Title page 1 $\mathbf{2}$ Title Is FTO genotype a useful predictor for body weight maintenance? Preliminary results of a 3 5-year follow-up study 4 $\mathbf{5}$ Authors 6 Tomoaki Matsuo, PhD¹; Yoshio Nakata, PhD²; Kikuko Hotta, MD, PhD³; Kiyoji Tanaka, $\overline{7}$ PhD⁴: 8 9 ¹Hazard Evaluation and Epidemiology Research Group, National Institute of Occupational Safety and Health, Japan 10 ² Faculty of Medicine, University of Tsukuba 11 ³ Pharmacogenomics Project EBM Research Center, Kyoto University 12⁴ Faculty of Health and Sport Sciences, University of Tsukuba 13 14 15Corresponding author Tomoaki Matsuo, PhD 16Hazard Evaluation and Epidemiology Research Group, National Institute of Occupational 17Safety and Health, Japan 18Address: 6-21-1, Nagao, Tama-ku, Kawasaki, 214-8585, Japan 19Tel.: +81-44-865-6111 (Ext. 8286); Fax: +81-44-865-6124 20E-mail address: matsuo.tomoaki11@gmail.com 2122Manuscript type: Brief Reports 23Word Counts: 1,765 (main text), 231 (abstract), 18 references, 2 tables $\mathbf{24}$ 25**Conflicts of Interest** 26No author has any professional relationships with companies or manufactures who will $\mathbf{27}$ benefit from the results of the present study. The authors declare no conflict of interest. 28

29

30 Abstract

31 *Objective*: We examined associations between the fat-mass and obesity-associated (*FTO*) 32 gene (rs9939609) and any weight change over a 5-year period following a 14-week lifestyle 33 intervention among middle-aged Japanese women.

One hundred twenty-eight Japanese women (BMI >25 kg/m²) Materials/Methods: 34participated in a 14-week weight loss intervention between 2004 and 2006. Of the 35participants, 62 consented to the 5-year follow-up measurement session. Of these women, 36 3747 women who achieved a weight loss of at least 10% from their baseline values during the 14-week intervention were included in the analysis. Body weight, body fat, abdominal fat 38 assessed by CT scans, and metabolic risk factors (i.e., blood pressure, lipids, and glucose) 39 were measured at baseline, post-intervention, and at the 5-year follow-up. 40

Results: During the 5-year non-intervention period, increases in body weight, fat mass, total abdominal fat, and subcutaneous abdominal fat were significantly greater in subjects with the homozygous minor allele (AA genotype, n = 4; 8.5%) than in those with the homozygous major allele (TT genotype, n = 31; 66.0%) or heterozygous allele (TA genotype, n = 12; 25.5%). In multiple regression analyses, the variation in rs9939609 was a significant and independent predictor (*P* <0.001) for regaining weight during the 5-year follow-up.

47 *Conclusions*: Our data suggest that Japanese women with the risk allele (AA) of rs9939609
48 may have more difficulty preventing fat gain from reoccurring after weight loss intervention

- 49 than women with the other genotypes.
- 50 Key words: Abdominal Obesity; Genotype; Lifestyle Intervention; Weight Loss

52 List of apple viations	52	List of	abbreviation
---------------------------	----	---------	--------------

- 53 AA: homozygous (adenine/adenine) allele
- 54 AC: abdominal circumference
- 55 BMI: body mass index
- 56 CT: computed tomography
- 57 DBP: diastolic blood pressures
- 58 SAF: subcutaneous abdominal fat
- 59 SBP: systolic blood pressures
- 60 TA: heterozygous (thymine/adenine) allele
- 61 TAF: total abdominal fat
- 62 TT: homozygous (thymine/thymine) allele
- 63 VAF: visceral abdominal fat

64

65 Introduction

66 Many studies [1-5] indicate that gene variants in the fat-mass and obesity-associated

67 (FTO) gene (primarily rs9939609) are associated with obesity traits. In our recent studies

- 68 [6-8], we showed significant associations between rs9939609 and BMI [7], metabolic
- 69 syndrome [6], and interventional weight loss [8] among the Japanese population. Until now,
- 10 however, there have been few studies investigating the associations between FTO genotype

71	and maintaining long-term body-weight loss after weight-loss intervention. In the present
72	study, we examined the association between rs9939609 and 5-year weight maintenance after
73	an initial 14-week weight loss intervention among middle-aged Japanese women. We
74	hypothesized that subjects with the homozygous minor allele (AA) of rs9939609 would be
75	more likely to increase their body weight than those with other genotypes during the 5 year
76	non-intervention period.

