 Wave deformation and limiting profile 

Fig. 5.27 sho\VS the superposed \Vave profiles generated under various initial heating 

conditions of qP and t I-I. The applied heat f-lux frorn a. heater is varied frorn 5 to 40 HI/ crn2 

a.nd the heating tirne is selected to be .SOOfLs and l000f1S. T'his figure shows the \Va.ve 

defonna.tion due to the interaction with quantized vortices. As long as the heat fiux is 

belovv a. critical value and heating tirne is short, the wave forrn is free fron1 the influence 

of the interaction v,rith quantized vortices( see \Vave forn1s 1 and 2 ). The \Va.ve height is 

exactly equal to the value given by the sirnple acoustic theory and the length of it is just 

san1e as t I-I. \1\1 ave forrn changes only because the hydrodynarnic nonlinearity for srnall qP. 

The defonnation of a wave fonn becornes noticeable \vhen the heat fiux or the heating 

tirne becornes sufficiently large or long. In the case of wave fon11 3, heating tirne is rather 

long, 1000f1s, though the heat fiux is not so large. It is seen that the wave height at 

the \Vave front is nearly equal to the theoretical value given by Eq. (3.1), but gradually 

dirninishes towards the trailing edge, and that the length becon1es longer than the initial 

heat pulse, and rnoreover a diffusive tail is forrned aln1ost continuously following the 1nain 

body of a propagating thern1al pulse. \1\!ave forrn 4 shows the \Vave defonnation in the 

case of higher heat fiux and shorter heating tirne than in the case of wave forn1 3. The 

wave height dirninishes n1ore rapidly than that of wave fon11 3. 

Further increase in the heat f-lux leads to quite an interesting feature, the forn1a.tion 

of lin1i ting prof-ile. In tense pulsed heating rnakes quantized vortex lines develop to very 
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high density in quite a. short tirne. As a. result of the rapid developrnent of quantized 

vortices, a therrna.l \Va.ve forn1 is subjected to the strong interaction with vortices even 

frorn the \Va.ve front and then it becornes considerably shorter than tH a.s sho\vn by the 

wave fon11s of .5 and 6. 1\!Ioreover, these bvo vva.ve fonns found to be alrnost coincide \·vith 

each other in spite of the big difference in the heabng tin1e. This kind of tendency is also 

reported in another experin1ent [17]. The unique \va:ve fon11 is narned the lirniting profile. 

The \vave shape is deterrnined only in the initial stage of heating and is not affected by 

subsequent heating and so the \Va.ve fonn becornes insensitive to the difference in heating 

tirne. Typical lirniting prof-iles rneasured at TB = 1. 701( of a frontal shock ten1perature 

region and 1.901{ of a back shock are shovn1 in Fig. 5.28 \vhere both onset tirnes of heating 

are synchronized. It is seen the propagation speed of a. frontal shock wave is faster than 

that of a back shock wave. It can be also seen that the difference in the locations of 

ternperature discontinuities \vhich are forrnecl at the \Vave front at TB = 1.70]( and at 

back of the profile a.t TB = 1.901{. The general features of a. lin1iting pro-file can be 

sunnna.rized as follo\vs a.lrnost independently of the tenrpera.ture; the pro·file is fonned for 

q?J > 30 Ml / crn 2
, it is a.ln1ost independent of the heating tin1e longer than approxirna.tely 

200 p,s, the prof-iles is aln1ost triangular and the half value width is approxin1ately 100 f.LS. 

In the case of an intense heating a. thenna.l boundary layer is forrned in the vicinity 

of a. heater due to a.ccurnulation of dense quantized vortices. In the boundary layer heat 

is not transported by the efficient pure then1ra.l counterflow nrechanisn1 \vithin a. second 

sound therrna.l pulse. 
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5.5 Highly transient heat transport in a second sound 

wave mode 

T'he a.rnount of heat transported by a. second sound \Vave is investigated under the 

various heating conditions. The result obtained at 7B = l. 701{ is sho\vn as a. function of 

applied heat f-lux qP in Fig. 5.29. Ordinate and abscissa. represent Ew and %)) respectively. 

Tv,ro experirnenta.l data. for tH = 500jj,s and lOOOjj,s are plotted. The solid lines in Fig. 

5.29 represent the total arnount of initial heat fed fronr a heater. Experirnental data. 

coincide \vith the solid lines when the heat f-lux is srnall. It rnea.ns applied heat is \vholly 

transported by the second sound 'Nave rnode as long as the superfiuid breakdown does 

not occur 1n this situation. As the applied heat Hux increases, superi-luid break dovn1 

occurs. The wave profile is defonnecl through the interaction with quantized vortices. 

