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Abstract: Satellite remote sensing is a highly useful tool for monitoring chlorophyll-a 

concentration (Chl-a) in water bodies. Remote sensing algorithms based on near-infrared-red 

(NIR-red) wavelengths have demonstrated great potential for retrieving Chl-a in inland 

waters. This study tested the performance of a recently developed NIR-red based algorithm, 

SAMO-LUT (Semi-Analytical Model Optimizing and Look-Up Tables), using an extensive 

dataset collected from five Asian lakes. Results demonstrated that Chl-a retrieved by the 

SAMO-LUT algorithm was strongly correlated with measured Chl-a (R
2
 = 0.94),  

and the root-mean-square error (RMSE) and normalized root-mean-square error (NRMS) 

were 8.9 mg∙m
−3

 and 72.6%, respectively. However, the SAMO-LUT algorithm yielded 

large errors for sites where Chl-a was less than 10 mg∙m
−3

 (RMSE = 1.8 mg∙m
−3

 and 

NRMS = 217.9%). This was because differences in water-leaving radiances at the NIR-red 

wavelengths (i.e., 665 nm, 705 nm and 754 nm) used in the SAMO-LUT were too small 

due to low concentrations of water constituents. Using a blue-green algorithm (OC4E) 

instead of the SAMO-LUT for the waters with low constituent concentrations would have 

reduced the RMSE and NRMS to 1.0 mg∙m
−3

 and 16.0%, respectively. This indicates  

(1) the NIR-red algorithm does not work well when water constituent concentrations are 
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relatively low; (2) different algorithms should be used in light of water constituent 

concentration; and thus (3) it is necessary to develop a classification method for selecting 

the appropriate algorithm.  

Keywords: chlorophyll-a concentration; NIR-red algorithms; blue-green algorithms;  

Asian lakes; accuracy assessment 

 

1. Introduction 

Inland waters play an important role in human lives, providing water for drinking, irrigation, and 

industrial use. With satellite remote sensing, the state of inland waters can be monitored through 

synoptic observations collected at frequent intervals. Generally, remote sensing of inland waters is much 

more difficult than that of open oceans. This is because the optical properties of inland waters are not 

determined only by phytoplankton (like open oceans), but are also strongly influenced by other 

constituents (i.e., non-algal particles [NAP] and colored dissolved organic matter [CDOM]). As a result, 

inland waters have more complex optical properties. Both NAP and CDOM have larger absorptions at 

the blue and green spectral regions, and thus make these bands inappropriate for retrieving chlorophyll-a 

concentration (Chl-a) in many inland waters [1–6].  

To address this problem, several indices have been proposed to remove or minimize the effects of 

NAP and CDOM based on use of remote sensing reflectance at the red and near infrared (NIR) spectral 

regions (NIR-red algorithms, [1,2,7–9]). However, two challenges remain. First, although the design of 

these indices was based on theoretical studies of the inherent optical properties (IOP) of inland and 

coastal waters, Chl-a estimation models were still empirically calibrated through regression analyses of 

the proposed indices and measured Chl-a. Therefore, the developed Chl-a estimation models strongly 

depend on the calibration dataset used. Ideally, the calibration dataset used does not have a sampling 

bias. Practically, however, it is difficult to collect enough water samples to represent all the water 

conditions in the world, and thus the applicability of the models will be limited. Second, the proposed 

indices were developed based on several specific assumptions, some of which may not be valid in highly 

turbid lakes such as Lake Taihu and Lake Dianchi in China and Lake Kasumigaura in Japan [10–12]. 

Recently, Yang et al. proposed a semi-analytical model-optimizing and look-up-table (SAMO-LUT) 

method [11], which can potentially estimate Chl-a in wide range of inland waters. Since the 

SAMO-LUT was proposed based on three wavelengths—665 nm, 708 nm and 753 nm—for Chl-a 

estimation, it is a NIR-red algorithm. In the SAMO-LUT algorithm, a comprehensive synthetic dataset 

of reflectance spectra related to various combinations of water constituents with a wide dynamic range 

was used to calibrate the Chl-a estimation model, instead of an in situ dataset. It thus improved the 

applicability of the model. In addition, a different assumption—i.e., concentrations of NAP and CDOM 

are constants—was adopted to further minimize the effects due to the previous assumptions. The new 

assumption may not be valid in real waters, but can be valid in simulated cases. Chl-a estimation models 

were then prepared in advance for various combinations of NAP and CDOM, which were increased in 

small increments, and saved in a look-up-table (LUT). An iterative search strategy was used to obtain the 
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most appropriate Chl-a estimation model for a given pixel. A more detailed description of the 

SAMO-LUT algorithm can be found in Section 3 and in the previous study [11]. 

