L-グルコース代謝の遺伝・生化学的研究

筑波大学大学院

生命環境科学研究科

生命共存科学専攻

博士 (農学) 学位論文

清水 哲

目次

第一章 月	字論	3
第一節	解糖系	3
第二節	糖の化学的性質と自然界での存在比	4
第三節	生物史以前の糖の起源	5
第四節	グルコース代謝のホモキラリティー	6
第五節	本研究の目的と本論文の構成	7
第二章 I	グルコース資化菌の単離と同定	8
第一節	緒言	8
第二節	材料及び方法	8
第三節	集積培養による L-グルコース資化細菌の単離	14
第四節	L-グルコース資化菌の 16S rRNA 遺伝子配列解析	16
第五節	まとめと考察	21
第三章 I	グルコースデヒドロゲナーゼ遺伝子の同定と酵素学的解析	23
第一節	緒言	23
第二節	材料及び方法	23
第三節	L-グルコース代謝初段階反応の同定と L-グルコースデヒドロゲナー	-ゼの精製 36
第四節	lgdA のクローニング	41
第五節	LgdA の酵素学的諸性質の解析	46
第六節	lgdA を含む遺伝子クラスターの機能解析	56
第七節	LgdAのL-glucoseを基質とした反応産物の同定	60
第八節	まとめと考察	63
第四章 1	gn 遺伝子群のクローニングと機能解析	66
第一節	緒言	66
第二節	材料及び方法	66
第三節	L-グルコン酸デヒドロゲナーゼの精製	76
第四節	lgn 遺伝子群のクローニング	80
第五節	Lgn タンパク質の機能解析	83
第六節	まとめと考察	97
第五章 I	グルコース代謝関連遺伝子の破壊とそれらの分子系統解析	101
第一節	緒言	101
第二節	材料及び方法	101
第三節	Paracoccus sp. 43P 株の遺伝子破壊方法の確立	107
第四節	L-グルコース代謝関連遺伝子の破壊が及ぼす影響	108
第五節	L-グルコース代謝関連遺伝子の分子系統解析	109
第六節	まとめと考察	118

第六章 I	-gnRによる lgn 遺伝子群の転写制御機構	123
第一節	緒言	123
第二節	材料及び方法	123
第三節	lgn 遺伝子群の転写マッピング	131
第四節	IgnR の破壊が及ぼす影響	135
第五節	His ₆ -LgnR のプロモーター領域への結合	141
第六節	LgnR の分子系統解析	147
第七節	まとめと考察	150
第七章	念括	153

第一章 序論

第一節 解糖系

D-glucose はセルロースに代表される植物性多糖の主要な構成要素であり、自然界で最も 多く存在する単糖である。多くの生物にとって D-glucose は重要な炭素源、エネルギー源で もあり、D-glucose の分解経路である解糖系の存在は真核生物、真正細菌、古細菌からなる 3 つの生物ドメインすべてで確認されている。解糖系には細かな違いを含めればいくつかの 種類が存在するが、代表的なものとしては Embden-Meyerhoff-Parnas (EMP)経路、 Entner-Doudoroff(ED)経路(Entner *et al.* 1952)の二つが挙げられる。実際には EMP 経路と ED 経路の 2 つの経路を両方有している生物、どちらかの経路のみを有している生物がおり、 両経路のうちどちらがより古い経路なのかという比較がなされてきた。最も進化的に古い 生物であるとされる好熱性古細菌の多くが非リン酸化型の ED 経路 (Lamble *et al.* 2003)を有 していることから、ED 経路のほうが EMP 経路よりも原始的な代謝経路であるとする説も ある(Conway 1992)。その一方で ED 経路を有していない生物も多く存在するため、はっき りとした結論は出ていないのが現状である。

二つの経路の大きな違いとして、EMP 経路が 1 分子の D-glucose から 2 分子の ATP を産 生するのに対し、ED 経路においては 1 分子の ATP しか産生しない点が挙げられる。しかし ながら以下の化学式に示すように両経路の全体の反応は非常に良く似ている: EMP 経路: D-glucose + 2NAD⁺ + 2ADP + 2P_i \Rightarrow 2pyruvate + 2NADH + 2H⁺ + 2ATP + 2H₂O ED 経路: D-glucose + 2NAD⁺ + ADP + P_i \Rightarrow 2pyruvate + 2NADH + 2H⁺ + ATP + 2H₂O m経路とも中間代謝物としてトリオースリン酸エステル を生じ、それ以降の反応は D-glyceraldehyde-3-phosphate dehydrogenase (GapDH), triose phosphate isomerase (TPI), phosphoglycerate kinase (PGK)、phosphoglycerate mutase (PGM)、enolase、pyruvate kinase (PK) という 5 つの共通した酵素群が担っている。

EMP 経路、ED 経路のいずれにおいても、酸素が存在すれば生成した NADH を電子伝達 系を介して再酸化するのに対して、嫌気的な条件においては生じた NADH を pyruvate など の有機物を電子受容体として NAD⁺に再酸化することで発酵を行う。解糖系の重要な点とし て、電子伝達系を介さず基質レベルで ATP を産生出来ることが挙げられる。そのため好気 的な条件でのみ働く TCA サイクルに対して、解糖系は電子伝達系が停止する嫌気的な条件 においても稼動し、ATP を産生することが出来る。

前述のように解糖系は古細菌を含めたすべての生物ドメインで見られることから、解糖 系に関わる酵素遺伝子群は生物ドメインをまたいで保存性が見られる。なかでも ED 経路、 EMP 経路に共通した下流部分、すなわちトリオースリン酸エステル代謝に関わる酵素遺伝 子群の保存性が極めて高いことが分かっており、分子系統解析からも古細菌、真正細菌、 真核生物それぞれに見られる各酵素遺伝子が、ドメインをまたいで単一の祖先から分岐し てきたものであることが示唆されている (Rominus et al. 2003)。

以上に述べたように、より原始的な環境であると考えられる嫌気条件でもエネルギー生産の基質として利用できる点、3つの生物ドメイン全てにその代謝経路が存在する点、それに関わる遺伝子の高い保存性から、D-glucose は生物史においてかなり早い段階からエネルギー源、炭素源として利用されてきたと考えられている。

第二節 糖の化学的性質と自然界での存在比

化学式としては C₆H₁₂O₆であらわされる D-glucose には 4 つの不斉炭素が存在し、それぞ れの立体配置によって他に 15 種の光学異性体(アルドヘキソース)が存在するうえ、アル デヒドがケトンに置き換わったケトヘキソース 8 種を含めると、全部で 23 種もの異性体が 存在する。しかしながら、自然界で実際に多く見られるヘキソースは D-glucose のほかに D-fructose、D-galactose、D-mannose のみであり、それ以外のヘキソースは自然界での存在量 が著しく少ない、または存在自体が確認されていない。自然界に豊富なヘキソースの構造 に目を向けると、D-fructose は D-glucose のアルデヒドがケトンに置き換わったものであり、 D-galactose、D-mannose はそれぞれ D-glucose の C4、C2 の水酸基の立体配置が置き換わっ たエピマーである。すなわち、現在自然界に豊富に見られるヘキソースは例外なく D-glucose に近い構造を有している。これらの異性体は生体内において糖新生により生成した D-glucose を出発材料として作られており、それゆえ自然界に存在するヘキソースは D-glucose に近い構造を有していることが推察される。

理論的には数多くの異性体が存在する中で、生物はなぜ D-glucose に特化した代謝経路を 発展させてきたのであろうか。その理由としては、他の単糖に比べ D-glucose が相対的に高 い安定性を有している点が挙げられる (Bunn et al. 1981)。実際のところ、反応性の高いアル デヒド基またはケトン基を有する単糖は総じて安定な化合物ではなく、常温、常圧下にお いてもアミノ基と反応してしまう(糖化反応)。そのため生体内においても単糖の一部はタ ンパク質と反応し、このような非酵素的な糖化をうけたタンパク質は場合によっては本来 の活性を失ってしまう。このような糖化反応が生体におよぼす影響は小さいものであると 長らく考えられてきたが、近年の研究からヒトの体内で起こる糖化反応が糖尿病 (Urich et al. 2001)、白内障 (Gul et al. 2009)といった様々な病気と関連していることが明らかとなりつ つある。糖化反応は鎖状構造を取った単糖とアミノ基との間で生じるため、他の単糖に比 べて水溶液中での六員環構造が安定で鎖状構造の存在比が少ない D-glucose は、D-galactose、 D-fructose といった他の単糖よりも糖化反応の進行が遅いことが知られている (Foray et al. 1988, Chiou et al. 1980, Suarezs et al. 1989)。それゆえ生体内においても他の糖より安定である ことが考えられ、結果として D-glucose は生物進化の過程で数ある糖異性体から主要な炭素 源、エネルギー源として選択されてきたのではないかと考えられている (Bunn et al. 1981)。 安定性という観点で D-glucose が他のヘキソースに比べ優れており、それゆえ生物進化の

過程で選択されたという主張は論理的ではあるが、重大な欠陥として鏡像異性体の問題を 考慮していない点が挙げられる。鏡像異性体とは、あるキラル化合物を鏡に写したときの 鏡像に相当する異性体を指し、D-glucose の場合その鏡像異性体にあたるのが、L-glucose で ある。D-glucose と L-glucose は鏡写しの関係にあり、両者は決して重なりあわない異なる化 合物である。しかしながら、鏡像異性体同士は化学的、物理学的にまったく同じ性質を示 し、旋光性によってのみ区別されうる。したがって L-glucose は D-glucose と同様の安定性 を有しているはずであるが、自然界において L-glucose の存在はいまだに確認されておらず、 また前述の解糖系は D-glucose の分解に特化した経路であるため、同経路に関わる酵素群は L-glucose を分解することはできない。それでは、なぜ生物は D-glucose に特異的な代謝経路 を発展させてきたのだろうか?一つの可能性としては、生物が誕生する以前の原始の地球 において、D 体の glucose のみが生成、蓄積しており、必然的に生物は環境中に存在してい た D-glucose を利用する代謝経路を獲得し、存在していなかった L-glucose に対する代謝経 路はそもそも発展させる必要がなかったと考えられる。この可能性を論じるには、原始地 球で存在していた糖について考慮する必要があるが、この点については次節以降で考察す る。

第三節 生物史以前の糖の起源

地球上で生物が誕生する以前の糖の起源としては、低分子が重合することで生成したと する化学進化説と、宇宙から隕石によって飛来したという説がある。前者の化学進化説に よる単糖の生成の根拠として示されているのが、1861 年に Boutlerow により発見された formaldehyde から糖を合成するホルモース反応である (Boutlerow 1861)。1959 年に Breslow が提案したホルモース反応過程 (Breslow 1959)は、formaldehyde の自己重合により glycolaldehyde や glyceraldehyde、dihydroxyacetone が生成し、これらがアルドール縮合を起 こすことで tagatose や fructose といったケトヘキソース、ついでケトースからアルドースへ の異性化反応が進むことによってアルドヘキソースが生成するというものである。これら の反応は塩基と 2 価金属により触媒され、初期の地球を模した実験では formaldehyde と glyceraldehyde からペントースが生成したとされる。ホルモース反応による単糖の生成は全 て化学的な反応であるため、生成物はメソ体、すなわち等量の鏡像異性体を生じることと なる。後者の宇宙から隕石によって飛来したという説に関しては、実際に隕石からの抽出 物を解析するという研究が行われているが、アミノ酸、低分子カルボン酸が隕石抽出物か ら検出された例がある (Cronin 1997, Engel et al. 1997, Cooper et al. 2011) 一方で、糖が検出さ れた例はこれまでない。唯一 2001 年に Cooper らがマーチソン隕石、マレー隕石からの抽出 物中に炭素数3から6までの糖のアルデヒドが還元、または酸化されたポリオールである 糖アルコール、アルドン酸、アルダル酸の存在を報告している (Cooper et al. 2001) のみで あり、また Cooper らは検出された各化合物の光学異性体ならびに鏡像異性体の問題に関し

ては言及していない。

以上述べたように、現在考えられている生物が誕生する以前の糖の生成、供給経路は総 じて光学選択的なものとはいい難い。従って、生物が誕生する以前の地球においては、 L-glucose、D-glucose が同程度の量で存在していた可能性を否定できない。それでは、 D-glucose と同様に、L-glucose を利用する生物は存在しないのであろうか?

第四節 グルコース代謝のホモキラリティー

多くの生物によって D-glucose が利用されているのに対して、その鏡像異性体である L-glucose を炭素源、エネルギー源として生物が利用できるのかという単純な疑問について 検討した例は、過去にいくつか存在する。もっとも古い例では、D-glucoseの構造を決定し た E. Fischer がビール酵母によって L-glucose が醗酵されうるか検討したが、L-glucose は醗 酵されないと報告している (Fischer 1890)。また 1940 年には Rudney が真正細菌の Enterobacter aerogenes、Escherishia coli、さらにラットを用いて L-glucose が分解されるか検 討したが、いずれの細菌、細胞によっても L-glucose は分解されなかったとしている (Rudney 1940)。また 1979 年に Sasajima らは L-glucose を基質としたデヒドロゲナーゼ活性をを有す る酵素を Burkholderia caryophylli から精製したが、基質特異性を解析した結果、同酵素は L-glucose 特異的な酵素ではなく、D-arabinose に対してより強いデヒドロゲナーゼ活性を有 しており、L-glucose に対する活性は基質特異性が低いために"たまたま"反応したものと考 えられている (Sasajima et al. 1979)。1995 年には Livesey らが再度ラットを用いた検討を行 ったがやはり L-glucose は代謝されず (Livesey et al. 1995)、近年では 2009 年に Sun らがカビ、 酵母、細菌、古細菌を用いて L-glucose を分解できるか検討したが、いずれの株も D-glucose を単一炭素源として生育するのに対して、L-glucose を単一炭素源としては生育できず、ま た分解することもできないと報告している (Sun et al 2009)。こうした経緯から、生物は L-glucose を利用することはできないとするのが一般的な認識である。

解糖系がそうであるように、生物は化学的、物理学的に等価な 2 つの鏡像異性体のうち 片方のみを利用する傾向がある。例えば DNA、RNA に含まれる ribose、2-deoxyribose は例 外なく D 体である。またタンパク質の生合成に見られるアミノ酸は不斉炭素を持たない glycine を除いてすべて L 体であることが知られている。総じて生物は、自然界での存在比 と同様に D 体の糖、L 体のアミノ酸を利用する傾向があることから、これらをまとめて生 命のホモキラリティー(biological homochirality)と総称する(Blackmond 2010)。しかしながら、 D 体、L 体という表記は科学者が便宜的につけたもので、表記法自体も糖とアミノ酸で類似 性はあるものの厳密には異なる。糖の場合はカルボニル基を上にして Fischer 投影式を書い たときに、カルボニル基から最も遠い不斉炭素における水酸基が右にくるものが D 体、左 にくるものが L 体である。一方アミノ酸の場合は主鎖カルボキシル基を上にして Fischer 投 影式を書いた場合に、主鎖アミノ基が左にくるものが L 体、右にくるものが D 体である。 従ってホモキラリティーの問題において、アミノ酸と糖を同列に扱うことは適切ではない といえる。また同じ糖であっても、D-ribose は D-glucose のように生物の炭素源、エネルギ 一源として分解されるのではなく、あくまで RNA の骨格を担う部品として生物によって合 成されるものである。よって解糖系が D 体の glucose に特異的であることと、RNA、DNA の骨格が D 体の ribose、deoxyribose であることもまた、別個の問題として取り扱うことが 必要だろう。

以上述べたように D-glucose の鏡像異性体である L-glucose を分解し、炭素源、エネル ギー源として利用する生物は現在までのところ見つかっていない。このように生物が D 体 の glucose のみを利用する現象は生命のホモキラリティーと総称されるものの一つではある が、本研究では glucose 異化代謝に見られるホモキラリティーを独立した問題として論じる。

第五節 本研究の目的と本論文の構成

最も原始的な異化代謝経路のひとつであると推定される解糖系とは、D-glucose を2分子の pyruvate に分解し、その過程でエネルギーを得る経路である。一方で生物が誕生する以前の地球において、D体の glucose のみが生成、蓄積したことを示す実証的な知見は今日においてもなお見受けられず、化学的に等価な DL-glucose のうちなぜ D-glucose のみが生物により選択されたのかという問いに対して、明確な答えは得られていない。

そこで本研究の目的として、これまで生物には分解できないといわれてきた L-glucose を 分解、資化する生物を探索し、その L-glucose 代謝機構を明らかにすることを設定した。こ の研究により新たに得られる知見は、glucose 異化代謝のホモキラリティー形成の起源を考 えるうえで重要な手がかりとなるだろう。

本研究の構成は以下のとおりである。まず第二章では L-glucose 資化菌の単離とそれらの 16S rRNA 遺伝子配列に基づく分子系統解析について述べる。第三章では L-glucose 資化菌 として単離された Paracoccus sp. 43P 株の L-glucose 代謝経路の初発酵素、L-glucose dehydrogenase の精製、遺伝子の同定、ならびに酵素学的諸性質について述べる。第四章で は L-gluconate dehydrogenase の精製、遺伝子の同定、ならびに同酵素遺伝子を含む遺伝子ク ラスターlgn 遺伝子群のクローニング、ならびに各酵素の機能について述べる。第五章では 同定した L-glucose 代謝関連遺伝子群の破壊が L-glucose、ならびに各中間代謝物の資化に及 ぼす影響について述べる。第六章では IclR ファミリー転写調節因子、LgnR による lgn 遺伝 子群の転写制御機構について述べる。最後に第七章で、本研究全体の総括と、今後の展望 について述べる。

第二章 L-グルコース資化菌の単離と同定

第一節 緒言

前章で述べたように、L-glucose を分解できる生物がいないとする認識は研究室で使用さ れている限られた菌株、組織を用いた研究の結果に基づくものであり、自然界の生物が L-glucose を分解できないことを示したものではない。L-glucose 資化細菌がいたとして、そ れが未知の代謝系によるものか、既知の酵素の隠された基質特異性によるものであるかは わからないが、本研究ではまず L-glucose を資化することが出来る微生物を環境中から探し 出し、分離株について 16S rRNA 遺伝子の解析を行い、配列に基づく分類学的解析を行った。

第二節 材料及び方法

2-2-1 実験材料

使用培地

集積培養には L-glucose 最少培地 (Table 2-2-1)を用いた。L-glucose 資化菌の分離について は L-glucose 最少寒天培地のほかに LB 寒天培地、YPD 寒天培地 (Table 2-2-2)を用いた。固 体培地における agar の量は 1.5 % (w/v)とした。

2-2-2 L-glucose 資化菌の集積培養

Table 2-2-1 に示した L-glucose 最少培地 10 ml を大試験管にとり、筑波大学周辺の土壌や 底泥サンプル 0.5 g を加え、30℃、120 rpm、好気条件で培養した。1 日ごとに培養液中の還 元糖量を DNS 法 (Miller 1959) により測定し、培養液中の還元糖量が 10%以下となったと ころで新たな L-glucose 最少培地に 1%接種することで継代し、同条件で培養した。2 回継 代を繰り返した後は、還元糖量に加えて O.D. 600 nm の吸光度を測定し、各培養液の菌体濃 度を測定した。

2-2-3 DNS 法による還元糖量の測定

1) DNS 試薬の調製

0.5 g 3,5-dinitrosalicylic acid、1.6 g NaOH、30 g potassium sodium tartarate に 100 ml の蒸留水 を加えて 30 分間攪拌することで溶解させ、DNS 試薬とした。

2) 検量線の作成

D-glucose 及び L-glucose についてそれぞれ 0、0.5、1、2、3、4、5 μmol/0.5 ml の濃度の溶 液 0.5 ml を調製し、それに対して DNS 試薬 1 ml を加え、よく攪拌した後に沸騰浴中で5 分

間加熱し、反応させた。流水で冷却後、蒸留水 4.5 ml で希釈し 535 nm の吸光度を測定し検 量線を作成した。

3) 培養液中の還元糖量の測定

各サンプルより培養液 0.5 ml をエッペンチューブにとり、4℃、15000 rpm で 10 分間遠心 した。上清 100 µl を蒸留水 400 µl で希釈し 0.5 ml とした後、DNS 試薬 1 ml を加え、よく攪 拌した後に沸騰浴中で 5 分間加熱し、反応させた。流水で冷却後、蒸留水 4.5 ml で希釈し 535 nm の吸光度を測定して、検量線より還元糖量を定量した。

2-2-4. L-glucose 資化菌の純粋分離

各集積培養サンプルを滅菌生理食塩水で 10⁻⁵, 10⁻⁶, 10⁻⁷に希釈して、100 µl を L-glucose 最 少寒天培地、YPD 寒天培地にそれぞれ 3 枚ずつプレーティングを行い、30℃で培養した。 生育してきたコロニーを L-グルコース最少寒天培地につまようじで植菌して 30℃で培養し、 生育の見られたものに関しては L-glucose 最少液体培地に 1 白菌耳接種した。 生育してきた培養液を滅菌生理食塩水で 10⁻⁵, 10⁻⁶, 10⁻⁷に希釈してそれぞれ YPD 寒天培地に プレーティングし、生育してきたコロニーをそれぞれ分離した。

2-2-5. L-glucose 資化細菌の生育に伴う培養液中の還元糖量の測定

1) 前培養

分離株のプレートより各菌株をそれぞれ1白金耳とり、大試験管にとった5mlのYPD液体 培地、またはLB培地にそれぞれ植菌して30℃、120rpm、好気条件で12時間から24時間 培養した。

2) 本培養

各前培養液 1 ml をとり 15,000 rpm、4℃で5分間遠心して菌体を回収した。1 ml の滅菌生理 食塩水を加え、ボルテクスミキサーで攪拌して再度 15,000 rpm、4℃で5分間遠心する操作 を2回繰り返して菌体を洗浄後、1 ml の滅菌生理食塩水に懸濁して大試験管にとった 10 ml の L-glucose 最少培地に O.D. = 0.1 となるように植菌して 30℃、120 rpm で培養し、経時的 に O.D. 600 nm を測定することで菌体濃度を測定し、1-2-2 に従って培養液中の還元糖量を 測定した。

2-2-6. ゲノム DNA の調製

中試験管にとった 5 ml の YPD 液体培地、または LB 培地に L-glucose 資化菌をそれぞれ 1 白金耳植菌し、12 時間から 24 時間培養した。培養液 1.5 ml をエッペンチューブにとり、15,000 rpm、4℃で 5 分間遠心することで菌体を回収した。菌体を 360 µl の T.E. バッファーに懸濁

し、40 µl の 10 mg/ml リゾチーム・1 µg/ml の RNase 溶液を加えて 37℃で 15 分間静置した。 50 µl の 10% SDS を加えて 37℃ で 10 分間静置後、100 µl の NaClO₄ を加えた後、600 µl の フェノールクロロホルムを加えて激しく攪拌した。15,000 rpm、24℃で 15 分間遠心し、上 清約 400 µl をエッペンチューブにとり、1 ml の氷冷エタノールを静かに加え、水層との界 面に析出したゲノム DNA をつまようじで巻き取り、5 分間風乾後に 100 µl の T.E.バッファ ーに溶解させた。

2-2-7.16S rRNA 遺伝子の解析

PCR およびシークエンス PCR に用いたプライマーは Table 2-2-3 に示した。

1) 16S rRNA 遺伝子の PCR 増幅

L-glucose 資化菌より抽出したゲノム DNA をテンプレートとして、16S rRNA 遺伝子のユニ バーサルプライマーセットである 27F、1492R プライマーおよび Takara Ex Taq を用いて PCR を行った。PCR 反応液を 1%アガロースゲルで電気泳動後、約 1,500 bp の増幅断片を UltraClean 15 DNA Purification Kit を用いて抽出した。

2) シークエンス PCR

シークエンス PCR は BECKMAN COULTER GenomeLab DTCS Quick Start Kit を用いてプロ トコルにしたがって行った。プライマーは 16SrRNA 遺伝子配列に基づくユニバーサルプラ イマーである 27F を用いた。解析した塩基配列約 500 bp を BLAST 上で検索し、相同性の見 られたデータベース上の配列から L-グルコース資化菌の簡易同定を行った。その後 43A、 43P、32K、1M2、32S の 5 株については 357F、926F、1094F、518R、805R、1111R、1492R ユニバーサルプライマーを用いて 16S rRNA 遺伝子全長を解析した。解析した配列は Genetyx を用いて連結し、BLAST 検索に供した。

2-2-8. 分子系統樹の作製

得られた 43P 株の 16S rRNA 遺伝子配列と、*Paracoccus* 属細菌、アウトグループとして *Rhodobacter sphaeroides* の 16S rRNA 遺伝子配列を用いて、CLUSTALX (*Larkinn* et al. 2007) によりアライメントを作製し、ついで得られたアライメントをもとに MEGA4 (Tamura *et al.* 2007)を用いて Neighbor-joining 法に基づく分子系統樹の作製を行った。 Table 2-2-1. L-glucose minimal medium

NH4Cl	0.54 g
KCl	0.52 g
MgSO ₄ ·7H2O	0.52 g
KH ₂ PO ₄	0.53 g
K ₂ HPO ₄	1.06 g
L-glucose	2.5 g
*Hutner's trace element solution	2 ml
	1 L (pH 7.0)

Hutner's trace element solution

	1 L
$(NH_4)Mo7O_2 \cdot 4H_2O$	0.11 g
CuSO ₄ ·5H ₂ O	0.16 g
CoCl ₂ ·6H ₂ O	0.16 g
FeSO ₄ ·7H ₂ O	0.5 g
$MnCl_2 \cdot 4H_2O$	0.5 g
H ₃ BO ₃	1.1 g
ZnSO ₄ ·7H ₂ O	2.2 g

Table 2-2-2. YPD and LB medium

YPD medium

10 g
10 g
10 g
1 L (pH 7.0)
10 g
5 g
10 g
1 L (pH 7.4)

Primer	Sequence (5'-3')
27F	AGAGTTTGATCMTGGCTCAG
357F	ACTCCTACGGGAGGCAGCAG
926F	AAACTCAAAGGAATTGACGG
1094F	GTCCCGCAACGAGCGCAAC
518R	GTATTACCGCGGCTGCTGG
805R	GACTACCAGGGTATCTAATC
1492R	GGYTACCTTGTTACGACTT

Table 2-2-3. Primers used in 16S rRNA gene sequence analysis

第三節 集積培養による L-グルコース資化細菌の単離

2-3-1. L-glucose の定量法の確立

DNS 法により L-glucose の定量が可能かどうかを検討したところ、D-glucose と同様の検 量線を得ることができた(Fig. 2-3-1)ので、集積培養過程の L-glucose の定量は得られた検量 線を用いて行うこととした。

2-3-2. L-glucose 資化菌の取得

筑波大学周辺の土壌や底泥 50 サンプルを L-glucose 最少液体培地で培養し、集積培養を 行ったところ、11 のサンプルで継続的な生育に伴う L-glucose の減少が確認された。これら のサンプルを新たな L-glucose 最少液体培地に 1%接種し、経代培養を行ったところ、全て のサンプルで L-glucose の減少に伴う生育が観察され、2 日から 3 日後には full growth にま で達した。このことから L-glucose 資化菌は自然環境中に予想外に多く存在していることが 考えられた。

L-glucose 資化菌をこの培養液から分離するため、合計 5 回から 10 回の集積培養を行った 培養液を適宜希釈し、L-glucose 最少寒天培地、YPD 寒天培地に塗布し、分離を行った。そ の結果、98 の L-glucose 資化菌候補株を得た。得られた候補株についてそれぞれ L-glucose 最少液体培地での生育と還元糖量の減少を確認したところ、21 株について生育に伴う培地 中の還元糖量の減少が観察された。そこでこれらの分離株を用いて以降の解析を行った。

Figure 2-3-1. Standard curve for quantification of reducing sugars in culture medium by the DNS method.

Symbols: Black circles, D-glucose; gray circles, L-glucose

第四節 L-グルコース資化菌の 16S rRNA 遺伝子配列解析

2-4-1. L-glucose 資化菌の簡易同定および 16S rRNA 遺伝子の全長解析

得られた L-glucose 資化菌について 16S rRNA 遺伝子上流領域約 500 bp の塩基配列を決定 し、既知菌株の配列と相同性検索を行ったところ、分離株は Agrobacterium 属が 4 株、Kaistia 属が 3 株、Shinella 属が 1 株、Mesorhizobium 属が 3 株、Paracoccus 属が 3 株、Labrys 属が 7 株含まれることが明らかになった。このことから、今回分離した L-グルコース資化菌はす べて α-Proteobacteria 綱に分類されることが推定された。さらに 43A、43P、32K、32S、1M2 株について 16S rRNA 遺伝子の全長を解析したところ、それぞれ Agrobacterium tumefaciens、 Paracoccus denitrificans、Kaistia granuli、Shinella zoogloeoides、Mesorhizobium plurifarium と 高い相同性を示した(Table 2-4-1)。43P 株を除く 4 株は 16S rRNA 遺伝子配列の相同性が非常 に高いため、上記の種に属すると考えられる。各菌株について培養条件の検討を行ったと ころ、NH4Cl 濃度および K₂HPO₄/KH₂PO₄ 濃度を 20 mM とした場合により良好な生育を示し た(データ示さず)。そこで以降の解析はこの条件で行うこととした。これら 5 株の L-glucose 最少培地中での生育を Fig. 2-4-1 に示す。

L-glucose 最少液体培地中で最も早い生育を示した 43P 株の 16S rRNA 遺伝子配列を用い て分子系統樹を作成したところ、43P 株は既知の *Paracoccus* 属細菌とクラスターを形成し た(Fig. 2-4-2)ので、同株は *Paracoccus* 属に属することが明らかとなった。一方で 43P 株と系 統的に近い *Paracoccus denitrificans* NBRC102528^Tは L-glucose 最少培地で生育することが出 来なかった(Fig. 2-4-3)。

i ii itestine ei ies iiu aiseq			ing curtoriu
Result of BLAST	Sequenced bases	Max identity	Query coverage
Agrobacterium tumefaciens	1433	99%	100%
Kaistia granuli	1445	98%	98%
Mesorhizobium plurifarium	1441	98%	100%
Shinella zoogleoides	1424	99%	99%
Paracoccus denitrificans	1418	97%	98%
	Result of BLAST Agrobacterium tumefaciens Kaistia granuli Mesorhizobium plurifarium Shinella zoogleoides Paracoccus denitrificans	Result of BLASTSequenced basesAgrobacterium tumefaciens1433Kaistia granuli1445Mesorhizobium plurifarium1441Shinella zoogleoides1424Paracoccus denitrificans1418	Result of BLASTSequenced basesMax identityAgrobacterium tumefaciens143399%Kaistia granuli144598%Mesorhizobium plurifarium144198%Shinella zoogleoides142499%Paracoccus denitrificans141897%

Table 2-4-1. Results of 16S rRNA sequence analysis of L-glucose assimilating bacteria

Figure 2-4-1. Growth of the isolated strains in L-glucose minimal medium. Symbols indicate following strains: closed circle, 32S; open circle, 43A; closed triangle, 43P; open triangle, 1M2; closed square, 32K.