The a.nwunt of heat transported by the second sound \Vave rnode deviates dovnnva.rds 

frorn the solid lines. It can be seen that the deviation occurs a.t lower heat flux for the 

longer heating tinre. \iVith a. further increase in the heat flux, the arnount of heat reaches 

rnaxirnurn value a.nd then gets to decrease. The drastic decrease of the an1ount of heat in 

spite of still increasing heat fiux is caused by the onset of boiling on a. heater surface. 

It is found that in the very large heat flux region, the a.n1ount of heat loses the 

dependence on the heating tinre, and so the experin1enta.l data. of different heating tirne 

a.hnost coincide with each other. In this case the \Nave profiles turn into the lin1iting 

profile. The wave fonn beconres considerably shorter than that of the applied heat pulse, 

so only linrited a.rnount of heat is transported by the second sound wave rnode. The 

experirnenta.l data. obtained a.t different ternperature of 1.951{ is shown in Fig. 5.30 where 
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the experirnental data. for three different heating tirnes ( 200,500 and lOOOfLs ) are plotted. 

Qualitatively the sarne results are obtained except that the data. for tH = 200ps deviate 

up\vard frorn those of other longer heating tirnes at the very large heat flux region. Since 

the heating tinH~ of 200fLS is aln1ost the sarne as the length of a. lirniting profile, it is not 

sufficiently long to fonn a. fulllirniting profile. 

The ternperature dependence of the a.rnount of heat transported in the second sound 

\Vave rnode is sho\vn in Fig. 5.31. Ten1perature is varied frorn 1.60 to 2.05]( and heating 

tirne is fixed at lOOOfLS. Solid line represents the total arnount of input heat fron1 a. heater. 

Fig. 5.32 sho\vs the sin1ilar result but heating tinre is selected to be 500fLS. The a.rnount 

of heat sho\vs the clear ternperature dependence. It is seen that the heat flux at which 

the arnount start to deviate frorn the solid line becon1es lower as the ternperature rises. 

It is also found that the arnount of heat strongly depending on the ternpera.ture arises 

vvithin the heat flux range approxirnately bebveen 10 to 30VV/ crn 2
. This dependency 

beconH~s rnore pron1inent at ternperatures above 1.95](. The ten1perature dependence 

rna.y be resulted frorn the dependence of the rate of developn1ent of quantized vortex 

on the ternpera.ture. This kind of tendency is also observed in the experin1ents of the 

visualization investigation of the onset of boiling [26]. The onset of boiling becon1es 

abruptly fast if the ten1perature rises above TB = 2.01{ in that experirnent. 

5.6 Formation of a thermal boundary layer 

The heat which is not transported in the second sound wave rnode accurnulates in 

the vicinity of a. heater, that is the thenna.l boundary layer, and raises the ternperature 

in the la.yer. Aftenv ard heat is transported through the layer by the restricted thennal 
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counterflmv \vbich is the thern1aJ counterflo\v affected by the dense quantized vortices. 

Because of the n1u tua.l friction force clue to the interaction bebveen dense quan tizecl vor

tices and the norrnaJ :f-luid cornponent, the relative velocity in the counterflow can not be 

la.rger than a critical value. The ternperature rise as a result of the fonnation of a ther

rnal boundary layer can be recognized as the secondary ternperat ure rise follov,ring the 

thennal shock \vave profile. Fig. 5.33 shovvs the superposed transient ten1perature traces 

rneasured at different locations of a ternperature sensor. The distance frorn a heater to 

a sensor is varied between 0.5 to 30nJ,7n as indicated in this figure. Ordinate represents 

the ternperature rise and the abscissa is the tin1e. The point corresponding to the onset 

of heating is rna.rkecl by " Heater 0 N" on the abscissa .. Each of the traces consists of the 

propagating thennal shock \Vave as an initial spiky triangular profile and the secondary 

gradual ternpera.ture rise \vhich indicates the thern1al boundary layer reaches the sensor 

location. The peak of secondary ternperature rise rnoves away frorn a heater at a. speed 

of the order of 1 rn/ s. It is rnuch slower than the propagation speed of the second sound 

wave, of the order of 20n?,/ s. The ternperature rise continues over 20rns. It irnplies that 

the decay of quantized vortices is quite slow as conrpared with the tinre of its develop

lllen t. TVloreover the third ten1pera.t ure rise is also detected at approxirnately 18rns after 

the onset of heating \vith the tenrperature sensor fixed at a distance of 0 . .S1n1n fron1 a 

heater in Fig. 5.33. This is the signal of the onset of boiling on the heater. At the first 

glance, it is a little strange that boiling signal is detected at 1 77ns after the end of pulsed 

heating. But it can be understood in the following way. The onset tin1e of boiling nrust be 

earlier than 187ns, in fact, 18rns is just a tirne which is needed to develop the vapor filn1 

reaching the location of the ternperature sensor, 0.5rnrn. The vapor layer developrnent is 
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a rather slo-vv process. 