Although the SAMO-LUT algorithm has been validated in Lake Dianchi, China, and Lake 

Kasumigaura, Japan, further validation is necessary to determine both the advantages and potential 

limitations of the algorithm. The present study had three objectives: (1) to evaluate the performance of 

the SAMO-LUT algorithm using a more extensive dataset collected from five Asian lakes (three in 

Japan and two in China); (2) to determine whether the fixed Specific Inherent Optical Properties (SIOPs, 

collected from Lake Dianchi) affected the accuracy of the SAMO-LUT algorithm in Chl-a estimation 

for other lakes; and (3) to provide recommendations for the operational application of the SAMO-LUT 

algorithm for remote monitoring of Chl-a in inland waters. 

2. Study Areas 

The data used in this study were collected from five Asian lakes (Figure 1), which cover trophic 

categories from oligotrophic to hypertrophic. The first is Lake Biwa, which is located in the western part 

of Japan (35.33°N, 136.17°E, Shiga Prefecture). It is the largest freshwater lake in Japan with a surface 

area of 670 km
2
, a maximum depth of 104 m, and an average depth of 41 m. Lake Biwa serves as 

reservoir for the cities of Kyoto and Ōtsu, and provides drinking water for about 15 million people in the 

Kansai region. It is also a valuable water resource for many kinds of nearby textile industries. 

Water quality in the lake is currently good, and it belongs to the oligotrophic category. 

The second is Lake Suwa, which is located in the central part of Japan (36.05°N, 138.08°E, Nagano 

Prefecture). It has a surface area of 13.3 km
2
, an average depth of 4.7 m, and a maximum depth of 7.2 m. 

In the 1960s, the lake underwent a very rapid hypertrophication. This was caused by the spectacular 

growth of industrial activity around the lake, and is indicated by heavy blooms of blue-green algae. Water 

quality has been remarkably improved since the end of 1990s, thanks to effective management. Therefore, 

the current trophic status of the lake is close to the boundary between mesotrophic and eutrophic. 

The third lake is Lake Kasumigarua, situated in the eastern part of Japan’s Kanto plain 

(36.03°N, 140.40°E, Ibaraki Prefecture). It is Japan’s second largest lake, with a surface area of 171 km
2
, 

an average depth of 4 m, and a maximum depth of 7.3 m (only for Nishiura). This lake is considered 

hypertrophic because of its high loads of nutrients and shallow depth [13]. Although average Chl-a has 

decreased from 87 to 61 mg∙m
−3

 during the past three decades, the mean total phosphorus concentration 

increased from 116 to 138 mg∙m
−3

. Secchi disk depth decreased from 70 to 52 cm in the last twenty 

years [14]. Total suspended sediment (TSS) concentrations increased from 14.1 to 26.4 g∙m
−3

 during the last 

decade, due mainly to the resuspension of bottom sediments [15]. Diatoms (e.g., Cyclotella sp. or 

Synedra sp.) are generally observed during winter, spring, and autumn, while harmful blooms (blue 

green algae, e.g., Microcystis sp. or Anabaena sp.) are sometime observed during summer. The 

concentration of dissolved organic carbon (DOC), which is often correlated with CDOM concentration, 

is always low (2.9–4.2 g∙m
−3

; [13,16]) compared to lakes such as Lake Taihu (8.8–20.2 g∙m
−3

 in [17]) and 

Finnish lakes (6.0–12.3 g∙m
−3

 in [18]). The absorption coefficients of CDOM at 420 nm ranged from 0.5 to 

0.6 m
−1

 when DOC concentrations ranged from 1.9 to 2.7 g∙m
−3

 [14], which was lower than the absorption 

coefficients of CDOM at 420 nm in Finnish lakes (1.7–7.7 m
−1

; [18]). 

The fourth lake in our database is Lake Dianchi, located in a plateau area of the southwestern part of 

China (24.83°N, 102.72°E). It has a surface area of 300 km
2
 and is the largest lake in Yunnan Province, 
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with an average depth of 4.3 m, and a maximum depth of 11.3 m. Eutrophication has become more and 

more serious in the lake over the past 20 years due to the large quantities of industrial wastewater and 

municipal sewage discharged into it. Algal blooms occur frequently from April to November each year [19]. 

The trophic status of Lake Dianchi also belongs to the hypertrophic category. 

The fifth and final lake is Lake Erhai (25.82°N, 100.18°E), which is the second largest lake in the 

Yunnan Province of China. It has a surface area of 249 km
2
, an average depth of 11 m, and a maximum 

depth of 21 m. Lake Erhai is an important drinking water resource for the local people, supplying 

drinking water of 8.3 × 10
4
 m

3
 per day. It is also utilized for local industries, irrigation, and domestic 

water in the coastal area. During the past 30 years of rapid economic development and increasing 

population, Lake Erhai has faced a serious threat of intensive eutrophication due to anthropogenic inputs 

and overuse [20]. The water quality status of Lake Erhai is already at the initial stage of eutrophication, 

with organic matter and phytoplankton biomass increasing rapidly, and cyanobacteria blooms breaking 

out in the embayment and some parts of the lake. 