- 77
- 78 Methods

We recruited 128 Japanese women using the JASSO criterion of obesity of BMI > 2579 kg/m^2 [9, 10] through advertisements in local newspapers to participate in a 14-week weight 80 loss intervention between 2004 and 2006. Of the participants, 124 women completed the 81 82 14-week intervention. Of these women, 62 women consented to a follow-up measurement session at the end of a 5 year non-intervention period. In this study, because we focused on 83 maintaining the body weight change long-term after an intervention, we excluded 15 subjects 84 who did not achieve at least a 10% loss of weight [11] during the 14-week intervention. 85Consequently, 47 subjects were included in the final analysis. The aim and design of this 86 study were explained to every subject before each gave her written, informed consent. 87 This 88 study was conducted in accordance with the guidelines proposed in the Declaration of The Ethical Committee of the University of Tsukuba reviewed and approved the 89 Helsinki.

90 study protocol.

91	The 14-week lifestyle intervention program was mainly comprised of dietary
92	modifications with a physical activity program (90 minutes per session, 12 times in 14 weeks)
93	Detailed descriptions of the program have been published elsewhere [12].
94	Anthropometric measurements were performed by a trained laboratory assistant at
95	baseline, post-intervention, and at the 5-year follow-up. Body weight was measured once to
96	the nearest 0.1 kg using a digital scale (TBF-551; Tanita, Tokyo, Japan), and height was
97	measured once to the nearest 0.1 cm using a wall-mounted stadiometer (YG-200; Yagami,
98	Nagoya, Japan) with the subjects in underwear and barefooted while fasting in the morning.
99	BMI was calculated as weight (in kilograms) divided by height (in meters) squared. AC was
100	measured directly on the skin at the level of the umbilicus in the standing position. The AC
101	measurements were taken in duplicate to the nearest 0.1 cm. Body composition, recorded as
102	percentage fat mass, fat mass (kg), and fat-free mass (kg), was assessed by a bioelectrical
103	impedance analysis (TBF-551; Tanita, Tokyo, Japan). We acquired CT images for each
104	subject using a CT scanner (TSX-002A; Toshiba, Tokyo, Japan) in order to calculate TAF,
105	VAF, and SAF areas. A single trained technician performed blinded image analyses to
106	determine the TAF, VAF, and SAF areas using a computer software program (Fat Scan; N2
107	system, Osaka, Japan). Detailed descriptions of the CT methods have been published
108	elsewhere [12].

109	Blood pressure and biochemical assays of blood were also measured at baseline, post-
110	intervention, and at the 5-year follow-up. One trained nurse measured SBP and DBP of
111	subjects at the right arm using a mercury manometer and a standard protocol after the subjects
112	rested for at least 20 minutes in the sitting position. A blood sample was drawn from each
113	subject after a 12-hour fast. Serum glucose and lipids were assayed by routine automated
114	laboratory methods [13]. Low-density lipoprotein cholesterol was calculated according to
115	Friedewald's formula [14].
116	Genomic DNA was prepared from the blood sample of each subject by using Genomix
117	(Talent Srl, Trieste, Italy). The rs9939609 allele within the FTO gene was genotyped using
118	the TaqMan probe (C_30090620_10; Applied Bio-systems, Foster City, CA, USA). To
119	investigate the relationship between the measurement values and the rs9939609 genotype,
120	subjects were assigned to one of 3 categories depending on their genotype: homozygous
121	major allele, TT; heterozygous allele, TA; or homozygous minor allele, AA.
122	

123 Statistical analysis

Values are expressed as the mean \pm standard deviation. Paired Student's *t* tests were performed to test the significance of value changes measured at baseline, post-intervention, and at the 5-year follow-up. We evaluated the differences among the genotypes by a univariate ANOVA (PROC GLM in the SAS procedure) with adjustments for age, menstrual

128	status, and respective baseline values, when appropriate. Multiple regression analyses were
129	conducted to determine a combination of predictors for weight change. The
130	Hardy-Weinberg equilibrium was assessed using the χ^2 test. The data were analyzed with
131	the Statistical Analysis System (SAS), version 9.3 (SAS Institute Inc, Cary, NC, USA).