The visualization study of the onset of boiling by Schulieren rnethod and shadow

graph [26] gives the onset tirne of boiling in the case of a vertical transparent planer heater. 

The typical result is shovn1 in Fig. 5.34. According to the result of this study, spobvise 

transient nucleate boiling first appears at several tens f-LS after the onset of heating, and 

the onset of filn1 boiling is observed after several n"ts under the sin1ilar heating condition 

of present heating. The appearance of the third ternpera.ture rise is not reproducible, 

though the thern1al shock wave and the secondary ten1per~1.ture rise are reproducible. It 

is understood that boiling is a rather randon1 phenon1ena in both ti111e and space. The 

signal of the third ternperature rise can be detected up to z = 10rnn"t in the present 

heating condition. Fig.s 5.35 and 5.36 are the results obtained for different heat fluxes 

of 26vVj crn 2 and 15vVj crn2
, respectively. It is clearly seen that the developrnent of the 

secondary ternperature rise becornes srnaJl and is not detected far fron1 a heater. In the 

case of q?J = 15 W/ crn 2 shown in Fig. 5.36 the clear secondary ternperature rise is only 

observed at z = lnun and 2n2rn. 

The tin1e variation of the ten1perature distribution near a heater including a therrnal 

boundary layer reconstructed frorn the data presented in Fig.s 5.33 , 5.35 and 5.36 are 

sho\vn in Fig.s 5.37, .5 .38 and 5.39, respectively. The ordinate and abscissa represent the 

ten1perature rise fron1 an equilibriun1 ten1perature and the distance fron1 a heater. The 

tirne after the onset of heating tn is taken as a pararneter. The ternperature distribu

tions are plotted up to tn = 8n1s every lrns after the end of heating. The ternperature 

]B = 1.70]( and the heating tin1e tH = 1000t.ts are fixed but the heat Hux is varied an1ong 

those figures. The result obtained for q?J = 40vVjcn12 is shown in Fig. 5.37. The thern1aJ 
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boundary layer with a. large ten1pera.ture gradient is clearly observed in the vicinity of a. 

heater for several n1s after the onset of heating ( t D = 2 - 5rns ) . The then11a.l boundary 

layer is fonned because of the accun1tllation of dense quantized vortices generated by the 

large hea.t f-iux heating. It should be noted that the therrna.l shock wave has already 

reached at a distance of 40 to 80rnrn fron1 a heater in those tin1es so it is not seen in this 

figure. The thickness of the then1ral bounda.ry layer can be defined as 6n11n. The result 

for qP = 20VV/ crn2 in Fig. 5.38 also shows the fornration of a thern1a.l boundary layer 

but its ten1perature and thickness are lo·vver and thinner than those given in Fig. 5.37. 

The thern1a.l boundary layer gradually dirninishes its peale ternperature and, at the sa.rne 

tirne, expands outward fron1 a heater with the laps of tirne. The tirne variation of the 

tenrperature distribution in the therrnal boundary layer resenrbles that caused by usual 

diffusion process. It is found fron1 the experin1ental fact that the heat transport process 

in the therrnal boundary layer in which the restricted thern1al counterf-imv is a governing 

heat transport process resernbles the usual diffusion process. The result of rather srnall 

heat f-iux of qP = 15TiVjcrn2 shown in Fig. 5.39 exhibits a different tirne variation of the 

ternperature distribution. The range of the ordinate is reduced appropriately. Because 

the applied heat f-iux is not sufficiently large to generate dense quantized vortices, rnajor 

part of the input heat is transported in the second sound wave rnode and an only thin 

thennal boundary layer is forn1ed in a quite short period just after the end of a heating. 

Experin1ental data up to t D = 3rns are plotted in this figure. It is clearly seen that the 

shape of the traveling therrnal shock wave does not beconre a li1niting profile and n1ajor 

pa.rt of input heat is transported in the forrn of a wave. This tendency is suggested by 

the transient ternperature traces in Fig. 5.36 . 
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The result a.t for different ternperature of Tl3 = 1.90]{ is also sho\iVn in Fig. 5.40. The 

tenrperature variation is qualitatively the sanre as that of TB = l. 70]{ but qua.ntitatively 

is not quite sa.rne in both the rna.xin1un1 ten1pera.ture and thickness. The peak ternpera.

ture becornes lovver and the thickness of the layer gets to be thinner. It n1ay be because 

the ternperature dependence of the heat capacity1 quantized vortex lines developrnent rate 

and the decay rate. 

Finally it should be noted that the ternpera.ture slightly drops in the very vicinity of 

a. heater in the later phase. The reason of the tenrpera.ture drop is still an open question 

but it n1ay strongly relates to the drift and decay of the quantized vortex ta.ngle at a 

hea.ter to\va.rd oubvarcl frorn a. heater. 