Figure 1. Distribution of sampling sites in Lakes Erhai and Dianchi of China; and Lakes 

Biwa, Suwa and Kasumigaura of Japan.  
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3. Materials and Methods 

3.1. Data Collection 

Water samples and corresponding reflectance spectra were collected from Lake Biwa in a campaign 

undertaken in October 2011 (10 sites available); from Lake Suwa in a campaign in July 2010 (8 sites); 

from Lake Kasumigaura in February 2006, August 2008, and May 2010 (46 sites). Data collection was 

also carried out in Lake Dianchi in October 2007, July 2008, and July 2009 (28 sites). In Lake Erhai, 

there were two field campaign—one in September 2011 and the other in July 2012. In each field 

campaign, the investigation was performed at 21 sites (42 sites in total).  

Reflectance was measured between 10:00 and 14:00 local time. All measurements were taken over 

optically deep water with depths larger than Secchi disk depth; floating scum was not found at these 

sampling sites. The water-leaving radiance (Lu(λ)), the downward irradiance (Ed(λ)), and the downward 

radiance of skylight (Lsky(λ)) were measured at each site using a FieldSpec HandHeld spectroradiometer 

(Analytical Spectral Devices, Inc., Boulder, CO, USA) in the range of 325 to 1075 nm at 1-nm intervals. 

The above-water remote-sensing reflectance (Rrs(λ)) was calculated approximately using the following 

equation [21]: 
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where Cal(λ) is the spectral reflectance calibration factor for the Spectralon reflectance panel, and r is 

the reflectance of skylight determined as a function of wind speed [21].  

Water samples were collected at each site, and taken to laboratory within approximately 0.5–1.5 h 

after the field investigation. Chlorophyll-a was extracted using methanol (100%) at 4 °C for 24 h under 

dark conditions. The absorbance of the extracted chlorophyll-a was measured at four wavelengths 

(750, 663, 645 and 630 nm), and the concentrations were calculated according to SCOR-UNESCO 

equations [22]. The concentrations of total suspended solids (TSS), organic suspended solids (OSS), and 

inorganic suspended solids (ISS) were determined gravimetrically. Samples were filtered through 

pre-combusted Whatman GF/F filters at 500 °C for 4 h to remove dissolved organic matter in 

suspension, and then dried at 105 °C for 4 h and weighed to obtain TSS. The filters were re-combusted at 

500 °C for 4 h and then weighed again to obtain ISS. OSS was derived by subtracting ISS from TSS. The 

absorption coefficient of CDOM was measured using a Shimadzu UV-2450 spectrophotometer after the 

water sample was filtered. The absorption coefficients of phytoplankton (aph) were measured according to 

the quantitative filter technique [23]. The aph data were available only for the stations collected after 2009. 

3.2. SAMO-LUT Method 

The basic idea of the SAMO-LUT involves the use of an imaginary case II body of water, in which 

only one constituent changes while the other two are controlled as constants [11]. A comprehensive 

synthetic dataset was used for model calibration, rather than in situ data. In this way, we hoped to obtain 

not only a large number of samples without a sampling bias for model calibration, but also a series of 

special cases to avoid effects from other constituents and thus improve model performance 

(e.g., a dataset only with various Chl-a while concentrations of NAP and CDOM are constants).  

The procedures of the SAMO-LUT are summarized as follows: 
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Step 1: Generation of simulation dataset. The Rrs spectra were generated based on the SIOPs from 

target water and a bio-optical model. In the present study, only the SIOPs collected from Lake Dianchi 

were used due to the lack of complete SIOPs data for other lakes. We felt it would be worthwhile to 

examine how the SIOPs affected the accuracy of the SAMO-LUT algorithm. The concentrations of 

Chl-a and NAP (i.e., tripton in the original paper), as well as the absorption coefficient of CDOM at 

440 nm were varied in a wide range of 1–300 mg∙m
−3

 (31 values), 1–250 g∙m
−3

 (28 values) and 0.1–10 m
−1

 

(23 values), respectively. In all, 19,964 sample spectra were generated [11]. 

Step 2: Computation of selected semi-analytical indices. Three semi-analytical indices were selected 

for the estimation of Chl-a, NAP and CDOM, based on their reasonableness and performance. The 

selected indices were: a three-band index ([1/Rrs(665) − 1/Rrs(708)]*Rrs(753)) for Chl-a, remote-sensing 

reflectance for the band centered 753 nm, Rrs(753), for NAP, and the band-ratio Rrs(560)/Rrs(665) for 

CDOM ([2,24]). The synthetic reflectances were resampled to the bandwidths of the MERIS (Medium 

Resolution Imaging Spectrometer) sensor based on its spectral response function, and then calculated as 

the selected indices.  