133 Results

The rs9939609 variant was in Hardy-Weinberg equilibrium (P = 0.26) and the minor allele 134135frequency was 0.213 (TT, n = 31, 66.0%; TA, n = 12, 25.5%; AA, n = 4, 8.5%). Table 1 shows subjects' characteristics at baseline, post-intervention, and at the 5-year follow-up 136 137 among the rs9939609 genotypes. At baseline, TAF and SAF were significantly greater in subjects with the AA genotype than in those with the TT or TA genotypes. At the 5-year 138139follow-up, we obtained similar but clearer results, i.e., body weight, BMI, AC, fat mass, TAF, 140 and SAF were significantly greater in subjects with the AA genotype than in those with the Table 2 presents changes in measurement values from pre-intervention to 141other genotypes. 5-year follow-up and from post-intervention to 5-year follow-up by genotype group including 142within-group analyses (paired t test) and group-difference analyses (ANOVA). 143 In the analyses comparing pre-intervention values with 5-year follow-up values, there was a trend 144145toward lower body fat-related values at the 5-year follow-up compared to pre-intervention in all three groups. The decrease in fat mass was significantly smaller in subjects with the AA 146

147	genotype than in those with the TT or TA genotypes. The analyses of values from
148	post-intervention to 5-year follow-up showed most of the fat-related values of all three groups
149	had significantly increased at the 5-year follow-up. The increases in body weight, AC, fat
150	mass, TAF, and SAF were significantly greater in subjects with the AA genotype than in those
151	with the TT or TA genotypes. While significant increases were also observed in many of the
152	blood sample and blood pressure values during this period, no significant differences across
153	the genotypes were observed. In multiple regression analyses, the variation in rs9939609
154	was a significant and independent predictor ($P < 0.001$) for weight change during the 5-year
155	follow-up when age, menstrual status, and post-intervention body weight were included in the
156	model as adjusted values. The rs9939609 genotypes accounted for 19.3% (adjusted R^2 =
157	0.193) of the total body weight change variance.

159 **Discussion**

Our hypothesis is supported by the significantly greater increases in body weight, i.e., body fat, during the 5 years of non-intervention in subjects with the AA genotype than in those with TT or TA genotypes. Previously, we reported that change in body fat during a 14-week lifestyle intervention tended to be smaller in subjects with AA genotype than in those with other genotypes [8]. The results showed that AA genotype individuals may have more difficulty reducing body fat than subjects with the other genotypes. On the other hand, the

previous study [8] also showed that all subjects, despite their genotype, decreased their body 166 167weight significantly, and we concluded that the gene impact may not be great enough to change body weight in response to a short-term intervention, and environmental and 168169 behavioral factors may overcome the effects of genes on body-weight reduction. However, the present study, over a much longer term, showed a notable association between FTO 170171genotype and body fat changes. Fredriksson et al. [15] indicated that the FTO gene may 172participate in the central control of energy homeostasis. It is possible that the subjects with 173the AA genotype in our study were unable to control the daily diet needed to maintain their reduced body weight as well as the subjects with other genotypes could. 174

Our results are consistent with other recent studies [16, 17]. Karra et al. [16] showed that AA carriers of rs9939609 have dysregulated circulating levels of the orexigenic hormone ghrelin and attenuated postprandial appetite reduction. Woehning et al. [17] showed that the AA carriers were more likely to regain weight during the weight maintenance period after a weight-loss intervention. If medical personnel could use genetic information for obesity therapy, they could provide a more effective intervention plan for their patients. *FTO* gene may be a useful predictor for body weight maintenance.