Figure 2-4-2. A phylogenetic tree based on 16S rRNA gene sequence of strain 43P and those of type strains belonging to genus *Paracoccus* and *Rhodobacter*.

Figure 2-4-3. Growth (open symbols) and L-glucose consumption (closed symbols) of strains 43P (circles) and NBRC 102528^T (triangles) in L-glucose minimal medium. Growth was monitored by measuring the absorbance at 600 nm. The DNS method was used to determine the L-glucose concentration by measuring the reducing sugars in the culture medium of strains 43P and NBRC 102528^T. Cultivation was conducted in three independent cultures and average values \pm S. D. are shown.

第五節 まとめと考察

本章では、環境中からL-glucose を単一炭素源として生育可能な微生物を初めて単離する ことに成功した。この結果はこれまで生物により分解されないとされてきたL-glucose を分 解し、さらに単一炭素源、エネルギー源として利用できる生物の存在を示したという点に おいて重要である。また興味深いことに、16S rRNA 遺伝子配列に基づく L-glucose 資化菌 の分子系統解析の結果から、分離した L-glucose 資化菌は全て*α-Proteobacteria* 綱に属してお り、43P 株を除いて *Rhizobiales* 目に分類された。*Rhizobiales* 目の細菌は植物と共生するもの が多く、その代表例には根粒菌が挙げられる。根粒菌は特定の植物に対してのみ根粒を形 成し、共生するが、ある種の植物が根粒を形成するようになった背景には細菌と植物とが 互いに影響しあい、進化してきた共進化という過程が存在したという報告がある (Martínez-Romero 2009)。また、植物中にはアスコルビン酸生合成の中間体として L-galactono-1,4-lactone、L-glucose を生産するという報告はないが、 *Rhizobiales* 目細菌が L-glucose を分解できる背景には、植物由来のL体糖質を分解する酵素 群がかかわっている可能性が考えられ、興味深い。

唯一*Rhizobiales* 目以外の細菌でL-glucose 資化能を有していたのが*Paracoccus* 属の細菌と 予想される 43P 株であった。*Rhodobacterales* 目の一員である同株は、他の L-glucose 資化細 菌よりも L-glucose 最少培地中で非常に短い誘導期を経て増殖段階に移行することが可能で あったことから、*Rhizobiales* 目の L-glucose 資化菌とは異なる代謝経路を有している可能性 が考えられる。また、43P 株と系統的に近縁である *Paracoccus denitrificans* NBRC102528^T は L-glucose を単一炭素源として生育できなかったことから、同株の L-glucose 資化能は *Paracoccus* 属細菌に広く保存されているわけではないことが考えられる。

本研究のようにある化合物の資化性を選択圧として集積培養を行った場合、その化合物 を代謝する生物が生産する分解産物をエネルギー源として生育している微生物も同様に集 積されてしまう点が問題である。実際に今回のスクリーニングで10回以上の集積培養を繰 り返しても、8割以上の分離株は L-glucose を単一炭素源として生育することが出来なかっ た。理論的には L-glucose 最少寒天培地に塗布すれば L-glucose 資化細菌が分離できるはず だが、最少培地に生育してくるコロニーは非常に小さく、多くの場合は2種から3種の微 生物が混在していることが多いため、そこからさらに分離を要する。そのために YPD 培地 のような完全培地で分離し、その後改めて L-glucose 資化性を個別に確認することで L-glucose 資化菌を分離することが必要であった。本研究に用いられた手法は、特定の化合 物の資化性を基準とした微生物のスクリーニングに対して有効な手段であろう。また、バ クテリアの培養に広く用いられている LB 培地であるが、本研究の過程で得られた候補株の 多くは LB 培地で生育することが出来なかったため、YPD 培地を使用することにした。環 境サンプルからのスクリーニングによる未知の微生物の分離に際しては、完全培地の選択 についても検討を行う必要があるだろう。

集積培養の過程で突然サンプルの菌体濃度が減少することがあったが、ひとつは培養に 伴う有機酸生成に伴う pH の下降が原因であり、もうひとつは原生動物の増殖によるもので あった。pH の下降に対する方策としては緩衝能を持つ化合物、たとえば potassium phosphate の濃度を上げることが必要であり、本研究でも potassium phosphate の濃度を 20 mM に上げ ることで培養過程での pH の低下に伴う菌体濃度の減少を抑制することに成功した。ある化 合物の資化性を基準としたスクリーニングを行う場合、用いる化合物のモル濃度に対して 十分な量の緩衝能をもつ塩類を添加することが望ましい。また、原生動物の増殖を抑える ためには、真核生物に特異的に作用する抗生物質であるシクロへキシミドを添加すること が有効であった。

本研究では培養液中の L-glucose の定量に DNS 法を用いたが、この方法は一般的な還元 糖量の定量法に用いられるソモギ法と比較して簡便であり、試薬の安定性も非常に高かっ た。特に集積培養のようなルーチンワークにおいては、実験操作の簡便さが重要であるの で、DNS 法を用いた還元糖の定量はその点で優れており、感度も十分であった。

16S rRNA 遺伝子の解析に際して、本研究では PCR 産物を直接シーケンス解析する手法をとったが、ユニバーサルプライマーを用いたシークエンスではわずかなゲノムのコンタミネーションによるバックの影響が強く出るので、適当なベクター、たとえば pGEM Teasy クローニングベクターなどにサブクローニングした後にプラスミドをシークエンスしたほうがより確実なシークエンス解析が出来ると考えられる。

本研究におけるスクリーニングは一定の条件で集積培養を行ったため、今後は窒素源、 培養温度、pH、通気、biotin や TPP といった補欠因子の添加の有無といった細かい条件を 変化させることで、新規な L-glucose 資化菌を取得できる可能性も考えられる。また今回の 集積培養ではシクロヘキシミドを添加し、原核生物に標的を絞ったスクリーニングを行っ た。従って酵母、カビといった真核生物は集積培養の過程で排除されているため、L-glucose 代謝の生物ドメインをまたいだ普遍性を考える意味で、真核生物を対象としたスクリーニ ングを行うことも今後必要であろう。

22

第三章 L-グルコースデヒドロゲナーゼ遺伝子の同定と酵素学的解析

第一節 緒言

糖代謝の初段階反応としては、EMP 経路における D-glucose の ATP 依存的なリン酸化に よる D-glucose-6-phosphate への変換が最も有名であるが、他に ED 経路で見られる酸化反応 や、還元、異性化など様々な反応が知られている。そのため分離した L-glucose 資化細菌の L-glucose 代謝の初段階反応が、D-glucose 代謝と同様にリン酸化反応であるとは限らない。 本章では得られた L-glucose 資化菌の中で最も L-glucose を炭素源とした生育が良好であっ た *Paracoccus* sp. 43P 株の無細胞抽出液を用いて、L-glucose を基質とした活性を検出し、次 いで同反応を触媒する酵素の精製、遺伝子クローニング、さらに酵素学的諸性質の解析を 行った。

第二節 材料及び方法

3-2-1. 実験材料

使用培地

Paracoccus sp. 43P 株の前培養には LB 培地 (Table 2-2-2) を用いた。無細胞抽出液の調製 に際しては前章より若干改変を加えた L-glucose 最少培地 (Table 3-2-1)に加え、同培地の炭 素源を L-glucose から D-glucose、D-galactose にそれぞれ置き換えた培地も使用した。L-glucose dehydrogenase の精製に際しては、D-galactose 培地 (Table 3-2-2) を用いた。

使用プライマー

L-glucose dehydrogenase 遺伝子のクローニングおよび周辺遺伝子の解析に用いたプライマーを Table 3-2-3 に示す。

3-2-2. 無細胞抽出液の調製

L-glucose、D-glucose、D-galactose をそれぞれ単一炭素源とした最少液体培地 10 ml で培養 した *Paracoccus* sp. 43P 株を O.D. 1.0 以上となってから全量集菌し、1 ml の超音波破砕用バ ッファー(100 mM Tris-HCl, 1 mM DTT, 10% glycerol, pH 7.5)で菌体を洗浄後、0.3 ml の同バッ ファーに懸濁し、氷冷しながら 15 分間超音波破砕を行った。超音波処理後の菌体を 20,400 x g で 15 分間遠心し、無細胞抽出液とした。

3-2-3. L-glucose を基質とした酵素活性の測定

1) 異性化反応の測定

180 µl のバッファー(100 mM Tris-HCl、pH 7.5、10 mM L-glucose)に 20 µl の無細胞抽出液 を加え、2 時間 30℃でインキュベートし、Lobanok らの方法 (Lobanok et al. 1998) に従って ケトースの生成をシリカゲルプレート(Merck 社製)を用いた TLC によって検出した。

2) リン酸化反応の測定

180 μ l のバッファー(100 mM Tris-HCl、pH 7.5、10 mM ATP、1 mM MgCl₂、10 mM L-glucose) に 20 μ l の無細胞抽出液を加え、30°Cで 2 時間インキュベートし、反応産物 5 μ l を Hemker らの条件にて TLC 展開後 (Hemker et al. 2001)、ジフェニルアミン-アニリン-リン酸試薬 (Anderson *et al.* 2000))を噴霧し、150°Cで 10 分間加熱してスポットの生成を観察した。なお 標品には D-glucose-6-phosphate (オリエンタル酵母)、D-glucose-1-phosphate (Sigma-Aldrich) を用いた。

3) NAD(P)+依存的デヒドロゲナーゼ活性の測定

150 µl のバッファー(100 mM Tris-HCl、pH 7.5、1 mM NAD(P)⁺)に 10 µl の無細胞抽出液を 添加し、ついで 40 µl の L-glucose 水溶液を加え (終濃度 28 mM)、NADH の生成に伴う 340 nm の吸光度の上昇を DU800 spectrophotometer (Beckman Coulter)にて測定した。活性は NADH の 340 nm におけるモル吸光係数 $\varepsilon = 6220$ cm⁻¹ M⁻¹より算出した。

3-2-4. L-glucose dehydrogenase の精製

1) 培養および無細胞抽出液の調製

200 ml の LB 液体培地中で 30℃、120 rpm で一晩培養した 43P 株の細胞を遠心分離により 全量集菌し、1 L の D-galactose 培地に全量植菌して 24 時間培養を継続した。培養後の菌体 を遠心分離により集菌後、氷冷した A バッファー (100 mM Tris-HCl, pH 7.5, 1 mM DTT, 10% glycerol (v/v)) 30 ml に懸濁し、氷上で SONIFER 250 (Branson)による超音波破砕を 30 分間行 った。破砕液を 27,400 x g、4℃、30 分間遠心した後、上清を 0.22 µm のフィルターに通し、 無細胞抽出液とした。

2) DEAE-cellulose 弱陰イオン交換クロマトグラフィー

上記無細胞抽出液をA バッファーで平衡化した DEAE cellulose DE52 (Whatman)を充填し たエコノカラム(内径 2.5 cm, 高さ 15 cm)に全量充填した。流速は 0.8 ml min⁻¹とし、BioLogic LP システム (Bio-Rad)により操作を行った。カラム体積の 3 倍量の A バッファーを通液し て非吸着タンパク質を溶出後、NaCl 濃度 0-500 mM のグラジエントにより吸着したタンパ ク質を溶出した。NaCl 濃度 80-120 mM で溶出した L-glucose dehydrogenase 活性をもつ画分 をまとめてプールした。 3) Butyl-Toyopearl 疎水性相互作用クロマトグラフィー

上記活性画分に硫酸アンモニウムを終濃度 1.5 M となるように加えた。ついで 1.5 M 硫 酸アンモニウムを含む A バッファーで平衡化した Butyl-Toyopearl 650M を充填したエコノカ ラム (内径 2.5 cm、高さ 15 cm)に活性画分を全量添加した。流速は 1.2 ml min-¹とし、BioLogic LP システム (Bio-Rad)により操作を行った。 1.5 M 硫酸アンモニウムを含む A バッファー 120 ml を通液することで非吸着タンパク質を溶出後、硫酸アンモニウム濃度 1.5 M-0 M のグ ラジエントにより吸着したタンパク質を溶出した。硫酸アンモニウム濃度 0.6-0.5 M におい て溶出した L-glucose dehydrogenase 活性を有する画分をまとめてプールし、2 L の A バッフ ァーで一晩透析して脱塩した。

4) MonoQ 5/50 GL 強陰イオン交換クロマトグラフィー

以降のクロマトグラフィーは AKTA FPLC システムを用いて行った。活性画分を A バッファーで平衡化した Mono Q 5/50 GL に全量添加し、10 ml の A バッファーで非吸着タンパク質を溶出後、0-250 mM の NaCl グラジエントにより吸着タンパク質を溶出した。流速は 1 ml min⁻¹ とした。L-glucose dehydrogenase 活性を有するタンパク質は NaCl 濃度 150 mM で 溶出した。活性画分を Amicon Ultra-0.5 mL 10 K (Milipore) を用いた限外ろ過によって濃縮 した。

5) Superdex 200 10/300 GL ゲルろ過クロマトグラフィー

活性画分を 150 mM の NaCl を添加した A バッファーで平衡化した Superdex 200 10/300 GL に添加し、流速 0.5 ml min⁻¹で分画した。活性画分を集め、保存用バッファー(100 mM Tris-HCl, pH 7.5, 1 mM DTT, 50% glycerol)で透析し、-20℃で保存した。

3-2-5. SDS-PAGE

Laemmli の方法に従った (Laemmli 1970)。12%アクリルアミドゲルを用いて 30 mA の定電 流で泳動した。染色には Coomassie Brilliant Blue を用いた。

3-2-6. タンパク質濃度の定量

Bio-Rad 社の Protein assay kit を用い、取扱説明書に従って行った。検量線の作製には bovine serum albumin (Wako chemical) を用いた。

3-3-7. 活性染色

1) 無細胞抽出液の調製

3-2-2 に従って L-glucose を炭素源とした場合と D-galactose を炭素源とした場合のものを 調製した。

2) Native PAGE

SDS を除いた 10%ポリアクリルアミドゲル、4℃、40 mA の定電流で電気泳動を行った。 サンプルはそれぞれ 20 µl ずつとして、還元剤を含まないローディングバッファーで熱処理 をせずにアクリルアミドゲルにロードした。

3) 染色

40 分間泳動後、ゲルを蒸留水で洗浄した後、10 ml の活性染色液(100 mM Tris-HCl (pH 8.0), 100 mM L-glucose, 0.25 mM nitro blue tetrazolium, 0.06 mM 1-methoxy-phenazine methosulfate, 5 mM NAD⁺) に浸漬し、室温で 15 分間反応させた。コントロールには、L-glucose を含まな い染色液を用いた (Watanabe *et al.* 2006)。

3-2-8 LgdA のキネティックパラメーターの測定

NAD⁺濃度を4点(1,2,3,6 mM)とL-glucose 濃度を7点(3.5,7,14,28,56,112,224 mM) とり、精製酵素のL-glucose に対する *K*_m, *k*_{cat}を測定した。反応系 200 µl(50 mM Tris-HCl (pH 8.0), 1 mM MgCl₂, 2 µg 精製酵素,各濃度の NAD⁺および L-glucose)で 340 nm の吸光度をモ ニターして各点の活性を測定した。NAD⁺の飽和濃度は8 mM、L-glucose の飽和濃度は 224 mM としてそれぞれのキネティックパラメーターを測定した。

得られた各基質濃度 x に対する v を y としてプロットし、Microcal Origin の非線形フィットツールによりミカエリスメンテンの式:

 $v = (V_{\max}[S])/(K_m + [S]) (\exists 1)$

を用いてフィッティングし、 K_{m} , V_{max} を求めた。ついで V_{max} を反応に使用した酵素のモル濃度で除し、 k_{cat} とした。

3-2-9. 精製酵素の polyvinylidene difluoride membrane (PVDF 膜) への転写

精製酵素を 3-2-5 に従って電気泳動した後、A 液(300 mM Tris, 5%メタノール), B 液(25 mM Tris, 5%メタノール), C 液(25 mM Tris, 40 mM 6-アミノカプロン酸, 5%メタノール)にそれぞ れ浸したろ紙とアトー社製 PVDF 膜と SDS ゲルを重ね合わせ、ATTO Horizeblot system AE-6670 (ATTO, Tokyo, Japan)により 150 mA の定電流で 2 時間半 PVDF への転写を行い、 CBB で染色した。転写されたマーカーを参考にして 40 kDa 付近のバンドを切り出した。

3-2-10.N 末端アミノ酸配列の同定

PVDF 膜に転写した精製酵素サンプルを北海道システムサイエンス社に送付し、エドマン 分解法による N 末端アミノ酸配列解析を委託した。

3-2-11. PCR 産物のクローニング

ExTaq または GC-rich PCR system (Roche)を用いた場合は pGEM-T Easy cloning vector

system (Promega)を用いた。平滑末端を生じる DNA ポリメラーゼを用いた PCR 産物は、特 に記載がない場合プライマーに付加した制限酵素サイトに対応した制限酵素で処理した後、 pUC19 にクローニングした。形質転換にはエレクトロポレーション法を用い、宿主は *E. coli* DH10B を用いた。選択培地には LB 寒天培地を用い、用途に応じて抗生物質を以下の濃度 で添加した: ampicillin, 100 μ g ml⁻¹; kanamycin, 50 μ g ml⁻¹。青白選択を行う場合は培地に X-Gal を終濃度 0.004% (w/v)、IPTG を終濃度 0.2 mM それぞれ添加した。

3-2-12. プラスミドの抽出

プラスミドの抽出には小スケール (2-10 ml) の場合はアルカリ SDS 法、ラージスケール (50-200 ml) の場合は Fast Ion Plasmid Midi Kit (RBC BIOSCIENCE)を用いた。

3-2-13. L-glucose dehydrogenase をコードする遺伝子、lgdAのクローニング

1) 縮重プライマーを用いた PCR を介した lgdA 部分塩基配列の同定

43P 株より精製した L-glucose dehydrogenase のN 末端アミノ酸配列と高い相同性を示す、 *P. denitrificans* PD1222 株由来の推定オキシドレダクターゼ、Pden_1680 のアミノ酸配列をも とにアライメントを作製した。アライメントで見出された内部アミノ酸保存領域および N 末端アミノ酸配列からそれぞれ作製した縮重プライマー、LGDH_midR、LGDH_NterF を用 いて、2-2-6 に従って調製した 43P 株のゲノム DNA を鋳型とした PCR を行った。PCR には ExTaq を使用し、アニーリング温度は 50 °C、伸長時間は 1 分とした。増幅した約 500 bp の DNA 断片を抽出、精製し、pGEM-T Easy vector system (Promega) を用いて pGEM-lgdA500 を得た。同プラスミドを鋳型とし、M13F、M13R プライマーを用いたシークエンス行った。

2) サザンハイブリダイゼーション

pGEM-lgdA500 を *Eco*RI で処理し、*lgdA* の部分 DNA 断片を得た。得られた DNA 断片を ウォーターバスで 95℃、15 分間処理して熱変性させた後、氷上で 10 分間静置して一本鎖 とした。DIG DNA labeling kit (Roche)を用いて以下の反応液を調製し、37℃で一晩反応させ た。

Single stranded DNA	16 μl
10 X hexanucleotide	2 µl
10 X labeling mix	2 µl
Klenow fragment	1 μl
反応産物をエタノール沈殿し	、TE バッファーに再度懸濁してプローブとした。

43P株のゲノムDNAを*Eco*RIで3時間処理し、0.8%アガロースゲルで電気泳動したあと、 ゲルをアルカリ塩溶液 (0.5 M NaOH, 1.5 M NaCl)に30分間浸し、DNAを一本鎖とした。ゲ ルを中和バッファー (0.5 M Tris-HCl, pH 7.5, 1.5 M NaCl) に30分間浸して中和した後、20 X SSC で一晩 Hybond N⁺ (GE-Healthcare)に転写した。ナイロン膜を 2 X SSC で洗浄した後、ハ イブリダイゼーション緩衝液 (5 X SSC, 0.1 % N-lauroyl sarcosine, 0.02 % SDS, 0.5 % ブロッ キング試薬 (Roche))に浸し、68℃で 1 時間反応させた。次に上記で作製したプローブを加 え、さらに 68℃で一晩反応させた。反応後の膜を 0.1 %SDS を含んだ 2 X SSC で 15 分間 2 回洗浄し、さらに 0.1 %SDS を含んだ 0.5 X SSC で 68℃で 15 分間 2 回洗浄した。膜をバッ ファー1 (100 mM Tris-HCl, pH 7.5, 1.5 M NaCl)に 1 分間浸し、0.5 %ブロッキング試薬を加え た同バッファーに 30 分間浸した。再びバッファー1 に 1 分間浸して洗浄した後、DIG 抗体 を含んだ同バッファーに 30 分間浸した。バッファー1 で洗浄後にバッファー2 (100 mM Tris-HCl, pH 9.5, 1 M NaCl, 50 mM MgCl₂・6H₂O)に 2 分間浸し、NBT-BCIP を加えて発色さ せた。

3) インバース PCR による lgdA 全長の解析及び周辺遺伝子の解析

43P 株のゲノム DNA 10 µg を 50 µl のスケールで *Eco*RI で一晩処理し、フェノールクロロ ホルム処理、エタノール沈殿後、30 µl の TE バッファーに溶解した。同様液 1 µl を 100 µl の系で T₄ DNA ligase (Promega)を用いて一晩処理し、セルフライゲーションを行った。ライ ゲーション後の溶液 1 µl を鋳型とし、プライマーセット、LGDH_invF、LGDH_invR を用い たインバース PCR 反応を行った (Ochman *et al.* 1988)。PCR 酵素は ExTaq を用い、アニーリ ング温度は 58℃、伸長時間は 4 分間とした。得られた約 3,500 bp の DNA 断片を pGEM-T Easy vector system によりクローニングした。上記のインバース PCR、サザンハイブリダイゼーシ ョン、シークエンス PCR、プライマーウォーキングを繰り返し、*lgdA* およびその周辺遺伝 子の塩基配列、約 10 kb を解析した。

3-2-14. lgdA 発現用ベクターの構築

*lgdA*の開始コドンの前に*Nde*I、終始コドンの手前に*Xho*I サイトを付加したプライマーを 作製し、43P 株のゲノム DNA を鋳型とした PCR 反応を行った。増幅の見られた 1,100 bp の 断片を抽出した後、*Nde*I、*Xho*I で 2 時間制限酵素処理を行った。電気泳動、ゲル抽出後に 同様の処理をした pET21a (+) と Ligation High (Toyobo)で2 時間ライゲーション反応を行い、 エレクトロポレーション法により *E. coli* DH10B 株に導入してアンピシリンで選択した。得 られたプラスミドの塩基配列を確認し、目的のプラスミドを pETlgdA とした。ついで同プ ラスミドを *E. coli* BL21 (DE3)株にエレクトロポレーション法で導入した。

3-2-15. 43PiolG 発現用ベクターの構築

*43PiolG*の開始コドンの手前に *Nde*I、終始コドンの手前に *Xho*I サイトを付加したプライマーを作製し、43P 株のゲノム DNA を鋳型とした PCR 反応を行った。増幅された約 1,000 bpの断片を 3-2-14 に従って pET21a (+)のマルチクローニングサイトにクローニングしpET43PiolG を得た。

3-2-16. LgdA-His₆の精製

1) 培養

pETlgdAを保有した *E. coli* BL21 (DE3)株を100 mg/Lのアンピシリンを含んだLB培地5 ml で一晩培養し、100 mlの同培地に1%植菌して 37℃で O.D. = 0.5-0.8 となるまで培養した。 培養液に IPTG を終濃度 0.1 mM となるように加え、さらに 30℃で 3 時間培養した。

2) 精製

培養後の菌体を 5,000 rpm で 10 分間遠心して集菌し、10 ml の破砕バッファー(100 mM Tris-HCl, pH 8.0, 100 mM イミダゾール, 0.5 M NaCl, 10%グリセロール)に懸濁して超音波に より破砕した。破砕液を 15,000 rpm で 15 分間遠心し、上清を 0.22 µm のフィルターに通し た後、Ni²⁺を配位させた後に破砕バッファーで平衡化した HiTrap Chelating HP (1 mL)に全量 添加し、同バッファー10 ml で洗浄した。イミダゾール濃度を 500 mM とした破砕バッファ -5 ml を通液して溶出し、保存用バッファー(100 mM Tris-HCl, pH 8.0, 1 mM DTT, 50 % glycerol (v/v))で一晩透析して-20℃で保存した。

3-2-17.43PIolG-His6の精製

pET43PiolG を保有した E. coli BL21 (DE3)株を用いて、3-2-16 と同様に行った。

3-2-18. LgdA-His6のキネティックパラメーターの測定

反応液は 200 µl とし、デヒドロゲナーゼ活性測定のバッファーには 100 mM Tris-HCl, pH 8.0 を用いた。糖、イノシトールに対するキネティックパラメーターの測定に際しては NAD⁺ の濃度を 10 mM とし、糖またはイノシトールをそれぞれ以下に示す濃度で添加し、活性を 測定した: L-glucose, 2, 4, 8, 16, 40, 80, 160, 300, 600 mM; L-allose, 6.25, 12.5, 25, 50, 100, 200 mM; L-xylose と D-glucose, 15.625, 31.25, 62.5, 125, 250, 375 mM; D-xylose, 15.625, 31.25, 62.5, 125, 250, 375 mM; L-xylose, 5, 10, 20, 40, 80, 200 mM; *myo*-inositol, 5, 10, 20, 40, 80, 160, 320, 500 mM; *scyllo*-inositol, 0.5, 1, 2, 4, 8, 16, 32, 64 mM; *scyllo*-quercitol, 1.25, 2.5, 5, 10, 20, 40, 80 mM。

レダクターゼ活性測定のバッファーには 100 mM MES-KOH, pH 6.0 を用い、NADH の濃 度を 0.2 mM とした。イノソースは以下に示す濃度で添加し、活性を測定した: *scyllo*-inosose, 0.05, 0.1, 0.2, 0.4, 0.5, 1, 2, 4, 8, 16, 32, 50 mM; L-*epi*-2-inosose, 1.25, 2.5, 5, 10, 20, 40 mM。

各データのフィッティングは 3-2-7 に従って Michaelis-Menten の式を用いた。*syllo*-inosose を基質とした活性については基質阻害が見られたため以下に示す式を用いた: $v = V_{max} [S]/(K_s + [S] + [S]^2/K_{ss})$

3-2-19. LgdA-His₆の結晶化

東京農業大学 矢嶋俊介教授との共同研究により実施した。結晶構造に関する図の作製

は PyMOL を用いた。既知の結晶構造データの PDB ファイルは RSCB protein data bank (http://www.pdb.org/pdb/home/home.do)より 取得した。

3-2-20. 薄層クロマトグラフィー

担体には TLC silica gel 60 Aluminium sheet (Merck)を用いた。展開液には ethylacetate/methanol/acetic acid/water (6:1.5:1.5:1)を用いた。プレートをドライヤーで乾かし た後、ジフェニルアミンアニリンリン酸試薬 (Anderson *et al.* 2000)を噴霧し、乾熱 150℃で 10分間静置してスポットの形成を観察した。

3-2-21. LgdA の反応産物の精製

以下に示す組成の反応液; 100 mM Tris-HCl, pH 8.0, 50 mM L-glucose, 2 mM NAD⁺, 100 mM pyruvate, 2 unit D-lactate dehydrogenase (オリエンタル酵母), 0.5 mg LgdA-His₆, 10 ml を 30°Cで 8 時間インキュベートした後、200 mg の活性炭 (Wako)を加えて 15 分間 37°Cで攪拌することで NAD⁺/NADH を活性炭に吸着させた。ついで反応液を 0.45 µm のフィルターに通液することで活性炭を除去した。さらに通過液を 5 g の DOWEX 1X8 (formate form, 200-400 mesh, Wako)を充填したカラムに通液し、10 ml の水で洗浄した。ついで 100 mM formate を通液し、LgdA 反応産物を溶出させた。溶出液を凍結乾燥により濃縮後、2 M NaOH により pH を 8-10 となるよう調製した。得られた濃縮液を分取用シリカゲルプレート (Merck)に全量線上にスポットし、展開液(ethylacetate/methanol/acetic acid/water (6:1.5:1.5:1))で 2 回展開した。シリカゲルプレートの両端約 2 cm をダイヤモンドカッターによって切り出し、ジフェニルアミン-アニリン-リン酸試薬を噴霧して加熱することで LgdA の反応産物に相当するピンク色のスポットの Rf 値を算出し、試薬を噴霧していない残りのシリカゲルプレートより LgdA 反応産物が存在すると推定される部分のシリカゲルをスパーテルを用いて切り出した。得られたシリカゲルから 10 ml の水を用いて 2 回抽出を行い、抽出物を凍結乾燥して LgdA 反応産物とした。

3-2-22. 高速液体クロマトグラフィー (HPLC)

HPLC は LC-2000 plus system (Jasco) に検出器として示差屈折計 (RI-2031 plus, Jasco)、旋光 度計 (OR-2090 plus, Jasco) を連結したものを用いて行った。カラムは ICSep COREGEL 87H column (7.8 x 300 mm, Tokyo chemical industry) を用い、移動相 に 4 mM H₂SO₄、流速 0.6 ml min⁻¹、分析温度 30℃で解析を行った。

3-2-23. 核磁気共鳴スペクトル (NMR)

NMR 解析は筑波大学研究基盤総合センター分析部門の Avance-500 (500 MHz, Bruker)を用いて行った。測定は 25℃で行い、NMR 試料管には幅 5 mm、長さ 178 mm、製品名 508-UP-7 (東京化成工業)を用いた。溶媒には D₂O (東京化成工業)を用いて、すべての化学シフトはサ

ンプルに添加した 4,4-dimethyl-4-silapentane-1-sulforic acid (0 ppm)を基準とした。各シグナルの帰属はデータベース(SDBS web)における sodium D-gluconate のスペクトルと比較して行った。

3-2-24. Potassium L-gluconate の調製

Moore らの方法 (Moore et al. 1940)に従って L-glucose をメタノールを溶媒としてヨウ素で酸化し、4% 水酸化カリウム-メタノール溶液を滴下することで析出する potassium L-gluconate を回収した。

Table 3-2-1. Modified L-glucose minimal medium

2 ml
2.50 g
2.12 g
1.06 g
0.52 g
0.52 g
1.08 g

Table 3-2-2. D-galactose medium

NH4Cl	1.08 g
KCl	0.52 g
MgSO ₄ ·7H2O	0.52 g
KH ₂ PO ₄	1.06 g
K ₂ HPO ₄	2.12 g
D-galactose	5.00 g
Yeast extract	1.00 g
*Hutner's trace element solution	2 ml
	1 L (pH 7.0)

Table 3-2-3. Primers used in this chapter.

