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Chapter 1 General Introduction 

1.1 Pseudomonas aeruginosa and its clinical significance 

Pseudomonas aeruginosa is a ubiquitous microorganism existing in various 

environments, and it could be isolated from a variety of living sources such as plants, 

soil, animals and humans. P. aeruginosa has the ability of surviving limited 

nutritional habitats and has the tolerance for various conditions, allowing to persist in 

both community and hospital devices. In the hospital, P. aeruginosa can live on 

respiratory therapy settings, soap, sinks, mops, medicines, as well as hydrotherapy 

pools (1). In fact, P. aeruginosa is a non-dominant member of the normal microbial 

flora in humans. Representative colonization rates for specific sites in humans are 0 to 

2% for skin, 0 to 3.3% for the nasal mucosa, 0 to 6.6% for the throat, and 2.6 to 24% 

for fecal samples (2) while they may exceed 50% during hospitalization (1) among 

patients who have suffered wound or damage in cutaneous and mucosal barriers by 

ventilation, tracheostomy, catheters, surgery, or severe burns (3-7). 

Immunocompromised patients have higher risks that are colonized by P. aeruginosa 

(1, 2), and disruption in the normal microbial flora as a result of antimicrobial therapy 
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has also been shown to increase colonization by P. aeruginosa (3, 8-9).  

Despite P. aeruginosa distributed widely in the natural environments and the 

potential for the acquisition of community infections, the most serious infections with 

P. aeruginosa are obtained in hospital. P. aeruginosa was identified as the fifth most 

frequently isolated nosocomial pathogen, occupying 9% of all the nosocomial 

infections in the United States (10-11). Recent studies reveal P. aeruginosa as the 

second most common reason for nosocomial pneumonia, health care-associated 

pneumonia, and ventilator-associated pneumonia (12-13) and the main cause of 

pneumonia among pediatric patients in the intensive care unit (ICU) (14). 

P. aeruginosa is very troublesome for seriously sick patients in ICUs. It was 

shown that P. aeruginosa was responsible for 21% of pneumonias, 13% of eye, ear, 

nose, and throat infections, 10% of urinary tract infections, and 3% of bloodstream 

infections within ICUs in the United States from 1992 to 1997 (15). Europe also 

executed a similar study, suggesting P. aeruginosa as the second most frequently 

isolated microorganism in reported cases of ICU-obtained infections (16). In this 

study, P. aeruginosa was responsible for 30% of pneumonias, 19% of urinary tract 
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infections, and 10% of bloodstream infections. 

1.2 Current policies on the therapy of P. aeruginosa caused infections 

One of the most serious chronic infections that caused by P. aeruginosa is cystic 

fibrosis (CF). There are thousands of different strains of P. aeruginosa, which can 

often be eliminated or kept at bay with early antibiotic treatment. However, there is 

some concern that people with CF may pick up strains of P. aeruginosa from each 

other that are more difficult to treat than those exist in the natural environment (17). 

Therefore, until now the developed countries such as England, Canada, and the 

United States have developed many specific policies for the treatment of CF. As a 

representative one, recently, England has passed a policy of inhaled therapy for adults 

and children with CF (18). This policy detailed the circumstances in which four 

named drugs (Aztreonam lysine, Colistimethate sodium, Dornase alpha and 

Tobramycin) to treat CF would be routinely funded. The policy specifically addressed 

the nebulized forms of these drugs. In this representative policy, the policy 

implementation guidance includes technology, provider type, current service currency, 

contracting implications, leader for implementation and recommended 
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implementation date. 

In general, the policies for treating Pseudomonas aeruginosa caused CF infection 

are comprehensive and effective. However, there still exist some problems. First, 

most of the policies are scattered, which means until now there is no uniform standard 

for the treatment of CF between countries or even between different places in one 

country. This kind of scatter may lead to a mass and misguiding of doctors when they 

are carrying out the treatment for CF patients. Second, some policies’ 

implementations are still not intact. For instance, the four Specialised Commissioning 

Groups (SCGs) in England agreed the policy for inhaled CF therapy (18), the 

implementation of which lack of current providers, impact of change, and financial 

implications. This kind of lack will lead to some possible hidden dangers in the future 

such as regulatory failure and the hospital may escape responsibility when medical 

dispute happens. Third, some detailed rules such as evidence summary should be 

more elaborate so that there is no leak to be exploited. 

Therefore, for improving current policies for the treatment of CF patients, the 

developed countries could initiate and lead the countries all over the world to 
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formulate the uniform standards and different detailed policies for the treatment of CF 

that caused by P. aeruginosa. In the meanwhile, all the countries could build 

cooperated database and share the relative information from the network. In addition, 

some special centers such as basic infection research center, drug discovery center, 

and clinical trail center could be founded for better therapy, especially for the patient 

that got serious infections. In correspondence, supervision mechanism should be 

developed and improved continually in these non-profit organizations. 

1.3 Quorum sensing and its regulation of virulence factors in P. 

aeruginosa 

P. aeruginosa is a highly environment-adaptable bacterium with a large dynamic 

genome (18), approximately 10% of which is appropriate for regulatory factors 

including a sophisticated cell-to-cell signaling system in a cell density-dependent 

manner known as quorum sensing (QS) (19). QS describes the phenomenon whereby 

the accumulation of signaling molecules in the surrounding circumstance enables a 

single cell to sense the cell density, and therefore the population as a whole can make 

a coordinated response. The signal molecule regulates its own production 
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(autoinduction), leading to a positive feedback and greatly increased signal production. 

At critical cell densities, the binding of a regulator protein to the signal results in the 

switch on of genes controlled by QS and a coordinated population response (21). In P. 

aeruginosa, QS is essential for regulating swarming motility, virulence determinants 

production, biofilm formation, and the expression of antibiotic efflux pumps while the 

QS signal molecules involved also directly contribute to the outcome of host pathogen 

interactions. 

There are two important QS systems in P. aeruginosa: the N-acyl-L-homoserine 

lactones (AHLs) based system and the 2-alkyl-4-quinolone (AQ)-dependent system. 