5.7 Highly transient heat transport through a ther-

mal boundary layer 

It is seen fronr the discussions in the fonner sections that there are three heat trans-

port processes involved in highly transient heat transport in He II in the case of large heat 

flux heating. The first is the second sound vlave rnode which is the predorninan t process 

when applied heat fiux is not large enough to generate dense quantized vortices. The 

second one is the hea.t transport by the restricted then11al counterflow under the influence 

of high density quantized vortices which is the governing hea.t transport process through 

a thern1al boundary layer. The third one is boiling on a. heater. The heat consurned in 

boiling process is further transported outward by the restricted thernral counterflow in 

the later stage. It is, however 
1 

rnore appropriate to regard the heat is stored in the vapor 
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layer forn1ed in the vicinity of a heater in the consideration in the present tirne scale. The 

arnount of heat transported by the restricted thern1a.l counterflmv is calculated frorn the 

experirnental result of the tinH~ va.1·iation of a ternperature distribution in the vicinity of 

a heater. The a.rnount of heat consurned for the boiling is defined as the heat \vhich does 

not transported by the other bvo processes. 

The contribution of those processes are sho\vn in Fig. 5.41, \vhere the :filled synrbols 

indicate the boundary bebveen the second sound \vave rnode and the restricted thennaJ 

counterflow, and the open syrnbols indicate that bebveen the restricted thennal counter

flov,r and the evaporation. These results are obtained under the condition 78 = l. 701{ 

and tH = lOOOjj,.s. If the heat flux is less than 5liV/crn2
, the entire hea.t is transported 

in tl1e second sound v,r a:ve nrode. \iVhen the heat flux increa.ses beyond 5 vVj crn2
, super

fiuid breakdo\vn occurs and sonre portion of heat generated by a heater accurnulates in 

a thernral boundary layer and then is transported outward fronr a heater region by the 

restricted therrna.l counter:flo\v. Above 15liV/crn2
, the onset of boiling is observed on a 

heater surface and input heat begins to be consurned in evaporation. The contribution 

of the second sound \vave nrode decreases and those of the restricted thennal counterflow 

and evaporation increase as the heat flux increases. In this :figure a set of the experinrental 

result obtained at TB = 1.901{ and qp = 4:0VVjcrn2 is also plotted for conrparison. At 

the higher ten1perature, the superfiuid breakdovn1 occurs at lov,rer heat flux and the con

tribution of the restricted therrna.l counterfiow and evaporation becon1es n1ore significant 

even at lower heat fiux than at lower ternperatures, that is the boundaries between the 

three contributions as given in Fig. 5.41 shift left wards. Fig. 5.42 shows the sirnila.r re

sult, \vhere the ordinate is absolute an1ount of heat transported by those processes. Here 
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rnost of the data are those obtained at 7B = 1.701(, tH = lOOOf-Ls, but sorne data for 

t H = 2000 f-LS are added for reference, \V hich are denoted by squares. The total a.nwunt 

of heat applied fron.1 unit area of a heater is represented by broken lines for two cases of 

heating tirnes. It is seen that the contribution of the second sound \vave rnode decreases 

abruptly above qp = 15 Hlj crn2
. On the other hand the contributions of the restricted 

counterflmv and evaporation increase \vith the increase of the heat flux. It can be also 

seen that the arnount of heat transported by the second sound '""ave rnode in the case 

of tH = 2000f-Ls, %.1 = 20Hij crn2 is a.hnost the sa.rne as that in the case of tH = J.OOOf-Ls, 

qP = 20VVj crrt2 because the \vave fonn is reduced to a lirniting profile losing their depen-

dence on the heating tirne for large heat flux. 

The ratio of the anwunts of heat transported by those three processes to the tota] 

input heat a.re plotted for different heating tin1es of tH = l, 2 and 4rns in Fig. 5.43. It is 

seen that the two boundaries dividing three processes vary \vith the heating tin1e. How-

ever, it is found that the dependence of the boundaries on iu can be alnwst elin1inatecl if 

is taken as the abscissa as shown in Fig. 5 .44. Several curves are found to reduce to alrnost 

universal two boundaries irrespectively of the heating tirne. It is seen fron1 the figure that 

the second sound wave rnode is only nwchanisrn of the highly transient heat transport 

when qpt~f2 < 0.2. \iVhen qpt~~f 2 exceeds 0.2, the contribution of the restricted therrnal 

counterfiow anses. If qpt~/2 becon1e larger than 0.5, boiling in the thern1al boundary 

layer on a heater occurs and the contributions of the restricted thenna] counterfiow and 

. . f-. . 1 tJ . f' ' 1 12 I tl . f-. l l evaporation becorne rnore s1gnr1cant w1t 1 -1e 1ncrease o- qprH . n -11s 1gure a Jro <en 
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and a clotted broken lines are drawn to indicated specific values of qpt~j2 . The clotted 

broken line indicates the value of qPt~j2 = 0.23 a.t 1vhich quantized vortex lines appear 

to induce the superfluicl breakclo1vn a.s discussed in Section 5.2. According to the Fig. 