Primer	Sequence (5'-3')	
Degenerate primers used for cloning of L-glucose dehydrogenase		
LGDH_NterF	ATHGGNACNGGNTTYATGGG	
LGDH_midR	GGRTCNGCCATRTARTCYTC	

Primers used for primer walking

M13F	TGT AAA ACG ACG GCC AGT
M13R	GCGGATAACAATTTCACACAGG
LGDH_invF	GCCGAATGCGGTGCGACGTTGC
LGDH_invFII	GTCAATTTCTGAGGAATGATAT
LGDH_invR	GCGGTCGATCTGATCGCCGAAGG
LGDH_invRII	AAAGACTGGATCGCGCCGATCG
43P1679_F	ATTGGTGCGAAACGCTGCAACC
43P1678_invF	GGTCAAGGATGTGACCGGCGCG
43P1678_invFII	CGGCTATGTCGCGCTGAAAAAGG
43P1678_invFIII	GTTCTGGGCCAGCAGATCCTGA
43P1678_invFIV	CGCTTTATCCCTTTAACCTGTG
43P1678_invR	GGCGCGGTTCACGTCGTTCAGC
43P1678_invRII	CGGGCATATCCTCAAGCTGGAC
43P1678_invRIII	CCTCGATTTGTCCGGTAAAGGC
43P1677_R	GCTTCGATCATGCTGCCGGTGT
43P1676_invF	GACGACCGGCTGGAGAATGC
43P1676_invFII	ACGATCTGGTGCGCGGCTTT
43P1676_invFIII	CTATGCCAAGACCAAGAAGC
43P1676_invFIV	GCGGTTTCAGGACTTTACCA
43P1676_invFV	GCTATAGCTGCATGGGGTACGA
43P1676_invR	CGGTAGAAGATCAGCGGAAAGC
43P1676_invRII	CGCACAGGCCGCGTTTCCCG
43P1674_invF	AATGACTGCAAGGTCTGCGT
43P1674_invFII	GGTGCAGGCATGAAGCTGTT
43P1675_invR	AAAGTCGATCTGCGGCTGCT
43P1675_invRII	CCCCATTTGATTTCCTGCTG
43P1675_invRIII	TATCTGCCCGATGGCAGCGA

Primers used for construction of expression plasmids

LgdA_NdeF	CCGGGCATATGAGCAATGCTGAAAAAGCCCTC
LgdA_XhoR	CCGGGCTCGAGGAAATTGACGGGCTGGCCGGTCT
43P1678_NdeF	CCGGGCATATGACCTTGAAAATCGGAGTGATC
43P1678_XhoR	CCGGGCTCGAGGTCGTAAAGGGCGGGACGGGCGG
第三節 L-グルコース代謝初段階反応の同定とL-グルコースデヒドロゲナーゼの精製

3-3-1. L-glucose 代謝初段階反応の同定

L-glucose 最少培地で培養した 43P 株の無細胞抽出液を用いて、L-glucose を基質とした酵素活性を検討した。TLC を用いたアッセイでは、L-glucose に対するリン酸化、異性化活性は検出されなかった。同様に NADH を補酵素とした還元活性も検出されなかったものの、NAD⁺を補酵素とした場合に明確な L-glucose dehydrogenase 活性(L-GDH 活性)が観察された。この結果から、43P 株の L-glucose 代謝の初段階反応は、L-GDH による NAD⁺依存的な酸化反応であることが考えられた。また NADP⁺を補酵素とした場合には、同活性は検出されなかった (データ示さず)。

次に 43P 株の L-GDH 活性がどのような培養条件で誘導されるのかを検討するために、各 種糖質を用いて 43P 株を培養し、L-GDH 活性について検討した。その結果、D-glucose、 D-galactose を炭素源とした場合にも同程度の活性が検出された (Table 3-3-1) が、LB 培地を 用いた場合は活性が検出されなかった (データ示さず)。

3-3-2. L-グルコースデヒドロゲナーゼの精製

次に L-GDH の精製を行うこととしたが、L-glucose は高価なため、L-glucose 最少培地で 43P 株を大量培養するのは困難であった。そこで、D-galactose を炭素源とした培地を用いて 43P 株を大量培養し、L-GDH 活性を有する酵素を SDS-PAGE 上で単一バンドとなるまで精 製した (Fig. 3-3-1)。Table 3-3-2 に 1 L の培養液を出発材料とした場合の精製表を示す。なお L-GDH 活性は、精製の途中段階でも精製酵素を含む画分以外では検出されなかったので、 同活性を担う酵素は、D-galactose で培養した場合には今回精製した酵素以外には存在しな いと考えられる。

さらに、精製酵素が 43P 株を L-glucose で培養した際に検出された L-GDH 活性の本体と 同一であるかどうかを検討するために、精製酵素および D-galactose、L-glucose を炭素源と して培養した 43P 株より調製した無細胞抽出液を用いて活性染色を行った。その結果、い ずれのサンプルでも同一の移動度にバンドが形成された(Fig. 3-3-2)。このバンドは L-glucose を染色液に添加しなかった場合には生じなかったため、L-GDH 特異的なバンドであると結 論した。

以上の結果より、D-galactose を炭素源として培養した 43P 株より精製した L-GDH は、 L-glucose を単一炭素源として 43P 株を培養した際に発現するものと同一であることが示さ れた。

3-3-3. キネティックパラメーターの測定

精製した L-GDH の L-glucose に対するキネティックパラメーターを測定した結果、 k_{cat} が 710 min⁻¹、 K_m が 44.4 ± 6.3 mM であった。

Cultivated carbon source	Specific activity (µmol min ⁻¹ mg ⁻¹)
L-glucose	0.054
D-glucose	0.025
D-galactose	0.051

Table 3-3-1. L-GDH activity on cell-free extract from *Paracoccus* sp. 43P.

Figure 3-3-1. SDS-PAGE of purification steps of L-GDH.

Lanes M, molecular marker; Lane 1, cell-free extracts; 2, after DEAE-cellulose; 3, after Butyl-Toyopearl; 4, after Mono Q 5/50 GL; and 5, after Superdex 200 10/300 GL chromatography.

	Total protein	Total activity	Specific activity	Yield
Purification step	(mg)	$(\mu mol min^{-1})$	$(\mu mol min^{-1}mg^{-1})$	(%)
Cell-free extract	734	33.1	0.05	100
DEAE-cellulose	117	22.6	0.19	68.2
Butyl Toyopearl	8.53	20.6	2.42	62.8
Mono Q 5/50	1.51	4.86	3.21	14.7
Superdex 200 10/300	0.21	0.982	4.71	3.0

Table 3-3-2. Purification of L-GDH.

Figure 3-3-2. Zymogram staining of L-GDH in the cell-free extract from *Paracoccus* sp. 43P. Cell-free extracts and the purified enzyme were separated on 10 % polyacrylamide gel, and formation of NADH was visualized using nitro blue tetrazolium as formazan dye in the presence (lane 1-3) or the absence (lane 4-6) of 100 mM L-glucose. Lane 1 and 4, cell-free extract from strain 43P cultivated with L-glucose; lane 2 and 5, cell-free extract from strain 43P cultivated with D-galactose; lane 3 and 6, purified L-GDH.

第四節 IgdA のクローニング

3-4-1. L-GDH の N 末端アミノ酸配列の同定

精製酵素を SDS-PAGE 後、PVDF 膜に転写し、エドマン分解法により N 末端アミノ酸配 列を決定した。その結果、本酵素の N 末端 19 残基のアミノ酸配列は、 SNAEKALGVALIGTGFMGK であった。

3-4-2. データベース解析とアライメントによる内部アミノ酸保存領域の推定

L-GDH の N 末端アミノ酸配列を BLAST 検索に供したところ、ゲノム配列が明らかとなっている *P. denitrificans* PD1222 株の推定オキシドレダクターゼ、Pden_1680 と 80%の相同性を示した。そこで Pden_1680 のアミノ酸配列全長をデータベース検索に供し、相同性の見られるタンパク質とアライメントを作製したところ、Pden_1680 のアミノ酸配列における 165-171 番目のアミノ酸残基が、他のタンパク質においても保存されていることを見出した (Fig. 3-4-1)。

3-4-3. 縮重プライマーを用いた PCR による L-GDH 遺伝子 (*lgdA*) の ORF 5'側領域の取得 精製酵素の N 末端アミノ酸配列及びアライメントより得られた保存アミノ酸配列から縮 重プライマーセットを設計し、43P 株のゲノム DNA を鋳型とした PCR を行った結果、約 500 bp の DNA 断片の増幅が認められた。増幅断片を pGEM-T Easy ベクターにクローニン グした後、配列を解析した結果、得られた塩基配列は Pden_1680 の ORF 中の 5'側約 500 bp と 84%の相同性を示した。

3-4-4. インバース PCR による lgdA 全長のクローニング

得られた *lgdA* ORF の部分塩基配列をもとに外向きのプライマーセットを作製し、*Eco*RI で処理後セルフライゲーションを行った 43P 株のゲノム DNA を鋳型としたインバース PCR を行った。その結果サザンハイブリダイゼーションの結果 (Fig. 3-4-2) から予想された約 3,500 bp の DNA 断片の増幅が観察されたので、同 DNA 断片の両末端部分の配列を解析した結果、*lgdA* ORF 全長に相当する 1,119 bp の配列情報を取得することに成功した。

3-4-5. lgdA 周辺遺伝子の解析

インバース PCR、プライマーウォーキングを繰り返し、*lgdA*の周辺にどのような遺伝子 が存在するのか解析した。その結果、*lgdA*の下流に存在する遺伝子は、inositol 代謝関連遺 伝子と高い相同性を有していた (Table 3-4-1)。また、ゲノム配列が明らかとなっている *P. denitrificans* PD1222 株にも 43P 株と同様の遺伝子クラスターの存在が確認された(Fig. 3-4-3) が、*P. denitrificans* PD1222 株における Pden_1673 に相当するオルソログを 43P 株は有してい なかった。

Figure 3-4-1. Conserved amino acid sequences of Pden_1680 and its orthologs. Conserved amino acids are shaded. Asterisks and colons indicate identical and positive amino acid residues, respectively. Pden_1680, *Paracoccus denitrificans* PD1222; Yinte0001_24470, *Yersinia intermedia* ATCC29909, ECA1462; *Erwinia carotovora* subsp. *Atroseptica* SCRI1043, YPDSF_2670, *Yersinia petis* Angola, HNE_2186; *Hyphomonas neptunium* ATCC15444, Jann_1421; *Jannaschia* sp. CCS1, Arad_1562; *Agrobacterium radiobacter* K84, and RHE_CH01346; *Rhizobium etli* CFN42.

*Eco*RI-digested fragment of pGEM-lgdA500 was labeled with DIG DNA labeling kit, and used as a probe DNA. Genomic DNA of *Paracoccus* sp. 43P was digested with the indicated restriction enzymes; lane 1, *Eco*RI; 2, *Pst*I; 3, *Bam*HI and *Bgl*II; 4, *Eco*T22 and *Pst*I; and 5, *Xho*I and *Sal*I.

Tuble 5 4 1.1 reducted functions of genes focuted in the cluster containing ignat.			
Orf	Predicted function		
lgdA	Putative oxidoreductase		
orf 1	Xylose isomerase domain protein (IolH)		
orf 2	Myo-inositol-2-dehydrogenase (IolG)		
orf 3	Inosose isomerase (IoII)		
orf 4	5-dehydro-2-deoxygluconokinase (IolC)		
orf 5	Trihydroxycyclohexane-1,2-dione hydrolase		
orf 6	Inosose dehydratase (IolE)		
orf 7	5-deoxy-glucuronate isomerase (IolD)		

Table 3-4-1. Predicted functions of genes located in the cluster containing *lgdA*.

Figure 3-4-3. Gene organization of the cluster containing *lgdA*.

Sequence identities to the corresponding P. denitrificans PD1222 genes are shown in parentheses.

第五節 LgdA の酵素学的諸性質の解析

3-5-1. LgdA-His6の調製

lgdA ORF を PCR 増幅して得た断片を pET21a (+)の *Nde*I、*Xho*I サイトにクローニングし、 pET-lgdA を作製した。C 末端に His タグを付加して発現させ、HisTrap カラムにより精製し た。IPTG 濃度を上げすぎると菌体の増殖が悪化する傾向が観察された (データ示さず)ため、 IPTG 濃度は 0.2 mM とした。LgdA-His₆ は HisTrap カラムに強く吸着し、100 mM imidazole を含むバッファーで洗浄した後 500 mM imidazole を含むバッファーで溶出させることで SDS-PAGE 上単一バンドに精製することができた (Fig. 3-5-1)。

3-5-2. LgdA-His₆を用いたキネティックパラメーターの測定

LgdA-His₆を用いてキネティックパラメーターの測定を行った。この際、*lgdA*の周辺に推 定 inositol 代謝関連遺伝子が存在することが示されたことから、ペントース、ヘキソースだ けではなく inositol 異性体についても基質として用い、NAD⁺を補酵素としたデヒドロゲナ ーゼ活性についてキネティックパラメーターを測定した。その結果 LgdA-His6 は L-glucose を基質とした場合、精製酵素と同程度の NAD⁺を補酵素としたデヒドロゲナーゼ活性を示し、 NADP⁺を補酵素とした活性は検出されなかった。また LgdA は L-xylose, L-allose, D-glucose, D-xylose, myo-inositol, scyllo-inositol, scyllo-quercitol を基質としたデヒドロゲナーゼ活性も有 しており、scyllo-inositolを基質とした活性が最も強かった (Table 3-5-1)。D-galactose, L-galactose, D-mannose, L-mannose, D-arabinose, L-arabinose, L-fucose, L-rhamnose, epi-inositol, D-chiro-inositol, L-chiro-inositolを基質とした活性は検出されなかった。以上の結果からLgdA は 6 員環構造を有しており、エクアトリアルな水酸基を多く含む化合物をデヒドロゲナー ゼ活性の基質として認識していることが示唆された (Fig. 3-5-2)。次いで NADH を補酵素と したレダクターゼ活性についても検討したところ、scyllo-inosose、L-epi-2-inosose を基質と したレダクターゼ活性が検出された一方で、L-glucose、D-glucoseの1位の水酸基が酸化さ れた L-glucono-1,5-lactone、D-glucono-1,5-lactone をそれぞれ基質としたレダクターゼ活性は 検出されなかった (Table 3-5-2)。また scyllo-inosose を基質とした活性については基質阻害が 観察された (Fig.3-5-3)。

3-5-3. 結晶構造解析と既知の結晶構造との比較

東京農業大学 矢嶋俊介教授との共同研究により LgdA と NAD⁺、L-glucose の酵素基質複 合体の結晶構造が明らかとなった。アライメント解析 (Fig. 3-5-4) から LgdA で酸塩基触媒 として機能すると推定される Lys106、His195 の側鎖が L-glucose の1位の水酸基に近接して いる (Fig. 3-5-5) ことから、LgdA は L-glucose の1位の水酸基を酸化していることが予想さ れた。また LgdA は鎖状の L-glucose ではなくピラノース構造をとった L-glucose を基質とし て認識していることが示唆された。さらに LgdA が属する Gfo/Idh/MocA ファミリーのタン パク質で酵素基質複合体構造が明らかとなっている Bacillus subtilis 由来の myo-inositol-2-dehydrogenase (BsIolG)の結晶構造 (PDBID: 3NT4) と比較を行った (Fig. 3-5-6)。その結果 BsIolG で酸塩基触媒として機能することが知られている Lys97、Asp172、 His176に相当するアミノ酸残基が LgdA においても Lys106、Asp191、His195 として保存さ れており、両結晶構造でその位置関係には明確な共通性が見られた。また補酵素である NAD⁺の結合様式についても2つの結晶構造は非常に良く似ていた。一方で基質の結合様式 に注目すると、BsIolG では基質である myo-inositol の6員環が NAD⁺のピリジン環に対して 垂直に結合しているのに対して、LgdA では L-glucose の6員環が NAD⁺のピリジン環に対し て平行に結合していることが明らかとなった。このことから、LgdA は既知の Gfo/Idh/MocA ファミリータンパク質とは異なるユニークな基質認識メカニズムを有していることが示唆 された。

Figure 3-5-1. SDS-PAGE of LgdA-His₆.

Lanes M, molecular marker; Lane 1, cell-free extracts of *E. coli* BL21 harboring pET-lgdA; 2, after HisTrap HP chromatography.

Substrate	K_m (mM)	$k_{\rm cat}({\rm min}^{-1})$	$k_{\text{cat}}/K_m (\min^{-1}\mathrm{mM}^{-1})$
L-glucose	59.7 ± 5.7	1040 ± 28	17.4
D-glucose	88.7 ± 8.3	215 ± 36	2.41
L-xylose	31.9 ± 4.9	702 ± 104	22.2
D-xylose	168 ± 2.2	312 ± 20	1.90
L-allose	52.5 ± 2.8	170 ± 3	3.24
scyllo-inositol	3.70 ± 0.4	705 ± 12	190
myo-inositol	53.3 ± 8.6	572 ± 30	10.7
scyllo-quercitol	9.85 ± 0.8	495 ± 12	50.3

Table 3-5-1. Kinetic parameters of dehydrogenase reaction of LgdA with various substrates.

Fig. 3-5-2. Configuration of LgdA substrates for NAD⁺ dependent dehydrogenase reaction.

Tuble 5 5 2. Killette parameters of reductuse reaction of Egary with various substrates.					
Substrate	K_m (mM)	K_{ss} (mM)	$k_{\rm cat}({\rm min}^{-1})$	$k_{\text{cat}}/K_m (\min^{-1}\mathrm{mM}^{-1})$	
scyllo-inosose	$0.356 \pm 0.038 \ (K_{\rm s})$	5.93 ± 0.63	6750 ± 2	19000	
L-epi-2-inosose	40.3 ± 2.2	-	4500 ± 280	113	
L-glucono-1,5-lactone	N.D.	-	-	-	
D-glucono-1,5-lactone	N.D.	-	-	-	

Table 3-5-2. Kinetic parameters of reductase reaction of LgdA with various substrates.

Fig. 3-5-3. Substrate inhibition of *scyllo*-inosose against reductase reaction of LgdA. NADH-dependent *scyllo*-inosose reductase activity was measured at various concentration of *scyllo*-inosose (closed circles). Red line indicates the result of fitting with the Mickaelis-Menten equation considering substrate inhibition, generated by Origin 6.0J.

Fig. 3-5-4. Conserved amino acid residues in Gfo/Idh/MocA family proteins.

Amino acid sequence of LgdA (43PL-GDH) was aligned with those of several Gfo/Idh/MocA family proteins of following accession numbers; *P. denitrificans*_Pden_1680, YP_915473; *R. etli*_CH01346, YP_468877; *A. tumefaciens*_Atu_4508, NP_356149; *Z. mobilis*_GFOR, YP_162424; *H. sapiens*_DHDH, NP_055290; *B. subtilis*_IDH, NP_391849. Conserved amino acids are shaded. Asterisks and colons indicate identical and similar amino acid residues, respectively. Catalytic Lys, Asp, and His/Tyr residues are indicated with arrows.

Fig. 3-5-5. Stick representation of NAD⁺ and L-glucose binding site of LgdA. Distance between side chains of amino acids of LgdA and hydroxyl groups of L-glucose are shown in angstrom (Å).

Fig. 3-5-6. Comparison of substrate binding sties of BsIolG (right) and LgdA (left). PDB file of BSIolG-NAD⁺-*myo*-inositol complex was obtained from protein data bank (PDB accession code, 3NT4).

第六節 IgdA を含む遺伝子クラスターの機能解析

3-6-1. 43PIolG の機能解析

*lgdA*の下流に存在した *myo*-inositol-2-dehydrogenase (IoIG)と相同性が見られる遺伝子 (*43PioIG*; Fig. 3-4-3 における *orf* 2)を pET21a (+)の *NdeI-XhoI* サイトにクローニングし、*E. coli* BL21 株を宿主として発現させ、機能解析を行った。培養、精製ともに LgdA と同様の方法 で SDS-PAGE 上において単一バンドに精製することができた (Fig. 3-6-1)。43PIoIG は *myo*-inositol を基質として NAD⁺を補酵素としたデヒドロゲナーゼ活性、NADH を補酵素と して *scyllo*-inosose を基質としたレダクターゼ活性を有していた (Table 3-6-1)。その一方で、 *scyllo*-inositol、L-glucose を基質としたデヒドロゲナーゼ活性は検出されなかった。

3-6-2. *myo*-inositol を単一炭素源とした際の L-glucose dehydrogenase 活性の発現 *myo*-inositol を単一炭素源として培養した 43P 株の無細胞抽出液中の L-glucose dehydrogenase 活性を測定したところ、L-glucose、D-glucose、D-galactose を単一炭素源とした場合と比べ、 明らかに強い L-glucose dehydrogenase 活性が検出された (Table 3-6-2)。

以上の結果から *lgdA* を含む遺伝子クラスターは、L-glucose 代謝特異的なものではなく、 本来は inositol 異性体の分解、資化に関わるものであることが推察された。

Fig. 3-6-1. SDS-PAGE of 43PIolG-His₆.

Lanes M, molecular marker; 1, cell-free extract of *E. coli* BL21 harboring pET-43PiolG; 2, after HisTrap HP.

Table 5-6-1. Kinetic parameter of 451 1010-11156.					
Substrate	Cofactor	K_m (mM)	$k_{\text{cat}} (\min^{-1})$	$k_{\text{cat}}/K_m (\min^{-1}\mathrm{mM}^{-1})$	
<i>myo</i> -inositol	NAD^+	4.8 ± 0.3	937 ± 14	195	
scyllo-inositol	NAD^+	N.D.	-	-	
L-glucose	NAD^+	N.D.	-	-	
scyllo-inosose	NADH	3.9 ± 0.4	18700 ± 492	4800	

Table 3-6-1. Kinetic parameter of 43PIolG-His₆.

Cultivated carbon source	Specific activity (µmol min ⁻¹ mg ⁻¹)
L-glucose	0.054
D-glucose	0.025
D-galactose	0.051
myo-inositol	0.184

Table 3-6-2. L-glucose dehydrogenase activity on cell free extract from Paracoccus sp. 43P

第七節 LgdA の L-glucose を基質とした反応産物の同定

LgdA の L-glucose を基質とした反応産物を精製し、NMR スペクトルを測定したところ、 LgdA の反応産物は potassium D-gluconate と同様の¹H、¹³C NMR スペクトルを有していた (Table 3-7-1)。さらに HPLC 解析を行った結果、LgdA 反応産物は L-glucose を I₂酸化により 化学的に合成した potassium L-gluconate と、示差屈折計による検出では同一のリテンション タイムを示し、また旋光性に関しても potassium L-gluconate と同様に左旋光性を示した (Figure 3-7-1)。以上の結果から LgdA の反応産物は L-gluconate であることが示された。

	δ (ppm)			δ (ppm)
H2	4.128 (4.116)	1H, d	C1	181.33 (181.30)
Н3	4.027 (4.019)	1H, dd	C2	76.79 (76.76)
H4, H5	3.781-3.745 (3.775-3.736)	2H, m	C3	75.26 (75.27)
H6	3.621 (3.621)	1H, m	C4	73.91 (73.90)
Н6'	3.813 (3.812)	1H, dd	C5	73.65 (73.67)
			C6	65.33 (65.32)

Table 3-7-1. ¹H and ¹³C chemical shifts of the LgdA reaction product.

*Chemical shifts of the authentic potassium D-gluconate are shown in bracket

Figure 3-7-1. HPLC analysis of the LgdA reaction product detected by a refrective index (RI) and a chiral detector (OR).

Black and gray lines indicate chromatograms of reaction product and authentic L-gluconate, respectively.

第八節 まとめと考察

本章では、*Paracoccus* sp. 43P 株における L-glucose 代謝経路の初段階反応を担う酵素、 L-glucose dehydrogenase (LgdA)の精製、遺伝子クローニング及び酵素学的検討を行った。 L-glucose を基質として、NAD(P)⁺を補酵素としたデヒドロゲナーゼ活性を有する酵素とし ては、Sasajima らが *Burkholderia caryophili*より精製した D-threo-aldose-1-dehydrogenase が報 告されているが、同酵素が aldo/keto reductase ファミリーに属するのに対して、LgdA は Gfo/Idh/MocA ファミリーに属しており、分子系統的に全く異なるものである。また、この 酵素が L-glucose 以外に D-arabinose、L-fucose を基質としたデヒドロゲナーゼ活性を触媒す るのに対して、LgdA はこれらの単糖を基質とした活性は有していない。以上の点から、LgdA は新規な L-glucose dehydrogenase 活性を有する酵素であると結論される。

*lgdA*は43P株における推定 inositol 代謝関連遺伝子クラスターに含まれており、リコンビ ナント酵素のキネティックパラメーターからも L-glucose よりむしろ *scyllo*-inositol を基質と した活性のほうが強い。また実際に *myo*-inositol を単一炭素源とした培養の方が、L-glucose を含む他の炭素源で培養した場合よりも明らかに高い L-GDH 活性を示したことからも、 *lgdA*は本来 inositol 異性体、特に *scyllo*-inositol の分解、資化を担う酵素遺伝子であることが 推察される。しかしながら 43P 株の特徴として、D-glucose、D-galactose、L-glucose といっ た inositol 以外の炭素源を用いた場合でも、無細胞抽出液中に比較的高い L-GDH 活性が観 察されることから、*lgdA*の発現量は炭素源に関わらず比較的高いレベルにあるといえる。 そのため 43P 株においては、本来 inositol 代謝に関わる LgdA が L-GDH として L-glucose 代 謝にも寄与することが推察される。

Inositol を基質としたデヒドロゲナーゼ活性を有する酵素が、単糖を基質とした反応を触 媒する例は LgdA に限らず、BsIoIG でも報告されており、同酵素は *myo*-inositol、 D-*chiro*-inositol (Yoshida *et al.* 2008) のほかに、D-glucose、D-xylose を基質としたデヒドロゲ ナーゼ活性を有していることが知られている。アルドへキソース、アルドペントースは水 溶液中においてαピラノース、βピラノース構造をとりうることが知られているが、 *myo*-inositol におけるアキシャル位の水酸基を酸化する IoIG が基質として認識するのは、 α-D-xylose、α-D-glucose といった 1 位の水酸基がアキシャル位となるαアノマーである (Ramaley *et al.* 1979)。一方で LgdA はすべての水酸基がエクアトリアル位となる *scyllo*-inositol を基質とした活性を有していることから、エクアトリアル位の水酸基を酸化す るデヒドロゲナーゼである。従って LgdA が基質として認識する単糖は、1 位の水酸基がエ クアトリアル位となるβアノマーであると推察される。

scyllo-inositol を基質としたデヒドロゲナーゼ活性を有する酵素としては、*B. subtilis* 由来の IoIX、IoIW が知られている (Morinaga *et al.* 2010)。IoIX、IoIW は LgdA と同じ Gfo/Idh/MocAファミリーに属しているものの、LgdA とのアミノ酸配列相同性はそれぞれ 26.3%、22.1% という低い値である。また神戸大学の吉田先生に IoIX と IoIW の L-glucose を基質とした活

性について解析を依頼した結果、IolX は L-glucose を基質とした活性を有しておらず、IolW についても LgdA の 50 分の 1 程度の L-glucose dehydrogenase 活性($k_{cat}/K_m = 0.37 \text{ min}^{-1} \text{ mM}^{-1}$) しか検出されなかった。以上の点から、LgdA は *scyllo*-inositol dehydrogenase としても新規 性の高いものであり、同酵素が比較的高い L-GDH 活性を有している点はユニークな特徴で ある。