The core of AHLs system consists of the lasRI and rhlRI genes where LasR and RhlR 

are members of the LuxR family of transcriptional regulators that specifically bind to 

N- (3-oxododecanoyl) homoserine lactone (3-oxo-C12-HSL) and 

N-butanoylhomoserine lactone (C4-HSL), respectively (Fig. 1) (22-23). The las and 

rhl systems regulate over 10% of the P. aeruginosa genome (23) and are organized as 

a hierarchy in which LasR/3-oxo-C12-HSL drives the expression of lasI as well as 

rhlRI (22). In addition, AQ-dependent QS system employs 
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2-heptyl-3-hydroxy-4-quinolone (PQS) and its precursor 2-heptyl-4-quinolone (HHQ) 

as signal molecules (Fig. 1) (24-25). Both AHLs based and AQ-dependent QS 

systems are involved in the regulation of a large number of genes, many of which 

code for virulence factors. For example, the las system controls the production of 

multiple virulence factors, including the LasA and LasB elastases, exotoxin A, and 

alkaline protease (26-29). The rhl system could induce the expression of several genes 

that regulating rhamnolipids production, and inhibiting those responsible for assembly 

and function of the type Ⅲ secretion system (T3SS), a major virulence factor that 

allows the release of toxic proteins into the cytoplasm of eukaryotic cells (30). The 

AQ-dependent system controls the production of pyocyanin, lectin, rhamnolipids, and 

hydrogen cyanide (HCN) (31-32). 

1.4 Aim of this study 

Since P. aeruginosa is refractory especially during chronic infections, P. 

aeruginosa PAO1 as a typical laboratory strain has been studied for many years, 

providing many insights for therapy. However, the P. aeruginosa clinical isolates may 

possess different genomic information from PAO1 and consequently lead to 
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variations of phenotypes. Therefore, it is significative to study the regulation pathway 

of virulence determinants in the P. aeruginosa clinical isolates, which may quite 

differ from the PAO1 strain. 

By using approaches of molecular microbiology, the aim of this study is to 

investigate if QS system functions variously in P. aeruginosa clinical isolates due to 

diverse phenotypes. In addition, as some chronic infections such as CF was reported 

to harbor regions with a steep oxygen gradient ranging from aerobic to anaerobic 

(33-34), and given the fact that P. aeruginosa is able to live anaerobically in the 

presence of alternative electron acceptors such as nitrate (NO3
-) (35), virulence 

determinants and its regulation is also valuable to be researched under anaerobic 

conditions. My study will provide new theoretical basis for P. aeruginosa therapy and 

prompt the development of environmental and public health.  
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Figure 1. Structure of the P. aeruginosa QS signal molecules and related compounds.  
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Chapter 2 A New Perspective of Pseudomonas Quinolone 

Signaling 

2.1 Introduction 

P. aeruginosa employ sophisticated QS systems such as AQs-dependent system 

for regulating many social behaviors and phenotypes. In the AQs-dependent system, 

both PQS and its precursor HHQ play a role in cell-to-cell communication: after a 

certain threshold concentration of these two signal molecules in the extracellular 

medium is reached, they could bind their cognate receptor, PqsR (also named MvfR). 

However, PQS is shown significantly more potent than HHQ for both PqsR binding 

and activation; and PQS, but not HHQ is required for full pyocyanin production (25). 

In addition, PQS appears to have a number of other biologically important functions 

(Fig. 2.1) (36) such as iron delivery mediation (37) and biofilm formation (31) in P. 

aeruginosa. From these perspectives, PQS is more active and plays more important 

role in AQs-dependent system than HHQ does. Nevertheless, HHQ was reported 

highly produced in vivo, where it is not fully converted into PQS (36). This finding 
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may further indicate the importance of HHQ in P. aeruginosa pathogenesis. Although 

recently there is a report that HHQ modulates swarming motility in P. aeruginosa 

(38), the pathogenic role of HHQ is still not fully elucidated especially when 

anaerobically grown since PQS is not produced under such conditions (39-40). 

Given that only P. aeruginosa produces PQS, while other Pseudomonas spp. and 

Burkholderia spp. rely on HHQ and other methylated 4-hydroxy-2-alkylquinoline 

analogues for 4-quinolone signaling (41-42), the role of HHQ in cell-to-cell signaling 

would become more evident and considerable. To this end, in this chapter several P. 

aeruginosa clinical isolates were used for the investigation of Pseudomonas 

quinolone signaling compared with laboratory strain PAO1. In my results, a P. 

aeruginosa clinical strain D4, which was isolated from mouse blood, showed much 

higher response to HHQ and less response to PQS compared with PAO1, due to the 

variations of PqsR and PqsH. My data suggested HHQ might possess a more clinical 

significance in P. aeruginosa, and this is a strain-dependent manner. 
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2.2 Materials and Methods 

2.2.1 Bacteria strains, plasmids, and culture conditions 

The strains and plasmids used in this chapter are listed in Table 2. Bacteria 

strains were grown routinely at 37℃ in Luria-Bertani (LB) medium or on LB agar 

plates. When necessary, gentamicin was added at the concentration of 10 µg/ml for 

Escherichia coli and 80 µg/ml for P. aeruginosa. PQS and HHQ were synthesized and 

purchased from NARD institute, Ltd. (Hyogo, Japan). Before starting experimental 

cultures, P. aeruginosa was grown aerobically in 24-ml test tubes containing 4 ml of 

LB medium and was used to inoculate cultures at a starting optical density at 600 nm 

(OD600) of 0.01. For anaerobic cultures, strains were grown in 17-ml Hungate tubes 

containing 5 ml LBN medium (LB medium supplemented with 100 mM KNO3) with 

shaking at 200 rpm and an initial OD600 of 0.001. The Hungate tubes were sealed 

with rubber stoppers, and the air was replaced with argon by flushing gas through a 

needle. pG19pqsA, pG19pqsH, and pG19pqsR plasmids carrying deletion cassettes of 

pqsA, pqsH, pqsR were transformed into PAO1, D4, 6-1, 6-2, and 6-3 by conjugating 

with E. Coli S17-1 (43), followed by homologous recombination previously described 
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(44). The mutants were analyzed by PCR. 