5.13, c(TB) = 0.23 gives the characteristic tirne of quantized vortices developrnent a.t 

1B = 1. 70](. The value of qPt~-/2 incbca.ted by this dotted brol.;:en line vvell coincide vvith 

the value at 1vhich the contl·ibution of the restricted thenna.l counterflow arises. A broken 

line represents the criterion of onset of boiling obtained enrpirica.lly by Tsoi and Lutset [23] 

The value is also consistent with the value at \vhich the contribution of the evaporation 

a.nses. 

5.8 Comparison of experimental results with an an-

alytical solution by Dresner 

Applied heat is transported by such three processes as the second sound 1vave nwde, 

the restricted then11al counterflow and consurnption for evaporation. It is seen that 

the thennal behavior in the restricted thennal counterflow region including the thennal 

boundary layer resernbles tha.t in the usual diffusion process. The experirnenta.l data a.re 

cornpared with the analytical result Eq. (2. 72) introduced by Dresner in Fig. 5.45. The 

broken line shows the analytical solution obtained in tern1s of the total heat input Q. It 

does not agree with the experirnenta.l da.ta.. The consequence indicates that the accurate 

estirnation of Q is essential to rna.ke a. con1pa.rison between then1 as Dresner's fornrula

tion does not consider the contributions of second sound wa:ve rnode heat transport a.nd 

evaporation. To rna.ke a. fair co111pa.rison, the only contribution of the restricted thenna.l 
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counterflo\V needs to be extracted frorn total heat transport. According to the Fig. 5.44 

the a.rnount of heat transported by restricted thenna.l counterflo\v n1echanisrn is 22% of 

the total arnount. The sohclline represents the analytical solubon obtained by substitut

ing 221;'1 of the input heat for Q in Eq. (2.72). The curve sho\vs a fair agreen1ent with the 

experirnenta.l data.. Fig. 5.46 sho\vs the sirnilar result in the case of qP = 20lV/ c1n2. The 

a.rnount of heat transported by the restricted thenna.l counterflo\v is 27% of the total heat 

an1ount. 'fhe broken line goes far above the experirnenta.l data. but the solid line agrees 

v,ri th the experirnen tal data.. 

5.9 A series of highly transient therm-fluid dynamic 

phenomena after a pulsed heating 

The results obtained by the high resolution ternperature rneasurernent of the highly 

transient thern10-fiuid dynarnic phenornena. in He II contribute to the total understanding 

of a. series of transient thenno-fluid dyna.rnic phenornena.. ConJbining the results obtained 

in the present study \vith the other bvo studies such as the visualization study of the 

transient thenno-fiuid dyna.rnic phenornena. in He II with a. laser photography interfer

orneter by Iida. et a.l. [28] and the visuaJiza.tion study of transient boiling phenon1ena in 

He II by Ka.tsul<i et al. [26]. in our laboratory, the general view of a series of transient 

thenno-fluid dynarnic phenornena in He II are obtained and is scherna.tica.lly dra.wn in 

Fig. 5.4 7. The orcbnate represents the rna.gnitude of the physical quantity of the each 

phenornenon. It represents the propaga.bon distance for the first and second waves. It 

represents the vortex line density and the thickness of the thernJal boundary layer for 
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the quantized vortex line developrnent and the fonnation of a therrnal boundary layer, 

respectively. For boiling the ordinate represents the radius of the vapor bubble and the 

thickness of the vapor layer. The abscissa represents the logaritlunic tirne t after the 

onset of the intense pulsed heating. In the case of the intense heating, the following a 

series of transient thenno-Huid dyna.Inic phenornena. are occur. The first sound and the 

second sound \Vaves are generated just after the onset of the heating. Since only p<:nt of 

heat is transported by the second sound ,,vave, dense quantized vortices are generated in 

the vicinity of a. heater. The then1ra.l boundary layer is fonned due to the a.ccurnula.tion 

of quantized vortices and the transient nucleate boiling is also observed just after the 

beginning of the fonnation of the thenna.l boundary layer. In the later stage, the filnJ 

boiling is observed. Depending on the ten1perature and the hydrostatic pressure, audible 

noise can be heard that is called noisy boiling. Those physica.l quantities are functions of 

the heat flux and ternpera.ture. Generally, if the heat flux becornes large those quantities 

increase rnore rapidly. 
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Chapter 6 

CONCLUSION 

Experi1nental investigation of highly transient thernw-Huid dyna1nic phenmnena in 

He II is carried out \vith a superconductive ten1perature sensor. The following conclusions 

are obtained through the present investigation. 