Our study did have limitations. First, sample size was small, and further research is needed to confirm our results. However, the frequency for the A allele in this study (21.3%) is similar to its frequency in the general Japanese population (21.5%) [6], suggesting this

185	study's subjects represent an unbiased population. Second, attendance rate at the 5-year
186	follow-up measurement session was low (50%). Mean body weight of all 47 subjects at the
187	5-year follow-up (61.5 \pm 8.1 kg) was still lower (P <0.01) than the mean pre-intervention
188	value (67.0 \pm 8.6 kg), although it (61.5 \pm 8.1 kg) was greater (P <0.01) than the mean
189	post-intervention value (57.7 \pm 7.3 kg). This suggests that the final analyses in the present
190	study included many subjects who suppressed body-weight rebound during the follow-up
191	period. This situation should be considered in the interpretation of our results. Third,
192	while the present study evaluated subjects' abdominal fat using a single-slice imaging
193	technique, a multiple-slice imaging technique might be better for detecting VAF change [18].
194	In conclusion, our data suggest that middle-aged Japanese women with the risk allele of
195	rs9939609 may have more difficulty preventing fat gain from reoccurring after successfully
196	achieving weight loss during an intervention than women with other genotypes.

198 Author Contributions

199 Contributions by each author are as follows: TM- manuscript writing, development of 200 the study concept and design, data acquisition, and data analysis; YN and KH- manuscript 201 revisions, data acquisition, and data analysis; KT- manuscript revisions, development of the 202 study concept and design, and data acquisition.

203

204	Ack	nowledgments and funding
205		We thank Ms. Yukako Murotake for her support with this study. We are grateful to the
206	part	icipants and staff members in the study. This study was supported by Meiji Yasuda Life
207	Fou	ndation of Health and Welfare, and by Daiwa Securities Health Foundation.
208		
209	Cor	aflict of interest
210		The authors have nothing to declare.
211		
212	Ref	erences
213	1.	Andreasen CH, Stender-Petersen KL, Mogensen MS, et al. Low physical activity accentuates
214		the effect of the fto rs9939609 polymorphism on body fat accumulation. Diabetes 2008;57(1):
215		95-101.
216	2.	Dina C, Meyre D, Gallina S, et al. Variation in fto contributes to childhood obesity and severe
217		adult obesity. <i>Nat Genet</i> 2007;39(6): 724-6.
218	3.	Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the fto gene is associated
219		with body mass index and predisposes to childhood and adult obesity. <i>Science</i> 2007;316(5826):
220		
221 999	4.	and type 2 diabetes with data from 96 551 east and south asians. <i>Diabetelogia</i> 2011
223	5	Peeters A Beckers S Verriken A et al Variants in the fto gene are associated with common
224	0.	obesity in the belgian population. <i>Mol Genet Metab</i> 2008;93(4): 481-4.
225	6.	Hotta K, Kitamoto T, Kitamoto A, et al. Association of variations in the fto, scg3 and mtmr9
226		genes with metabolic syndrome in a japanese population. J Hum Genet 2011;56(9): 647-51.
227	7.	Hotta K, Nakata Y, Matsuo T, et al. Variations in the fto gene are associated with severe
228		obesity in the japanese. J Hum Genet 2008;53(6): 546-53.
229	8.	Matsuo T, Nakata Y, Murotake Y, et al. Effects of fto genotype on weight loss and metabolic
230		risk factors in response to calorie restriction among japanese women. Obesity (Silver Spring)
231		2011.
232	9.	Japan Society for the Study of Obesity (JASSO). Guidelines for diagnosis and treatment in
233		obesity and its comorbidities. In: The 20th Meeting. Tokyo, Japan: 1999.

- 10. Japan Society for the Study of Obesity (JASSO). Guidelines for treatment in obesity and its
 comorbidities 2006. J Japan Society for the Study of Obesity 2006;12: 1-91.
- 236 11. Wing RR, Hill JO. Successful weight loss maintenance. Annu Rev Nutr 2001;21: 323-41.
- 12. Matsuo T, Kato Y, Murotake Y, et al. An increase in high-density lipoprotein cholesterol after
 weight loss intervention is associated with long-term maintenance of reduced visceral
 abdominal fat. *Int J Obes (Lond)* 2010;34(12): 1742-51.
- 13. Matsuo T, Nakata Y, Katayama Y, et al. Pparg genotype accounts for part of individual
 variation in body weight reduction in response to calorie restriction. *Obesity (Silver Spring)*2009;17(10): 1924-31.
- 14. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density
 lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. *Clin Chem*1972;18(6): 499-502.
- 15. Fredriksson R, Hagglund M, Olszewski PK, et al. The obesity gene, fto, is of ancient origin,
 up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the
 brain. *Endocrinology* 2008;149(5): 2062-71.
- 16. Karra E, O'Daly OG, Choudhury AI, et al. A link between fto, ghrelin, and impaired brain
 food-cue responsivity. *J Clin Invest* 2013;123(8): 3539-51.
- 17. Woehning A, Schultz JH, Roeder E, et al. The a-allele of the common fto gene variant
 rs9939609 complicates weight maintenance in severe obese patients. Int J Obes (Lond)
 2013;37(1): 135-9.
- 18. So R, Sasai H, Matsuo T, et al. Multiple-slice magnetic resonance imaging can detect visceral
 adipose tissue reduction more accurately than single-slice imaging. *Eur J Clin Nutr*2012;66(12): 1351-5.
- 257