Step 3: Construction of look-up tables. We constructed three 2-dimensional look-up tables containing 

the coefficients of the estimation model for one constituent of interest, determined by the concentrations 

of the other two constituents. For instance, for the estimation of Chl-a, increments of 1 mg∙m
−3

 for NAP 

and of 0.1 m
−1

 for CDOM were respectively used in the ranges of 1–250 mg∙m
−3

 and 0.1–10 m
−1

, 

and the regression coefficients corresponding to different combinations of NAP and CDOM were stored 

in the LUT. 

Step 4: Initial estimations of Chl-a and NAP. We derived initial values of Chl-a and NAP using  

two general estimation models obtained through regression analysis between the simulated reflectance 

and corresponding Chl-a and NAP. The two general estimation models were: 

95.23)(86.223Chl rs,753

1

rs,708

1

rs,665

_   RRRa
 (2) 

74.438.6149909 rs,753

2

rs,753  RRNAP
 (3) 

The calculated initial Chl-a and NAP were then used to estimate initial CDOM through a prepared 

LUT in Step 3. 

Step 5: Iteration to select more appropriate model coefficients. The estimation models were improved 

according to the initial Chl-a, NAP, and CDOM. After that, the refined Chl-a, NAP, and CDOM were 

obtained by using the improved estimation models. 

Step 6: End of iteration. We found a more appropriate estimation model from the LUTs for each 

water constituent through the iterative use of the newly obtained Chl-a, NAP and CDOM. The iteration 

was stopped when the difference between the current and last output was sufficiently small. Generally, 

the differences become stable after the 10th iteration. 

3.3. Conventional 3-Band Index-Based Estimation Model 

For comparison analysis, a conventional 3-band index-based linear model (Simple 3-band Model), 

calibrated by the same simulated dataset used in the SAMO-LUT, was also applied to the validation 

datasets ([11]). This model was used as the initial estimation of Chl-a in the SAMO-LUT method  

(i.e., Equation (2)). The comparison between this method and the SAMO-LUT can demonstrate how the 
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iteration process in the SAMO-LUT method influences the estimation of Chl-a. In addition, it is worth 

noting that the slope and intercept of this linear model were close to those of the models proposed by the 

previous studies (e.g., 232.29 for slope and 23.174 for intercept in [9]).  

3.4. Accuracy Assessment 

Four indices (i.e., the root mean square error [RMSE], normalized root mean square error [NRMS], 

mean normalized bias [MNB], and normalized mean absolute error [NMAE]) were used in accuracy 

assessment [2,8]. These indices are defined as follows: 
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where Xesti,i and Xmeas,i are the estimated and measured Chl-a, respectively; N is the number of samples; 

and εi = 100 × (Xesti,i − Xmeas,i)/Xmeas,i is the percent difference between the estimated and measured 

Chl-a. The NRMS denotes the relative random uncertainty of the results, the MNB denotes the average 

bias in the estimation, and the NMAE denotes the average relative error in the estimation. 

The correlation between the measured and estimated values was also calculated. 

4. Results  

4.1. Water Constituent Concentrations and Spectral Reflectance Properties 

Table 1 contains descriptive statistics of the water constituent concentrations for the five lakes. Lake 

Biwa was the clearest, with mean Chl-a and TSS concentrations of 2.2 mg∙m
−3

 and 1.0 g∙m
−3

, 

respectively, followed by Lake Suwa (mean Chl-a of 11.4 mg∙m
−3

 and mean TSS of 5.4 g∙m
−3

), Lake 

Erhai (mean Chl-a of 19.6 mg∙m
−3

 and mean TSS of 5.8 g∙m
−3

), and Lake Kasumigaura (mean Chl-a of 

66.5 mg∙m
−3

 and mean TSS of 24.5 g∙m
−3

). Lake Dianchi had the highest turbidity, with mean Chl-a and 

TSS concentrations of 87.7 mg∙m
−3

 and 37.4 g∙m
−3

, respectively. All five lakes showed low absorption 

coefficients of CDOM at 440 nm, with measures ranging from 0.15–3.98 m
−1

 (most were less than 

1 m
−1

). The overall Chl-a of the five lakes varied by two orders of magnitude in the range of  

1.8–153.9 mg∙m
−3

. Except for Lake Suwa, each lake showed larger spatial heterogeneity for Chl-a 

(coefficient of variation larger than 19.3%). These datasets encompassed varying optical conditions and 

trophic statuses (from oligotrophic to hypertrophic), and thus can provide a thorough assessment of the 

SAMO-LUT method.  
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Table 1. Statistical description of water constituent concentrations for Lakes Biwa, Suwa, 

Erhai, Kasumigaura and Dianchi. 