1. The characteristic tirne of quantized vortex developrnent tve in the case of strong 

heating is obtained by analyzing the defonnation of the n1easured thennal pulse pro-

:f-ile. The result is expressed in tenns of qP and a ternpera.ture dependent coefficient 

c(Tl3) by the equation, 

1 

qptJe = c(TB)· 

This relation is different frorn the ernpiricaJ result for very Sina.ll heat f1 uxes obtained 

by Vinen. This new experi1nental fact nw.y partly question the validity of the Vinen 

vortex line density equation in the case of strong heating. 

2. The va.ria.tion of the second sound wave height due to the hydrodyna.n1ic nonlinearity 

is found to \vell agree with the prediction by the equal area rule. The variation of 

vva.ve length is found to be nwre susceptible to the nonlinear hydroclynarnic feature 
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than the variation of \Vave height. 

:3. Heat a.pplied frorn a. heater is \Vholly transported in the second sound \Vave rnode 

\vhen applied hea.t Hux is sufficiently srna.ll. 

4. In the ca.se of strong heating a second sound \Va.ve is deforn1ecl by the intera.ction 

with quantized vortices. \Vhen the heat Hux becornes considerably large, a. therrna.l 

pulse is reduced to a. unique very short triangular profile called the lirniting prof-ile 

irrespectively of the hea.ting tirne, which appears when qP > 30Hijcrn2 a.nd tH > 

200;J,s. Its half value \viclth is a.pproxirna.tely .50 r-v lOOJ_Ls. 

5. A thenna.l boundary layer is fonnecl clue to the accurnula.tion of dense quantized 

vortices in the vicinity of a heater for large heat Hux. The thicl.;:ness of the layer is 

found to be 5 r-v lOnnn. The decay of the layer is very slo\v (>> several tenth ·n1s) 

corn pared \Vi th its quick fonna.tion, \V hi ch rnay irnply that the decay of quantized 

vortices is very slovv. 

6. The transient heat transport through a thernraJ boundary layer is found to be gov-

erned by the restricted thenna.l counterflow rnechanisrn by dense quantized vortices 

which apparently resernbles the ordina.ry thennal diffusion process. Thus boiling 

rna.y be observed in the therrna.l boundary layer. 

7. The contribution of the second sound wave nrode to the transient heat transport 

decreases as the increase of the heat flux, and the contributions of the other two 

processes, the restricted thennal counterflo\v and boiling replace it. 

8. The relative contributions of the three heat transport processes are found to be 

l 

uniquely treated if the paranreter qptJ1 is introduced. 
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9. It is found that Dresner's ana.lytica.l approach ca.n only be applied in highly tran

sient ca.se for the restricted thenna.l counterflow portion only if the a.nwunt of heat 

transported by the restricted thennal counterfio\v is evaluated quantitatively. 
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Appendix A 

Propagation speed of sound in He II 

Coefficient of the four hornogeneous equations (2.15)-(2.18) in Section 2.4 can be 

rewritten in the follo\ving forn1. 

-iw ?P . up 
ikoPn,O ikoPs,O aP -?~W uT 

. ups . U (JS ikoposo () -?~W uP -zw uT 
[A]= (A.1) 

i ko -ikoso 0 -zw 
Po 

iko () -?~WPn,O -ZWfJs,O 

Deterrninant of [A] rnust vanish in order for there to exist a non-trivial solution of the 

four hornogeneous equations and is calculated a.s follows, 

ikoPs,O 

IAI -ikoso () 
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. 8p 
-?,W 8P ikoPn,O iko(Js,O 

( . 8ps) ( )2+2 ·k + -zw- -1 0 aT ?,_Q -?,W 
Po 

ik0 -?,W(Jn,O -?,W Ps,O 

. 8p 
-'l,W 8P -ir 8p ,w8T ?:ko(Js,O 

+ (koposo) ( -1 )2+;3 
?, -ikoso -zw 

Po 

iko 0 -zw Ps,O 

(A.2) 

. aps[(.k )(.k )(. ) (. ap)( . )(. ) zw ap z "'oPs,O z "'oSo -ZW(Jn,O - -zw aT -zw -?,W(Jn,O 

(ikoPn,o)(ikoso)( -iW(Js,o)] 

. aps[( .k )( .ko)( . ) ( .k )( . )( .k) zw aT z "'o(Js,O ?, Po -?,WPn,o + z "oPn,O -zw z o 

( -?:w a~Tp) ( -iw) ( -iw Pn,o) - ( ikoPn,o )( i ko) ( -iw Ps,o)] 
Po 

ikoposo[( -iw ;;)( -iw )( iko) + ( -iw ;;) ( -ikoso)( -iwp,,o) 