様々な単糖を用いた LgdA の基質特異性の解析から、同酵素は L-glucose だけではなく、 その鏡像異性体、D-glucose を基質としたデヒドロゲナーゼ活性をも有していることが明ら かとなった。一般的に酵素では、複数のアミノ酸が水素結合やイオン結合・疎水結合を介 して、基質となる化合物を立体的に認識して作用するため、2つの鏡像異性体のうち片方の みに対して作用しうるものである。それでは、LgdA はどのような機構で2つの鏡像異性体 双方に対して作用するのであろうか。 LgdA の基質となる inositol、単糖の構造を比較すると、 すべての基質は六員環構造に多くの水酸基を含んだものであることが分かる。また、その 水酸基の立体配置に注目すると、ほとんどの水酸基がエクアトリアル位をとっている。す なわち、LgdA は偏平な構造を有した六員環化合物を基質として認識している。酵素がこの ように偏平な化合物を認識する場合、その選択性は立体的なものというより、むしろ2次 元的なものに近くなるであろう。 また LgdA の本来の基質であると推測される scyllo-inositol は、対称面を有するメソ体であり、鏡像異性体は存在しない。すなわち、LgdA は本来の機 能という面では鏡像異性体を区別する機構を獲得する必要性がなかったといえる。このよ うな背景から、LgdA はすべての水酸基がエクアトリアル位をとる 2 つの鏡像異性体、 β-L-glucose とβ-D-glucose の違いを厳密には認識できず、両者に対して作用するというユニ ークな性質を持つに至ったことが考えられる。現在までのところ、LgdA-NAD⁺-L-glucoseの 酵素基質複合体に関しては分解能の高い結晶構造が東京農業大学の矢嶋俊介教授らのグル ープにより得られているが、LgdA-NAD⁺-D-glucoseの酵素基質複合体については高い分解能 の結晶構造が得られていない。LgdA のユニークな基質認識機構をより深く理解するために は、より高い分解能の結晶構造をもとに D-glucose がどのようなかたちで LgdA と結合して いるのかを明らかにすることが必要であろう。

HPLC、NMR 解析の結果、LgdA の L-glucose を基質とした反応産物は L-gluconate である ことが明らかとなった。実際には環状構造をとった L-glucose のアノマー水酸基が脱水素反 応により酸化された場合、生成するのは L-glucono-δ-lactone であることが予想される。しか し L-glucono-δ-lactone のようなアルドノラクトンは、一般的に水溶液中では非酵素的に加水 分解をうけ、対応するアルドン酸となり、pH が中性以上ではカルボキシル基のプロトンが 解離してラクトンには戻らない。LgdA の L-glucose を基質とした直接的な反応産物が L-glucono-δ-lactone であるのか、それとも L-gluconate であるのかははっきりしないが、いず れにしても1位の水酸基を酸化しない限り L-gluconate は生じ得ないため、LgdA は L-glucose の1位の水酸基を酸化し、結果として L-gluconate が生じると考えて間違いないであろう。

LgdAの実質的な基質である scyllo-inositol にはアルツハイマー病の原因となるβ-アミロイ

ドの沈着を抑制することが分かっており (McLaurin *et al.* 2000)、実際に *Bacillus subtilis* を用 いて天然に豊富に存在する *myo*-inositol から *scyllo*-inositol を生産する研究が進められている (Yamaoka *et al.* 2011)。LgdA の反応平衡は著しく reductase 活性、すなわち *scyllo*-inositol を生 成する方向に偏っており、また *Bacillus subtilis* 由来の酵素 (IoIW)よりも強い *scyllo*-inosose reductase 活性を有しているため、*Paracoccus* sp. 43P 株を用いた *scyllo*-inositol 生産の可能性 について今後検討する価値があるだろう。一方で LgdA は L-glucose を基質とした反応産物 と予想される L-glucono-δ-lactone、L-gluconate を基質としたレダクターゼ活性は有しておら ず、ノンカロリー甘味料としての可能性が期待される L-glucose の生産に応用できるもので はないと考えられる。

第四章 Ign 遺伝子群のクローニングと機能解析

第一節 緒言

前章の結果から、*Paracoccus* sp. 43P 株の L-glucose 代謝経路では、L-glucose がまず LgdA による 1 位の水酸基の NAD⁺依存的な脱水素反応を受け、結果として L-gluconate となるこ とが示された。L-gluconate もまた L-glucose と同様に自然界での存在が確認されておらず、 生物による分解に関する報告も存在しない。そのため L-gluconate がさらにどのような化合 物に変換され代謝されていくのかを明らかにすることは、新規な代謝経路の発見につなが ることが期待される。本章では 43P 株の L-glucose 代謝における第二段階を触媒する酵素、 L-gluconate dehydrogenase の精製、遺伝子の同定を行い、同酵素遺伝子を含む遺伝子クラス ターの解析を行った。

第二節 材料及び方法

4-2-1. 実験材料

使用培地

L-gluconate dehydrogenase の精製の際の培養には、前培養に LB 培地、本培養に L-glucose 最 少培地 (Table 3-2-1)に 0.1% Yeast extract を添加したものを用いた。生育試験は L-glucose 最 少培地の炭素源を、L-glucose から 10 mM potassium L-gluconate、または 10 mM sodium D-idonate に変更した培地を用いて行った。

使用プライマー

L-gluconate dehydrogenase 遺伝子のクローニングおよび周辺遺伝子の解析に用いたプライマーを Table 4-2-1 に示す。

4-2-2. 各種アルドン酸の合成

Potassium L-gluconate、potassium D-galactonate の合成は Moore らの方法に従って次に示す ように行った。ヨウ素 5.7 g を 80 ml のメタノールに溶解し、40℃に加熱した。2 g の L-glucose または D-galactose を 3 ml の蒸留水に溶解した後 25 ml のメタノールに溶解し、40℃に加熱 した。両溶液を混合し、4%水酸化カリウムをメタノールに溶解した溶液(KOH-MeOH 溶液) を 15 分間かけて 65 ml 滴下した。10 分間攪拌し、さらに 50 ml の KOH-MeOH 溶液を滴下 した。さらに 10 分間攪拌し、室温まで冷却した。吸引ろ過により沈殿物を回収し、メタノ ールで2回洗ったあとジエチルエーテルで洗浄して減圧下乾燥した。得られた粉末を GC/MS に供して生成物を確認した。 Sodium D-idonate、sodium L-galactonate、sodium L-mannonate は対応する D-idono-1,4-lactone, L-galactono-1,4-lactone, L-manno-1,4-lactone (Carbosynth) を水に溶解させた後、2 M NaOH 水 溶液を pH が 9.0 以上となるまで添加し、TLC でラクトンの加水分解を確認した後、2 N 塩酸を用いて pH を中性としたものを標品とした。

4-2-3. L-gluconate dehydrogenase 活性の測定

各種炭素源をそれぞれ単一炭素源として培養した 43P 株より、3-2-2 に従って調製した無 細胞抽出液、または粗精製酵素を用いて、反応液 200 μ l (100 mM Tris-HCl, pH 9.0, 1 mM NAD⁺, 1 mM potassium L-gluconate, 2.5% (v/v) 無細胞抽出液または粗精製酵素)中で反応を行い、 NADH の産生を 340 nm の紫外吸収をモニターすることで L-gluconate dehydrogenase 活性を 測定した。反応温度は 25℃とした。

4-2-4. L-gluconate dehydrogenase の精製

1) 培養および無細胞抽出液の調製

200 mlのLB培地 (500 ml用ハネつきフラスコ2本) 中で120 rpm、28℃で一晩培養した 43P 株を集菌し、200 mlのL-glucose 最少培地 (500 ml用ハネつきフラスコ2本)に全量植菌 して120 rpm、28℃で6時間培養した。培養後の菌体を遠心分離により集菌後、氷冷した B バッファー (100 mM Tris-HCl, pH 8.5, 2 mM DTT, 20% glycerol (v/v)) 30 ml に懸濁し、氷上で SONIFER 250 (Branson)による超音波破砕を 30 分間行った。破砕液を 27,400 x g、4℃、30 分間遠心した後、上清を 0.22 µm のフィルターに通し、無細胞抽出液とした。

2) DEAE-Cellulose 弱陰イオン交換クロマトグラフィー

上記無細胞抽出液を B バッファーで平衡化した DEAE cellulose DE52 (Whatman)を充填し たエコノカラム (内径 1 cm, 高さ 15 cm) に全量添加した。同カラムの流速は 0.8 ml min⁻¹ とし、BioLogic LP システム (Bio-rad)により操作を行った。カラム体積の 3 倍量の B バッフ ァーを通液して非吸着タンパク質を溶出後、NaCl 濃度 50-500 mM のグラジエントにより吸 着したタンパク質を溶出した。NaCl 濃度 170-200 mM で溶出した L-gluconate dehydrogenase 活性をもつ画分をまとめ、B バッファーで一晩透析、脱塩した。サンプルを再度 B バッフ ァーで平衡化した DEAE-cellulose カラムに添加し、120 mM NaCl を含む B バッファーで洗 浄後、NaCl 濃度 120-250 mM のグラジエントにより吸着したタンパク質を溶出させた。得 られた L-gluconate dehydrogenase 活性を持つ画分をまとめた。

3) Mono Q 強陰イオン交換クロマトグラフィー

以降のクロマトグラフィーは AKTA FPLC システムを用いて行った。活性画分を等量の B バッファーで希釈し、B バッファーで平衡化した Mono Q 5/50 GL に全量添加して 10 ml の 200 mM NaCl を含む B バッファーで非吸着タンパク質を溶出後、200-350 mM の NaCl グラ ジェントにより吸着タンパク質を溶出した。流速は 1 ml min⁻¹ とした。L-glucose dehydrogenase 活性は NaCl 濃度 280 mM で溶出した。活性画分を Amicon Ultra-0.5 mL 10 K (Milipore) を用いて濃縮した。

4) Superdex 200 10/300 GL ゲルろ過クロマトグラフィー

活性画分を 150 mM NaCl を添加した B バッファーで平衡化した Superdex 200 10/300 GL に加え、流速 0.5 ml min⁻¹で分画した。活性画分を集め、保存用バッファー(100 mM Tris-HCl, pH 8.0, 2 mM DTT, 50% glycerol)で透析し、-20℃で保存した。

4-2-5. タンパク質濃度の定量

3-2-4 に従って行った

4-2-6. SDS-PAGE

3-2-5 に従って行った

4-2-7. 精製酵素のN末端アミノ酸配列の解析

3-2-9 に従って PVDF 膜に転写後、北海道システムサイエンス社に解析を委託した。

4-2-8. L-gluconate dehydrogenase をコードする遺伝子、*lgnH*のクローニング

1) 縮重プライマーを用いた L-gluconate dehydrogenase 遺伝子部分の PCR 増幅と塩基配列の 同定

43P 株における L-gluconate dehydrogenase のオルソログと推定された P. denitrificans PD1222 株由来の推定 alcohol dehydrogenase、Pden_4931 のアミノ酸配列をもとにアライメン トを作製した。アライメントで見出された内部アミノ酸配列保存領域、および N 末端アミ ノ酸配列からそれぞれ作製した縮重プライマー、LGnDH_NterFII、LGnDH_midRIII を用い て、2-2-6 に従って調製した 43P 株のゲノム DNA を鋳型とした PCR を行った。PCR には ExTaq を使用し、アニーリング温度は 50 °C、伸長時間は 1 分とした。増幅した約 500 bp の DNA 断片を抽出、精製し、pGEM-T Easy vector system (Promega) を用いて同断片をクロー ン化し、pGEM-lgnH500 を得た。同プラスミドを鋳型として M13F、M13R プライマーを用 いたシークエンスを行った。

2) インバース PCR による lgnH の全長およびその周辺遺伝子の解析

43P 株のゲノム DNA 10 µg を 50 µl のスケールで *Pst*I で一晩処理し、フェノールクロロホ ルム処理、エタノール沈殿後、30 µl の TE バッファーに溶解した。同溶液 1 µl を 100 µl の 系で T₄ DNA ligase (Promega)を用いて一晩処理し、セルフライゲーションを行った。ライゲ ーション後の溶液 1 μ l を鋳型とし、プライマーセット、LGNDH_invF、LGNDH_invR を用 いたインバース PCR 反応を行った。PCR 酵素は ExTaq を用い、アニーリング温度は 55℃、 伸長時間は 4 分間とした。得られた約 2,500 bp の DNA 断片を pGEM-T Easy vector system に よりクローニングした。上記のインバース PCR、シークエンス PCR、プライマーウォーキ ングを繰り返し、*lgnH* およびその周辺遺伝子の塩基配列、約 10 kb を解析した。

4-2-9. Lgn 酵素群の大腸菌を宿主とした発現、精製

*lgnE、lgnF、lgnG、lgnH、lgnI*の ORF を Table 4-2-2 に示したプライマーで 43P 株のゲノム DNA を鋳型としてそれぞれ PCR 増幅し、プライマーに付加した認識配列に対応する制限酵素で処理した pET28a (+)と混和し、T₄ DNA ligase でライ ゲーション反応を一晩行った。ついでライゲーション溶液を *E. coli* DH10B にエレクトロポ レーション法を用いて導入することで、pETlgnE、pETlgnF、pETlgnG、pETlgnH、pETlgnI を得た。得られたプラスミドをそれぞれ *E. coli* BL21 (DE3)にエレクトロポレーションによ り導入し、各遺伝子発現株とした。各株の培養は 50 μ g ml⁻¹のカナマイシン硫酸塩を含む 100 mlの LB 培地を用いて 37℃、120 rpm で行い、O.D.= 0.5 となった時点で IPTG を終濃度 0.2 mM となるよう添加した後、28℃、120 rpm で 3 時間培養した。この際 pETlgnE 保有株について は IPTG 添加後の培養時間を 12 時間とした。各リコンビナント酵素の精製、保存に関して は 3-2-15 に従って行った。

4-2-10. His6-DgoD の調製

E. coli DH10B 株のゲノム DNA を鋳型として、DgoD10B_NdeF、DgoD10B_XhoR のプライ マーセットを用いた PCR を行った。増幅産物をゲル抽出後 NdeI、XhoI で処理し、同様の処 理を行った pET28a (+)と混和して T₄ DNA ligase によるライゲーション反応を一晩行った。 ライゲーション溶液を E. coli DH10B にエレクトロポレーションにより導入し、pETdgoD を 得た。さらに同プラスミドを E. coli BL21 (DE3)にエレクトロポレーションにより導入し、 3-2-15 の方法にしたがって His₆-DgoD を精製した (Babbit et al. 1995)。

4-2-11. 2-keto-3-deoxy-D-galactonate (KDGal)の調製

4-2-2 にしたがって調製した potassium D-galactonate 200 mg を 10 ml の反応バッファー(30 mM Tris-HCl, pH7.5, 5 mM MgCl₂) に溶解し、300 µg の His₆-DgoD を加えて 37℃で 5 時間イ ンキュベートした。3-2-18 に従って TLC により D-galactonate の消失、KDGal の生成を確認 後、3 g の DOWEX 1x8 (200-400 mesh, acetate form)を充填し、脱イオン水で平衡化したカラ ムに反応液を添加し、40 mM 酢酸水溶液 20 ml を通液して非吸着物質を洗浄した。ついで 200 mM potassium acetate 水溶液を 10 ml 通液し、溶出液を 1 ml ずつ分画した。3-2-18 に従 って各画分について TLC による解析を行い、KDGal を含む画分をまとめて凍結乾燥した。 凍結乾燥物を少量の水に溶解した後、氷冷したエタノールをサンプル溶液の5倍量添加し、 析出した KDGal のカリウム塩を含む固形物を遠心分離した。エタノールで2回洗浄して酢 酸カリウムを除き (Groeve *et al.* 2009)、最後にジエチルエーテルで洗浄して減圧乾燥させる ことで KDGal の potassium 塩を得た。

4-2-12. 2-keto-3-deoxy-6-phospho-D-galactonate (KDPGal)の合成

反応液 20 ml (50 mM Tris-HCl, pH 7.5, 2 mM MgCl₂, 40 mM KDGal, 80 mM ATP disodium, 0.2 mg His₆-LgnF)を 30℃で 4 時間インキュベートした。反応後、2 g の活性炭を添加し、37℃で 15 分間反応させて ATP および ADP を吸着させた。反応液を 0.45 μ m フィルターに通すこと で活性炭を除去し、再度 2 g の活性炭を加え上記の操作を繰り返した。反応液を 5 g の DOWEX 1x8 (200-400 meh, Cl⁻ form, Wako)を充填したカラムに添加して KDPGal を吸着させ、 80 mM の HCl 20 ml を通液して未反応の KDGal を溶出後、20 ml の 200 mM HCl を通液して KDPGal を溶出させた。この際 1 ml ずつ溶出液を分画した。3-2-18 に従って TLC 解析によ り KDPGal を含む画分を確認後まとめ、炭酸カルシウムのスラリーを pH が中性となるまで 添加した。余剰量の炭酸カルシウムを遠心分離、フィルター通液により除去し、凍結乾燥 により乾固させた。同固形物を 1 ml の脱イオン水に溶解し、9 ml のエタノールを加えて KDPGal のカルシウム塩を析出させた。析出したカルシウム塩を遠心分離した後 1 ml のエ タノールで 3 回洗浄することで無機塩を除去し、再度凍結乾燥して KDPGal カルシウム塩と した。

4-2-13. 過ヨウ素酸チオバルビツール酸法による KDPGal の定量

KDPGal のカルシウム塩を水に溶解後、希釈系列を作製した。各溶液 50 μl に対して 125 μl の過ヨウ素酸試薬(125 mM H₂SO₄、25 mM periodic acid)を加えて室温で 20 分間反応後、250 μl の亜ヒ酸試薬(2% sodium arsenite、 0.5 M HCl)を加えて酸化反応を停止させた。 さらに 1 ml の 0.3 %チオバルビツール酸水溶液を加え、10 分間煮沸した。反応後の液を等量の DMSO で希釈し、A549 nm を測定してモル吸光係数(6.78×10⁴ M⁻¹·cm⁻¹)より反応産物を定量した (Kim *et al.* 2005)。

4-2-14. キネティックパラメーターの測定

1) LgnH (L-glucnate dehydrogenase)

200 µl の反応液(100 mM Tris-HCl, pH 9.0, 1 mM NAD⁺, 0.5 µg His₆-LgnH, 0.2-16 mM L-gluconate または 0.1-4 mM L-galactonate)中で、NAD⁺の還元に伴う 340 nm の吸光度の上昇 を DU800 spectrophotometer により測定した。NAD⁺に対するキネティックパラメーターを測 定する場合は上記の条件で potassium L-gluconate の濃度を 10 mM に固定し、NAD⁺の濃度を 0.025-4 mM としてそれぞれ活性を測定した。

2) LgnI (5-keto-L-gluconate reductase)

200 µl の反応液(100 mM HEPES-KOH, pH 7.0, 0.2 mM NADPH, 0.1 µg His₆-LgnI, 0.075-3 mM 5-keto-L-gluconate)中で、NADPH の酸化に伴う 340 nm の吸光度の減少を DU800 soectrophotometer により測定した。NADPH に対するキネティックパラメーターを測定する 場合は上記の条件で sodium 5-keto-L-gluconate の濃度を 2 mM に固定し、NADPH の濃度を 0.0125-0.4 mM としてそれぞれ活性を測定した。

3) LgnE (D-idonate dehydratase)

100 µl の反応液(100 mM Tris-HCl, pH, 7.5, 0.5 mM FeCl₂, 20 mM DTT, 5 µg His₆-LgnE, 0.5-8 mM sodium D-idonate)中で反応を行った。Sodium D-idonate の添加で反応を開始し、30°C、15 分間インキュベートした後 DNS 試薬 200 µl を添加して反応を停止し、沸騰浴中で 5 分間 反応させて発色させた。反応液を 900 µl の脱イオン水で希釈し、535 nm の吸光度を測定し、4-2-11 に従って調製した KDGal 標品より求めた DNS 法における KDGal のモル吸光係数 ε = 91 M⁻¹ cm⁻¹より各 D-idonate 濃度における活性を測定した。

4) LgnF (KDGal kinase)

LgnF の活性測定は、pyruvate kinase (PK)及び lactate dehydrogenase (LDH)とのカップリング 反応により行った。200 µl の反応液(100 mM HEPES-KOH, pH 7.5, 1 mM ATP, 10 mM MgCl₂, 0.2 mM NADH, 1 mM phosphoenolpyruvate, 1.5 U LDH (Sigma-Aldrich), 2 U PK (Sigma-Aldrich), 1 µg His6-LgnF, 0.2-32 mM KDGal) 中で室温で反応を行い、ATP 依存的なキナーゼ活性によ る ADP の生成を PK と LDH とのカップリング反応により測定した。すなわち生成した ADP 量に依存して PK が phosphoenolpyruvate を pyruvate に変換し、ついで生じた pyruvate を LDH により L-lactate に変換し、その過程で NADH が NAD⁺に酸化される。この NADH の減少速 度を DU800 spectrometer で測定し、ADP の生成速度として活性を測定した。

5) LgnG (KDPGal aldolase)

LgnG の活性は反応生成物である pyruvate、D-glyceraldehyde-3-phosphate (Gap)それぞれに 対して特異的な酵素とのカップリング反応により測定した。Pyruvate の生成を測定する場合、 200 µl の反応液(100 mM potassium phosphate, pH 7.0, 0.2 mM NADH, 1.5 U LDH (Sigma-Aldrich), 1 µg His₆-LgnG, 0.1-6.4 mM KDPGal)中で室温で反応を行い、生成物である pyruvate が LDH により L-lactate に変換される際に減少する NADH 量を DU800 spectrophotometer で測定した。Gap の生成を測定する場合、反応条件はほぼ上記と同じで、 0.2 mM NADH、1.5 U LDH の代わりにそれぞれ 2 mM NAD⁺、 2 U D-glyceraldehyde-3-phosphate dehydrogenase (Sigma-Aldrich)を加え、室温で反応させて、生成 物である Gap が D-glyceraldehyde-3-phosphate dehydrogenase により 1,3-bisphosphoglycerate に 変換される際に生じる NADH を DU800 spectrophotometer で定量した。
4-2-15. Lgn 酵素群の反応産物の精製

1) LgnH 反応産物の精製

100 mM Tris-HCl, pH 8.0, 20 mM potassium L-gluconate, 2 mM NAD⁺, 40 mM *scyllo*-inosose (Hokko chemical industry), 0.2 mg His₆-43PIolG, 0.2 mg His₆-LgnH よりなる反応液 10 ml を 30[°] で 8 時間インキュベートした。反応液に 200 mg の活性炭を加えて 37[°]C[°]C[°]T5 分間混和する ことで NAD⁺, NADH を除去し、0.45 µm のフィルターを通過させることで活性炭を除いた。 ついで反応液を 3 gの DOWEX 1x8 (200-400 mesh, Cl⁻ form)を充填したカラムに添加し、20 ml の脱イオン水で洗浄後、200 mM HCl を 10 ml 通液して LgnH の反応産物を溶出させた。 こ の際溶出液を 1 ml ずつ分画し、3-2-18 に記載した TLC 解析により LgnH 反応産物を含む画 分を確認後まとめた。ついでこの溶液に炭酸カルシウムを pH が中性となるまで添加し、余 剰量の炭酸カルシウムを遠心分離、フィルター処理により除き、凍結乾燥により反応液の 容量を 200-500 µl まで濃縮した。得られた濃縮液に 1 ml のエタノールを添加し、LgnH の反応産物をカルシウム塩として析出させ、1 ml の 70%エタノールで 3 回、ジエチルエーテル で 1 回洗浄後再度凍結乾燥を行い LgnH の反応産物のカルシウム塩を得た。LgnH の反応産 物の純度は DNS 法 (2-2-3)により検討した。

2) LgnI 反応産物の精製

100 mM potassium acetate, pH 5.0, 20 mM LgnH 反応産物, 30 mM NADPH, 0.2 mg His₆-LgnI からなる反応液 20 ml を 30℃で 2 時間反応させた。反応の進行に伴い pH が上昇するので、10% acetic acid を経時的に添加して pH を 6.0 以下になるように調整した。反応後の液体に 2 g の活性炭を加えて 37℃で 10 分間混和した後、0.45 μ m のフィルターにより活性炭を除去した。処理液を用いて 3-2-18 に記載した TLC 解析を行い、NADP⁺、NADPH に相当するスポットが消失するまで同様の操作を繰り返した後、反応液を 3 g の DOWEX 50W (200-400 mesh, H⁺ form)を充填したカラムに通液し、カチオンを除去した。ついで反応液を減圧下、40℃で濃縮して酢酸をできるだけ揮発させ、乾燥物を 1 ml の脱イオン水に溶解後、2 M 水酸化ナトリウム溶液を pH が 8-10 となるまで添加した。pH 調整後、液体を 2 g の DOWEX1x8 (200-400 mesh, formate form)を充填したカラムに通液し、LgnI 反応産物を吸着させた。ついで 20 ml の脱イオン水を通液して洗浄後、10 ml の 100 mM formate を通液して LgnI 反応産物を溶出させた。LgnI 反応産物を含む画分をまとめて凍結乾燥を 2 回行い、LgnI 反応産物のシロップを得た。

3) LgnE 反応産物の精製

100 mM Tris-acetate, pH 7.5, 50 mM sodium D-idonate, 20 mM DTT, 0.5 mM FeCl₂, 0.5 mg His₆-LgnE からなる反応液 10 ml を 30℃で 5 時間インキュベートした。反応後の液体には析 出した鉄含有無機化合物が見られるので、これを 0.45 µm のフィルターを用いて除去し、つ いで 2 g の AG501-X8 (20-40 mesh, Bio-Rad)を充填したカラムを通過させて負に帯電した無

機鉄化合物を除いた。同カラムに 10 ml の脱イオン水を通液して上述の通過液とまとめ、2 g の DOWEX 1X8 (200-400 mesh, acetate form)を充填したカラムに通液して LgnE 反応産物を吸 着させた。反応液を 80 mM の酢酸 20 ml で洗浄した後、200 mM potassium acetate を通液し て LgnE 反応産物を溶出させ、以降は 4-2-11 に従って LgnE 反応産物の potassium 塩を調製 した。

4-2-16. 反応産物の NMR による同定

1) LgnH 反応産物の構造決定

LgnH 反応産物のカルシウム塩 30 mg を 1 ml の水に懸濁し、同液に 100 mg の DOWEX 50W (200-400 mesh, H⁺ form)を添加して混合することで溶解させた。DOWEX 50W を遠心分離、 フィルター処理により除去し、凍結乾燥により乾固した。凍結乾燥物を 0.5 ml の D₂O に溶 解し、重水酸化ナトリウム溶液 (Merck)により pH を 8.0-10.0 としてこれを測定試料とした。 核磁気共鳴スペクトル解析は 3-2-12 に準じて行い、HH-COSY (correlation spectroscopy)、 HMQC (heteronuclear multiple quantum coherence)による解析も合わせて行い各化学シフトを 帰属した。標品としては potassium 5-keto-D-gluconate (Sigma-Aldrich)を用いた。

2) LgnI 反応産物の構造決定

LgnI 反応産物のシロップ 20 mg を 0.5 ml の D₂O に溶解し、重水酸化ナトリウム溶液 (Merck)により pH を 8-10 としてこれを測定試料とした。以降は LgnH 反応産物の構造決定 と同様に行った。標品には D-idonic acid 1,4-lactone (Carbosynth)を上記と同様に処理したもの を用いた。

3) LgnE 反応産物の構造決定

LgnE 反応産物の pottasium 塩 20 mg を 0.6 ml の D₂O に溶解し、測定試料として 3-2-12 に 準じて核磁気共鳴スペクトル解析を行った。標品には KDGal の potassium 塩を用い、化学シ フトの帰属は 2-keto-3-deoxy-L-galactonate のスペクトルと比較して行った (Kuorelahti *et al.* 2006)。

4-2-17. HPLC 解析3-2-20 に準じて行った。

Table 4-2-1. Primers used in this chapter.

Primer	Sequence (5'-3')
Degenerate primers used for clo	oning of L-gluconate dehydrogenase
LGnDH_NterFII	ATHGARAARGARGGNCAYAC
LGnDH_midRIII	CCCATNCCDATCATNCCRCA

Primers used for primer walking

LGNDH_invF	AATGGAAAAGGTCATTCTGAA
LGNDH_invFII	GATGTCGTGTTCGAAGCTGT
LGNDH_invFIII	CAATGCGACTATGACGGACT
LGNDH_invR	AGGGTGACCAAAGGATTAAAC
LGNDH_invRII	ACATCACATCTTCGTCGATG
LGNDH_invRIII	ACAGGCTGTTGTTGCGATGC
LGNDH_invRIV	CAGTCGATATAACCGGCCTC
43P4929_invF	TGTAGTCGTTTGCGGCATGG
43P4929_invFII	TCGAGAGATTTTCGAAACGC
43P4929_invFIII	GTGCATGTCCAGAACGTTAT
43P4929_invR	AGAGCCAGATCCTGAAGCTG
43P4929_invRII	CAACTCGCTTTTTGAGGCTT
43P4929_midF	CAATGGCTTCGGCAATATCC
43P4928_invF	CAAGCCTCAAAAAGCGAGTT
43P4928_invR	GCTTTCATCGCGATATTTCC
43P4926_midR	GACTTCGTCAAACAGCATGAGT
43P4926_midFII	GTGATTGCACACCGTGATCT
43P4926_NterR	ATTTCCCCGAAGTAAGCGCTT
43P4924_NterR	GAGATCTGCGACACAAGGCT
43P4923_CterF	CGGAACATCATGATCCTGGCA
43P4923_NterR	GCCAACAAATTCCCCAATCGC

Primers used for construction of expression plasmids

LgnH_NdeF	GAGAGACATATGAAGGCGCTTATCATCGAGA
LgnH_XhoR	GGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
LgnI_NdeF	GGGAGG CATATG AGCGACAGTTTCAAAAAA
LgnI_XhoR	GAGACTCGAGTTAGAACCCTGCGAGTGCCC
LgnF_NheF	GAGAGAGCTAGCACGAATGGAATAGCGCCACG
LgnF_XhoR	TAA <i>CTCGAG</i> TCAGGGCCAGATACGGGTGG

LgnG_NdeF	GAGAGACATATGAATTTTCCAACTCTCCCCC
LgnG_EcoR	TTT GAATTC TCATGCGAGGCCTCCTGATGTCT
LgnE_NdeF	GAGAGACATATGAAAGCTAAAACAATCCGGC
LgnE_EcoR	GAA GAATTC TCACGTCACCACCGCAAGCTGCCAA
DgoD10B_NdeF	GAGAGACATATGAAAAATCACCAAAAATTACCAC
DgoD10B_XhoR	GGGCTCGAGTTACCACTCTGCTACGCTGTTAT

第三節 L-グルコン酸デヒドロゲナーゼの精製

4-3-1. L-gluconate dehydrogenase (L-GnDH)活性の測定

L-glucose を単一炭素源として生育した *Paracoccus* sp. 43P 株の無細胞抽出液中に、 L-glucose より化学合成した potassium L-gluconate を基質として NAD⁺を補酵素としたデヒド ロゲナーゼ活性が検出された。この際 NADP⁺を補酵素とした活性は検出されなかった。同 様の活性は potassium L-gluconate を単一炭素源として培養した場合の無細胞抽出液中にも検 出された一方で、D-glucose、*myo*-inositol、L-galactonate を炭素源とした場合には検出限界に 近いレベルであった (Table 4-3-1)。

4-3-2. L-GnDH の精製

L-glucose を炭素源として培養した 43P 株より L-GnDH 活性を有する酵素を 96 倍まで精製 した(Table 4-3-2)。SDS-PAGE 上では単一バンドとなるまで精製することは出来なかった(Fig. 4-3-1)が、Superdex 200 によるゲルろ過クロマトグラフィーの各画分中の L-GnDH 活性は 37 kDa のバンドの強度に比例していた(データ示さず)。このことからこのタンパク質が L-GnDH 活性を有する酵素であると考え、N 末端アミノ酸配列の解析を行った。

	curivated with various curbon sources.				
Cultivated carbon source	Specific activity (µmol min ⁻¹ mg ⁻¹)				
L-glucose	0.139				
L-gluconate	0.180				
D-glucose	0.003				
myo-inositol	0.006				

Table 4-3-1. L-GnDH activity in the cell-free extract from *Paracoccus* sp. 43P cultivated with various carbon sources.