2.2.2 Measurement of pyocyanin production 

Pyocyanin was extracted from 48 h aerobically static culture supernatants and 

measured by a previously reported method (45-46). Briefly, 0.6 ml of chloroform was 

added to 1 ml of culture supernatant. After extraction, the chloroform layer was 

transferred to a fresh tube and mixed with 200 µl of 0.2 N HCl. After centrifugation, 

100 µl of the top layer (0.2 N HCl) was measured its absorbance at 520 nm. 

2.2.3 PQS assay 

PQS was collected from the supernatant and detected by thin-layer 

chromatography (TLC) analysis, following the method previously described (39). 12 

h shaking or 48 h static aerobic cultures were centrifuged for 3 min at 13,200 rpm to 

collect the supernatants. PQS was extracted from 1 ml of supernatants with 0.6 ml 

acidified ethyl acetate. The ethyl acetate portion was collected into a new tube and 

air-dried. Extracts were resuspended in 30 µl of 1:1 acidified ethyl acetate/acetonitrile. 

Aliquots of extracts were loaded on TLC plates (silica gel 60 F254; Merck) that had 
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been soaked in 5% KH2PO4 for 30 min and activated at 100℃ for 1 h. The extracts 

were separated using 17:2:1 methylene chloride/acetonitrile/1,4-dioxane as the 

solvent. 50 µM synthetic PQS was used as a control. Photographs were taken under 

UV light at 366 nm. 

2.2.4 PQS and HHQ semi-quantification 

The plasmids pMpqsAG and pMEXpqsA were transformed into PAO1, D4 and 

their pqsA and pqsH mutants. All reporter strains were cultured aerobically or 

anaerobically for 12 h with shaking at 200 rpm and appropriate antibiotic (40 µg/ml 

of gentamicin). The strains contained pMEXGFP or pMEX9 were used as aerobic or 

anaerobic negative control. For the aerobic cultures, 200 µl of each culture was 

pipetted into 96-well microplate (Iwaki, Japan) and a Varioskan Flash spectral 

scanning multimode reader (Thermo Scientific) was used for reading the fluorescence 

at an excitation wavelenth of 488 nm and emission wavelenth of 509 nm as well as 

OD600. For the anerobic cultures, Catechol 2,3-dioxygenase (C23O) specific activity 

(the xylE gene product) was determined by reading the absorbance change at OD375 

per min (44). When measuring the PQS or HHQ response to PAO1 and D4, PQS or 
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HHQ were added into pqsA muants of PAO1 and D4 cultures with a final 

concentration range from 10 nM to 50 µM. 

2.2.5 Quantitative real-time PCR 

P. aeruginosa PAO1, D4, 6-1, 6-2, 6-3 and their pqsH or pqsR mutants were 

grown aerobically or anaerobically for 12 h. Total RNA were extracted by using 

RNeasy Mini Kit (QIAGEN) and all the procedures were followed by the instruction 

of the manufacturer. Residual DNA was eliminated by DNase treatment using 20 U 

Recombinant DNase Ⅰ (TAKARA) at 37℃ for 30 min. cDNA was synthesized by 

using SuperScriptTM Ⅲ Reverse Transcriptase (Invitrogen). The primers pqsARTFw 

and pqsARTRv were used for quantitative real-time PCR. The procedures of real-time 

PCR are as follows: holding stage 95℃, 10 min; cycling stage 95℃ 15’, 60 ℃ 1 min 

for 40 cycles; melt curve stage 95 ℃ 15’, 60 ℃ 1 min, (+0.3 ℃) 95 ℃ 15’. Data 

represented relative rplU expressions. 

2.2.6 Sequencing and protein blast 

The genes of pqsR in PAO1 and D4 were sequenced by Hokkaido System 
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Science Co., Ltd. By using the primers cpqsRF and cpqsRR. Protein blast was carried 

out on the website of National Center for Biotechnology Information (NCBI) 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRAMS=

blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blastho

me). 

2.3 Results 

During the 48 h aerobically static cultures, pqsH mutant of D4 produces much 

higher pyocyanin than pqsH mutant of PAO1 (Fig. 2.2). As PQS is not produced in a 

pqsH mutant in P. aeruginosa (Fig. 2.3A), this result indicates that the strain of D4 

may respond to HHQ within the AQ-dependent system. Therefore, the aerobic pqsA 

promoter activities were investigated in PAO1 and D4 after 12 h culture (late 

stationary phase). The result clearly showed that pqsA promoter activity is higher in 

pqsH mutant of D4 than that in pqsH mutant of PAO1 (Fig. 2.4A). According to the 

previous report, PQS is not produced under anaerobic conditions (39). This may lead 

to my speculation that D4 triggers higher pqsA transcription than PAO1 when 

anaerobically grown. Indeed, The result of C23O activities revealed that pqsH mutant 
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of D4 induces more pqsA expression than pqsH mutant of PAO1 does (Fig. 2.4B). 

These two pqsA promoter activities results were confirmed by using quantitative 

real-time PCR (Fig. 2.5A and 2.5B). However, no similar result was observed in other 

clinical isolates: pqsH mutants of 6-1, 6-2, and 6-3 revealed that pqsA expressions are 

the same level as pqsH mutant of PAO1 (Fig. 2.5C), indicating that high pqsA 

expression in clinical isolate is in a strain-dependent manner. In addition, pqsR gene 

seldom expresses in both D4 and PAO1 under aerobic or anaerobic conditions, 

suggesting that PqsR indeed involved in inducing the expression of pqsA, which is 

accordance with previous study (25). Given this truth, there may exist a PqsR 

mutation in the strain of D4. The result of PqsR protein blast between PAO1 and D4 

exhibited that there is a variation in PqsR of D4 compared with PAO1 (Fig. 2.6). 