  Chl-a (mg∙m
−3

) TSS (g∙m
−3

) ISS (g∙m
−3

) OSS (g∙m
−3

) CDOM (m
−1

) 

Biwa 

Min 1.81 0.77 0.45 0.31 0.15 

Max 2.90 1.99 1.49 0.49 0.26 

Mean 2.21 1.01 0.64 0.38 0.21 

Median 2.02 0.87 0.55 0.34 0.20 

Stdev 0.43 0.37 0.31 0.07 0.03 

CV 19.33 36.61 49.24 19.33 15.64 

Suwa 

Min 9.79 4.81 1.21 3.30 0.41 

Max 11.37 6.06 2.19 4.79 0.48 

Mean 10.72 5.37 1.65 3.72 0.44 

Median 10.86 5.42 1.56 3.59 0.44 

Stdev 0.63 0.43 0.40 0.45 0.02 

CV 5.87 8.02 24.37 12.12 5.38 

Erhai 

Min 9.68 3.54 0.17 2.87 0.33 

Max 36.08 11.29 1.62 10.63 0.56 

Mean 19.58 5.75 0.78 4.98 0.41 

Median 18.73 5.64 0.83 5.08 0.40 

Stdev 5.92 1.70 0.40 1.61 0.06 

CV 30.20 29.45 51.51 32.30 13.49 

Kasumigaura 

Min 36.60 11.65 3.10 4.39 0.51 

Max 95.02 47.90 37.30 11.70 1.78 

Mean 66.47 24.45 16.31 8.13 0.90 

Median 67.88 21.92 14.50 8.42 0.92 

Stdev 19.48 8.24 7.28 2.36 0.29 

CV 29.30 33.70 44.65 29.03 32.04 

Dianchi 

Min 30.21 24.50 0.50 4.47 0.41 

Max 153.92 55.00 42.27 46.50 3.98 

Mean 87.74 37.38 12.39 24.98 1.25 

Median 84.56 37.42 6.50 27.00 0.96 

Stdev 29.16 7.80 11.79 11.49 0.84 

CV 33.23 20.86 95.12 46.01 66.87 

The reflectance spectra collected from the five lakes are shown in Figure 2. The reflectance spectra of 

Lake Biwa were similar to those collected from European lakes with low Chl-a and TSS (e.g., [25]), 

showing a unique peak in the green wavelength range (500–600 nm) and low magnitudes of the remote 

sensing reflectances along the visible and NIR spectral ranges (below 0.007 sr
−1

). For the other four 

lakes, reflectance in the blue wavelength range (400–500 nm) was remarkably lower than in the green 

wavelength range (500–600) due to the high absorptions of phytoplankton, NAP, and CDOM in the 

shorter wavelengths (e.g., [3,4,8]). Reflectance troughs around 620 nm can be seen in the reflectance 

spectra of Lakes Erhai, Kasumigaura and Dianchi, demonstrating the dominance of cyanobacteria in 

those bodies of water [26]. A second minimum was also found at around 675 nm, which corresponded to 

the red Chl-a absorption maximum. In addition to chlorophyll, the reflectance near 675 nm was also 

affected by absorption and scattering by other constituents. A noticeable peak between 690 and 715 nm 
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appeared in almost all spectra of the lakes except for Lake Biwa. This peak was the result of both high 

backscattering and a minimum in the absorption of all water constituents, including pure water [27,28]. 

Finally, reflectance in the NIR region (700–750 nm) varied widely, and was consistently comparable 

with that in the blue region. In the NIR region of the spectrum, reflectance is mostly controlled by the 

scattering of particulate matters. 

Figure 2. Remote-sensing reflectance collected from Lakes Biwa, Erhai, Suwa, Kasumigaura 

and Dianchi. 
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Figure 3. Comparison of the measured and estimated Chl-a by the SAMO-LUT for 

Lake Dianchi, China. 
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4.2. Performance of the SAMO-LUT Algorithm for Each Lake 

Figure 3 shows the comparison between the measured Chl-a and that estimated by the SAMO-LUT 

method for Lake Dianchi, China. The SAMO-LUT yielded an estimation of very high accuracy, with 

RMSE, NRMS, MNB and NMAE of 7.39 mg∙m
−3

, 11.3%, 1.3% and 6.9%, respectively (Table 2). It is 

worth noting that the dataset for Dianchi was collected over three years, and that the accuracy for each 

year was comparable with the data points distributed around the 1:1 line (Figure 3).  

Table 2. Performance of the SAMO-LUT, Simple 3-band Model and OC4E for the 

estimation of Chl-a in Lake Dianchi, China. 

 RMSE (mg∙m
−3

) NRMS(%) MNB(%) NMAE(%) R
2
 Slope 

Lake Dianchi, China (N = 28)       

SAMO-LUT 7.39  11.3  1.3  6.9  0.94  0.998  

Simple 3-band model 8.81  13.73  3.08  8.04  0.91  0.931  

OC4E 79.14  8.7  -81.3  81.3  0.05  0.049  

As for Lake Kasumigaura, Japan, and Lake Erhai, China, the SAMO-LUT was able to estimate the 

Chl-a with acceptable accuracy (Figures 4 and 5); NRMS, MNB and NMAE were lower than 22%, 4% 

and 18%, respectively (Tables 3 and 4). The high turbidity of the two lakes guaranteed that the 

SAMO-LUT method would be applicable to the reflectance at NIR-red wavelength. However, the 

accuracy of the estimates for these two lakes was noticeably lower than that for Lake Dianchi. This was 

because the SAMO-LUT was calibrated by the SIOPs of lake Dianchi, which likely differed from those 

for lakes Kasumigaura and Erhai. 