( -iw ~Tp) ( i ko) ( -iw Ps,o) - ( ikoPs,O) ( -ikoso) ( iko)], ( A.3) 
u Po 

. a ps . 2 - . 3 a p / 2 - -
zw DP [zkoWSo(Jn,OPs,O - ?,W Pn,O aT - l,WkoSo(Jn,OPs,o] 

~~- k2 ao k2 
. ups . o . 2 . 3 F . o 
?,w-. -[?,W-On 0 Os 0 + ?,wkoPn 0 - zw Pn 0 aP - ?,W-Pn o(Js o] aT Po 'J ' 'J ' ' ' Po ' ' 

61 



- ik~SoPs,oJ, (A.4) 

2aps /0 2 , 4 aps 
w ap ko.':JofJn,oPs,o + w aT Pn,o 

2aps 2 2aps k5 
+ W UP ko8oPn,OPs,O + W DT Po Pn,OPs,O 

2aps 2 4 aps ap + w --k I) 0 - w ----1) 0 aT Jo,~n, aT aP'~n, 

2 aps k5 2 2 ap 
w aT Po Pn,OPs,O - koposow aT 

~2 ,2 2ap. /.2, 2ap + k0 pos 0w apPs,O + k0 sow apPs,o 

(i\.5) 

Then IAI can be sin1phfied a.s the following forrn, 

4 a ps 4 a ps a p 2 a ps 2 
w --o 0 -w ----o o+w --k o 0 aT ,~n, aT ap'~n, aT OJ~ n, 

2 2 ap 2 2 2 ap 2 2 ap 
-k0 posow aT+ k0 pos0w apPs,o + k0 sow apPs,o 

4 2 
koPoSoPs,o · (A.6) 

Again it nn1st vanish in order for there to exist a. nontrivial solution, 

IAI == 0 (A.7) 

If both side of Eq.(A.7) is divided by kci, vve get following equation. 
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0. 

Here, the subscript 0 is abbreviated. According to chain rule, we have 

Here, the follc)\iving equations are introduced. 

2 u 

And according to thennoclyna,rnic identities 

(_A.8) 

(A .. 9) 

(.A.lO) 

[( as) (ap) (as) (ap)] (as) (ap)- 1 (as) (ap) 
aT p a P r - a P r aT p == aT p a P p == aT p a P r · 

(A.ll) 

Using those Eq.s (A.lO) and(A.9) , Eq.(A.8) can be vnitten into the follo\ving fonTL 

1l4 Pn ( [ (:;) p ( ;; ) - ( :; ) p (:;) l + 8 [ (;; t ( ;; ) -( ;; t (:;)]) 
2 ( (as) _ ( ap) p _ ap p _2 ap Ps _ ap) u Pn -p- -s- +-.s---s -p5 --s-

aT P aT s Pn aT Pn a P Pn aT 
_ Ps _2 

Pn(J-S == 0. (A.l2) 
Pn 

Using the fundarnental identity of two-fiuicl equation 

P == Pn + Ps, (-A.l3) 
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\Ne ha.ve 

p _ ap Ps ap 
--s-+-s-

Pn aT Pn aT 
8 ap 
-aT( -p + Ps) 
Pn 

ap 
- s- (~f\.14) ·aT· 

Substituting Eq.s (A.ll) and (A.l3) into Eq. (A.l2) and dividing both side of the 

equation by p, the equation ca.n be sirnplified as follo\vs. 

tJ (a") (ap) . 2 [(as) s2 (ap)] U - - - U - + -p5 -

aT p a p T aT p Pn a p 
(A_.l5) 

Then v,re get the follo\ving equation 

4 2 [ (ap) Ps .- 2 (a. s) -1
] (as) -1 (ap) Ps _2 

?.L - u - + -s - + - - -::; == 0. 
a p s Pn aT P aT P a p s Pn 

Again using the thennodynarnic Eq.s (A.lO) , Eq.(A.l6) ca.n be written in the fonn, 

Finally the dispersion la.w Eq. (2.19) in Section 2.4 relating w and k0 is obtained. 
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figure 3.1 Picture of a superconductive temperature sensor. 
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Figure 4.1 General view of the whole experin1ental set up. 
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Figure 4.2 Schematic illustration of the He II dewar and the evacuation sys

tein. 
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Figure 4.3 Picture of the cryogenic fla.nge inserted into the He II dewa.r. 