From this result, I speculate that the variation in PqsR of D4 leads to a less response 

to PQS and higher HHQ response in triggering pqsA expression in D4 than PAO1, 

and this speculation was confirmed by adding PQS into pqsA mutant and HHQ into 

pqsApqsH double mutant (Fig. 2.7A and 2.7B). Another reason for the less PQS 

response in D4 lies in that the ability of PqsH converts HHQ to PQS is lower in D4 
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than PAO1. 50 µM and 100 µM HHQ were added into pqsA mutants of PAO1 and D4, 

PQS assay results showed that PQS production was less in pqsA mutant of D4 (Fig. 

2.3B). All the results indicated that HHQ plays a more important role in cell-to-cell 

communication in P. aeruginosa clinical isolate D4. 

2.4 Discussion 

Pyocyanin is a very important virulence factor that produced by P. aeruginosa 

and regulated by the AQ-dependent system. It was reported that PQS, but not HHQ, is 

responsible for the full pyocyanin production (25). Until now, people believe that 

pyocyanin was seldom produced in a pqsH mutant in P. aeruginosa. Surprisingly, it 

was observed that when grown aerobically in static LB cultures, the pqsH mutant of 

D4 still produces high level of pyocyanin, indicating that HHQ response may be 

higher in this strain compared with other P. aeruginosa such as PAO1. 

Although both PQS and HHQ were demonstrated dual ligands of PqsR, PQS is 

100-fold more potent than HHQ in activating pqsA-E transcription (25), which means 

PQS is a dominant signal molecule within AQ-dependent QS system. However, both 

the promoter reporter assay and quantitative real-time PCR results revealed pqsA 
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expression in a pqsH mutant of D4 is unexpectedly higher than its counterpart of 

PAO1 (Fig. 2.4A and 2.5A). Further investigation demonstrated that HHQ is still 

much more active for autoinduction in D4 under anaerobic conditions (Fig. 2.4B and 

2.5B). It was reported HHQ was produced more than PQS in vivo (25), indicating its 

pathogenesis of P. aeruginosa infections. Interestingly, the localizations of PQS and 

HHQ seem to be different, as PQS, but not HHQ, is primarily found in membrane 

vesicles (47). Hence, HHQ may follow a different pathway in regulating virulence 

factors such as pyocyanin in vivo. Although it is still hard to say this is due to 

adaptation for host environments, my observation gives a new perspective on the 

Pseudomonas quinolone signaling system that HHQ could play a more important role 

in triggering pqsA transcription in P. aeruginosa through a strain-dependent manner. 

Variation of PqsR and low PQS converting capability of PqsH in D4 strain also 

revealed PQS may not always play a main signal molecule role in some P. aeruginosa 

clinical isolates. In the case of D4 strain, HHQ may occupy a very important position 

compared with PQS and other AQs.  
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Strains, plasmids, and primers Relevant characteristics Source or reference 

Strains   

  E. coli   

   S17-1 Mobilizer strain 43 

  P. aeruginosa   

   PAO1 WT 39 

   ∆pqsA-PAO1 PAO1 mutant with a deletion in the pqsA gene 39 

   ∆pqsH-PAO1 PAO1 mutant with a deletion in the pqsH gene 39 

   ∆pqsR-PAO1 PAO1 mutant with a deletion in the pqsR gene 39 

   ∆pqsA∆pqsH-PAO1 PAO1 mutant with a deletion in the pqsA and pqsH genes This study 

   D4 WT This study 

   ∆pqsA-D4 D4 mutant with a deletion in the pqsA gene This study 

   ∆pqsH-D4 D4 mutant with a deletion in the pqsH gene This study 

   ∆pqsR-D4 D4 mutant with a deletion in the pqsR gene This study 

   ∆pqsA∆pqsH-D4 D4 mutant with a deletion in the pqsA and pqsH genes This study 

   6-1 WT This study 

   ∆pqsH-6-1 6-1 mutant with a deletion in the pqsH gene This study 

   6-2 WT This study 

   ∆pqsH-6-2 6-2 mutant with a deletion in the pqsH gene This study 

   6-3 WT This study 

   ∆pqsH-6-3 6-3 mutant with a deletion in the pqsH gene This study 

Plasmids   

   pG19Ⅱ pK19mobsac derived suicide vector; sacB Gmr 44 

   pG19pqsA pqsA deletion cassette in pG19Ⅱ 39 

   pG19pqsH pqsH deletion cassette in pG19Ⅱ 39 

   pG19pqsR pqsR deletion cassette in pG19Ⅱ 39 

   pMEXGFP pME4510 derived promoter-probe vector; egfp Gmr This study 

   pMpqsAG pqsA promoter region in pMEXGFP This study 

   pMEX9 pME4510 derived promoter-probe vector; xylE Gmr 39 

   pMEXpqsA pqsA promoter region in pMEX9 39 

Primers   

   ∆pqsAF1 5’-GGTCTAGAGGCAAGGTGCAACAATGGACAGTGG-3’ 39 

   ∆pqsAR2 5’-GCGAAGCTTGGAAGTTCACAGGTGATCGCTGCC-3’ 39 

   pqsHF 5’-CCCAAGCTTCTTGTCCTGCAGGTCGATATCC-3’ 39 

   pqsHR 5’-GCTCTAGATCGAGAGCTTCTCGAAGATGCG-3’ 39 

   cpqsRF 5’-GCTCTAGAACCCAATAAAAGGAATAAGGGATGC-3’ 39 

   cpqsRR 5’-CCCAAGCTTGAACGCTCTACTCTGGTGCGG-3’ 39 

   pqsARTFw 5’-CCTGGTGGTGCGTGAAGCC-3’ This study 

   pqsARTRv 5’-CGTCGAGCAAAGGGCGTCC-3’ This study 

Table 2. Bacteria strains, plasmids, and primers  
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Figure 2.1. Biological roles of PQS and phenotypes known to be regulated by PQS in 