		Baseline				Post-intervention	n	5-year follow up				
	TT TA		AA P ^a		TT	TT TA AA		P ^a	TT	ТА	AA	P^{a}
	(n = 31)	(n = 12)	(n = 4)		(n = 31)	(n = 12)	(n = 4)		(n = 31)	(n = 12)	(n = 4)	
Age, yr	55.1 ± 7.4	53.0 ± 5.2	46.3 ± 11.1	0.076	55.3 ± 7.5	53.4 ± 5.3	46.8 ± 11.1	0.096	60.3 ± 7.4	58.3 ± 5.5	51.3 ± 11.1	0.071
Height, cm	$154.5 \pm 5.0 $	155.9 ± 5.1	160.3 ± 3.8	0.373	$154.5 \pm 4.8 $	$155.6 \pm 5.2 $	$160.0 \hspace{0.2cm} \pm \hspace{0.2cm} 3.6 \hspace{0.2cm}$	0.409	$153.7 \hspace{0.2cm} \pm \hspace{0.2cm} 5.0 \hspace{0.2cm}$	$154.9 \pm 5.3 $	$159.2 \hspace{0.2cm} \pm \hspace{0.2cm} 3.8 \hspace{0.2cm}$	0.548
Body weight, kg	65.0 ± 8.2	$68.2 \hspace{0.2cm} \pm \hspace{0.2cm} 8.2 \hspace{0.2cm}$	$78.2 \hspace{0.2cm} \pm \hspace{0.2cm} 1.6$	0.115	$56.3 \pm 6.9 $	$58.9 \pm 7.6 $	65.6 ± 3.5	0.306	$59.7 \pm 7.1 $	$61.9 \hspace{0.2cm} \pm \hspace{0.2cm} 8.0 \hspace{0.2cm}$	$74.5 \hspace{0.2cm} \pm \hspace{0.2cm} 3.9 \hspace{0.2cm}$	0.026
BMI, kg/m ²	$27.2 \hspace{0.2cm} \pm \hspace{0.2cm} 2.4 \hspace{0.2cm}$	$28.0 \ \pm \ 2.2$	$30.5 \hspace{0.2cm} \pm \hspace{0.2cm} 1.4$	0.232	$23.5 \hspace{0.2cm} \pm \hspace{0.2cm} 2.0 \hspace{0.2cm}$	$24.3 \hspace{0.2cm} \pm \hspace{0.2cm} 2.0 \hspace{0.2cm}$	$25.7 \hspace{0.2cm} \pm \hspace{0.2cm} 1.9 \hspace{0.2cm}$	0.526	$25.2 \ \pm 2.1$	$25.8 \hspace{0.2cm} \pm \hspace{0.2cm} 2.6 \hspace{0.2cm}$	29.4 ± 1.2	0.030
AC, cm	$93.4 \pm 7.0 $	$93.1 \pm 9.1 $	$104.3 \hspace{0.2cm} \pm \hspace{0.2cm} 4.2 \hspace{0.2cm}$	0.137	$84.5 \pm 6.0 $	85.0 ± 8.7	$93.2 \hspace{0.2cm} \pm \hspace{0.2cm} 5.9 \hspace{0.2cm}$	0.212	$89.4 \pm 5.7 $	$89.5 \pm 9.8 $	102.7 ± 4.4	< 0.01
Percentage fat mass, %	$36.5 \hspace{0.2cm} \pm \hspace{0.2cm} 4.9 \hspace{0.2cm}$	$37.2 \hspace{0.2cm} \pm \hspace{0.2cm} 4.8 \hspace{0.2cm}$	$45.0 \pm 7.7 $	0.117	$28.6 \pm 4.4 $	$28.9 \hspace{0.2cm} \pm \hspace{0.2cm} 3.4 \hspace{0.2cm}$	$34.8 \hspace{0.2cm} \pm \hspace{0.2cm} 3.9 \hspace{0.2cm}$	0.143	$32.7 \hspace{0.2cm} \pm \hspace{0.2cm} 5.2 \hspace{0.2cm}$	$34.4 \pm 4.6 $	$43.6 \hspace{0.2cm} \pm \hspace{0.2cm} 1.9 \hspace{0.2cm}$	< 0.01