	Total protein	Total activity	Specific activity	Yield
Purification step	(mg)	(µmol min ⁻¹)	(µmol min ⁻¹ mg ⁻¹)	(%)
Cell-free extract	149	33.9	0.23	100
1 st DEAE-cellulose	45.7	27.1	0.59	80.0
2 nd DEAE-cellulose	16.4	17.7	1.07	52.1
Mono Q 5/50	0.36	4.61	12.7	13.6
Superdex 200 10/300	0.04	0.851	22.0	2.51

Table 4-3-2. Purification of L-GnDH

Figure 4-3-1. SDS-PAGE of L-GnDH purification steps.

Lanes M, molecular marker; 1, cell-free extracts; 2, after 1st DEAE-cellulose; 3, after 2nd DEAE-cellulose; 4, after Mono Q 5/50 GL; and 5, after Superdex 200 10/300 GL chromatography. The arrow indicates the position of L-GnDH.

第四節 Ign 遺伝子群のクローニング

4-4-1. L-GnDH の N 末端アミノ酸配列の同定

上記の精製過程で得たサンプルを SDS-PAGE により分離し、PVDF 膜に転写後、分子量 37 kDa に相当するバンドを切り取り、エドマン分解法により N 末端アミノ酸配列を決定し た。その結果、本酵素の N 末端 20 残基のアミノ酸配列は、MKALIIEKEGHTVIGEISEP で あった。

4-4-2. データベース解析とアライメントによる内部アミノ酸保存領域の推定

L-GnDHのN末端アミノ酸配列をBLAST検索に供したところ、ゲノム配列が明らかとなっている Paracoccus denitrificans PD1222 株の推定オキシドレダクターゼ、Pden_4931のN 末端部分と完全に一致した。そこで Pden_4931 のアミノ酸配列全長をデータベース検索に 供し、相同性の見られるタンパク質とアライメントを作製したところ、Pden_4931 のアミノ 酸配列中の 169-175 番目のアミノ酸残基 (CGMIGMG) が、相同性を示すタンパク質におい ても保存されていることを見出した (データ示さず)。

4-4-3. 縮重プライマーによる L-GnDH 遺伝子 (lgnH)の ORF 5'側領域の取得

N 末端アミノ酸配列及びアライメントより得られたアミノ酸配列保存残基から縮重プラ イマーセットを設計し、43P 株のゲノム DNA を鋳型とした PCR を行った結果、約 500 bp の DNA 断片の増幅が認められた。増幅した断片を pGEM-T Easy ベクターにクローニング した後、配列を解析した結果、得られた塩基配列は Pden_4931 の ORF 中の 5'側約 500 bp と 高い相同性を示した。

4-4-4. インバース PCR による lgnH の全長および lgn 遺伝子群のクローニング

得られた *lgnH* の ORF 中の 5'側約 500 bp の塩基配列をもとに外向きのプライマーセット を作製し、*Pst*I で制限酵素処理後セルフライゲーションを行った 43P 株のゲノム DNA を鋳 型としたインバース PCR を行った。その 2,500 bp の DNA 断片の増幅が観察されたので、 同 DNA 断片の配列を解析した結果、1,011 bp からなる *lgnH* の ORF 全長を取得した。同遺 伝子のアミノ酸配列は *P. denitrificans* PD1222 株の Pden_4931 と 84%の相同性を示した。さ らにインバース PCR とプライマーウォーキングを繰り返し、*lgnH* の周辺遺伝子の解析を進 めた結果、同遺伝子の周辺には 9 つの ORF が存在し、遺伝子クラスターを形成しているこ とが明らかとなった(Fig. 4-4-1)。以降は同遺伝子クラスターを *lgn* 遺伝子群とする。また、 43P 株の *lgn* 遺伝子群のオルソログと推定される遺伝子が、*P. denitrificans* PD1222 株のゲノ ム配列中にも見受けられた。*P. denitrificans* PD1222 株における各遺伝子のアノテーションを Table 4-4-1 に示す。

Fig. 4-4-1. Gene organization of the cluster containing *lgnH*. Genes encoding the enzymes for L-glucose catabolism are shaded, and sequence identities to corresponding *P. denitrificans* PD1222 genes are shown below.

Orf	Annotated function
lgnR	IclR family transcriptional regulator
lgnA	ABC transporter inner membrane subunit
lgnB	ABC transporter inner membrane subunit
lgnC	ABC transporter related
lgnD	Extracellular solute binding protein
lgnE	galactarate dehydratase
lgnF	2-keto-3-deoxy-D-galactonate kinase
lgnG	2-keto-3-deoxy-6-phospho-D-galactonate aldolase
lgnH	L-gluconate dehydrogenase
lgnI	short chain dehydrogenase

Table 4-4-1. Annotated functions of genes located on the *lgn* gene cluster.

第五節 Lgn タンパク質の機能解析

4-5-1. 大腸菌を宿主とした Lgn タンパク質の発現、精製

lgn 遺伝子群中で酵素をコードすることが推定される *lgnE、lgnF、lgnG、lgnH、lgnI* をそ れぞれ pET system を用いて N 末端に His-tag を付加して発現させることを試みた。その結果 すべての遺伝子は *E. coli* BL21 (DE3)を宿主として良好に発現し、それらの発現産物は HisTrap カラムのみで SDS-PAGE 上で単一バンドとなるまで精製することができた (Fig. 4-5-1)。以降は N 末端に His タグを付加したリコンビナント Lgn タンパク質を His₆-LgnE, -LgnF, -LgnG, -LgnH, -LgnI とする。

4-5-2. Lgn タンパク質の酵素学的解析および反応生成物の解析

1) LgnH

L-GnDH として機能することが予想された His₆-LgnH は、L-gluconate を基質として NAD⁺ を補酵素としたデヒドロゲナーゼ活性を有していた。このことからクローニングした遺伝 子は予想通り L-GnDH であることが示された。一方で NADP⁺を補酵素とした活性は有して いなかった。デヒドロゲナーゼ活性の基質特異性について検討した結果、His₆-LgnH は L-gluconate、L-galactonate を基質とした活性を有していた (Table 4-5-1)。一方で L-mannonate、 D-gluconate、D-galacturonate、D-glucuronate を基質とした活性は検出されなかった。

His₆-LgnH の L-gluconate を基質とした反応産物を精製し、NMR 解析を行った結果、反応 産物は標品として用いた potassium 5-keto-D-gluconate と同様の¹H、¹³C NMR スペクトルを 有していた(Table 4-5-2)。一方で HPLC 解析では、potassium 5-keto-D-gluconate と同じ位置で 溶出されたが、potassium 5-keto-D-gluconate が左旋光性を示すのに対して、His₆-LgnH 反応 産物は右旋光性を示した (Fig. 4-5-2)。以上の結果から、LgnH は L-gluconate の 5 位の水酸 基をケトンに酸化し、5-keto-D-gluconate の鏡像異性体である 5-keto-L-gluconate を生じさせ ることが示された。

2) LgnI

Short chain dehydrogenase として機能することが推察された His₆-LgnI を、NAD(P)⁺の存在下 で様々なアルドン酸とインキュベートし、NAD(P)⁺の還元が起こるか検討した結果、 D-idonate を基質として NADP⁺を補酵素としたデヒドロゲナーゼ活性が検出された。一方で NAD⁺を補酵素とした活性は検出されなかった。また NADP⁺を補酵素としても、L-gluconate、 L-galactonate、D-gluconate、D-galactonate を基質とした活性は検出されなかった。次に NADPH を補酵素としたレダクターゼ活性について検討した結果、LgnH の反応産物である 5-keto-L-gluconate を基質とした活性が検出された。一方で、5-keto-D-gluconate を基質とし た活性は検出されなかった。デヒドロゲナーゼ、レダクターゼの両活性についてそれぞれ キネティックパラメーターを測定した結果、反応平衡はレダクターゼ側に著しく偏ってい

た (Table 4-5-3)。

ついで His₆-LgnI の 5-keto-L-gluconate を基質とした反応産物を精製し、NMR 解析を行った 結果、反応産物は標品として用いた D-idonate と同様の¹H、¹³C NMR スペクトルを有してい た。また同反応産物は HPLC 解析で D-idonate と同じ位置で溶出され、さらに同様の右旋光 性を示した (Fig. 4-5-3)。以上の結果から LgnI は 5-keto-L-gluconate の 5 位のケトンの還元を 触媒し、生成物として D-idonate を生じることが示された。

3) LgnE

*lgnE*のオルソログである Pden_4928 は galactarate dehydratase とアノテートされていたが、 His₆-LgnE は *meso*-galactarate を基質とした活性を有していなかった(データ示さず)。一方で *lgnE*のアミノ酸配列は *E. coli* の D-altronate dehydratase とも相同性を示したことから、アル ドン酸を基質とした脱水活性を有していることも考えられた。そこで L-gluconate、 L-galactonate、L-mannonate、D-gluconate、D-galactonate、D-idonate を基質とした活性につい て検討した結果、D-idonate、L-gluconate、L-galactonate を基質とした活性を有していた。 D-idonate を基質とした活性が最も強く、L-gluconate、L-galactonate を基質とした活性は D-idonate を基質とした活性が最も強く、L-gluconate、L-galactonate を基質とした活性が ののかとしてそれぞれ 20%、11%であった。His₆-LgnE の D-idonate に対するキネティックパラメーターを測定した結果、 k_{cat} が 376 ± 12 min⁻¹、 K_m が 0.454 ± 0.072 mM であった。

ついで His₆-LgnE の D-idonate を基質とした反応産物を精製し、NMR 解析を行った結果、 *E. coli* DH10B 由来の DgoD を用いて合成した KDGal と同様の¹H、¹³C スペクトルを有して いた(Table 4-5-4)。さらに同反応産物は HPLC 解析で KDGal と同じ位置で溶出され、さらに 同様の右旋光性を示した(Fig. 4-5-4)。以上の結果から、LgnE は D-idonate の 2 位、3 位から の脱水反応を触媒し、生成物として KDGal を生じることが示された。

4) LgnF

LgnFのアミノ酸配列は *E. coli* 由来の KDGal のリン酸化を触媒する酵素、DgoK と 33%の 相同性を示した。そこで His6-LgnF を ATP、MgCl₂の存在下で KDGal とインキュベートし たところ、ADP の生成が観察された。Pyruvate kinase、lactate dehydrogenase を用いたカップ リング法により同酵素の KDGal に対するキネティックパラメーターを測定した結果、 k_{cat} は 1710 ± 34 min⁻¹、 K_m が 0.629 ± 0.054 mM であった。このことから、LgnF は KDGal を基質 とした ATP 依存的なリン酸化活性を有していることが示された。

5) LgnG

LgnG のアミノ酸配列は *E. coli* 由来の KDPGal のアルドール開裂反応を触媒する酵素、 DgoA と 43%のアミノ酸配列相同性を示した。そこで LgnF 反応産物と His₆-LgnG をインキ ュベートした結果、pyruvate、D-glyceraldehyde-3-phosphate の生成が LDH、GapDH を利用し た特異的な検出法によりそれぞれ確認された (Table 4-5-5)。この結果から、LgnF は KDGal の 6 位を ATP 依存的にリン酸化し、生じた KDPGal が続く LgnG の触媒するアルドール開 裂反応により pyruvate と D-glyceraldehyde-3-phosphate に変換されることが示された。

上記のリコンビナント酵素を用いた解析の結果、43P 株において L-glucose はまず LgdA により1位の水酸基の酸化を受けて L-gluconate となった後、LgnH、LgnIの触媒する酸化還 元反応により5-keto-L-gluconate を経て D-idonate に変換され、ついで LgnE により2位、3 位からの脱水反応をうけて KDGal となり、LgnF の触媒する ATP 依存的なリン酸化によっ て KDPGal に変換された後、LgnG によって pyruvate と D-glyceraldehyde-3-phosphate に変換 されることが予想された。今回の解析で明らかになった 43P 株の L-glucose 代謝経路のモデ ルを Fig. 4-5-5 に示す。

Figure 4-5-1. SDS-PAGE of purified recombinant Lgn proteins. Lane M, molecular marker; lane 1, His₆-LgnH; 2, His₆-LgnI; 3, His₆-LgnE; 4, His₆-LgnF; 5, His₆-LgnG.

Substrate	K_m (mM)	k_{cat} (min ⁻¹)	$k_{\text{cat}}/K_m (\min^{-1}\mathrm{mM}^{-1})$
L-gluconate	0.659 ± 0.023	573 ± 5	869
L-galactonate	0.224 ± 0.011	178 ± 2	828
L-mannonate	-	n.d.	-
D-gluconate	-	n.d.	-
D-galactonate	-	n.d.	-
D-idonate	-	n.d.	-
NAD^+	0.155 ± 0.006	543 ± 4	3500
NADP ⁺	-	n.d.	-

Table 4-5-1. Kinetic parameters of dehydrogenase reaction of His₆-LgnH with various substrates.

	δ (ppm)			δ (ppm)	
H2	4.604 (4.597)	1H, d	C1	178.71 (179.34)	
Н3	4.423 (4.419)	1H, dd	C2	81.99 (81.98)	
H4	4.115 (4.112)	1H, d	C3	78.99 (78.98)	
Н6	3.649 (3.644)	2H, s	C4	78.77 (78.74)	
			C5	105.75 (105.74)	
			C6	66.34 (66.33)	

Table 4-5-2. ¹H and ¹³C chemical shifts of the LgnH reaction product.

* Chemical shifts of the authentic potassium 5-keto-D-gluconate are shown in bracket.

Figure 4-5-2. HPLC analysis of LgnH reaction product detected by a refrective index (RI) and chiral detector (OR). Black and gray lines indicate chromatograms of the LgnH reaction product and authentic potassium 5-keto-D-gluconate, respectively.

Substrate	K_m (mM)	k_{cat} (min ⁻¹)	$k_{\text{cat}}/K_m (\min^{-1}\mathrm{mM}^{-1})$
Reductase activity			
5-keto-L-gluconate	0.180 ± 0.020	1200 ± 33	6640
5-keto-D-gluconate	-	n.d.	-
Dehydrogenase activity			
D-idonate	12.7 ± 0.6	1740 ± 37	137
D-gluconate	-	n.d.	-
D-galactonate	-	n.d.	-
L-gluconate	-	n.d.	-
L-galactonate	-	n.d.	-
L-mannonate	-	n.d.	-

Table 4-5-3. Kinetic parameters of His_6 -LgnI with various substrates.

	δ (ppm)			δ (ppm)	
H2	4.129 (4.128)	1H, d	C1	181.30 (181.29)	
H3	4.007 (4.007)	1H, dd	C2	75.08 (75.08)	
H4	3.731 (3.732)	1H, dd	C3	75.37 (75.37)	
Н5	3.851 (3.852)	1H, ddd	C4	74.46 (74.46)	
Н6	3.702 (3.703)	1H, dd	C5	73.80 (73.80)	
Н6'	3.660 (3.661)	1H, dd	C6	65.75 (65.75)	

Table 4-5-4. ¹H and ¹³C chemical shifts of the LgnI reaction product.

* Chemical shifts of the authentic sodium D-idonate are shown in bracket.

Figure 4-5-3. HPLC analysis of LgnI reaction product detected by a refrective index (RI) and chiral detector (OR). Black and gray lines indicate chromatograms of the LgnI reaction product and authentic sodium D-idonate, respectively.

	δ (ppm)			δ (ppm)	
Н3	1.773 (1.774)	1H, d	C1	178.94 (178.91)	
Н3'	2.145 (2.144)	1H, dd	C2	99.31 (99.30)	
H4	3.842 (3.841)	1H, dd	C3	41.66 (41.63)	
Н5	3.587 (3.586)	1H, ddd	C4	71.64 (71.62)	
Н6	3.589 (3.588)	1H, dd	C5	73.39 (73.37)	
Н6'	3.784 (3.786)	1H, dd	C6	65.64 (65.63)	

Table 4-5-5. ¹H and ¹³C chemical shifts of the LgnE reaction product.

* Chemical shifts of the authentic potassium KDGal are shown in bracket.

Figure 4-5-4. HPLC analysis of LgnE reaction product detected by a refrective index (RI) and chiral detector (OR). Black and gray lines indicate chromatograms of the LgnE reaction product and authentic potassium 2-keto-3-deoxy-D-galactonate, respectively.

Coupling Enzyme	K_m (mM)	$k_{\rm cat} ({\rm min}^{-1})$	$k_{\text{cat}}/K_m (\min^{-1}\mathrm{mM}^{-1})$
GapDH	0.466 ± 0.012	3900 ± 31	8370
Lactate dehydrogenase	0.587 ± 0.023	4290 ± 270	7310

Table 4-5-5. Kinetic parameter of His₆-LgnG.

Figure 4-5-5. Model of L-glucose catabolic pathway in *Paracoccus* sp. 43P based on the result of recombinant enzyme analyses.

第六節 まとめと考察

本章では Paracoccus sp. 43P 株の L-glucose 代謝経路に関与することが推察される酵素、 L-gluconate dehydrogenase (LgnH)を同株より精製し遺伝子のクローニングを行い、周辺遺伝 子の機能解析をあわせて行った。前述のように L-gluconate もまた L-glucose と同様に生物に よる分解、資化はもとより、自然界での存在すら確認されていない。そのため Paracoccus sp. 43P 株が L-gluconate を単一炭素源として生育できること、さらに L-gluconate を基質とした デヒドロゲナーゼ活性を有する酵素が存在することは、興味深い結果である。

LgnHのアミノ酸配列は E. coli 由来の L-galactonate dehydrogenase (YjjN)と30%の相同性を 有しており、また His₆-LgnH は L-gluconate だけではなく L-galactonate を基質とした dehydrogenase 活性も有していた。このことから、同酵素は本来 L-galactonate 代謝に関わる 可能性も予想されたが、L-galactonate を炭素源として 43P 株を培養した場合、その無細胞抽 出液中の L-gluconate dehydrogenase 活性は非常に低いレベルであった。さらに、L-glucose、 L-gluconate を炭素源とした場合には他の炭素源と比較して無細胞抽出液中の L-gluconate dehydrogenase 活性が顕著に増加する点から、*lgnH*は L-glucose、L-gluconate の存在により特 異的に発現誘導される遺伝子であり、L-galactonate では発現誘導されないことが推察される。 また次章でのべるように *lgnH* の破壊は L-galactonate を単一炭素源とした生育に影響を及ぼ さない。

LgnIはLgnHの反応生成物である 5-keto-L-gluconate を、NADPH 依存的に還元し、D-idonate を生じるレダクターゼ活性を有する酵素である。反応は可逆的で、LgnI は NADP⁺を補酵素 とし、D-idonate を基質としたデヒドロゲナーゼ活性も有しているが、キネティックパラメ ーター解析からレダクターゼ活性はデヒドロゲナーゼ活性に対して約 50 倍強いことが明ら かとなった。このことから、LgnI は 5-keto-L-gluconate から D-idonate を生じるレダクターゼ として実質的に機能することが推察される。LgnI は Dickeya dadantii 3937 由来の 2-keto-3-deoxy-D-gluconate を基質とした活性は有していなかった。このことから、LgnI は新 規な基質特異性を有する short chain dehydrogenase ファミリーのタンパク質である。

LgnE は D-idonate から KDGal への脱水反応を触媒する酵素であり、そのアミノ酸配列は E.coliの galactarate dehydratase (Blumenthal et al. 1964) と 39%の相同性を示した。一方で LgnE は meso-galactarate を基質とした活性は有しておらず、新規な基質特異性を有する酵素 であった。基質特異性解析の結果 LgnE は D-idonate のほかに L-gluconate、L-galactonate と いった炭素数 6 のアルドン酸を基質とした活性を有しており、これらのアルドン酸は C2、 C3 の水酸基の立体配置に共通性が見られることから、同部位の立体配置が基質認識に重要 であることが推察された。アルドン酸を基質とした脱水反応を触媒する酵素としては、 D-galactonate dehydratase (DgoD) (Babbit et al. 1995)に代表されるエノラーゼスーパーファミ リーに属するものや、6-phosphogluconate dehydratase (Edd) (Meloche et al. 1964) に代表され る ILVD/EDD ファミリーに属するものについては結晶構造が明らかとなっており、その反 応機構について詳細な解析がなされている。一方で galactarate dehydratase や LgnE のように 活性に Fe²⁺を要求するタイプのデヒドラターゼに関しては研究例が非常に少なく(Dreyer 1987)、その反応機構の詳細は不明である。それどころか Fe²⁺要求性デヒドラターゼ全長の 異種発現は本研究が初めての例であるため、本研究により構築された LgnE の異種発現、精 製系は Fe²⁺要求性デヒドラターゼの生化学的解析を行ううえで重要な知見となるだろう。

LgnF、LgnG は *E. coli* の DgoK、DgoA とそれぞれ 33%、40%のアミノ酸配列相同性を示 し、酵素活性についても同様の反応を触媒するので、酵素としては新規なものではない。 しかしながら DgoK、DgoA は *E. coli、Mycobacteria* においては D-galactonate 代謝において 機能することが知られている(Deacon *et al.* 1977, Szmiło 1981)。すなわち D-galactonate は D-galactonate dehydratase (DgoD) により KDGal に変換されるため、生成した KDGal は DgoK によって KDPGal に変換された後、DgoA によって pyruvate と D-glyceraldehyde-3-phosphate に変換される。従って生理的な役割という意味では LgnF、LgnG は DgoK、DgoA とはそれ ぞれ異なるものである。

Paracoccus sp. 43P 株の L-glucose 代謝経路は全体として、L-glucose が酸化されてアルドン 酸を生じる点、また代謝中間体として 2-keto-3-deoxy 糖酸を生じる点が古細菌に見られる非 リン酸化型 Entner-Doudoroff 経路と共通しているものの、大きな相違点として L-gluconate の5位の水酸基の立体配置をLgnH、LgnIがそれぞれ触媒する酸化還元反応により変換し、 D-idonate を生じる点が挙げられる。興味深いことに、このような2つの酸化還元酵素によ る D/L 変換は、本研究で見出された L-gluconate 以外にも、細菌における L-galactonate (Cooper 1978, Reed et al. 2006)、L-idonate (Bausch et al. 1998)、L-gulonate (Cooper 1980)といった炭素 数 6 の L 体アルドン酸異化代謝経路において普遍的に見られるものであり、これらの代謝 経路の最終産物は例外なく pyruvate と Gap である。D/L 変換の生理的な意義とは、これら の代謝系における最終段階、アルドール開裂反応の産物のひとつとして D 体の Gap を生じ る点にあると考えられる。結果として生成した D 体の Gap は解糖系の下流に合流し、速や かに pyruvate に分解されその過程で2分子の ATP を基質レベルで生成することができる。 一方でL体の Gap は GapDH の基質とはならず、むしろ E. coli に対して殺菌的に作用する ことが知られている (Kalyananda et al. 1987)。従ってL体のアルドン酸を分解するためには D/L 変換が必要であり、この点で D 体の糖酸を代謝するよりも多くのステップを要すると いえる。

Paracoccus sp. 43P 株の L-glucose 代謝経路に見られる化合物のうち、本稿執筆時点で天然 に存在しないと考えられているものは L-glucose のほかに、L-gluconate、D-idonate が挙げら れる。従ってこれらを基質とした反応を触媒する LgnE、LgnH、LgnI の 3 つの酵素は新規 な反応を触媒するものであり、安価な化合物からの新規化合物生産の可能性を秘めている。 現在までのところ LgnE の逆反応は検出できないため、同酵素を用いて KDGal から D-idonate を生産することは現実的ではない。一方で 2013 年 1 月に報告された好熱性細菌、Thermotoga *maritima*の新規 *myo*-inositol 代謝経路 (Radionova *et al.* 2013) には、本研究により新たに見出 された中間代謝物、5-keto-L-gluconate が中間代謝物として生じる。従って *T. maritima* の *myo*-inositol 代謝に関わる酵素群と LgnH、LgnI、さらに既知酵素である uronate isomerase (UxaC) (Linster *et al.* 2004) を組み合わせることで、D-galacturonate、*myo*-inositol といった天 然に豊富に存在する安価な化合物から L-gluconate、D-idonate を合成することが理論的には 可能であり(Fig. 4-6-1)、今後検討する価値がある。

Fig. 4-6-1. Schematic representation of L-gluconate/D-idonate production from plant biomass.

第五章 L-グルコース代謝関連遺伝子の破壊とそれらの分子系統解析

第一節 緒言

前章までの結果から Paracoccus sp. 43P 株は lgdA、lgnE、lgnF、lgnG、lgnH、lgnI という6 つの酵素遺伝子の機能により L-glucose を pyruvate と Gap に分解する可能性が示された。し かしながら Fig. 4-5-5 に示した推定 L-glucose 代謝経路はリコンビナント酵素を用いた in vitro の解析結果に基づくものである。従って予想された経路が実際に 43P 株の L-glucose 代 謝で機能していることを示すためには、これらの遺伝子の破壊株を作製し、各遺伝子の破 壊が L-glucose ないしは各種中間代謝物の資化性に及ぼす影響を検討する必要がある。そこ で本章では 43P 株を宿主とした選択的な遺伝子破壊法について検討し、同株における推定 L-glucose 代謝関連遺伝子の破壊株を作製した。ついで各遺伝子の破壊が、L-glucose、 L-gluconate、D-idonate を単一炭素源とした生育に及ぼす影響について解析を行った。さら に、43P 株の L-glucose 代謝関連遺伝子が他の生物のゲノムに保存されているのかという点 について分子系統解析、リコンビナント酵素を用いた生化学的解析から検討を行った。

第二節 材料及び方法

5-2-1. 実験材料

使用培地

前培養には LB 培地を用いた。43P 株、*E. coli* S17-1λ*pir* 株の抗生物質耐性の検討には LB 培地に各種抗生物質を以下の濃度で添加した: kanamycin (Km), 50 μg ml⁻¹; ampicillin, 50 μg μl⁻¹; chloramphenicol, 20 mg μl⁻¹; gentamicin, 20 mg μl⁻¹; amikacin, 20 μg ml⁻¹; rifampicin, 20 μg ml⁻¹; tetracycline, 10 μg ml⁻¹; nalidixic acid, 20 μg ml⁻¹.