P. aeruginosa  
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Figure 2.2. Pyocyanin production in pqsH mutants of PAO1 and D4 after 48 h static 

cultures  
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Figure 2.3. A) PQS production under 48 h static cultures. 1, 50 µM PQS control; 2, 

PAO1; 3, D4; 4, pqsH mutant of PAO1; 5, pqsH mutant of D4 B) PQS production 

after 12 h 200 rpm shaking cultures. 1, 50 µM PQS control; 2, 50 µM HHQ added 

into pqsA mutant of PAO1; 3, 100 µM HHQ added into pqsA mutant of PAO1; 4, 50 

µM HHQ added into pqsA mutant of D4; 5, 100 µM HHQ added into pqsA mutant of 

D4  
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A 

 

B 

 

Figure 2.4. A) pqsA promoter activities in pqsH mutants of PAO1 and D4 under 12 h 

aerobic culture conditions; B) pqsA promoter activities in pqsH mutants of PAO1 and 

D4 under 12 h anaerobic culture conditions  
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Figure 2.5. Quantitative real-time PCR results: A) pqsA expression in pqsH and pqsR 

mutants of PAO1 and D4 under 12 h aerobic conditions; B) pqsA expression in pqsH 

and pqsR mutants of PAO1 and D4 under 12 h anaerobic conditions; C) pqsA 

expression in pqsH mutants of PAO1, 6-1, 6-2 and 6-3 under 12 h aerobic conditions  
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Figure 2.6. PqsR protein blast between PAO1 and D4, variances are underlined.  
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Figure 2.7. A) Series of PQS response to PAO1 and D4; B) 50 µM HHQ response to 

PAO1 and D4  
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Chapter 3 The Impact of Anaerobiosis on Strain-dependent 

Phenotypic Variations in P. aeruginosa 

3.1 Introduction 

P. aeruginosa is a denitrifying bacterium capable of anaerobic growth by 

utilizing N-oxides as terminal electron acceptors under low-oxygen conditions (48). It 

is reported that denitrification is crucial for the pathogenicity of P. aeruginosa (49-50), 

while how P. aeruginosa exhibit pathogenicity under anaerobic conditions remains 

poorly understood. Under aerobic conditions, extracellular virulence factors such as 

elastase, protease, pyocyanin, rhamnolipids, exotoxin A, and siderophores (24, 51-55) 

are produced that are mainly regulated by a cell density-dependent regulatory manner 

termed as QS (56). 

So far, three QS systems in P. aeruginosa have been well characterized: the las, 

rhl and pqs systems. The las system is comprised of the transcriptional regulator LasR 

and its cognate AHL signal, 3-oxo-C12-HSL, synthesized by the AHL synthase LasI 

(28, 57). The rhl system is comprised of RhlR and its cognate AHL, C4-HSL, 
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synthesized by the RhlI synthase (58-59). Besides, P. aeruginosa produces a third 

signaling molecule, 2-heptyl-3-hydroxy-4(1H)-quinolone, termed Pseudomonas 

Quinolone Signal (PQS) (24). While these QS systems regulate the virulence factors 

under aerobic conditions, PQS synthesis requires oxygen, and AHL dependent QS 

systems are reported to be attenuated by an unknown mechanism under anaerobic 

conditions (60). Consistent with these observations, the productions of QS regulated 

virulence factors are significantly reduced under anaerobic conditions and P. 

aeruginosa PAO1 becomes avirulent compared to aerobic conditions (61). 

Another important phenotype in the pathogenicity of P. aeruginosa is the 

formation of biofilms. Biofilms are highly organized microbial communities that are 

embedded in a self-produced extracellular matrix. Usually biofilms confer high 

antibiotic resistant compared to their planktonic counterpart (62). During infections 

such as cystic fibrosis, P. aeruginosa is exposed to a microaerobic to anaerobic 

environment (63-64), while little is known about biofilm formation under anaerobic 

conditions. Interestingly, P. aeruginosa forms more robust biofilm when grown 

anaerobically than formed during aerobic conditions (65). A recent study revealed 
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that biofilm formation undergoes a different process from aerobic conditions when 

grown anaerobically where cell elongation is critical (66). 

By comparing several clinical isolates as well as PAO1, here I demonstrate that 

the impact of anaerobiosis vary greatly among the strains. Cell growth, morphology, 

extracellular virulence production, AHL production as well as biofilm formation 

under anaerobic conditions were strain-dependent showing diverse phenotypes among 

the strains. Interestingly some clinical isolates formed thick biofilms under anaerobic 

conditions that do not depend on the cell elongation process. Hence, social behaviors 

of P. aeruginosa could be regulated by several pathways in a strain-dependent manner 

and may impact their adaptation to such conditions. The data presented here will 

provide a better understanding of anaerobiosis in P. aeruginosa as well as their 

pathogenicity.  
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3.2 Materials and Methods 

3.2.1 Bacterial strains, plasmids, and culture conditions 

Six P. aeruginosa clinical strains, which were isolated from Toho University 

Omori Hospital, together with P. aeruginosa PAO1 and its ∆lasI∆rhlI double mutant, 

were grown at 37℃ aerobically in 24-ml test tubes containting 4 ml of LB medium or 

anaerobically in 17-ml Hungate tubes containing 5 ml LBN medium with shaking at 

200 rpm. For anaerobic cultures, the Hungate tubes were sealed with rubber stoppers, 

and the air was replaced with argon by flushing gas through a needle. The lasI and 

rhlI transcriptional fusion plasmid were constructed by cloning the promoter region of 

lasI and rhlI into the multicloning site of pMEXGFP reproter plasmid, using the 

primers as follows: lasI F (5’- CCGGAATTCCAGAAAGTTTCCTGGCTTTCC-3’), 

lasI R (5’- TTCAAGCTTCACTTGAGCACGCAACTTGT-3’), rhlI F (5’- 

CCGGAATTCGAACATCCAGAAGAAGTTCGA-3’), rhlI R (5’- 

CCCAAGCTTAAAAGGCGGCATCCCTAC-3’) (Restriction sites were underlined) 

(67). The constructed plasmids, named pMlasIG and pMrhlIG, were transformed into 

∆lasI and ∆rhlI mutants of P. aeruginosa PAO1 by electroporation (39). All 
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experiments were carried out at an initial optical density at 600 nm (OD600) of 0.01. 