Figure 4. Comparison of the measured and estimated Chl-a by the SAMO-LUT for 

Lake Kasumigaura, Japan. 
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Figure 5. Comparison of the measured and estimated Chl-a by the SAMO-LUT for Lake 

Erhai, China. 
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Table 3. Performance of the SAMO-LUT, Simple 3-band Model and OC4E for the 

estimation of Chl-a in Lake Kasumigaura, Japan. 

 RMSE (mg∙m
−3

) NRMS(%) MNB(%) NMAE(%) R
2
 Slope 

Lake Kasumigaura, Japan (N = 46)       

SAMO-LUT 13.26 18.4 −3.9 16.2 0.64 0.511 

Simple 3-band model 14.51 23.0 18.4 23.3 0.63 0.551 

OC4E 59.60 13.1 −78.8 78.8 0.50 −0.143 

Table 4. Performance of the SAMO-LUT, Simple 3-band Model and OC4E for the 

estimation of Chl-a in Lake Erhai, China. 

 RMSE (mg∙m
−3

) NRMS(%) MNB(%) NMAE(%) R
2
 Slope 

Lake Erhai, China (N = 42)       

SAMO-LUT 3.88 21.2 −2.8 17.1 0.71 1.025 

Simple 3-band model 5.67 30.3 −19.4 26.6 0.74 1.306 

OC4E 12.28 18.4 −50.1 50.3 0.01 0.047 

Figure 6 shows the comparison between the measured and estimated Chl-a by SAMO-LUT for Lake 

Suwa. Compared with Lakes Kasumigaura and Erhai, the accuracy of SAMO-LUT was further reduced, 

with increasing NRMS, MNB and NMAE values of 23.9%, 8.3% and 19.8%, respectively (Table 5). 

Moreover, the correlation between measured and estimated Chl-a was statistically insignificant with 

very low R
2
, which was probably due to the small dynamic range of Chl-a. It should be noted that the R

2
 

is shown here just for reference, but not for accuracy assessment. The reduced performance of 



Remote Sens. 2014, 6 3503 

 

 

SAMO-LUT in Lake Suwa was due to the decreased signal-to-noise ratio (SNR) at the NIR-red spectral 

regions owing to the low concentrations of phytoplankton and TSS (Table 1). 

Figure 6. Comparison of the measured and estimated Chl-a by the SAMO-LUT for Lake 

Suwa, Japan. 

Lake Suwa, Japan

(July 2010)
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Table 5. Performance of the SAMO-LUT, Simple 3-band Model and OC4E for the 

estimation of Chl-a in Lake Suwa, Japan. 

 RMSE (mg∙m
−3

) NRMS(%) MNB(%) NMAE(%) R
2
 Slope 

Lake Suwa, Japan (N = 8)       

SAMO-LUT 2.77 23.9 8.3 19.8 0.0004 −0.078 

Simple 3-band model 4.72 32.2 −31.3 33.5 0.0007 0.147 

OC4E 1.73 15.6 −1.0 12.2 0.0033 0.151 

Figure 7 shows the comparison between the measured and estimated Chl-a in Lake Biwa by the 

SAMO-LUT method. Results showed that the SAMO-LUT yielded very large errors in this lake  

(see Table 6, RMSE = 5.9 mg m
−3

, NRMS = 141.5%, and MNB = 221.8%). The very weak correlation 

between the estimated and measured Chl-a (R
2
 = 0.07) indicated that the Chl-a estimated by 

SAMO-LUT could not explain actual Chl-a variation in Lake Biwa. This was because the concentrations 

of water constituents in the Lake Biwa were very low, and thus could not provide enough SNR for 

water-leaving reflectances at NIR-red spectral regions. This was despite the fact that, in theory, the 

SAMO-LUT can be used for such low concentrations [11].  
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Figure 7. Comparison of the measured and estimated Chl-a by the SAMO-LUT for Lake 

Biwa, Japan. 

Lake Biwa, Japan
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Table 6. Performance of the SAMO-LUT, Simple 3-band Model and OC4E for the 

estimation of Chl-a in Lake Suwa, Japan. 