87 



Figure 4.4 Picture of the mQ.in assembly of the experimental apparatus im
mersed in He II. Two superconductive temperatur~ sensors are 
mounted on the movable temperature sensor mount in this picture. 
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pa.rat us. It consists of three rna.in parts, a pla.na.r N i / Cr thin filtn 
heater, a cylindrical thennal shock tube and a superconductive 

temperature sensor. 
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il.I'C pJoLLccl. .Solid lines rcprcscnl. the total amourll; of heaL feel frolll 

a lwaLcr. Tn = J.~JS}( and z = :_Wnnn. 
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Figure .s.:J] Superposed tr·;1nsicnt. Lcrnper;J.turc traces n1easured ·at. varrous lo

cation of ;1. Lerllperature sensor. 1'hc sensor location ranges fron1 

z = O . .S to :JOnnn. 'J'Iw onset of he<1i.ing is JJJarkccl by "Heater ON" 
on the <lbsciss;L 7'13 = 1.701(, iH = lOOOJt,.S a.ncl (/p = 40l~VjC1n..2 . 
The third LcrnpcraLurc rise which is Lhc signal of the OIJsct of 

the boilir1g nc;tr Lhc hca.tcr is cletcc.tccl with the sensor fixed at 
.z = O .. Snnn. 
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Figure 5.34 Onset tirne of the spot wise transient nucleate boiling ( o--e ), the 

fihn boiling ( 6:---A) and the noisy filn1 boiling ( D-11) at Ts = 1.801( 
The laud acoustic noise caused during noisy boiling. The occur

rence of it also depends on the ternperature and the hydrostatic 
pressure. (This figure is cited frorn [26]) 
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Figure 5.41 Ratio of a1nount of heat transported by each process. Filled sym
bols indicate the boundary between the second sound wave mode 
and that of the restricted thennal counterflow. Open syn1bols in
dicate the boundary between of the restricted thennal counterflow 
and that of evaporation. Ts = 1. 70](, iu = lOOOps. A set of points 
obtained at Ts = 1.90]( (denoted by squares) is also included for 
con1pa.nson. 
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Figure .5.42 Absolute <:unount of heaL transported by the Lluer:.~ processes. IvJost 

of data plotted arc those obtained at TB = 1.701(, ln = lOOOp.s, 
with a. pair of cla.t.;t for /.H = 2000tt.s, (jp = 20 lV / C7n2 (denoted 

by squares) adclecl for reference. Broken lines represent the total 

i:l.nlounL of heat. transported per UtiiL <nc;J. for two cases of hei:tLing 

Li lllC. 
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Figure 5.43 Ratio of an1ount of heat transported by the three processes for var
ious heating tin1e of tu = 1, 2 and 4rns. Filled syn1bols indicate the 
boundary between the second sound wave rnocle and that of there
stricted thenna.l counterflow. Open syrnbols indicate the boundary 
between the restricted thenna.l counterflow and that of eva.pora
tion. Those boundaries a.re scherna.tica.lly drawn in the inset of the 

figure. (0 e): lu = lrns, (vT): in= 2rns, (D•): tu = 4rns 
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1 

ken line indicates the value of qPlJ1 at which quantized vortex lines 

are dense enough to in tera.ct with a thenna.l shock wave accord

ing to the Fig. 5.13. T'he broken line represents the criterion 

of the onset of boiling obtained empirically by Tsoi and Lutset 

(0 e) : lH = lrns, ( v T) : ti-l = 2rns, (0 .) : tH = 4rns and 
Ts = 1.701(. 
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Figure 5.45 Comp,;1rison of Lhe experiillcnLal clala <lllcl Lhe analytical solution. 

l~xpcrilll<.'JJ!.al d<1La obtaillcd a!. Ll1c Scllsor locc1Lioi1 of, z of 1, 5 a11cl 

llJiiiJH <1rc ploLt.ed. Tl1e LheoreLiccd curves represented by dolled 

<tnd solid lilies. 'fhe doLLed liJJe obLtiiJcd by regarding the toted 
input. heal. <L':i Q. /\ccording Lo the Fig. 5.44, 22</{J of Lhe applied 
l1c<\l. is l.r<\ll::iportcd by tl1e restricted thcnllcd counterflow in this 
case. T'he solid line represents L!Jt' cl!l<dytiud solution obtained 
by using the 221t', of Lite applied hc;d, ciS (j. 18 ::::: 1.70/\', (jp = 
11 0 I vI C/1/ "2 ( \ll d I /J == 20 0 0 Jl s . 
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Figure 5.4 7 Schernatic drawing of a series of highly tra.nsien t therrno- fluid phe
non1ena. in He II occurring after the intense pulsed heating. The 
ordinate represents the rna.gnitude of the physical quantity of the 
ea.ch phenonwnon. It represents the propagation distance for the 
first and second waves. It represents the vortex line density and 

the thickness of the thenna.l boundary layer for the quantized vor

tex line cleveloprnent and the forrnation of a thennal boundary 
layer, respectively. For the boiling the ordinate represents the ra.
dius of the vapor bubble and the thickness of the vapor layer. The 

· abscissa represents the loga.ritlunic tirne t a.fter the onset of the 
intense pulsed heating. 
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