3.2.2 Microscopy 

The P. aeruginosa PAO1 and clinical isolates were grown aerobically or 

anaerobically for 12 h at 37℃ with shaking at 200 rpm. 5 µl of each culture was fixed 

and stained on a glass slide (VWR, USA) and observed using a Zeiss Axio Observer. 

Z1 microscope. Images were captured using an AxioCam digital camera and 

processed with Zeiss Axiovision 4.8 software. 

3.2.3 Enzyme activity assays 

Elastolytic activity was measured by elastin Congo red (ECR) assay (68) with 

some modifications. Briefly, 12 h aerobic or anaerobic P. aeruginosa culture 

supernatants were filtered (0.2 µm pore-size filter). 1-ml cell-free supernatants were 

added to 15-ml centrifuge tubes containing 10 mg of ECR (Sigma) and 2 ml of buffer 

(0.1 M Tris, pH 7.2, 1 mM CaCl2). After 18 h incubation at 37℃ with rotation, tubes 

were placed on ice and 0.1 ml of 0.12 M EDTA was added into each tube to stop the 

reaction. Insoluble ECR was removed by centrifugation and units of elastase activity 
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were expressed as the increase at OD495 per milligram of protein. Proteolytic activity 

was determined as preiously described (69) with azocasein (Sigma) as the substrate, 

and units of protease activity were expressed as the increase at OD400 per milligram of 

protein. Protein concentraion was measured in triplicate by the Bradford method (70). 

3.2.4 AHL semi-quantification 

1 ml P. aeruginosa cell-free supernatants were collected from aerobic or 

anaerobic cultures incubated for 12 h, and mixed with 3 ml of LB medium where 

AHL reporter strains were inoculated. AHL reporter strains ∆lasI (containing 

pMlasIG) and ∆rhlI (containing pMrhlIG) were grown in the mixture above for 12 h 

at 37℃ with appropriate antibiotic (40 µg/ml of gentamicin). The strain of ∆lasI or 

∆rhlI which contained pMEXGFP vector was used as negtive control, respectively. 

200 µl of each culture was pipetted into 96-well microplate (Iwaki, Japan) and a 

Varioskan Flash spectral scanning multimode reader (Thermo Scientific) was used for 

reading the fluorescence at an excitation wavelenth of 488 nm and emission 

wavelenth of 509 nm as well as OD600. 
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3.2.5 Biofilm assay 

For biofilm formation assay, P. aeruginosa were inoculated (1:100) in LB or 

LBN medium with an overnight culture of each strain, and the diluted bacteria 

suspensions were added into 96-well sterile flat-bottom polystyrene tissue culture 

plates (Costar, USA) (71). After 8 h aerobic incubation or 16 h anaerobic incubation 

at 37℃, the nonattached and loosely adherent bacteria were removed by discarding 

the medium and the cells, and then washed 3 times with distilled water. 100 µl of a 

0.1% solution of crystal violet (Sigma) was added to each well and the plates were 

incubated at room temperature for 15 min to stain the biofilm. Excess stain was 

removed by distilled water washing and the plates were air-dried. The crystal violet 

staining the attached cells was solubilized with 200 µl of 95% ethanol, and 150 µl was 

removed and added in a fresh polystyrene microtiter plate to determine the A595. 

3.3 Results 

3.3.1 Anaerobic growth and cell morphology variations 

When grown aerobically in LB medium, strains 6-1, 6-2, and 6-3 revealed 

approximately 20% less growth than the other strains in the stationary phase (Fig. 
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3.1A). However, when grown anaerobically, the differences in growth expanded 

where the growth yields of strains 6-1, 6-2, and 6-3 were apparently lower than that of 

PAO1, and strains D4, 7-3 and 7-17 grew better than PAO1 (Fig. 3.1B). While P. 

aeruginosa is a rod-shaped cell under aerobic conditions, PAO1 was reported to be 

highly elongated when grown anaerobically (66). This result was also verified in our 

microscopic analysis (Fig. 3.2A and 3.2B). In contrast to PAO1, strain 7-17 (Fig 3.2C 

and 3.2D) and the other five clinical isolates remained rod cells when grown 

anaerobically. Thus, high diversity of growth and cell morphology was observed 

under anaerobic conditions.  

3.3.2 Comparison of extracellular virulence factors 

P. aeruginosa could produce many virulence factors such as elastase and 

protease under aerobic environments, that is controlled by QS (59, 72-73). Under 

anaerobic conditions, it was reported that elastase production is significantly 

repressed while anaerobiosis is explained to be important for infecting the host (60). 

In order to better understand the capability of this bacterium to express virulence 

factors under anaerobic conditions, I investigated the elastase and protease activities 
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of the clinical isolates and PAO1 (Fig. 3.3). A ∆lasI∆rhlI double mutant of PAO1 was 

used as a negative control. Consistent with previous reports (60-61), when grown 

under anaerobic conditions, elastase activity was significantly reduced in PAO1. In 

addition, protease activity decreased to approximately 20 % compared to aerobic 

conditions. Interestingly, strain 7-17 possessed comparable activity of the virulence 

factors under anaerobic conditions and aerobic conditions. The other five clinical 

isolates had low activities in these virulence factors under both conditions. As 

expected, elastase and protease activity was hardly detected in the PAO1 ∆lasI∆rhlI 

double mutant confirming that QS regulate these extracellular virulence factors in 

PAO1. Taken that these virulence factors are regulated by QS, the high production of 

these virulence factors in strain 7-17 indicated that this strain has a high ability of QS 

under anaerobic conditions, which was further examined.  