Fat mass, kg	$24.0 \pm 6.8 $	$25.4 \pm 4.4 $	$35.2 \hspace{0.2cm} \pm \hspace{0.2cm} 5.8 \hspace{0.2cm}$	0.078	$16.3 \pm 4.9 $	$17.1 \hspace{0.2cm} \pm \hspace{0.2cm} 3.6 \hspace{0.2cm}$	$22.8 \hspace{0.2cm} \pm \hspace{0.2cm} 3.1 \hspace{0.2cm}$	0.270	$19.8 \pm 5.1 $	$21.5 \hspace{0.2cm} \pm \hspace{0.2cm} 5.2 \hspace{0.2cm}$	$32.5 \hspace{0.2cm} \pm \hspace{0.2cm} 1.9 \hspace{0.2cm}$	< 0.01
Fat-free mass, kg	$41.0 \hspace{0.2cm} \pm \hspace{0.2cm} 3.2 \hspace{0.2cm}$	$42.8 \pm 6.1 $	43.1 6.5	0.577	$40.0 \hspace{0.2cm} \pm \hspace{0.2cm} 3.0 \hspace{0.2cm}$	$41.8 \hspace{0.2cm} \pm \hspace{0.2cm} 4.9 \hspace{0.2cm}$	$42.8 \hspace{0.2cm} \pm \hspace{0.2cm} 3.0 \hspace{0.2cm}$	0.327	$40.0 \hspace{0.2cm} \pm \hspace{0.2cm} 3.4 \hspace{0.2cm}$	$40.4 \pm 3.9 $	$42.0 \hspace{0.2cm} \pm \hspace{0.2cm} 2.9 \hspace{0.2cm}$	0.995
TAF area, cm ²	$357 \ \pm \ 70$	$359 \ \pm \ 66$	$497 \ \pm \ 31$	< 0.01	$256 \ \pm \ 67$	$263 \ \pm \ 66$	$353 \ \pm 44$	0.146	$280 \ \pm \ 61$	$281 \ \pm 93$	$427 \ \pm 23$	< 0.01
VAF area, cm ²	$107 \ \pm \ 34$	$92 \ \pm 26$	$118 \ \pm \ 28$	0.081	$77 \ \pm \ 23$	$67 \ \pm \ 21$	$86 \ \pm \ 38$	0.321	$69 \ \pm 26$	$68 \hspace{0.1in} \pm \hspace{0.1in} 34$	81 ± 17	0.619
SAF area, cm ²	$250 \hspace{0.2cm} \pm \hspace{0.2cm} 71$	267 ± 53	378 ± 23	0.024	179 ± 60	$196 \ \pm 51$	267 ± 30	0.126	$211 \ \pm 58$	$213 \hspace{0.1in} \pm \hspace{0.1in} 66$	$346 \ \pm 12$	< 0.01
SBP, mmHg	123 ± 12	137 ± 24	139 ± 17	0.067	111 ± 13	$123 \hspace{.15cm} \pm \hspace{.15cm} 17$	$122 \hspace{.15cm} \pm \hspace{.15cm} 18$	0.033	$120\ \pm\ 10$	$130 \ \pm 16$	136 ± 22	0.036
DBP, mmHg	80 ± 7	$83 \ \pm 10$	87 ± 9	0.281	70 ± 8	75 ± 12	77 ± 9	0.230	77 ± 9	81 ± 13	82 ± 17	0.572
TC, mg/dl	$239 \ \pm 40$	$219\ \pm\ 30$	$228 \ \pm 27$	0.493	200 ± 38	206 ± 34	184 ± 32	0.791	$219\ \pm 40$	$217 \ \pm 36$	$212 \ \pm 43$	0.971
HDLC, mg/dl	60 ± 15	63 ± 13	57 ± 6	0.405	60 ± 12	64 ± 8	55 ± 5	0.206	64 ± 17	68 ± 12	55 ± 9	0.393
LDLC, mg/dl	153 ± 35	139 ± 27	$147 \ \pm \ 31$	0.550	126 ± 32	128 ± 33	$116 \ \pm \ 30$	0.935	136 ± 35	$131 \ \pm 31$	138 ± 44	0.784
TG, mg/dl	$136 \ \pm 116$	85 ± 33	$120 \ \pm 29$	0.471	67 ± 25	69 ± 17	61 ± 10	0.916	94 ± 46	$89 \ \pm 40$	96 ± 13	0.846
FPG, mg/dl	$94\ \pm\ 8$	$107 \hspace{.1in} \pm \hspace{.1in} 32$	$94 \ \pm 8$	0.174	$88\ \pm\ 8$	$87\ \pm\ 6$	91 ± 7	0.394	$93 \ \pm 8$	$98 \hspace{0.2cm} \pm \hspace{0.2cm} 14$	$104 \ \pm 9$	0.104