43P株の遺伝子破壊株の選択には100 μg ml⁻¹の Km, 20 μg ml⁻¹の nalidixic acid を添加した LB 寒天培地を用いた。

生育試験には modified L-glucose minimal medium の炭素源をそれぞれ 10 mM L-glucose、10 mM potassium L-gluconate、10 mM sodium D-idonate、10 mM sodium L-galactonate, 10 mM *myo*-inositol、10 mM *scyllo*-inositol としたものを用いた。

使用プライマー 本章で用いたプライマーを Table 5-2-1 に示す。

5-2-2. 各種アルドン酸の合成 4-2-2 に従って行った。 5-2-3.43P 株の抗生物質耐性の検討

LB 培地で一晩培養した 43P 株を各種抗生物質を添加した LB 培地に 2% (v/v)植菌し、抗 生物質を添加していない LB 培地中での生育と比較することで各抗生物質の効果を比較し た。

5-2-4.43P株のエレクトロポレーション法による形質転換の検討

1) コンピテントセルの作製

200 ml LB 液体培地を用いて、30℃、120 rpm の条件で 43P 株を O.D. 600 nm が 0.7 付近と なるまで培養し、遠心分離により集菌した。ついで氷冷した 20% (v/v) glycerol 30 ml で菌体 を 2 回洗浄した後、400 µl の 20% glycerol に菌体を懸濁し、オートクレーブにより滅菌した エッペンチューブに 60 µl ずつ分注して-80℃で保存した。

2) エレクトロポレーション

コンピテントセルと 200 ng の pBBR1MCS2 を混和し、電圧を 2.0 kV としてエレクトロポレーションを行った。すぐに菌体を 1 ml の SOC 培地に懸濁し、シリコン栓でふたをした 15 ml 容ファルコンチューブを用いて 30°C、120 rpm で 3 時間回復培養を行った。回復培養 液を SOC 培地を用いて 10⁰、10⁻¹、10⁻²、10⁻³、10⁻⁴、10⁻⁵に希釈し、100 mg ml⁻¹の Km を添加した LB 培地にプレーティングした。プレートは 30°C でインキュベートし、約 48 時間後 に生育してきたコロニーをカウントし、形質転換体数を測定した。

5-2-5.43P株で利用可能な抗生物質耐性遺伝子マーカーの探索

pBR328 より chloramphenicol 耐性遺伝子、tetracycline 耐性遺伝子をプロモーター領域を含めて PCR 増幅し、それぞれ pBBR1MCS2 の *Sma*I サイトにクローニングした。得られたプラスミドを 43P 株にエレクトロポレーション法により導入し、5 μ g ml⁻¹ tetracycline hydrochloride、20 μ g ml⁻¹ chloramphenicol をそれぞれ添加した LB 寒天培地で選択することでこれらの抗生物質耐性遺伝子マーカーが 43P 株内で機能するか検討した。

5-2-6. 接合伝達による 43P 株の形質転換の検討

pBBR1MCS2 を保持させた *E. coli* S17-1λ*pir* 株 (Simon *et al.* 1983) を 50 µg ml⁻¹の Km を含 む LB 液体培地 5 ml で一晩 37 ℃、120 rpm で培養した。また 43P 株を 5 ml の LB 培地で 30 ℃、 120 rpm にて一晩培養した。両培養液の O.D. 600 nm を 1.0 となるように LB 培地で希釈した 後、*E. coli* S17-1 λ*pir* 株の培養液 150 µl をエッペンチューブにとり、遠心分離により集菌し て上清を除いた。ついでこのエッペンチューブに 43P 株の培養液 1.5 ml をとり、ボルテク スミキサーにより両菌体を混和した。ついでこの菌体懸濁液をメンブレンホルダー (0.2 µm mixed cellulose membrane を敷く)を装着した 15 ml 容テルモシリンジに通液することで菌体 をメンブレン上に集菌し、菌体がついた面を上にして抗生物質を添加していない LB 寒天培 地上に、メンブランとの間に空気が入らないよう置き、30℃で 7 時間インキュベートする ことで接合伝達を行った。ついで LB 寒天培地よりピンセットを用いてメンブレンを取り、 50 ml 容ファルコンチューブ内で 5 ml の LB 液体培地に接触させて、ボルテクスミキサーに よって激しく攪拌することでメンブレンに付着した菌体を LB 液体培地に懸濁した。ついで 同菌体懸濁液を LB 培地で 10⁻¹ から 10⁻⁶ まで希釈し、100 μg mi⁻¹ Km、15 μg ml⁻¹ nalidixic acid を含む LB 寒天培地にプレーティングした。プレートは 30℃で 48 時間培養し、生育してき たコロニーをカウントして形質転換体数を測定した。

5-2-7. 遺伝子破壊用プラスミドの作製

接合伝達に必要な遺伝子であることが知られている mob を Mob_F、MobR のプライマー セットを用い、pBBR1MCS2 を鋳型として増幅した。この際、mob のプロモーター領域が伝 達起点(oriT)として機能することが報告されている (Szpirer et al. 2001) ので、プロモーター 領域を含めて PCR 増幅した。PCR には GC-rich PCR system (Roche)を用い、DMSO 濃度は 1 M とした。増幅産物を pGEM-T Easy vector system によりクローニングし、得られた pGEM-mob を SphI、SalI で制限酵素処理して pUC19 の SphI、SalI サイトに連結して pUC19-mob を得た。

43P 株のゲノム DNA を鋳型として LgdA1700_EcoF、LgdA1700_BamR、LgnH1500_EcoF、 LgnH1500_BamR、LgnE2000_HinF、LgnE2000_XbaR のプライマーセットをそれぞれ用いた PCR を行い、増幅断片を電気泳動後にゲル抽出し、ついでプライマーに付加した適切な制 限酵素で処理した後、pUC19 のマルチクローニングサイトにそれぞれ連結することで pUC19-lgdA、pUC19-lgnE、pUC19-lgnH、pUC19-lgnI を得た。

次に pBBR1MCS2 を鋳型として PkanF、kanR または Pkan_SacIIF、kan_SacIIR のプライマ ーセットを用いて PCR 増幅した Km 耐性遺伝子を、pUC19-lgdA、pUC19-lgnH の SacII サイ トまたは pUC19-lgnI、pUC19-lgnE の EcoRV サイトにそれぞれ連結し、pUC19-lgdA::kan、 pUC19-lgnH::kan、pUC19-lgnI::kan、pUC19-lgnE::kan を得た。

最後に pUC19-lgdA::kan, -lgnH::kan, lgnI::kan, lgnE::kan の *Eco*RI サイトに pUC19-mob を *Eco*RI で処理して切り出した mob カセットをそれぞれ連結し、pUC19-lgdA::kan-mob, -lgnH::kan-mob, lgnI::kan-mob, -lgnE::kan-mob を得た

5-2-8. 接合伝達による遺伝子破壊株の作製

pUC19-lgdA::kan-mob、pUC19-lgnH::kan-mob、pUC19-lgnI::kan-mob、pUC19-lgnE::kan-mob をそれぞれ保持した *E. coli* S17-1 λ*pir* 株を供与菌、43P 株を受容菌とした接合伝達を 5-2-6 に従って行い、Km 耐性、nalidixic acid 耐性株をプレーティングにより選択した。ついで各 耐性株を 50 µg ml⁻¹ Km、15 µg ml⁻¹ nalidixic acid を添加した LB 液体培地にそれぞれ植菌し、 一晩 30℃、120 rpm で培養して生育が見られた株を遺伝子破壊候補株とし、それぞれからゲ ノム DNA を調製した。ついで得られたゲノム DNA を鋳型とした PCR を行い、PCR 反応液 を 0.8%アガロースゲル電気泳動により分離することで、Km 耐性遺伝子の挿入に伴う増幅 断片の長さの増加を観察した。この際用いたプライマーは、遺伝子破壊に用いた相同領域 より外側の配列から設計した。

5-2-9. 生育試験

5 mlのLB液体培地で一晩培養した 43P 株および各遺伝子破壊株を集菌し、0.85%滅菌生 理食塩水で2回洗浄した後、L-glucose、L-gluconate、D-idonate、L-galactonate、*scyllo*-inositol、 *myo*-inositol (各 10 mM) をそれぞれ単一炭素源とした最少培地 10 ml に 1%植菌し、経時的に O.D. 600 nm の吸光度を測定した。

5-2-10. L-グルコース代謝関連遺伝子の分子系統解析

43P 株の L-glucose 代謝関連遺伝子のアミノ酸配列をもとに、KEGG ゲノムデータベース 上でそれらと系統的に近いと推定されるタンパク質を選抜した。さらに UniProt KB データ ベースにおいて機能が明らかな "reviewed" タンパク質のうち Gfo/Idh/MocA (LgdA), zinc-containing ADH (LgnH), short chain dehydrogenase (LgnI), UxaA (LgnE), DGOK (LgnF), Aldolase_KDPG_KHG_2 (LgnG)ファミリーに属するものを選抜し、それらのアミノ酸配列を ClustalX2 によりそれぞれアラインした。ついで得られたアライメントファイルをもとに TreeView を用いてそれぞれ無根系統樹を作製した。

5-2-11. LgnH オルソログのリコンビナント酵素の調製

Escherichia coli W3110 株、*Bacillus subtilis* 168 株、*Ochrobactrum anthropi* 15819^T 株よりそ れぞれ調製したゲノム DNA を鋳型として、Table 5-2-1 に示したプライマーセットを用いた PCR を行った。増幅断片をゲル抽出後 *Nde*I、*Xho*I で処理し、pET28a (+)の同サイトにそれ ぞれ連結し、pETyjjN、pETyjmD、pETOant_3903 を得た。作製したプラスミドをそれぞれ *E. coli* BL21 (DE3)にエレクトロポレーション法により導入し、得られた各タンパク質発現株 より 4-2-9 にしたがって His₆-EcYjjN、His₆-BsYjmD、His₆-Oant_3903 を精製、保存した。

5-2-12. LgnH オルソログのキネティックパラメーターの測定

1) His₆-Oant_3903

100 mM Tris-HCl, pH 9.0, 1 mM NAD⁺, 0.5 μg His₆-Oant_3903 の反応溶液に基質として potassium L-gluconate または sodium L-galactonate を様々な濃度で添加して全量を 200 μl とし、 室温で反応させた。酵素活性は NAD⁺の還元に伴う 340 nm の吸光度の上昇を DU800 spectrophotometer により測定した。

2) His₆-EcYjjN、His₆-BsYjmD

100 mM HEPES-KOH, pH 7.5, 1 mM NAD⁺, 0.5 μg His₆-EcYjjN または His₆-BsYjmD に加え て基質として potassium L-gluconate または sodium L-galactonate を様々な濃度で添加して全量 を 200 µl とし、室温で反応させた。酵素活性は NAD⁺の還元に伴う 340 nm の吸光度の上昇 を DU800 spectrophotometer により測定した。

Table 5-2-1. Primers used in this chapter.

Primer	Sequence (5'-3')		
Primers used for construction of suicide plasmids			
LgdA1700_EcoF	GGGGAATTCTTCCGGCATGAAHATCGTCG		
LgdA1700_BamR	GGG GGATCC CTTCAGCGCCTTTTTCAGCG		
LgnE2000_HinF	CAGAGAAGCTTATCAACGAAGCAAATCCGTC		
LgnE2000_XbaR	GATGC TCTAGA GTCGATATAACCGGCCTCCA		
LgnH1500_EcoF	GGGGAATTCGATCATCTCGGCTTATCAGG		
LgnH1500_BamR	GGG GGATCC ATAAGAAGCCATCGATGCGG		
LgnI1500_XbaF	CAGTCA <i>TCTAGA</i> CTGCCGCTACAACAAACGC		
LgnI1500_SacIR	GACTGA GAGCTC GGTGTCAGAACGCGGATAGC		
Pkan_SacIIF	CACAACCGCGGATGTCAGCTACTGGGCTATCTGGA		
Kan_SacIIR	CACAACCGCGGTTGGTCGGTCATTTCGAACC		
Pkan_F	ATGTCAGCTACTGGGCTATCTGGA		
Kan_R	TTGGTCGGTCATTTCGAACC		
Mob_F	ACTCGCATAGGCTTGGGTCG		
Mob_R	CTGGCAATTCCGGTTCGCTT		

Primers used for confirmation of gene disruption

lgdA_conF	AAGGACATCGAGGACGTGAT
lgdA_conR	ACGCTCGATTTCGTCATTGC
lgnE_conF	AATGCCATGACGACAAACGC
lgnE_conR	TTTCCTCACCACGAATGACG
lgnH_conF	ATTCGGCATCGGAACCAACC
lgnI_conF	GCATGAAGGCGCTTATCATC
lgnI_conR	CGTGCTGACGGTACACCTCC

Primers used for construction of expression vectors

YjmD_NdeF	GGCCCCATATGAAAGCGGTTCAAGTGCG
YjmD_XhoR	GGCCCCTCGAGTTAATCAAACGTGATGACGG
YjjN_NdeF	GGCCCCATATGTCTACGATGAATGTTTT
YjjN_XhoR	GGAAACTCGAGTCAGAAAGTAATTACGCCTT
Oant_3903_NdeF	GGCCCCATATGGTCAAAGCTCTGCGTAT
Oant_3903_XhoR	GGCCCCTCGAGTCAGTCGCGTTCGATGATGA

第三節 Paracoccus sp. 43P株の遺伝子破壊方法の確立

5-3-1.43P株の生育を抑制する抗生物質の検討

43P 株を様々な抗生物質の存在下で培養した結果、50 μg ml⁻¹ Km, 20 μg ml⁻¹ ampicillin, 20 μg ml⁻¹ chloramphenicol, 5 μg ml⁻¹ tetracycline, 10 μg ml⁻¹ amikacin, 20 μg ml⁻¹ gentamicin の存在 下で同株の生育は48 時間以上抑制された (データ示さず)。一方で20 μg ml⁻¹ の nalidixic acid の存在下でも同株は良好な生育を示した (データ示さず)。

5-3-2.43P株で使用可能な抗生物質耐性マーカーの検討

43P株の生育がKmによりある程度抑制されることが明らかとなったので、Paracoccus属 細菌で複製可能であることが報告されている広宿主域ベクターであり、マーカー遺伝子と してKm耐性遺伝子を有している pBBR1MCS2 を同株にエレクトロポレーション法により 導入し、形質転換体が得られるか検討した。その結果1x10³程度のコロニーが得られ、コ ロニーPCRにより pBBR1MCS2 上のKm耐性遺伝子の増幅が観察された。以上の結果から 同株にエレクトロポレーションによりプラスミド DNA を導入可能であること、 pBBR1MCS2 由来のKm耐性遺伝子が同株でマーカー遺伝子として機能しうること、さらに pBBR ori が同株で複製されることが明らかとなった。

ついで pBBR1MCS2 のマルチクローニングサイトに pBR328 由来の tetracycline 耐性遺伝 子、chloramphenicol 耐性遺伝子をそれぞれ導入したプラスミド、pBBR1-tet と pBBR1-cat を 43P 株に導入して2つのマーカーが機能するか検討した。その結果 pBBR1-tet を導入した 43P 株は1週間程度でコロニーを形成した (データ示さず)。このことから tetracycline 耐性遺伝 子は43P 株で機能しうるが、43P 株にとって tetracycline の効果が強すぎる、または tetracycline 耐性遺伝子の発現量が低すぎるため、マーカー遺伝子として利用するには適切ではないと 判断した。pBBR-cat を導入した 43P 株は約 48 時間でコロニーを形成することができたが、 pBBR1MCS2 の *lac* プロモーターに対して逆向きに chloramphenicol 耐性遺伝子を挿入した pBBR1-catRV では形質転換体が得られなかった (データ示さず)。このことから、pBR328 由 来の chloramphenicol 耐性遺伝子プロモーターが 43P 株では機能しないことが考えられた。 以上の結果から 43P 株で使用可能な抗生物質耐性遺伝子マーカーとしては、pBBR1MCS2 由来の Km 耐性遺伝子が最も便利であると結論した。

5-3-3. 接合伝達の検討

43P 株の場合、エレクトロポレーション法では1 x 10³ 程度の形質転換体しか得られない ため、相同組み換えによる遺伝子破壊を実施するには不十分であることが予想された。そ こで pBBR1MCS2 を保持させた *E. coli* S17-1 λ*pir* 株を供与菌とした接合伝達について検討し たところ、1回の操作で1 x 10⁵ の形質転換体を得ることが出来た。
第四節 L-グルコース代謝関連遺伝子の破壊が及ぼす影響

5-4-1.43P株の L-glucose 代謝関連遺伝子破壊株の作製

pBBR1MCS2 由来の Km 耐性遺伝子の両端に、L-glucose 代謝関連遺伝子の各 ORF の前後 半それぞれに対応する 500 bp 以上の相同領域を付加したスーサイドプラスミドを接合伝達 により 43P 株に導入し、Km 耐性となった株を選抜した結果、*lgdA、lgnH、lgnI、lgnE* の破 壊株をそれぞれ取得することができた。正しく破壊されていることは、各遺伝子に対する プライマーを用いた PCR により確認した (Figure 5-4-1)。

5-4-2. L-glucose 代謝関連遺伝子の破壊が L-glucose 代謝に及ぼす影響

作製した破壊株を L-glucose 最少培地で培養した結果、野生株が生育するのに対して $\Delta lgdA$ 、 $\Delta lgnH$ 、 $\Delta lgnI$ 株は生育が見られなり、 $\Delta lgnE$ 株は野生株と比較して若干の生育速度の低下が 観察された (Fig. 5-4-2A)。以上の結果からこれらの遺伝子が同株の L-glucose 代謝に関わる ことが示された。一方で L-gluconate を単一炭素源とした場合、 $\Delta lgnH$ 、 $\Delta lgnI$ 株は生育が見 られないのに対し、 $\Delta lgdA$ 株は野生株と同様の生育を示した (Fig. 5-4-2B)。このことから、 LgdA が実際に L-glucose から L-gluconate への変換を触媒する酵素として 43P 株で機能して いることが示された。さらに下流の中間代謝物と推定される D-idonate を単一炭素源とした 場合は、 $\Delta lgnE$ 株で野生株と比較して顕著な生育の悪化が観察されたが、他の破壊株は野生 株と同様の生育を示した (Fig. 5-4-2C)。このことから、LgnH、LgnI が、43P 株内で L-gluconate から D-idonate への変換を触媒する酵素として機能していることが示された。以上の結果か ら Figure 4-5-5 に示した経路が、実際に 43P 株の L-glucose 代謝で機能していることが示さ れた。

続いて各遺伝子の破壊が L-gluconate の4位のエピマーに相当する L-galactonate を単一炭 素源とした生育に影響をおよぼすか検討した結果、すべての遺伝子破壊株は L-galactonate を単一炭素源とした最少培地中で野生株と同様の生育を示した (Fig. 5-4-2D)。このことから、 これらの遺伝子は L-galactonate 代謝には中心的には関与しておらず、43P 株の L-galactonate 代謝には別の遺伝子が関与していることが示唆された。また $\Delta lgnH$ 、 $\Delta lgnI$ 、 $\Delta lgnE$ 破壊株は *scyllo*-inositol、*myo*-inositol を単一炭素源とした培地で野生株と同様の生育を示した (Fig. 5-4-2E)一方で、 $\Delta lgdA$ 株は *scyllo*-inositol を単一炭素源とした場合にのみ顕著な生育の悪化 が観察された (Fig. 5-4-2F)。この結果から LgdA は L-glucose 代謝だけではなく、*scyllo*-inositol 代謝においても機能していることが示された。また、*lgn* 遺伝子群は inositol 異性体の代謝 に必須ではないことが示された。

第五節 L-グルコース代謝関連遺伝子の分子系統解析

5-5-1. L-グルコース代謝関連遺伝子のアミノ酸配列に基づく分子系統解析

43P株のL-glucose 代謝関連酵素のアミノ酸配列と、KEGG、UniProt データーベース中の 既知タンパク質アミノ酸配列の分子系統樹を作製した結果、L-glucose 代謝にかかわる酵素 はいずれも機能の分かっているもの (UniProt データベースにおける"reviewed"タンパク質) とは根に近い部分で分岐しており、ゲノム配列の解析結果から推定された機能未知のタン パク質群とクラスターを形成した (Fig. 5-5-1)。また、いずれの酵素も Paracoccus denitrificans PD1222 株由来のタンパク質と分子系統的に最も近縁であった。この結果は 43P 株が Paracoccus 属に属することからも頷ける結果である。

さらに詳細に分子系統樹を見てみると、LgdA、LgnF、LgnG は Alphaproteobacteria 由来の 機能未知タンパク質とクラスターを形成していた。これは Paracoccus 属が Alphaproteobacteria に属することからも妥当だと考えられる。それに対して、LgnE は Betaproteobacteria 由来の機能未知タンパク質群とクラスターを形成し、LgnH、LgnI は Bacteroidetes 由来のタンパク質群とクラスターを形成する傾向が見られた。このことから LgnE、LgnH、LgnI は別の分類群に由来すると考えることができ、lgn 遺伝子群、ひいては 43P 株の L-glucose 代謝の成り立ちを考える上で興味深い。

5-5-2. LgnH オルソログの酵素学的解析

分子系統解析の結果 LgnH のオルソログであると推定された *E. coli* 由来の YjjN、*Bacillus subtilis* 由来の YjmD、*Ochrobactrum anthropi* 由来の Oant_3903 のリコンビナント酵素を作製し、HisTrap カラムにて SDS-PAGE 上で単一バンドとなるまで精製し (データ示さず)、それぞれ L-gluconate、L-galactonate を基質とした活性を測定した。この際、His₆-EcYjjN、His₆-BsYjmD は反応至適 pH が 7.0-7.5 であったのに対して、His₆-Oant_3903 の反応至適 pH は LgnH と同様に pH 9.0-9.5 であった (データ示さず)。キネティックパラメーターを測定した結果、すべてのリコンビナント酵素が L-gluconate、L-galactonate を基質とした活性を表質とした NAD⁺依存的な dehydrogenase 活性を有していた (Table 5-5-1)。しかしながら His₆-BsYjmD、His₆-EcYjjN の L-gluconate を基質とした活性は、それぞれの L-galactonate を基質とした活性に比べ弱いものだった。EcYjjN は実際に L-galactonate 代謝に関与することが既に示されているので、この結果は妥当なものであるが、BsYjmD の生理機能については不明である。一方でHis₆-Oant 3903 は L-gluconate、L-galactonate 双方に対して同程度の活性を有していた。

5-5-3. Oant_3903 の機能解析

Ochrobuctum anthropi は L-gluconate を単一炭素源として生育できなかった一方で、 L-galactonate を炭素源とした生育は観察された (データ示さず)。L-galactonate を炭素源とし て培養した同株より無細胞抽出液を調製し、NAD⁺依存的な L-galactonate dehydrogenase、 L-gluconate dehydrogenase 活性をそれぞれ測定した結果、いずれの活性も検出された (Table 5-5-2)。このことから、Oant_3903 は同株内で L-galactonate dehydrogenase として機能していることが示唆された。

Figure 5-4-1. PCR analysis of gene disruption mutants. PCR reactions for amplifying *lgdA* (lanes 1 and 2), *lgnE* (3 and 4), *lgnH* (5 and 6), and *lgnI* (7 and 8) were conducted with primer pairs described in Table 5-2-1 using strain 43P chromosomal DNA (lanes 1, 3, 5, and 7), $\Delta lgdA$ strain (2), $\Delta lgnE$ strain (4), $\Delta lgnH$ strain (6), and $\Delta lgnI$ strain (8) as templates. Lane M denotes molecular mass markers.

Figure 5-4-2. Growth of strain 43P and gene disruption mutants in minimal media containing L-glucose (A), L-gluconate (B), D-idonate (C), L-galactonate (D), *scyllo*-inositol (E), and *myo*-inositol (F). Open circles, strain 43P; closed circles, $\Delta lgdA$ strain; open triangles, $\Delta lgnE$ strain; closed triangles, $\Delta lgnH$ strain; open squares, $\Delta lgnI$ strain. In panel (B), the growth of strain NBRC 102528^T is also shown (closed squares). Cultivation was conducted in three independent cultures and average values \pm S. D. are shown.

Figure 5-5-1. Phylogenetic trees based on the amino acid sequences of LgdA (A), LgnH(B), LgnI (C), LgnE (D), LgnF (E), and LgnG (F) and their related sequences from the KEGG genome and Uniprot KB databases. The sequences of enzymes with known function from respective protein families in the Uniprot KB database are shown in green with their accession numbers, and those of "potential" L-glucose and L-gluconate utilizing organisms from the KEGG genome database are shown in red and blue, respectively, with KEGG organisms and accession numbers. The other sequences from the KEGG genome database showing high similarities are indicated only with lines. Line colors denote affiliations of organisms with the KEGG organisms; red, orange, yellow and magenta, *Alpha-, Beta-, Gamma-* and *Deltaproteobacteria*; green, *Firmicutes*; cyan, *Actinobacteria*;

denim, *Chlamydiae*; cream, *Spirochetes*; purple, *Acidobacteria*; blue, *Bacteroidetes*; mustard, *Fusobacteria*; camel, *Verrucomicrobia*; and lilac, Hyperthermophilic bacteria. The bars represent 0.1 substitutions.

Protein	substrate	K_m (mM)	$k_{\rm cat}({\rm min}^{-1})$	$k_{\text{cat}}/K_m (\min^{-1}\mathrm{mM}^{-1})$
LgnH	L-gluconate	0.659 ± 0.023	573 ± 5	869
	L-galactonate	0.224 ± 0.011	178 ± 2	828
Oant_3903	L-gluconate	0.309 ± 0.045	183 ± 5	592
	L-galactonate	1.04 ± 0.16	466 ± 18	448
EcYjjN	L-gluconate	4.64 ± 0.32	22.6 ± 0.4	5
	L-galactonate	0.287 ± 0.020	67.0 ± 1.4	230
BsYjmD	L-gluconate	10.2 ± 1.1	224 ± 1	22
	L-galactonate	0.184 ± 0.013	$367 \pm$	1995

Table 5-5-1. Kinetic parameter of LgnH orthologs

Table 5-5-2. NAD+ dependent dehydrogenase activity on cell-free extract fromOchrobactrum anthopi cultivated with L-galactonate

Substrate ^a	Specific activity (µmol min ⁻¹ mg ⁻¹)
L-gluconate	0.058
L-galactonate	0.184

^a The activity was measured with a final concentration of 1 mM substrate

第六節 まとめと考察

本章では Paracoccus sp. 43P 株の遺伝子組換え方法について検討し、同株における推定 L-glucose 代謝関連遺伝子の破壊株を作製することに成功した。Paracoccus 属細菌の遺伝子 破壊の例は少なく、同属で最も研究されている Paracoccus denitrificans PD1222 株も本研究 と同様の手法により行われる。すなわち、スーサイドベクターを E. coli S17-1λpir、E. coli TG1 といった tra 保有株を供与菌とした接合伝達により導入し、相同組み換えによる薬剤耐性遺 伝子の挿入により標的遺伝子が不活性化した株を選択する。この方法の大きな問題は、ダ ブルクロスオーバーにより目的の遺伝型となった株以外に、シングルクロスオーバーによ ってスーサイドベクター全体が染色体上に挿入された株も同様の薬剤耐性株として選択さ れてしまう点である。これらを選別するためには、個々の薬剤耐性株について PCR または サザンハイブリダイゼーションによる遺伝型の確認を行う以外になく、コスト、スピード の両面で優れているとはいい難いので、今後改良の余地があるだろう。

第三章で述べた LgdA の基質特異性の解析結果から予想されたとおり、ΔlgdA 株は L-glucose を単一炭素源として生育できなかっただけではなく、scyllo-inositol を単一炭素源 とした生育についても野生株と比較して顕著な悪化が観察された。この結果は IgdA が L-glucose と scyllo-inositol という異なる化合物両方の異化代謝に寄与していることを示すも のである。古くから酵素は一つの基質に対して特異的に作用することで一つの生理機能を 発現する"specialist"としての側面が注目されてきたが、近年では LgdA のように広い基質特 異性、反応性を持つ"generalist"にも注目が集まっている。これは広範な基質特異性を生かし た有用物質生産への応用という観点だけではなく、generalist の存在がタンパク質の進化を 考えるうえで重要であるという認識が広がりつつあるためである。というのも、もともと 基質 A に対して作用する酵素が directed evolution により基質 B に対して作用する新たな機 能を獲得するとき、基質 A に対する活性の低下は多くの場合小さなものである (Khersonsky et al. 2006)。すなわち、酵素にとって新たな機能の獲得と、もともとの機能との間にあるト レードオフの関係は想像されていたよりも小さなものであり、その実験的事実は原始的な 酵素は単独でいくつかの反応を触媒し、複数の生理機能に関与していたとする仮説 (Jensen 1976) を逆説的に裏付けるものであるといえる。そうした観点から、LgdA の広範な基質特 異性が、43P 株に scyllo-inositol 資化、L-glucose 資化という 2 つの生理機能を付与するとい う事実は、酵素の分子進化と生理的な役割の変化を考える意味でも興味深いといえる。

Paracoccus 属細菌で唯一ゲノム配列が明らかとなっている P. denitrificans PD1222 株は P.denitrificans NBRC102528^T株を親株とした変異育種により DNA 修飾機構を欠損し、接合 伝達効率が向上した株である (Vries et al. 1989)。そのため PD1222 株が L-glucose 代謝関連 遺伝子のオルソログをすべて有していることから、NBRC102528^T株も L-glucose 代謝に関わ るすべての遺伝子のオルソログを有していると推定される。しかしながら、NBRC102528^T 株は L-gluconate を単一炭素源として生育する一方で、L-glucose を単一炭素源として生育で きなかった。同株の *lgdA* オルソログである Pden_1680 のリコンビナント酵素を用いて L-glucose を基質としたデヒドロゲナーゼ活性を測定した結果、 $k_{cat} = 836 \pm 12 \text{ min}^{-1}$ 、 $K_m = 78.0 \pm 8.2 \text{ mM}$ であり、LgdA と同程度の活性を示したことから、同株が L-glucose を資化できな い原因は酵素活性ではなく、L-glucose を菌体内に取り込めない、Pden_1680 が発現してい ないといった可能性が考えられる。

Δ*lgdA*、Δ*lgnH*、Δ*lgnI*株が L-glucose を単一炭素源として生育できなかった一方で、Δ*lgnE* 株は野生株と比較して若干の生育速度の低下が観察されるものの、L-glucose を単一炭素源 として生育することが可能であった。この原因として考えられるのが、*lgnE*のパラログの 存在である。というのも、PD1222 株は *lgnE* オルソログである Pden_4928 のほか、同遺伝子 と 53%のアミノ酸配列相同性を示すパラログ、Pden_4671 を有しているため、43P 株もまた *lgnE*のパラログを有しており、*lgnE*の機能を相補していることが推察される。

Lgn 酵素群による L-gluconate 代謝経路は、*E. coli* で報告のある L-galactonate 代謝経路と 非常に良く似ている (Fig. 5-6-1)。両代謝経路とも 2 種の酸化還元酵素により 5 位の水酸基 の立体配置を変換して D 体のアルドン酸を生じ、Fe²⁺依存的デヒドラターゼにより 2-keto-3-deoxy 糖酸としたあと、続く kinase によるリン酸化、aldolase によるアルドール開 裂反応により同じ最終産物、pyruvate と Gap を生じる。しかしながら LgnI、LgnF はそれぞ れ UxaB、KdgK とアミノ酸配列相同性を示さず、また *lgn* 遺伝子群の破壊は 43P 株におい て L-galactonate を単一炭素源とした生育に影響を示さなかった。これらの結果は *lgn* 遺伝子 群が既知の L-galactonate 代謝経路を担う酵素遺伝子群とは異なるものであり、L-gluconate 代謝に特化したものであることを示している。そして *lgn* 遺伝子群の存在は、天然における 存在が観察されていない L-gluconate が実は存在する、または存在したことを示す遺伝的な 証拠と考えることができるだろう。

先に述べた酵素における generalist、specialist という分類に基づいてみると、分子系統的 に近い 2 つの酵素、LgnH と Oant_3903 は L-gluconate dehydrogenase としても L-galactonate dehydrogenase としても酵素活性の面では機能しうる generalist であるといえる。一方 LgnH は 43P 株内で L-gluconate 代謝でのみ機能するのに対して、Oant_3903 は Ochrobactrum anthropi 内で L-galactonate 代謝でのみ機能することから、それらの生理的な役割は異なるも のであるといえる。二つの酵素は k_{cat}/K_m でみると L-gluconate、L-galactonate に対して同程度 の値を有しているという点で共通しているが、その質には大きな違いがある。すなわち LgnH は L-gluconate に対して高い k_{cat} 、 K_m を有し、L-galactonate に対して同程度 のに対して、Oant_3903 は L-galactonate に対して低い k_{cat} 、 K_m を有してい るのに対して、Oant_3903 は L-galactonate に対して高い k_{cat} 、 K_m を有しており、L-gluconate に対して低い k_{cat} 、 K_m を有している。この違いは両酵素がそれぞれの生理機能に適応して いく過程を反映しているものと考えることができ、興味深い。一方で Ochrobactrum anthropi のゲノム DNA 上で Oant_3903 をコードする遺伝子が存在する遺伝子クラスターは、lgn 遺 伝子群とは構成、順序ともに全く異なる (Fig. 5-6-2, Table 5-6-1)。従ってタンパク質機能の 進化速度に対し、遺伝子クラスターの再構成、至適化はより速いものであるといえる。

Figure 5-6-1. Schematic representation of L-gluconate and L-galactonate catabolic pathway. Upper column, L-gluconate catabolic pathway in *Paracoccus* sp. 43P; lower column, L-galactonate catabolic pathway in *Escherichia coli*.