3.3.3 AHL production under anaerobic conditions 

Since PQS can not be produced in the absence of oxygen (39), I focused on the 

production of two AHLs, 3-oxo-C12-HSL and C4-HSL. AHL production was 

measured by examining promoter activity of QS regulated genes in an AHL reporter 
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strain (74). To this end, a promoter region of lasI or rhlI was fused to enhanced green 

florescent protein (eGFP) on the plasmid. The supernatant of each culture was 

collected and added to the reporter strains in which eGFP expression was measured. 

The ∆lasI∆rhlI double mutant of PAO1 was used as a negative control. Consistent 

with the above results (Fig. 3.3), high levels of 3-oxo-C12-HSL and C4-HSL 

production were observed in the strain 7-17 under both aerobic and anaerobic 

conditions (Fig. 3.4A and 3.4B). Particularly, C4-HSL production under anaerobic 

conditions was 3.12 fold higher in 7-17 than PAO1, and was only reduced to 71.9% in 

7-17 whereas it was reduced to 26.7 % in PAO1 compared to aerobic conditions (Fig 

3.4B). The other clinical isolates seldom produced AHLs under anaerobic conditions 

though AHLs were detected form aerobic supernatants. Hence, QS activity is strongly 

reduced in these five strains under anaerobic conditions. These results demonstrate 

that anaerobiosis impact QS activity in a strain-dependent manner. 

3.3.4 Strain-dependent diversity of biofilm formation 

It is well known that biofilm formation is involved in P. aeruginosa chronic 

infection since biofilm can resist antibiotic therapy, host immune responses, and 
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biocide treatment (75). It was reported that cell-elongation contribute to biofilm 

formation under anaerobic conditions (66), however, as shown above, the clinical 

isolates used in our study exhibited rod-shaped cell morphology under anaerobic 

conditions (Fig. 3.2). Therefore, I further examined biofilm formation of these strains. 

Similar to the observation in planktonic growth, the clinical isolates were rod-shaped 

in biofilms under anaerobic conditions (Fig. 3.5). Interestingly, 7-3 and 7-17 produced 

more biofilm than PAO1 under anaerobic conditions, although these strains except 

PAO1 do not elongate (Fig. 3.6). Strain 6-13 produced less biofilm than PAO1 and 

cell elongation may contribute to biofilm formation in this strain. The strains also 

showed varied biofilm formation under aerobic conditions suggesting that some of the 

strain have a high ability to form biofilm. The high ability of these strains to form 

biofilm may be the reason why cell elongation does not take part in the biofilm 

formations of these strains. These result demonstrate that biofilm formation vary 

among the strains and further suggest that the biofilm formation process differ among 

the cells under anaerobic conditions.  
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3.4 Discussion 

P. aeruginosa can exist under anaerobic conditions and I demonstrate here that 

anaerobiosis has a great impact on the strain-dependent variation.  

Most strikingly, although it was believed that in P. aeruginosa QS is attenuated 

under anaerobic conditions, and therefore becomes avirulent compared to aerobic 

conditions (60), my data demonstrate that the extracellular virulence factors are 

produced anaerobically in a clinical isolate 7-17. This strain exhibited high AHL 

production under anaerobic conditions compared to the other strains, suggesting that 

high amount of AHL production induced the expression of the virulence factors. This 

hypothesis is in accordance that the exogenous addition of AHL signaling molecules 

can restore the transcription of target genes under anaerobic conditions in PAO1 (39, 

60). Interestingly, a number of clinical isolates scarcely produced AHLs when grown 

anaerobically. This is not due to mutation in the QS system as reported previously in 

clinical isolates (76) since AHL was detected when grown aerobically. Thus, there is 

a large variation in AHL production under anaerobic conditions, suggesting a 

complex regulatory system under these conditions.  
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Although P. aeruginosa is a rod-shaped cell, the PAO1 strain becomes 

filamentous under anaerobic conditions. NO induces elongation of the cell where it 

inhibits DNA synthesis (66). It was reported that the cell elongation contribute to 

biofilm formation under anaerobic conditions in PAO1 and biofilm formation of a 

non-elongated nirS mutant is significantly reduced (66). To my surprise, unlike PAO1, 

clinical isolates remained rod-shaped cells under anaerobic conditions. When biofilm 

formation was examined among these strains, the rod-shaped clinical isolates were 

able to form biofilms. These data demonstrate that the clinical isolates depend on 

another mechanism than cell-elongation in biofilm formation under anaerobic 

conditions. The involvement of extracellular polysaccharides, as well as flagella and 

pili in biofilm formation under aerobic conditions is well studied (77-78) and these 

components could be the main factors determining biofilm formation in the 

rod-shaped clinical isolates under anaerobic growth. 

Because NO induce cellular elongation under anaerobic conditions in PAO1 (66), 

the difference in the cell morphology under this condition may due to different NO 

accumulation among the strains. NO is an intermediate of denitrification and the 
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growth variation among the isolates suggest that they have different denitrifying 

activity. Compared to aerobic respiration, denitrification is a relatively complex 

process where four terminal electron acceptors are utilized (79). In addition to the 

master regulators (ANR and DNR) of denitrification (80-81), QS is reported to affect 

denitrifying activity that leads to the control of NO accumulation (82). Hence, the 

different QS ability among the strains could be one of the reasons that lead to the 

variation of anaerobic growth. Obviously, other factors could be involved since a 

clear correlation of AHL production and growth was not observed.  