Table 1. Comparisons of measurement values across genotypes of FTO rs9939609

Values are presented as the mean \pm SD

AC, abdominal circumference; AA, homozygous minor allele carriers of rs9939609; BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDLC, high-density lipoprotein cholesterol; LDLC, low-density lipoprotein cholesterol; SAF, subcutaneous abdominal fat; SBP, systolic blood pressure; TA, heterozygous allele carriers of rs9939609; TAF, total abdominal fat; TC, total cholesterol; TG, triglycerides;

TT, homozygous major allele carriers of rs9939609; VAF, visceral abdominal fat

^a Values are adjusted for age and menstrual status except for age.

	Cha	inges from	n pre-intervent	ion to 5-y	ear follow-up		difference Changes from post-intervention to 5-year follow-up							difference	
	TT		ТА		AA		P ^b	TT		TA		AA		P^{c}	
	(n = 31)	P^{a}	(n = 12)	P^{a}	(n = 4)	P^{a}		(n = 31)	P^{a}	(n = 12)	P^{a}	(n = 4)	P^{a}		
Body weight, kg	-5.3 ± 4.3	< 0.01	-6.2 ± 4.3	< 0.01	-3.7 ± 2.4	0.056	0.099	3.4 ± 3.1	< 0.01	3.0 ± 3.9	0.021	9.0 ± 3.3	0.013	< 0.01	
BMI, kg/m ²	-2.0 ± 1.8	< 0.01	-2.2 ± 1.7	< 0.01	-1.1 ± 0.9	0.088	0.095	$1.7 \hspace{0.2cm} \pm \hspace{0.2cm} 1.3$	< 0.01	1.5 ± 1.7	< 0.01	3.8 ± 1.0	< 0.01	< 0.01	
AC, cm	-4.0 ± 4.8	< 0.01	-3.5 ± 5.7	0.056	-1.5 ± 2.8	0.364	0.111	$4.9 \hspace{0.2cm} \pm \hspace{0.2cm} 4.7$	< 0.01	$4.5 \hspace{0.2cm} \pm \hspace{0.2cm} 6.6 \hspace{0.2cm}$	0.036	$9.5 \hspace{0.2cm} \pm \hspace{0.2cm} 1.5$	< 0.01	0.037	
Percentage fat mass, %	-3.8 ± 5.1	< 0.01	-2.8 ± 7.9	0.248	-1.4 ± 7.7	0.739	0.024	$4.1 \hspace{0.2cm} \pm \hspace{0.2cm} 4.5 \hspace{0.2cm}$	< 0.01	5.6 ± 4.4	< 0.01	8.9 ± 3.1	0.011	0.034	
Fat mass, kg	-4.3 ± 5.3	< 0.01	-3.8 ± 5.8	0.043	$-2.7 \hspace{0.2cm} \pm \hspace{0.2cm} 6.6 \hspace{0.2cm}$	0.477	0.025	$3.4 \hspace{0.2cm} \pm \hspace{0.2cm} 3.8$	< 0.01	$4.4 \hspace{0.2cm} \pm \hspace{0.2cm} 3.7$	< 0.01	$9.7 \hspace{0.2cm} \pm \hspace{0.2cm} 2.8 \hspace{0.2cm}$	< 0.01	< 0.01	
Fat-free mass, kg	-1.0 ± 2.1	< 0.01	-2.4 ± 4.2	0.073	-1.0 ± 5.3	0.723	0.433	$0.0 \hspace{0.2cm} \pm \hspace{0.2cm} 1.6 \hspace{0.2cm}$	0.978	$-1.4 \hspace{0.2cm} \pm \hspace{0.2cm} 2.4 \hspace{0.2cm}$	0.069	-0.7 ± 2.4	0.578	0.192	