 RMSE (mg∙m
−3

) NRMS(%) MNB(%) NMAE(%) R
2
 Slope 

Lake Biwa, Japan (N = 10)       

SAMO-LUT 5.90 141.5 221.8 221.8 0.07 1.953 

Simple 3-band model 20.84 276.83 −917.58 917.58 0.11 −4.39 

OC4E 0.30 12.3 −1.1 9.4 0.54 0.592 

4.3. Performance of the Simple 3-Band Model 

The evaluation indexes for the Chl-a estimations using the Simple 3-band Model are also 

summarized in Tables 2–6. It can be seen that the Simple 3-band Model yielded remarkably lower 

accuracy for Lake Dianchi compared with the SAMO-LUT algorithm, with RMSE, NRMS, MNB and 

NMAE increased from 7.39 mg/m
3
, 11.3%, 1.3% and 6.9% to 8.81 mg/m

3
, 13.73%, 3.08% and 8.04%, 

respectively (Table 2). For the other two turbid lakes, Kasumigaura and Erhai, the SAMO-LUT also 

significantly outperformed the Simple 3-band Model, with much lower values of NRMS, MNB and 

NAME (Tables 3 and 4). These results indicate that the iteration process based on the look-up tables 

used in the SAMO-LUT method can effectively improve Chl-a estimation for turbid lakes with 

adequately high SNR in the NIR-red spectral regions. For Lake Suwa, a water body with relatively low 

turbidity, the Simple 3-band Model yielded very low accuracy, with values of NRMS, MNB and NAME 

larger than 30% (Table 5). Especially in the case of Lake Biwa, a body of water with fairly low loads of 

suspended solids, the Simple 3-band Model generated negative estimations for Chl-a, and consequently 
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very large values of RMSE, NRMS, MNB and NMAE (over 300%, as shown in Table 6). It demonstrated 

again that the NIR-red bands-based methods do not work well for relatively clear waters.  

4.4. Application of a Blue-Green Algorithm to Clear Waters 

Since the SAMO-LUT and the Simple 3-band Model both yielded high errors in estimating Chl-a in 

relatively clear lakes like Suwa and Biwa, we tested a blue-green algorithm (OC4E, [29]) for these two 

lakes. The OC4E has been widely used for estimating Chl-a in case-1 waters using water-leaving 

reflectances at blue-green spectral regions (443, 490, 520, and 565 nm).  

Figure 8 shows the comparison between the measured and estimated Chl-a by the OC4E for Lakes 

Suwa and Biwa. In the case of Lake Suwa, the OC4E performed slightly better than the SAMO-LUT 

(Table 5, RMSE: 1.7 mg∙m
−3

 vs. 2.8 mg∙m
−3

; NRMS: 15.6% vs. 23.9%; MNB −1.0% vs. 8.3%). Neither 

SAMO-LUT nor OC4E showed a significant correlation between the estimated and measured Chl-a in 

the lake. This was because of the small Chl-a variation among the sites (Table 1, CV = 5.9%). 

In contrast, the OC4E algorithm promised an accurate Chl-a estimation in Lake Biwa with an RMSE of 

0.3 mg∙m
−3

 and NRMS of 12.3%, as well as a small bias in the estimation (MNB = −1.1%, Table 6). 

The OC4E also explained 54% of the Chl-a variation in Lake Biwa even though the data had a narrow 

dynamic range (Chl-a ranging from 1.81–2.90 mg∙m
−3

). This was likely because the effects of NAP and 

CDOM at the blue-green spectral regions were negligible in Lake Biwa due to the lower concentrations 

of NAP and CDOM (Table 1). We also tested the performance of OC4E for turbid waters (i.e., Lakes 

Dianchi, Kasumigaura and Erhai). The accuracy evaluation indexes are summarized in Tables 2–4. 

The OC4E not only produced a large underestimation (MNB ranging from −50.1% to −81.3%), but also 

could not present Chl-a variation for these lakes (very low determination coefficients except for Lake 

Kasumigaura, which showed a higher negative correlation). 

Figure 8. Comparison of the measured and estimated Chl-a by the OC4E algorithm for Lakes 

Suwa and Biwa, Japan. 
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The above results were not surprising. Previous studies have pointed out that water-leaving 

reflectances at blue-green spectral regions are influenced not only by phytoplankton but also by NAP 

and CDOM, and thus the OC4E fails in turbid productive waters [1,2,8,9,11]. To reduce the effects of 

NAP and CDOM for Chl-a estimation, these previous studies suggested the use of water-leaving 

reflectances at the NIR-red spectral regions. The SAMO-LUT was specifically designed based on these 

spectral regions [11]. The high concentrations of TSS in these three lakes improved SNR in the NIR-red 

spectral regions, and thus promised accurate estimations for Chl-a. 

5. Discussion 

One advantage of the SAMO-LUT algorithm is that the model calibration process requires a 

minimum of field data [11]. In the SAMO-LUT, only the SIOPs of water constituents must be collected 

from the target water. After that, a comprehensive synthetic dataset is generated based on the obtained 

SIOPs and a bio-optical model; and the LUTs are constructed to save the coefficients of water 

constituent estimation models (e.g., Chl-a estimation models). Yang et al. suggested that the LUTs should 

be reconstructed if the SAMO-LUT algorithm was applied to a water body with different SIOPs [11]. 