Fig. 5-6-2. Schematic representation of genomic locus containing Oant_3903 in *Ochrobactrum anthropi* 15819^T.

Tuble 5 0 1.7 milliouted functions of genes sufformating ount_5705.		
Gene	Annotated function	
Oant_3906	tagaturonate reductase	
Oant_3905	GntR family transcriptional regulator	
Oant_3904	galactarate dehydratase	
Oant_3903	alcohol dehydrogenase	
Oant_3902	TRAP dicarboxylate transporter subunit DctP	
Oant_3901	tripartite ATP-independent periplasmic transporter DctQ	
Oant_3900	TRAP dicarboxylate transporter DctP subunit	

Table 5-6-1. Annotated functions of genes surrounding Oant_3903.

第六章 LgnR による lgn 遺伝子群の転写制御機構

第一節 緒言

前章までの結果から *lgdA* の発現は炭素源に関わらず高いレベルである一方で、*lgnH* の発 現は L-glucose、L-gluconate を単一炭素源とした際に誘導されていることが明らかとなった。 従って *Paracoccus* sp. 43P 株には自然界に存在しないと考えられている L-glucose、 L-gluconate を認識し、*lgn* 遺伝子群の発現を制御する機構を有していることが予想される。 そこで本章では、*lgn* 遺伝子群の転写ユニットの解析、転写開始点の決定、IcIR ファミリー 転写制御因子、LgnR の機能解析を通して、*lgn* 遺伝子群の転写制御機構の解析を行った。

第二節 材料及び方法

6-2-1. 実験材料

使用培地

前培養には LB 培地を用いた。43P 株の遺伝子破壊株の選択には 100 µg ml⁻¹の Km, 20 µg ml⁻¹の nalidixic acid を添加した LB 寒天培地を用いた。無細胞抽出液中の L-gluconate dehydrogenase 活性を測定する場合は、modified L-glucose minimal medium の炭素源をそれぞれ 15 mM L-gluconate、15 mM D-idonate、20 mM succinate とした液体培地を用いた。

使用プライマー 本章で用いたプライマーを Table 6-2-1 に示す

6-2-2. 各種基質の合成

アルドン酸の合成は 4-2-2 に従って行った。KDGal の合成は 4-2-11 に従って行った。 KDPGal の合成は 4-2-12 に従って行った。

6-2-3. lgnR 破壊用プラスミドの構築

Paracoccus sp. 43P 株のゲノム DNA を鋳型として LgnR_SF、LgnR_SR のプライマーセッ トを用いた PCR を行い、増幅断片を電気泳動後にゲル抽出し、ついで *Sph*I、*Bgl*II による制 限酵素処理後に pUC19 の *Eco*RI サイトに *mob* を挿入したベクターの *Sph*I、*Bam*HI サイトに 連結することで pUC19-lgnR-mob を得た。ついで pUC19-lgnR-mob を *Hinc*II で処理し、 pBBR1MCS2 を鋳型として PCR 増幅した Km 耐性遺伝子を同部位に挿入することで pUC19-lgnR::kan-mob を得た。この際、Km 耐性遺伝子が *lgnR* の転写方向に対して順向きに 挿入されたプラスミドを選択した。

6-2-4. lgnR 破壊株の作製

pUC19-lgnR::kan-mob を保持させた *E. coli* S17-1 λ*pir* を供与菌、43P 株を受容菌とした接 合伝達による遺伝子破壊を 5-2-8 に従って行った。遺伝子型の確認 LgnR_SF、LgnR_SR の プライマーセットを用いた PCR により行った。

6-2-5. ΔlgnR 株の L-gluconate dehydrogenase 活性の測定

1) 培養

43P 株とΔ*lgnR* 株を LB 培地で一晩前培養し、それぞれの培養液 1 ml より遠心分離により 集菌した。滅菌生理食塩水で洗浄した後 1 ml の滅菌生理食塩水に懸濁し、各種炭素源を添 加した 10 ml の最少液体培地に 2% (v/v) 植菌して 30℃、120 rpm で培養した。培養液の O.D. 600 nm が 0.6-0.8 の時点で菌体を全量回収した。

2) 無細胞抽出液の調製および活性測定

3-2-2 に従って無細胞抽出液を調製した。ついで各条件で培養した菌体より調製した無細胞抽出液中の L-gluconate dehydrogenase 活性を 4-2-3 に従って測定した。

6-2-6. Total RNA の調製

1) 培養

43P 株とΔ*lgnR* 株を LB 培地で一晩前培養し、それぞれの培養液 1 ml より遠心分離により 集菌した。滅菌生理食塩水で洗浄した後 1ml の滅菌生理食塩水に懸濁し、各種炭素源を添 加した 10 ml の最少液体培地に 2% (v/v) 植菌して 30℃、120 rpm で培養した。培養液の O.D. 600 nm が 0.6-0.8 の時点で菌体を全量回収した。

2) RNA 抽出

RNA の抽出は hot phenol-SDS 法に若干の変更を加えて行った。まず 1)の菌体を 1 ml の TE バッファーで洗浄後、10 mg ml⁻¹の lysozyme を含む TE バッファー400 µl に懸濁した。す ぐに 50 µl の 10% (w/v) SDS を加えて攪拌し、ヒートブロックにて 64℃で 2 分間静置した。 ついで 40 µl の 3 M 酢酸ナトリウム (pH 5.2)、500 µl の水飽和フェノールを加えて攪拌し、 ヒートブロックにて 64℃で 6 分間インキュベートした。この際、40 秒ごとにエッペンチュ ーブを上下に 10 回反転させることで攪拌した。その後エッペンチューブを氷上で 5 分間静 置して氷冷し、20,400 x g、4℃で 10 分間遠心した。約 500 µl の水層(最上部)を新しいエッ ペンチューブにとり、等量のクロロホルムを加えて攪拌した後 20,400 x g、4℃で 5 分間遠 心した。約 450 µl の水層を新しいエッペンチューブにとり、50 µl の3 M 酢酸ナトリウム (pH 5.2)を加えて混和後、さらに 1 ml の氷冷エタノールを加えてボルテクスミキサーにより攪拌 した。 サンプルを-80℃で 20 分間静置した後、20,400 x g、4℃で 25 分間遠心分離を行い、 溶液をアスピレーターで吸引除去した。ついで 500 µl の 80%エタノールを加えてボルテク スミキサーにより混和し、20,400 x g、4℃で5分間遠心した。溶液をアスピレーターで吸引 除去し、エッペンチューブを逆さにしてキムワイプの上に置き、RNA サンプルを5分間風 乾させた。ついでサンプルを86 µl の DEPC 水に溶解し、1 µl の RNase inhibitor (Invitrogen)、 10 µl Low Buffer (Takara)、3 µl の RNase free DNase I (Qiagen) を加えて 37℃で 30 分間イン キュベートした。各サンプルに水飽和フェノールを 100 µl 加えて軽く攪拌し、20,400 x g、 24℃で 2 分間遠心して水層を新しいエッペンチューブにとった。ついでクロロホルム 100 µl を加えて攪拌後、20,400 x g、24℃で 2 分間遠心して水層を新しいエッペンチューブにとっ た。最後にエタノール沈殿を行い、風乾後のサンプルを DEPC 水に溶解して total RNA サン プルとして-80℃で保存した。

6-2-7. cDNA の合成

cDNA の合成には QuantiTect Reverse Transcription kit (Qiagen) を用いた。鋳型となる total RNA の量は 1 µg とし、プライマーにはキットに付属した RT primer mix を用いた。

6-2-8. 逆転写 PCR による lgn 遺伝子群の転写ユニット解析

L-gluconate を単一炭素源として培養した 43P 株より 6-2-6 に従って抽出した total RNA 0.5 μg を鋳型として、6-2-7 に従って cDNA を合成した。cDNA 溶液 0.5 μl を鋳型とし、Table 6-2-2 に示したプライマーセットを用いた PCR を行った。またコントロールとして等量の total RNA を鋳型とした PCR も行った。PCR 酵素には ExTaq を用い、伸長時間は 2 分 30 秒、ア ニーリング温度は 53℃とした。PCR 反応液を 1%アガロースゲルにて電気泳動した後、エチ ジウムブロマイドにより染色して増幅産物の有無を観察した。

6-2-9. Real time RT PCR

6-2-7 に従って調製した cDNA 5 ng を鋳型とし、Table 6-2-2 に示した real time PCR 用のプ ライマーセットをそれぞれ終濃度 0.4 μ M として用いた。反応スケールは 25 μ l として、SYBR Green reaction mix (Bio-Rad) を用いた PCR 反応、および増幅産物のモニターを MiniOpticon real-time PCR system (Bio-Rad) により行った。各サンプルにおける個々の遺伝子の発現量は 比較 Ct 法により行った。すなわち、16S rRNA 遺伝子を内在性コントロール遺伝子とし、 succinate を炭素源として培養した菌体より抽出した total RNA を鋳型として合成した cDNA サンプルを基準サンプル (ref) とした。ついでこれらの値を以下の式に代入して炭素源によ る各遺伝子の発現量の比較を行った:

$$\Delta Ct = (Ct^{\text{target gene}} - Ct^{16S \text{ rRNA}})$$

 $\Delta \Delta Ct = \Delta Ct^{\text{ sample}} - \Delta Ct^{\text{ ref}}$

 $2^{-\Delta\Delta Ct}$ = relative transcription

6-2-10.5' RACE 解析

L-gluconate を単一炭素源として培養した 43P 株より 6-2-6 に従って抽出した total RNA を 鋳型とし、5' RACE system (invitrogen) を用いた転写開始点の同定を行った。 *lgnA* の転写 開始点の決定には GSP1_lgnA、GSP2_lgnA、GSP3_lgnA をそれぞれ逆転写、1st PCR、nested PCR 用プライマーとして用い、*lgnR* の転写開始点の決定には GSP1_lgnR、GSP2_lgnR、 GSP3_lgnR をそれぞれ逆転写、1st PCR、nested PCR 用プライマーとして用いた。Nested PCR 後の PCR 溶液をそれぞれ 1%アガロースゲルにて電気泳動し、増幅産物をゲル抽出した後、 pGEM-T Easy cloning vector にクローニングし、それぞれ 5 クローンのインサート塩基配列 を解析して転写開始点を同定した。

6-2-11. His6-LgnR の調製

43P 株のゲノム DNA を鋳型とし、LgnR_NdeF、LgnR_EcoR のプライマーセットを用いて PCR 反応を行った。増幅断片をゲル抽出後 *NdeI、Eco*RI で処理し、同様に処理した pET28a (+)に連結して pET-LgnR を得た。同プラスミドを *E. coli* BL21 (DE3)株にエレクトロポレー ションにより導入し、His₆-LgnR 発現株とした。同株より 4-2-9 に従って、His₆-LgnR を精製 した。精製タンパク質の純度は 3-2-5 に従って SDS-PAGE により確認した。タンパク質濃度 は 3-2-4 に従って定量した。

6-2-12. Superose12 ゲルろ過クロマトグラフィー

His₆-LgnR 溶液 (14 mg ml⁻¹) 25 µl を 50 mM HEPES-KOH, pH 7.2, 250 mM NaCl, 1 mM DTT, 10% (v/v) glycerol からなるバッファーで平衡化した Superose 12 10/300 GL (Amersiam Biosciences)に添加し、ÄKTA system (GE Healthcare)により流速 0.5 ml min⁻¹で分画した。タンパク質の溶出は 280 nm の吸光度によってモニターした。分子量の測定に際しては、標準 タンパク質として aldolase (118 kDa)、ovalbumin (43 kDa)、carbonic anhydrase (29 kDa)、ribonuclease A (13.7 kDa)を用い、ボイド容量の測定には blue dextran 2000 を用いた。

6-2-13. ビオチン標識 DNA 断片の調製

Table 6-2-2 に示した 5'末端にビオチンを付加したプライマーを用いて PCR を行い、増幅断 片をゲル抽出することでビオチン標識 DNA 断片を調製した。各 DNA 断片の濃度は O.D. 260 nm の吸光度を DU800 Spectrophotometer により測定して濃度 (µg ml⁻¹)を測定した後、各 DNA 断片の塩基配列から推定される理論分子量 (二本鎖相当)に基づきモル濃度に変換した。

6-2-14. Electromobility Shift Assay (EMSA)

His₆-LgnR とビオチン標識 DNA 断片との結合反応は、LightShift EMSA Optimization and Control Kit (Thermo Scientific) を用いて行った。20 µl の反応液の組成は 10 mM Tris-HCl, pH 7.5, 50 mM KCl, 1 mM DTT, 5% (v/v) glycerol, 10 mM MgCl₂, 1 µg poly (dI·dC)、20 fmol ビオチ

ン標識 DNA, 任意の量の His₆-LgnR として、室温で 20 分間インキュベートした。反応後の 溶液にキットに付属した 5 X loading buffer 5 µl を混和し、10 µl を 6% polyacrylamide-TBE ゲ ルに添加し、0.5 X TBE を泳動バッファーとして 100 V で 45 分から 1 時間泳動した。泳動 後のゲルから DNA を Zeta-probe membrane (Bio-Rad)に 150 mA の定電流で 60 分間電気ブロ ットすることにより転写し、転写後のメンブレン上のビオチン標識 DNA を Chemiluminescent Nucleic Acid Detection Module (Thermo scientific)を用いて化学発光させた。 化学発光シグナルの検出、定量は Image Quant LAS 4000 mini (GE Healthcare)を用いて行った。

6-2-15. DNase I footprinting assay

PlenA、PlenRを含む 345 bpの DNA 断片 (lgnAR345)を 43P株のゲノム DNA を鋳型とした PCR により増幅した。この際用いたプライマーセットのうち片方の 5'末端を IRD-800 ラベルし たものを用いることで、2 本鎖 DNA の片方の鎖の 5'末端にそれぞれ IRD-800 ラベルを付加 した断片を2種類調製した。IRD-800標識 DNA はエタノール沈殿により精製し、それらの 純度、濃度はアガロースゲル電気泳動により確認した。His6-LgnR と IRD800 標識 DNA との 結合反応は 10 mM Tris-HCl, pH 7.5, 50 mM KCl, 1 mM DTT, 5% glycerol, 10 mM MgCl₂, 1 µg poly(dI·dC), 100 ng of IRD-800 labeled DNA, and 400 nM of His₆-LgnR からなる反応液 50 μl を 室温で10分間インキュベートすることにより行った。ついで0.2 UnitzのDNase Iを添加し、 室温で2分間インキュベートした。ついで5 µlの10% SDS、60 µlのフェノールクロロホル ムを添加してボルテクスミキサーにより攪拌することで DNase I を失活させた。20,400 xg、 24℃で5分間遠心し、水層約50 µl をを新しいエッペンチューブにとった。同液に20 µg の glycogenを加え、エタノール沈殿により核酸を沈殿させた。80%エタノールにより洗浄、風 乾後に沈殿を6 μl の TE バッファーに溶解させた。同液に6 μl の Thermo Sequenase Primer Cycle Sequencing Kit (GE Healthcare)に付属した formamide loading dye を混和し、サーマルサ イクラーを用いて 92℃、3 分間処理して変性させた。同サンプル 1.5 µl を 6.0 % Long Ranger gel を用いて分離し、IRD800 標識 DNA 断片を Global IR² System (Li-Cor, Lincoln, NE)に接続 した model 4200 sequencer (Li-Cor)によって検出した。シーケンスラダーは IRD-800 標識して いない IgnAR345 を鋳型とし、IRD-800 標識したプライマーを用いて dideoxy chain termination 反応を Thermo Sequenase Primer Cycle Sequencing Kit (GE Healthcare)を用いて行うことで調 製した。

6-2-16. LgnR の分子系統解析

43P株の*lgnR*のアミノ酸配列をKEGGデータベースに対してBLASTPサーチを行い、score が 170以上のタンパク質を推定 *lgnR* ホモログと定義し、それぞれのアミノ酸配列を FASTA 形式で取得した。これら 89種のアミノ酸配列に、*E. coli* 由来の YiaJ、KdgR のアミノ酸配 列を加え、CLUSTALX を用いたアライメントを作製した。ついで Neighbor-Joining 法に基づ く分子系統樹を得られたアライメントをもとに MEGA 4.0 を用いて作製した。*LgnR* ホモロ

グの遺伝子座の解析は KEGG の Genome map 機能を用いて行った。

Table 6-2-1. Primers used in this chapter.

Primer	Sequence (5'-3')		
Primers used for construction of expression plasmids			
LgnR_NdeF	GGCCCCATATGGAGAACGATGCCAACAAGGC		
LgnR_EcoR	GGCCCGAATTCTTAGGGGTGCAGACGATAAC		

Primers used for construction of pUC19-mob-lgnR::kan

LgnR_SF	GATTTTCGCCAAAGGTTCCG
LgnR_SR	ATTTCCCCGAAGTAAGCGCTT
Pkan_F	ATGTCAGCTACTGGGCTATCTGGA
Kan_R	TTGGTCGGTCATTTCGAACC
Mob_F	ACTCGCATAGGCTTGGGTCG
Mob_R	CTGGCAATTCCGGTTCGCTT

Primers used for RT-PCR

1F	TTGGAGAACGATGCCAACAAGGC
1R	TTAGGGGTGCAGACGATAAC
2F	CGGAACATCATGATCCTGGCA
2R	GACTTCGTCAAACAGCATGAGT
3F	AGCGGCTTTTCCTGATCGTC
3R	ATTTCCCCGAAGTAAGCGCTT
4F	CTGTAAGAGGGACCCCATGCTCAC
4R	GAATTGCGGCTCGATCTTCC
5F	AGATCACGGTGTGCAATCAC
5R	GACCTGCTGGTGAAAAACGG
6F	ATGAAAGCTAAAACAATCC
6R	TCACGTCACCACCGCAAGCT
7F	CAAGCCTCAAAAAGCGAGTT
7R	GAAACCATCGGAGATGCCG
8F	ATGAAGGCGCTTATCATCGA
8R	TTAGAACCCTGCGAGTGCCC

Primers used for real-time RT PCR

16S_rtF	GGAATAGCCTCGGGAAACTGG
16S_rtR	GGCATGGCTAGATCAGGGTTG
lgnR_rtF	CCAACAAGGCAGGGACACAG

lgnR_rtR	AACCCCGTCCATCGATATGC
lgnA_rtF	AGCGGCTTTTCCTGATCGTC
lgnA_rtR	AATCTCGAACGACCGGAAGG
lgnH_rtF	TGGTGCCGATGTCGTGTTC
lgnH_rtR	CGGCATCTCCGATGGTTTC

Primers used for RACE

RC_lgnR_midR	TGATCCCATTCCAGAAATC
RC_lgnR_midRII	GTCTACGCCATTCGGATTCA
RC_lgnR_midRIII	GATTCAGGCAGATCGAACAT
RC_lgnA_midR	TATAGGAACTGACGTTGA
RC_lgnA_midRII	GCACAGAACTCGGCAGAGAG
RC_lgnA_midRIII	GGCGAGACCGAAGTAAATCA

Primers and oligonucleotides used for preparation of DNA fragments used in EMSA

LgnAR_F_B	Biotin-AGCTGCTCTCCCTCTTCAAT
LgnAR_R_B	Biotin-GCGTCACTGACCTTCTTGATC
LgnA10F	GGGATTGGTTCCCATAATATGAACT
LgnA10R	AGTTCATATTATGGGAACCAATCCC
LgnR10F	TAATACTGTGTGCCATAATATGG
LgnR10R	CCATATTATGGCACACAGTATTA
LgnAR35F	CTATATGAAAGAAATTTGTGTTCACTGATTGACAT
LgnAR35R	ATGTCAATCAGTGAACACAAATTTCTTTCATATAG
LgnAR_midF	GGCAATATCGATTATGGGAGG
LgnAR_midR	CCTCCCATAATCGATATTGCC

Primers used for preparation of DNA fragments in DNase I footprinting

LgnR_CD_IRD800label	IRD800-GCCAACAAATTCCCCAATCG
LgnR_CD_nonlabel	GCCAACAAATTCCCCAATCG
LgnA_CD_IRD800label	IRD800-GAACTCTGGCTTTGCCGAAG
LgnA_CD_nonlabel	GAACTCTGGCTTTGCCGAAG

第三節 Ign 遺伝子群の転写マッピング

6-3-1. RT-PCR による転写ユニットの解析

RT-PCR により *lgn* 遺伝子群の転写ユニットについて解析を行ったところ、*lgnABCDEFGHI* については RT-PCR による DNA 断片の増幅が各遺伝子間をまたいで切れ目なく観察された (Fig. 6-3-1)。このことから、*lgnABCDEFGHI* はオペロンとして転写されていることが明らか となった。また *lgnA-lgnR* の間を含む領域に関しては RT-PCR による DNA 断片の増幅が観 察されなかったことから、これらの遺伝子は、遺伝子の方向からも推察されるように、別 の転写単位として転写されることが明らかになった。またこの結果より *lgnA-lgnR* 間のノン コーディングリージョンにプロモーターが存在する可能性が示唆された。

6-3-2.5' RACE 法による転写開始点の同定

*lgnR、lgnA*の上流をそれぞれ標的とした 5'RACE 法を行い、増幅産物を pGEM-T Easy cloning vector にクローニングして解析したところ、Table 6-4-1 に示す配列を得た。得られた 配列より推定されたそれぞれの転写開始点の上流には *E. coli* における σ^{70} 認識配列とよく似 た配列が存在していた (Figure 6-3-2, arrows)。以上の結果から *lgnA-lgnR* 間には逆向きに 2 つのプロモーターが存在することが明らかとなり、*lgnA*の上流に位置するプロモーターを P_{lgnA} 、*lgnR*の上流に位置するプロモーターを P_{lgnR} とした。

Figure 6-3-1. RT analysis of *lgnR* and *lgn* gene cluster.

A. Schematic representation of *lgn* gene cluster and predicted lengths of RT-PCR products with primer pairs used in this study.

B. 1% agarose gel showing RT-PCR products with template RNA isolated from *Pracoccus* sp. 43P cultivated with 0.2% L-gluconate minimal medium. Lanes 1 to 8 correspond to the indicated numbers on schematic representation (A), and lane M denotes molecular mass markers.

Tuble of 5 T. Commentation and Sequences from 5 Teres analysis			
Clone No.	lgnA 5' flanking region	<i>lgnR</i> 5' flanking region	
1	5'-ACTGCGACGGGAGACGCA	5'-ATATTGAAGAGGGAGAGCA	
2	5`-ACTGCGACGGGAGACGCA	5'-ATATTGAAGAGGGAGAGCA	
3	5'-ACTGCGACGGGGAGACGCA	5'-ATTGAAGAGGGAGAGCAGC	
4	5'-ACTGCGACGGGGAGACGCA	5'-ATTGAAGAGGGAGAGCAGC	
5	5'-CTGCGACGGGAGACGCA	5'-TATTGAAGAGGGAGAGCAG	

Table 6-3-1. Obtained nucleic acid sequences from 5' RACE analysis

5'	CAAAGCTGCTCTCCCTCTTCAATATCCCATATTATGGCACACAGTATTACTATATGAAAG	60
3'	GTT TCGACGAGAGGGAGAAGTTATAGGGTA <u>TAATAC</u> CGTGTGTCATAATGATATACTTTC	60
	LgnR _35 +1 -10 _10 _35	
5'	AAATTTGTGTTCACTGATTGACATGGGATTGGTTCCCATAATATGAACTAAGCACTGCGA	120
3'	TTTAAACACAAGTGACTAACTGTACCCTAACCAAGGGTATTATACTTGATTCGTGACGCT	120
5'	CGGGAGACGCAGGGGCAATATCGATTATGGGAGGCGACCGTGTATCCGTTGCCAGCAATG	180
3'	GCCCTCTGCGTCCCCGTTATAGCTAATACCCTCCGCTGGCACATAGGCAACGGTCGTTAC	180
5'	ACCCCGGCACTGCCGGGACCGAAGGAGACGTGTCCTTCGGCAAAGCCAGAGTTCCTGAGC	240
3'	TGGGGCCGTGACGGCCCTGGCTTCCTCTGCACAGGAAGCCGTTTCGGTCTCAAGGACTCG	240
	LgnA	
5'	GCGCAGAGCGAGCGGCCGATCAAGAAGGTCAGTG 274	
3'	CGCGTCTCGCCCGGCTAGTTCTTCCAGTCAC 274	
-		

Figure 6-3-2. Nucleotide sequence of intergenic region between *lgnR* and *lgnA*.

Boxed sequences indicate initiation codons of lgnR and lgnA. Transcriptional start sites (+1) determined by 5' RACE analysis, and putative -10 and -35 sequences are indicated by arrows.

第四節 IgnRの破壊が及ぼす影響

6-4-1. lgnR の破壊が L-gluconate dehydrogenase の誘導に及ぼす影響

接合伝達を用いたスーサイドプラスミドの導入により、 $\Delta lgnR$ 株を作製した (Fig. 6-4-1)。 $\Delta lgnR$ 株を様々な炭素源を用いて培養し、その無細胞抽出液中の L-GnDH 活性を測定したと ころ、野生株では L-gluconate、D-idonate を単一炭素源とした際に無細胞抽出液中の L-gluconate dehydrogenase 活性が誘導されており、succinate を単一炭素源とした際のそれは 検出限界に近いレベルであった。この結果から、野生株では、L-gluconate dehydrogenase 活 性は L-glucose、L-gluconate を単一炭素源とした場合だけではなく、D-idonate を単一炭素源 とした場合も誘導されることが明らかとなった。一方で $\Delta lgnR$ 株は、succinate を炭素源とし た場合にも高い L-GnDH 活性が検出された (Fig. 6-4-2) ことから、L-gluconate dehydrogenase を炭素源に関わらず生産していることが示唆された。

6-4-2. lgnR の破壊が lgn 遺伝子の転写におよぼす影響

Real time RT PCR により野生株、 $\Delta lgnR$ 株それぞれの lgnA、lgnH、lgnRの発現量を各培養 条件下で比較したところ、野生株では L-gluconate、D-idonate を単一炭素源とした際にこれ らの遺伝子の mRNA 量が succinate を単一炭素源とした際のそれと比較して増加していた (Fig. 6-4-3, 6-4-4, 6-4-5, white bar)。このことから、これらの遺伝子の転写は L-gluconate、 D-idonate を単一炭素源とした場合に活性化することが示された。一方で $\Delta lgnR$ 株は succinate を含め炭素源に関わらず lgnA、lgnH、lgnRの mRNA 量が野生株と比較して高いレベルであ った (Fig. 6-4-3, 6-4-4, 6-4-5, black bar)。以上の結果から lgnRの発現産物は lgnA、lgnH に加 え、lgnR 自身の転写を抑制するリプレッサータンパク質として機能していることが予想さ れた。

Figure 6-4-1. PCR analysis of *lgnR* disruption mutant.

PCR was performed with chromosomal DNA isolated from wild type (WT) and lgnR::kan mutant ($\Delta lgnR$) of *Paracoccus* sp. 43P as templates using a set of primers, lgnR_SF and lgnR_SR. Lane M denotes molecular mass markers.

Figure 6-4-2. Effects of *lgnR* disruption on L-GnDH production

L-GnDH activities in cell-free extracts prepared from wild type (white bars) and $\Delta lgnR$ (black bars) strains cultivated with succinate or L-gluconate were measured. Cell-free extracts were prepared from late-exponential growth phase (optical density = 0.5-0.8). Average values \pm S.D. of three independent experiments are shown.

Figure 6-4-3. Effects of *lgnR* disruption on expression of *lgnA*.

Relative amount of mRNA of lgn genes in wild type and $\Delta lgnR$ strain is shown. For each sample, amount of mRNA of each lgn gene was referenced to those of 16S rRNA, then relative mRNA levels were compared. Values shown are fold increase of relative mRNA level based on those of wild type strain cultivated with 20 mM succinate. White bars, wild type strain; black bars, $\Delta lgnR$ strain.

Figure 6-4-4. Effects of *lgnR* disruption on expression of *lgnH*.

Relative amount of mRNA of *lgn* genes in wild type and $\Delta lgnR$ strain is shown. For each sample, amount of mRNA of each *lgn* gene was referenced to those of 16S rRNA, then relative mRNA levels were compared. Values shown are fold increase of relative mRNA level based on those of wild type strain cultivated with 20 mM succinate. White bars, wild type strain; black bars, $\Delta lgnR$ strain.

Figure 6-4-5. Effects of *lgnR* disruption on expression of *lgnR*.

Relative amount of mRNA of lgn genes in wild type and $\Delta lgnR$ strain is shown. For each sample, amount of mRNA of each lgn gene was referenced to those of 16S rRNA, then relative mRNA levels were compared. Values shown are fold increase of relative mRNA level based on those of wild type strain cultivated with 20 mM succinate. White bars, wild type strain; black bars, $\Delta lgnR$ strain.