   Strain-dependent variation in a bacterial population has become of interest in term 

of evolution as well as pathogenicity. P. aeruginosa is known to have a highly diverse 

genome structure mainly caused by accessory DNA elements (83). A recent report 

demonstrated that the QS regulon is strain-dependent suggesting an important role for 

QS in niche adaptation (84). Most of the works comparing P. aeruginosa strains are 

limited to aerobic conditions and my study would extend the studies to how 

anaerobiosis impacts the phenotypic variation.   
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Figure 3.1. Growth of P. aeruginosa PAO1 and the clinical isolates under A) aerobic 

conditions and B) anaerobic conditions. Three independent experiments were 

conducted, and representative data are shown  
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Figure 3.2. Microscopic observations between P. aeruginosa PAO1 and 7-17. A) 

PAO1 under aerobic conditions; B) PAO1 under anaerobic conditions; C) 7-17 under 

aerobic conditions; D) 7-17 under anaerobic conditions  
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Figure 3.3. Extracellular virulence productions: A) elastase activities and B) protease 

activities in P. aeruginosa PAO1 and clinical isolates under 12 h aerobic and 

anaerobic conditions. Data were expressed as means ± standard deviations (error bars) 

of three replicates  
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Figure 3.4. 3-oxo-C12-HSL A) and C4-HSL B) production in aerobic and anaerobic 

supernatants of P. aeruginosa PAO1 and clinical isolates. Supernatants of each strain 

were collected and AHL production was measured by using AHL reporter strains as 

described in materials and methods. Data represent relative AHL productions to 

PAO1 aerobic conditions. Data were expressed as means ± standard deviations (error 

bars) of three replicates.  
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Figure 3.5. Biofilms observation after 16 h anaerobic culture conditions between A) 

PAO1 and B) 7-17 strains.  
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Figure 3.6. Aerobic and anaerobic biofilm formations in P. aeruginosa PAO1 and 

clinical isolates. Biofilm formations were measured at 8 h for aerobic cultures and 16 

h for anaerobic cultures. Data were expressed as means ± standard deviations (error 

bars) of eight replicates.  
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Chapter 4 Conclusions 

As a notorious human pathogen, P. aeruginosa produces many virulence 

determinants, most of which could be regulated by complicated QS systems. To 

elucidate the regulating mechanism of virulence determinants by QS will help to 

develop better means to control the pathogenic P. aeruginosa that use social 

interactions to affect humans and provide new insights for the therapy of P. 

aeruginosa related infections. 

In this study, PQS and HHQ, as two main signal molecules within 

AQs-dependent QS system, were investigated with respect to their response to P. 

aeruginosa PAO1 and other clinical isolates under both aerobic and anaerobic culture 

conditions. In addition, cell growth, morphology, extracellular virulence production, 

AHL production as well as biofilm formation between PAO1 and these clinical 

isolates under anaerobic conditions were also explored. 

In chapter 1, my results suggest that the P. aeruginosa clinical isolate D4 pqsH 

mutation strain shows high pqsA expression under aerobic and anaerobic conditions, 

indicating its response to HHQ as a prevailing Pseudomonas quinolone signal 
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molecule for cell-to-cell communication. Variation of PqsR and low PQS converting 

capability of PqsH in D4 strain also revealed HHQ, but not PQS, may play a main 

signal communication role in some P. aeruginosa clinical isolates. This divergence of 

signaling provides a new perspective of QS systems and HHQ may contribute more 

for the pathogenesis of P. aeruginosa. 

In Chapter 2, my data revealed that when grown anaerobically, growth and cell 

morphology greatly differ among the strains. 7-17 strain produced comparable 

amount of QS signaling molecules and extracellular virulence factors under aerobic 

and anaerobic conditions, while the other strains had low production under anaerobic 

conditions. Biofilm formation also exhibited strain-dependent variations suggesting 

that there are several mechanisms that lead to biofilm formation under anaerobic 

conditions. Taken together, this chapter demonstrates that the anaerobiosis impact on 

social interactions of P. aeruginosa is strain dependent and implies that multiple 

regulatory mechanisms may be involved in the regulation of QS and biofilm 

formation under anaerobic conditions. 

On the whole, in this study P. aeruginosa clinical isolates exhibit diversity of QS 
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signal molecules response and virulence factors as well as other phenotypes, 

suggesting P. aeruginosa may vary with the changing of survival circumstances.  
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Abstract 

Pseudomonas aeruginosa is an oppotunanistic human pathogen, which could 

secrete many extracellular virulence determinants that regulated by a cell density 

dependent quorum sensing (QS). The 2-alkyl-4-quinolone (AQ)-dependent system 

regulates pyocyanin production, a blue redox-active secondary metabolite that related 

to some chronic infections such as cystic fibrosis. In this study, unlike the pqsH 

mutant of PAO1, the pqsH mutant of P. aeruginosa clinical isolate D4 still produce 

high level of pyocyanin, indicating its response to HHQ. To investigate the PQS and 

HHQ differential between the clinical isolate and wild type in activating PqsR 

function in P. aeruginosa, pqsA expression was measured under both aerobic and 

anaerobic conditions. Accordance with the pyocyanin production, pqsA expression 

was higher in the pqsH mutant of D4. Variation of PqsR and low PQS converting 

capability of PqsH in D4 strain were also observed. All these results suggest that 

HHQ may occupy a very important position compared with PQS and other AQs in a 

strain dependent manner. 

Bacteria perform social behaviors by communicating with each other and 
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forming surface-associated biofilms. In P. aeruginosa, such social behaviors are 

affected greatly by the environment. Although P. aeruginosa survive under anaerobic 

conditions, previous studies indicate that QS is attenuated under anaerobic conditions, 

which will lead to less production of extracellular virulence factors compared to the 

aerobic conditions. Hence it has become a question whether P. aeruginosa are 

virulent under anaerobic conditions or not. Here, I compared different phenotypes 

between the PAO1 and clinical isolates under anaerobic conditions. My data revealed 

that when grown anaerobically, growth and cell morphology greatly differ among the 

strains. One of the clinical isolates produced comparable amount of QS signaling 

molecules and extracellular virulence factors under aerobic and anaerobic conditions, 

while the other strains had low production under anaerobic conditions. Biofilm 

formation also exhibited strain-dependent variations suggesting that there are several 

mechanisms that lead to biofilm formation under anaerobic conditions. 

On the whole, in this study P. aeruginosa clinical isolates exhibit diversity of QS 

signal molecules response and virulence factors as well as other phenotypes, 

suggesting P. aeruginosa may vary with the changing of survival circumstances. This 
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study will provide new insights of theoretical basis for P. aeruginosa therapy and 

prompt the development of environmental and public health.  
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