In practice, the SIOPs do change according to the dominant phytoplankton species in water bodies. For 

example, the dominant phytoplankton species changed seasonally in Lake Kasumigaura [14]. Generally, 

Cyanophyceae is the dominant species during the summer season, while Bacillariphyceae is dominant from 

autumn to spring. Therefore, the SIOPs changed accordingly [30]. The dominant phytoplankton species in 

Lakes Erhai and Dianchi were Cyanophyceae during the field surveys [31].  

In this study, the SIOPs collected from Lake Dianchi in July 2009 were used to construct LUTs, 

which were then applied to other periods of Lake Dianchi and other lakes without any adjustment. The 

results in Section 4.2 showed that the SAMO-LUT algorithm was able to achieve acceptable accuracy 

for all tested cases, with NMAE less than 20%, except for Lake Biwa. These findings indicate that not 

only did the variation of SIOPs not affect the performance of the SAMO-LUT dramatically, but also that 

the use of a comprehensive synthetic dataset for model calibration can prevent the uncertainty in 

estimation models caused by sampling bias. Our results thus present a strong case for the use of the 

SAMO-LUT algorithm as an operational method for estimating Chl-a from remote sensing data. 

Moreover, the best performance of the SAMO-LUT algorithm in Lake Dianchi and its slightly degraded 

performance in Lake Kasumigaura in February 2006 suggest that the algorithm has the potential to 

provide more accurate Chl-a estimation if the SIOPs of the target water were available.  

We do not believe, however, that the failure of the SAMO-LUT algorithm in the cases of Lakes Biwa 

and Suwa were caused by the differences in SIOPs between them and Lake Dianchi. In the other words, 

the performance of the SAMO-LUT algorithm would not have been satisfactorily improved had SIOPs 

been collected from these two lakes. From Figure 2 it can be seen that the Rrs in the red-NIR spectral 

region of Lakes Biwa and Suwa are much lower than those of the other three lakes. Weak signals from 

water bodies with too low TSS will be hidden by environmental noise, and thus cannot provide enough 

information for estimating water constituents. Therefore, the SNR at selected red-NIR bands used in the 

SAMO-LUT algorithm are not applicable to relatively clear waters. Alternatively, for clear waters with 

negligible effects of NAP and CDOM, a blue-green algorithm (e.g., OC4E) can be used to replace the 

NIR-red algorithms (e.g., Lakes Biwa and Suwa) because the signals in blue-green spectral regions 
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remain strong even for this kind of water. A classification method for selecting an appropriate algorithm 

in the case of different types of water is needed.  

On the other hand, the SAMO-LUT algorithm was developed based on the bandwidths of Mediun 

Resolution Imaging Spectrometer (MERIS). The most important prerequisite is the band around  

708 nm, as used in the three-band index. Therefore, it can be directly applied to water-color sensors with 

configurations similar to MERIS, such as the Ocean and Land Color Instrument (OLCI, [32]), 

the Hyperspectral Infrared Imager (HyspIRI, [33]) or the Airborne Imaging Spectrometer for 

Applications (AISA, [5]). Extension of the SAMO-LUT method to more satellite sensors without the 

708 nm band, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), and the 

Sea-viewing Wide Field-of-view Sensor (SeaWiFS), will be carried out in future studies.  

6. Conclusions 

The performance of the Semi-Analytical Model Optimizing and Look-Up Table (SAMO-LUT), 

a recently developed algorithm for estimating Chl-a in inland waters, was evaluated using an extensive 

dataset collected from five Asian lakes in which the concentrations of total suspended solids varied from 

0.77 to 55.00 g∙m
−3

. Results showed that the SAMO-LUT algorithm was able to provide acceptably 

accurate estimates for all cases but one, with normalized mean absolute error (NMAE) less than 20% 

(the exception was Lake Biwa). This was the case even though the specific inherent optical properties 

(SIOPs) from Lake Dianchi were used for all lakes. These findings indicate that a variation in SIOPs 

does not significantly affect the performance of the SAMO-LUT algorithm, and thus it has the potential 

to be an operational method for estimating Chl-a from remote sensing data. The failure of the 

SAMO-LUT algorithm in the case of Lake Biwa (NMAE of 221.8%) was mainly to the lack of sufficient 

signals from water-leaving reflectances at the NIR-red spectral regions, due to very low concentrations 

of Total Suspended Solids in the water, rather than to the use of SIOPs from Lake Dianchi in the 

algorithm. To overcome this problem, a blue-green algorithm such as the OC4E could be used to replace 

the SAMO-LUT algorithm for estimating Chl-a concentration in Lake Biwa, which could reduce the 

NMAE to 9.4%. It is therefore necessary to develop a classification method in future for selecting the 

appropriate algorithm for different cases of waters. 
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