TAF area, cm ²	-77 ± 68	< 0.01	-77 ± 58	< 0.01	-70 ± 37	0.032	0.238	$24 \hspace{0.1in} \pm \hspace{0.1in} 56$	0.024	18 ± 64	0.354	$74 \ \pm 43$	0.042	0.018	
VAF area, cm ²	-38 ± 29	< 0.01	-25 ± 28	0.014	-38 ± 27	0.068	0.749	-8 ± 24	0.067	1 ± 24	0.870	-5 ± 23	0.667	0.771	
SAF area, cm^2	-39 ± 51	< 0.01	-52 ± 37	< 0.01	-32 ± 31	0.127	0.069	32 ± 45	< 0.01	$17 \hspace{0.1in} \pm \hspace{0.1in} 44$	0.217	$79 \ \pm \ 34$	0.019	< 0.01	
SBP, mmHg	-3 ± 12	0.127	-7 ± 16	0.151	-3 ± 7	0.527	0.384	9 ± 12	< 0.01	5 ± 12	0.193	14 ± 5	0.014	0.169	
DBP, mmHg	-2 ± 9	0.138	-3 ± 12	0.495	-5 ± 10	0.439	0.959	7 ± 9	< 0.01	5 ± 11	0.119	6 ± 8	0.241	0.957	
TC, mg/dl	-21 ± 36	< 0.01	-2 ± 29	0.855	-16 ± 35	0.439	0.749	19 ± 36	< 0.01	12 ± 36	0.264	29 ± 26	0.111	0.761	
HDLC, mg/dl	4 ± 8	0.013	5 ± 8	0.045	-2 ± 6	0.492	0.333	3 ± 14	0.193	4 ± 8	0.129	0 ± 8	1.000	0.747	
LDLC, mg/dl	-16 ± 37	0.190	-8 ± 30	0.403	-9 ± 35	0.655	0.941	10 ± 35	0.101	4 ± 33	0.668	22 ± 24	0.166	0.636	
TG, mg/dl	-42 ± 107	< 0.01	4 ± 42	0.772	-24 ± 25	0.152	0.926	27 ± 44	< 0.01	20 ± 35	0.069	36 ± 20	0.036	0.776	
FPG, mg/dl	-1 ± 8	0.480	-8 ± 24	0.252	10 ± 4	0.017	0.077	5 ± 9	< 0.01	12 ± 12	< 0.01	13 ± 5	0.012	0.123	

Table 2. Comparison of changes in values from pre-intervention to 5-year follow-up and post-intervention to 5-year follow-up across genotypes of FTO rs9939609

Values are presented as the mean \pm SD

AC, abdominal circumference; AA, homozygous minor allele carriers of rs9939609; BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDLC, high-density lipoprotein cholesterol; LDLC, low-density lipoprotein cholesterol; SAF, subcutaneous abdominal fat; SBP, systolic blood pressure; TA, heterozygous allele carriers of rs9939609; TAF, total abdominal fat; TC, total cholesterol; TG, triglycerides; TT, homozygous major allele carriers of rs9939609; VAF, visceral abdominal fat

^a Paired Student's t tests were performed to test the significance of changes in values.

^b Values are adjusted for age, menstrual status, and pre-intervention values.

^c Values are adjusted for age, menstrual status, and post-intervention values.