第五節 Hise-LgnR のプロモーター領域への結合

6-5-1. His6-LgnR の調製

LgnR の N 末端に His₆タグを付加し、HisTrap カラムによって SDS-PAGE 上で単一バンド に精製した (Fig. 6-5-1A)。精製酵素を Superose 12 ゲルろ過クロマトグラフィーに供し、LgnR のネイティブな分子量を測定した結果、48.6 kDa であった (Fig. 6-5-1B)。 SDS-PAGE 上で推 定される His₆-LgnR モノマー分子量は 26 kDa であるので、LgnR は溶液中で二量体を形成し ていることが明らかとなった。

6-5-2. His₆-LgnR を用いた Electrophoretic mobility shift assay (EMSA)

5'末端をビオチン標識したプライマーを用いて、*lgnA-lgnR*間の様々な部位を含む DNA 断 片を調製した (Fig. 6-5-2A)。調製したビオチン標識 DNA 断片と His6-LgnR を用いて EMSA 解析を行った結果、 P_{lgnA} 、 P_{lgnR} の両方を含む断片では DNA-His6-LgnR 複合体形成に伴うバ ンドのシフトが 2 本観察された(Fig. 6-5-2B, lane 1, 2)。一方で P_{lgnA} 、 P_{lgnR} のうち片方のみを 含む断片を用いた場合、シフトしたバンドがそれぞれ 1 本ずつ観察された (Fig. 6-5-2B, lane 4,5)。またいずれのプロモーター領域も含まない断片を用いた場合、バンドのシフトは観察 されなかった (Fig. 6-5-2B, lane 3)。以上の結果から LgnR は P_{lgnA} 、 P_{lgnR} にそれぞれ結合する ことが明らかとなった。

ついで His₆-LgnR と DNA 断片の結合反応を各種中間代謝物の存在下で行い EMSA を行っ たところ、100 μ M の D-idonate の存在下で His₆-LgnR と DNA 断片の複合体の量が減少し、 遊離 DNA 断片が増加していることが明らかとなった (Fig. 6-5-4)。ついで片方のみのプロモ ーター領域を含む DNA 断片を用いて、各濃度の D-idonate を含む条件で EMSA を行ったと ころ、それぞれの DNA 断片と His₆-LgnR との複合体形成は D-idonate の濃度の上昇に従っ て阻害された (Fig. 6-5-5)。以上の結果から LgnR は細胞内に D-idonate が存在しない条件で は P_{lgnR} 、 P_{lgnA} に結合することで *lgnABCDEFGHI*、 *lgnR* 自身の転写を抑制し、D-idonate が細 胞内に存在する条件においては両プロモーター領域への結合が解除され、*lgnABCDEFGHI* および *lgnR* 自身の転写が活性化されることが考えられた。

6-5-3. DNase I footprinting 法による LgnR 結合配列の同定

DNase I footprinting の結果、400 nM His₆-LgnR の存在下で P_{lgnA} 、 P_{lgnR} を含む広範な領域の 保護が観察された (Fig. 6-5-6)。特に P_{lgnA} 、 P_{lgnR} 双方の保護領域内には共通するパリンドロ ーム配列 (CATAATATG)が観察され、同配列が LgnR の結合に重要であることが示唆された。 一方で結合反応の際に高濃度 (1 mM, 10 mM)の D-idonate を添加しても、保護領域に明確な 違いは見受けられなかったが、両プロモーターにおける-35 領域の保護にわずかな変化が見 られた (Fig. 6-5-6, gray bar)。

Figure 6-5-1. Preparation of His₆-LgnR.

A. SDS-PAGE of purified His₆-LgnR. Lane 1, molecular mass marker (kDa); lane 2, 2.5 μ g of His₆-LgnR.

B. Superose 12 10/300 gel filtration analysis of His₆-LgnR. Closed circles indicate standard proteins; aprotinin (6.5 kDa) (1), ribonuclease A (13.7 kDa) (2), carbonic anhydrase (29 kDa) (3), conalbumin (75 kDa) (4), aldolase (158 kDa) (5). Open circle indicates elution volume and predicted molecular mass of His₆-LgnR

A. Schematic representation of lgnA-lgnR intergenic region and positions of biotin labeled DNA fragments used in EMSA. The locations of labeled DNA fragments are shown as lines with numbers corresponding to (B). Gray bars indicate the positions of -10 and -35 boxes of P_{lgnA} and P_{lgnR} . B. EMSA with 1 nM biotin labeled DNA fragments in the presence (+) or absence (-) of 500 nM His₆-LgnR. The fragments used are indicated with numbers shown in (A).

Figure 6-5-3. Effect of catabolic intermediates in the L-gluconate pathway on binding of His₆-LgnR to the *lgnA-lgnR* intergenic region. EMSA was performed with 400 nM His₆-LgnR and 1 nM biotin labeled fragment 1 in the presence of 100 μ M each catabolic intermediate. F, free DNA; C1, complex 1; C2, complex 2; 5-KLG, 5-keto-L-gluconate; and KDGal, 2-keto-3-deoxy-D-galactonate.

Figure 6-5-4. EMSA with 400 nM His₆-LgnR and 1 nM biotin labeled fragment 4 and 5, containing P_{lgnA} and P_{lgnR} , respectively, in the presence of various concentration of D-idonate.

DNaseI footprinting analysis was conducted with 100 ng of 5' end-IRD-800 labeled DNA fragment and 400 nM His₆-LgnR in the presence or the absence of indicated concentration of D-idonate. The ladders were generated by the chain-terminating sequencing reactions. "C" denotes DNase I reaction without LgnR addition. Blue and red bars indicate protected regions by LgnR on *PlgnA* and *PlgnR*, respectively, of which the sequences are shown. The inverted repeat sequences found in both protected regions are underlined. Gray bars indicate the regions which LgnR protection was slightly reduced by D-idonate addition. Asterisk indicates the DNaseI hypersensitive site.

第六節 LgnR の分子系統解析

6-6-1. LgnR の分子系統的位置づけ

LgnRのアミノ酸配列をもとにKEGGデータベースを対象としたBLASTPサーチを行い、 score が 170 以上であったアミノ酸配列を LgnR ホモログとした。得られたアミノ酸配列を 既知の IclR ファミリータンパク質である YiaJ、KdgR とともにアラインし、Neighbor-Joining 法に基づく分子系統樹を作製した (Fig. 6-6-1)。 LgnR のホモログは、Alpha-, Beta-, Gamma-Proteobacteria に加え、Actinobacteria、さらには Thermus 属細菌に分布していた。こ れらのホモログは既知の IclR ファミリータンパク質である YiaJ、KdgR とは根に近い部分で 分岐しており、IclR ファミリー内で新規なサブファミリーに属するものであることが推測さ れた。さらに LgnR ホモログにより形成されるクラスターは Group I、Group II、Thermus 属 由来のものの 3 つに分けられ、LgnR は Group I のタンパク質群とより系統的に近いことが 明らかとなった。

6-6-2. LgnR ホモログの遺伝子クラスター解析

Group I のサブクラスターに属する LgnR ホモログをコードする遺伝子の周辺にどのよう な遺伝子が存在するかを解析した結果、これらの遺伝子の周辺には LgnF、LgnG のホモロ グをコードすると推定される遺伝子が存在することが明らかとなった (Fig. 6-6-2)。一方で 他の Lgn タンパク質をコードする遺伝子は 43P 株と同属である *P. denitrificans* PD1222 株以 外では見受けられず、代わりに D-galactonate dehydratase をコードすると推定される遺伝子 が高頻度で存在した。

Figure 6-6-1. Phylogenetic tree based on the amino acid sequences of LgnR and LgnR homologs. Proteins are shown as locus tags in KEGG genome database. Proteins originated from the same genus are compressed and indicated as italics with number of species in bracket.

Paracoccus sp. 43P IgnR IgnA IgnB IgnC IgnD IgnE IgnF IgnG IgnH IgnI	Achromobacter xylosoxidans
Paracoccus denitrificans PD1222 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932	Collimonas fungivorans 3987 3988 3989 3990 3991
Azospirillum sp. B510 c0438 c0439 c0440	Pseudomonas fluorescens Pf0-1
Burkholderia pseudomallei BPC006	Pseudomonas fluva
Azotobacter vinelandii 5135 5134 5133 5132	Arthrobacter arilaitensis
Gluconacetobacter diazotrophicus PAI 5 0393 0392 0391 0390 0389 0388	Saccharopolyspora erythraea
Escherichia fergusonii 3649 3650 3651 3652 3653 3654	Rhodococcus opacus 1160 1161 1162 1163 1164
Escherichia coli BL21 (DE3) 3673 3672 3671 3670 3669 3668	Mycobacterium smegmatis MC2

Figure 6-6-2. Organization of gene loci encoding LgnR and LgnR homologs in Group I proteins indicated in Figure 6-6-1.

Genes are colored based on their orthology as follows; yellow, LgnR; orange, LgnF; blue, LgnG; green, DgoD; and gray, other proteins.

第七節 まとめと考察

本章では L-gluconate 代謝に特化した遺伝子群であることが明らかとなった *lgn* 遺伝子群 の発現制御機構の解明を目的として、同遺伝子群の転写ユニット解析、プロモーター領域 の同定、さらに IclR ファミリー転写制御因子である LgnR の解析を行った。*Paracoccus* 属細 菌では sigma 70 依存的な転写の存在を示唆する報告はあったものの (Frey *et al.* 1988)、これ まで同定されてきた同属のプロモーターは *E. coli* の sigma 70 依存的プロモーターにおける モチーフ配列、5'-TTGACA-3' (-35)、5'-TATAAT-3' (-10)と明確な共通性を示すものは存在し なかった (Baker *et al.* 1998)。しかしながら、本研究によって見出された 2 つのプロモータ ー、P_{*lgnA*、P_{*lgnR}はそれぞれ 5'-TTGACA-3' (-35)、5'-CATAAT-3' (-10)、5'-TTCATA-3' (-35)、 5'-CATAAT-3' (-10)という sigma 70 モチーフ配列と明確な共通性を示す配列を有しているの で、<i>Paracoccus* 属細菌で sigma 70 依存的転写が機能していることを示す初めての結果であ る。}</sub>

DNase I footprinting 法による解析の結果、LgnR は PlgnA、PlgnRのプロモーター領域双方の 広い範囲、特に-10 領域周辺に強く結合していることが推察された。両プロモーターの-10 領域には 5'-CATAATATG-3'というパリンドローム配列が存在し、同パリンドローム配列が LgnR の DNA との結合に重要であることが考えられる。実際に EMSA 解析においては両プ ロモーター領域全長を含む断片ではシフトしたバンドが 2 本観察されるのに対して、それ ぞれのプロモーター領域における-10 領域の片方を欠損させると、バンドのシフトがそれぞ れー本しか観察されなくなる。従って LgnR は両プロモーター領域の-10 領域にそれぞれ結 合し、RNA ポリメラーゼの結合を阻害することで lgn オペロン、lgnR 自身の転写両方を抑 制していることが推察される。

IclR ファミリー転写制御因子でダイバージェントタイプのプロモーターの発現制御を担 うものとしては、*Pseudomonas putida* DOT-T1E 株由来の TtgV が挙げられる(Rojas *et al.* 2003)。 TtgV は溶液中ではテトラマーとして存在し、テトラマーを構成する 2 つの *cis*-ダイマーが それぞれ別々のオペレーター部位に結合する (Lu *et al.* 2010)。TtgV の場合はテトラマー形 成がオペレーターDNA との結合に必要であるのに対して、LgnR は溶液中ではダイマーとし て存在するため、LgnR のオペレーターDNA への結合には、テトラマー形成は必須ではない ことが予想される。一方で、LacI (Oehler *et al.* 1994) や AraC (Schleif 2010)のように P_{lgnA}、 P_{lgnR}にそれぞれ結合した LgnR ダイマー同士がさらに結合することで、結果として DNA ル ープ構造を形成する可能性が考えられる。実際に DNase I footprint では、LgnR 存在下で P_{lgnA} と P_{lgnR} の間に DNase I 超感受性となる配列の存在が観察されたので、2 つのオペレーター部 位に LgnR が結合することでその間の DNA の二次構造が変化していることが予想される。

DNase I footprinting 法による解析では D-idonate の添加は LgnR のオペレーターDNA への 結合に大きな変化を及ぼさなかったが、EMSA による解析では D-idonate の添加により LgnR-DNA 複合体が減少し、遊離 DNA の量が増加することが観察された。加えて D-idonate を炭素源とした際に *lgnA、lgnH、lgnR*の発現が誘導される点から、D-idonate は *in vivo* で LgnR による *lgn* オペロンの転写抑制を解除するエフェクター分子として機能していること が推察される。一方で IclR ファミリーの転写制御因子にはエフェクター分子が一つではな く 2 種以上存在する報告もあるため (Guazzaroni *et al.* 2005, Manso *et al.* 2009)、他のエフェ クター分子の存在についても、今後検討する必要があるだろう。

IclR ファミリー転写制御因子のなかでLgnR のように糖酸の異化代謝関連遺伝子の発現を 制御するものとしては、大腸菌で 2-keto-3-deoxy-D-gluconate (KDG)代謝関連遺伝子の発現を 制御する KdgR (Pouyssequr *et al.* 1974)、L-ascorbate 代謝関連遺伝子の発現を制御する YiaJ (Ibañez *et al.* 2000) が知られている。一方で LgnR は KdgR と 28%、YiaJ と 32%という低い アミノ酸配列相同性しか示さず、また分子系統樹でも LgnR はこれらのタンパク質とは明ら かに異なる系統的な位置づけを示した。従って LgnR は IclR ファミリーの転写制御因子群 で新規なサブファミリーに属するものであるといえる。

分子系統樹上で LgnR とクラスターを形成したタンパク質をコードする遺伝子の周辺に は、KDGal kinase、KDPGal aldolase をコードすると推定される遺伝子、すなわち *lgnF、lgnG* のホモログが存在した。一方で他の Lgn タンパク質をコードする遺伝子の存在は P. denitrificans PD1222 株以外には見受けられず、L-gluconate を代謝するための遺伝子座は一部 の Paracoccus 属細菌にのみ保存されていることが推察される。その他の lgnR ホモログの周 辺には *lgnF、lgnG*ホモログに加えて D-galactonate dehydratase (DgoD)をコードすると予想さ れる遺伝子が存在するため、これらの遺伝子座は D-galactonate 代謝に関わることが考えら れる。興味深いことに、E. coli、Mycobacteria で報告されている D-galactonate 代謝経路と 43P 株の L-gluconate 代謝経路は、共通の中間代謝物、KDGal を生じ、以降の反応経路は全く同 じ段階を経て同一の最終産物、pyruvate と Gap を生じることが知られている。これらの遺伝 学的、生化学的共通点から考察すると、IgnR、IgnF、IgnG からなる KDGal 代謝遺伝子座を 有した共通祖先がまず存在し、進化の過程で IgnE、IgnH、IgnI を他の生物から獲得して L-gluconate 異化代謝遺伝子座として発展させたのが 43P 株を含む一部の Paracoccus 属細菌 であると考えられる。他方進化の過程で dgoD を獲得し、D-galactonate 異化代謝遺伝子座と して発展させたのが他の IgnR ホモログを有する Proteobacteria、Mycobacteria であると推察 される (Fig. 6-7-1)。

Fig. 6-7-1. Schematic representation of evolution of catabolic gene clusters regulated by *lgnR* and its homologs. Genes are colored according to Figure 6-6-2.

第七章 総括

D-glucose は自然界で最も多く存在する単糖であり、多くの生物の炭素源、エネルギー源 として利用されている。一方でその鏡像異性体である L-glucose は、D-glucose と化学的、物 理学的に全く同じ性質を有しているにもかかわらず、自然界での存在は未だ確認されてい ない。これまでにカビ、酵母、ラット、真正細菌、古細菌などの様々な生物種が L-glucose を分解、資化出来るのか検討されてきたが、いずれの生物種も L-glucose を分解できず、生 物は L-glucose を利用することが出来ないという認識が一般的なものとなりつつある。しか しながら、現在考えられている生物史以前の糖の生成・供給経路は、いずれも光学選択的 なものではなく、原始の地球においては D-glucose と L-glucose が同程度の量存在した可能 性を否定できない。それではなぜ、L-glucose ではなく D-glucose が生物によって選択され、 生物は D-glucose のみに特化した代謝経路を発展させてきたのか?この根源的な問いに対す る新たな知見を得るため、本研究は L-glucose を分解・資化することができる生物を環境中 から探索することから始まった。

第二章では L-glucose を単一炭素源とした最少培地を用いた集積培養の結果、L-glucose を 単一炭素源として生育できる細菌を単離することに成功し、16S rRNA 遺伝子配列解析によ る L-glucose 資化菌の同定を行った。その結果 L-glucose 資化菌は属レベルで Paracoccus、 Agrobacterium、Shinella、Mesorhizobium、Kaistia、Labrys 属と同定され、すべての L-glucose 資化菌はα-Proteobacteria 網に属していた。この結果は一般的な認識として生物が分解でき ないといわれてきた L-glucose を分解、資化することが出来る微生物が存在することを示し たという点で重要である。

第三章では単離した L-glucose 資化菌のうち最も強い L-glucose 資化能を有していた Paracoccus sp. 43P 株の L-glucose 代謝経路の初段階反応として、NAD⁺依存的な L-glucose dehydrogenase 活性を見出し、同反応を触媒する酵素の精製、酵素遺伝子 *lgdA*のクローン化 に成功した。ついでリコンビナント酵素を用いた基質特異性の解析、結晶構造解析から、 LgdA は既知の酵素とは異なるユニークな基質特異性を有しており、L-glucose 以外にも様々 な単糖、inositol 異性体を基質とした活性を有していた。ついで LgdA の反応産物の精製、 HPLC、NMR による解析を行い、同酵素は L-glucose の1位の脱水素反応を触媒し、生成物 として L-gluconate を生じることを示した。

第四章では LgdA の反応産物である L-gluconate を基質として NAD⁺を補酵素とした L-gluconate dehydrogenase 活性を *Paracoccus* sp. 43P 株の無細胞抽出液中に見出し、同反応を 触媒する酵素の精製、酵素遺伝子 *lgnH* のクローン化、周辺遺伝子の解析を行った。さらに *lgnH* を含む遺伝子クラスター、*lgn* 遺伝子群における酵素遺伝子を大腸菌を宿主としてそれ ぞれ発現、精製し、酵素学的解析ならびに反応産物の同定を行った。その結果 LgdA により L-glucose より生成した L-gluconate は、2 つの酸化還元酵素、LgnH、LgnI により 5-keto-L-gluconate を経て D-idonate に変換され、ついで LgnE の触媒する脱水反応によって KDGalとなった後、LgnFによって6位にATP依存的なリン酸化を受けKDPGalに変換され、 最後に LgnG の触媒するアルドール開裂反応によって pyruvate と Gap となり前者は TCA サ イクル、後者は解糖系に合流することが予想された。

第五章では接合伝達を用いた Paracoccus sp. 43P 株の形質転換方法について検討し、さら にカナマイシン耐性遺伝子の挿入による遺伝子破壊法を確立した。ついで lgdA、lgnE、lgnH、 lgnI それぞれの破壊株を作製し、L-glucose、L-gluconate、D-idonate を単一炭素源とした生育 を観察することにより前章までの in vitro の実験結果から予想された 43P 株の L-glucose 代謝 経路が in vivo においても機能していることを示した。また L-glucose 代謝関連遺伝子の破壊 は L-galactonate を単一炭素源とした生育に影響を与えず、lgn 遺伝子群が L-glucose、 L-gluconate 代謝に特化した遺伝子群であることを示した。

第六章では Paracoccus sp. 43P 株の L-gluconate 代謝関連遺伝子群の発現制御機構に着目し、 RT-PCR を用いた同遺伝子群の転写ユニット解析、5'-RACE 法による転写開始点の同定を行った。ついで同遺伝子群の上流に位置する IclR ファミリーの転写制御因子をコードする lgnR の破壊株を作製し、その影響を観察することで lgnR が lgn オペロン、さらに lgnR 自身の転写を抑制するリプレッサータンパク質をコードしていることを示した。ついで LgnR を大腸菌を宿主として発現、精製し、EMSA によって His6-LgnR が PlgnA、 PlgnR に特異的に結合し、その親和性が D-idonate の存在により低下することを見出した。さらに DNaseI footprinting 法により LgnR が実際に結合している塩基配列の同定を試みた結果、PlgnA、 PlgnR それぞれの -10 モチーフに重なる形で存在する共通したパリンドローム配列 (5'-CATAATATG-3') が LgnR の標的 DNA への結合に重要であることを示した。

本研究は L-glucose を分解、資化できる微生物を環境中から単離し、その中で最も強い L-glucose 資化能を有していた *Paracoccus* sp. 43P 株の L-glucose 代謝経路を生化学、遺伝学 の両面から明らかにしたものである。生物が分解できないと考えられていた L-glucose を分 解・資化する微生物の存在を示した点、さらに新規代謝経路の存在を明らかにしたという 点において、本研究は学術的に大変意義深いものである。また本研究により見出された L-glucose 代謝関連酵素は既知の酵素とは全く異なる新規な基質特異性を有するものがほと んどであり、これらの酵素を利用することでこれまで困難であった希少糖質の不斉合成が 可能となるだろう。最後に、本研究により得られた知見を踏まえて、生物がなぜ L-glucose ではなく D-glucose に特化した代謝系を発展させてきたのかという点について考察する。

本研究でL-glucose dehydrogenase として見出された LgdA は、酵素学的諸性質、遺伝学的 観点から L-glucose 特異的な酵素であるとはいいがたく、そのため LgdA の存在は原始の地 球に D-glucose と同程度の量の L-glucose が存在したという研究開始当初の仮説の妥当性を 示すものではない。しかしながら、L-glucose と同様に自然界での存在が確認されていない アルドン酸、L-gluconate の異化代謝を担う *lgn* 遺伝子群の存在は、原始の地球における糖質 の非生物的な生成が光学選択的なものではなかったという仮説を支持するものである。一 方で L-gluconate 代謝経路は他の L 体糖質異化代謝と同様に、2 つの酸化還元酵素により D/L 変換を行う過程を含んでおり、その結果 LgnG によるアルドール開裂反応産物として D 体 の Gap を生じる。従って L-gluconate のような炭素数六の L 体糖質異化代謝が発展する以前 に、D 体のトリオースリン酸、Gap 特異的な代謝経路がすでに存在していたことが考えられ る。これは L 体の糖質異化代謝に限ったことではなく、解糖系においても同様のことが言 える。というのも、EMP 経路はもともと D-glucose を分解するための経路ではなく、D-glucose を作るための経路であったとする糖新生起源説が、近年有力視されつつある (Say *et al.* 2010)。すなわち、原始の地球において D-glucose が非生物的に生成・蓄積したため解糖系が 発展したのではなく、糖新生がまず発達し、そのため D-glucose の自然界での存在比が必然 的に高まり、ついで糖新生が可逆性を獲得することで解糖系が発達したことが予想されて いる。従って糖新生の材料となる Gap を代謝する経路は解糖系に先立って存在していたこ ととなり、その時点で生物は D 体の Gap に特化した代謝経路を有していたことが推察され る。

生物におけるホモキラリティー形成の謎は、生命の起源に関わる最も重要な問題のひと つである。一般的にこの問題に関する研究は、原始的な環境下で生体分子の不斉合成の可 能性を探るという化学的手法を用いて行われてきた。従ってこれまでのホモキラリティー に関する研究は、生物が出現する以前に D 体の糖、L 体のアミノ酸が生成し、蓄積したと いう前提に基づいたものである。一方で本研究は生物の出現時点では今日見られるホモキ ラリティーが完全なものではなかったという前提に基づいて、生物学的手法によりホモキ ラリティー形成の謎に挑んだものであり、方法論として新しいものであるといえる。本研 究を通じて、glucose 代謝に見られるホモキラリティーとは、最小のキラル糖である glyceraldehyde のホモキラリティーに端を発するものであることが示唆された。もしも D 体 の Gap ではなく、L 体の Gap を特異的に代謝する生物が存在するとすれば、それはこれま で知られている生物とは全く異なるものだろう。今後は本研究で用いられた手法に基づき、 L 体の glyceraldehyde やそのリン酸エステルを分解できる生物を探索することで、生物にお けるホモキラリティー形成の謎に対する新たな知見を得ることが期待される。

- Entner, N. and Doudoroff, M. (1952) Glucose and gluconic acid oxidation of *Pseudomonas* saccharophila. J. Biol. Chem. 196, 853-862
- Lamble, H. J., Heyer, N. I., Bull, S. D., Hough, D. W., and Danson, M. J. (2003) Metabolic pathway promiscuity in the archaeon *Sulfolobus solfataricus* revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase. *J. Biol. Chem.* 278, 34066–34072
- Conway, T. (1992) The Entner-Doudoroff pathway: history, physiology and molecular biology. *FEMS. Microbiol. Rev.* 9, 1-27
- Ronimus, R. S., and Morgan, H. W. (2003) Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism. *Archaea* 1, 199–221
- 5. Bunn, H. F., and Higgins, P. J. (1981) Reaction of monosaccharides with proteins: possible evolutionary significance. *Science* **213**, 222–224
- 6. Ulrich, P., and Cerami, a (2001) Protein glycation, diabetes, and aging. *Recent progress in hormone research* **56**, 1–21
- Gul, A., Rahman, M. A., Salim, A., and Simjee, S. U. (2009) Advanced glycation end products in senile diabetic and nondiabetic patients with cataract. *Journal of diabetes and its complications* 23, 343–348
- Foray, F., Hollander, D., Mcpherson, J. D., Shilton, B. H., and Walton, D. J. (1988) Fructose in Glycation and Cross-Linking. *Biochemistry*, 27, 1901–1907
- Chiou, S.H., ChylackL.T., Bunn, H.F. and Kinoshita, J.H. (1980) Role of non enzymatic glycosylation in experimental cataract formation. *Biochem. Biophys. Res. Commun.*, 95, 894-901
- Suarezs, G., Rajaram, R., and Oronsky, L. (1989) Nonenzymatic Glycation of Bovine Serum Albumin by Fructose (Fructation). J. Biol. Chem. 264, 3674–3679

- Boutlerow, A. (1861) Bildung einer zuckerartigen Substanz durch Synthese. Justus Liebigs Ann. Chem. 120, 295
- 12. Breslow, R. (1959) On the Mechanism of the Formose Reaction. Tetrahedron Lett. 1, 22-26
- 13. Cronin, J. R. (1997) Enantiomeric Excesses in Meteoritic Amino Acids. Science 275, 951-955
- Engel, M. H., and Macko, S. (1997) Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. *Nature* 389, 265–268
- Cooper, G., Reed, C., Nguyen, D., Carter, M., and Wang, Y. (2011) Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites. *Proc. Natl. Acad. of Sci. U. S. A.* **108**, 14015–14020
- Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K., and Garrel, L. (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. *Nature* 414, 879–883
- Fischer, E. (1890) Ueber die optischen Isomeren des Traubenzuckers, der Gluconsäure und der Zuckersäure. Berichte der deutschen chemischen Gesellschaft 23, 2611
- 18. Rudney, H. (1940) Utilization of L-glucose by mammalian tissues and bacteria. 92, 112-113
- Sasajima, K.I. and Sinskey, A.J. (1979) Oxidation of L-glucose by Pseudomonad. *Biochim. Biophys. Acta.* 571, 120-126
- 20. Livesey, G. and Brown, J.C. (1995) Whole body metabolism is not restricted to D-sugars because energy metabolism of L-sugar fits computational model in rats. *J. Nutr.* **125**, 3020-3029
- Sun, H. J., Saccomanno, V., Hedlung, B. and McKay, C. P. (2009) Stereo-specific glucose consumption may be used to distinguish between chemical and biological reactivity on Mars: a preliminary test on Earth. *Astrobiology* 9, 443–446
- 22. Blackmond, D. G. (2010) The origin of biological homochirality. *Cold Spring Harbor* perspectives in biology **2**, a002147

- Miller, G.L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. *Anal. Chem.* 31, 426-428
- Larkinn, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., and Higgins, D.G. (2007) CLUSTAL W and CLUSTAL_X version 2.0. *Bioinfomatics* 23, 2947-2948
- Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol. Boil. Evol.* 24, 1596–1599
- Martínez-Romero, E. (2009) Coevolution in Rhizobium-Legume Symbiosis? DNA Cell Biol. 28, 361-70
- Baig, M.M., Kelly, S. and Loewus, F. (1970) L-Ascorbic acid biosynthesis in higher plants from L-glulono-1,4-lactone and L-galactono-1,4-lactone. *Plant Physiol.* 46, 277–280
- Lobanok, A.G., Sapunova, L.I., Dikhtievski, Y.O., and Kazakevich, I.O. (2001) Screening of glucose isomerase-producing microorganisms. *World. J. Microbiol. Biotechnol.* 14, 259-262
- Hemker, M., Stratmann, A., Goeke, A., Schröder, W., Lenz, J., Piepersberg, W., and Pape, H. (2001) Identification, cloning, expression, and characterization of the extracellular acarbose-modifying glycosyltransferase, AcbD, from *Actinoplanes* sp. strain SE50. *J. Bacteriol.* 183, 4484-4492
- Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 227, 680-685
- Watanabe, S., Kodaki, T., Kodak, T., and Makino, K. (2006) Cloning, expression, and characterization of bacterial L-arabinose 1-dehydrogenase involved in an alternative pathway of L-arabinose metabolism. *J. Biol. Chem.*. 281, 2612–23
- 32. Ochman, H., Gerber, A.S., and Hartl, D.L. (1988) Genetic application of an inverse polymerase chain reaction. *Genetics* **120**, 621-623
- 33. Anderson, K., Li, S.C., and Li, Y.T. (2000) Diphenylamine-aniline-phosphoric acid reagent, a

versatile spray reagent for revealing glycoconjugates on thin-layer chromatography plates. *Anal. Biochem.* **287**, 337-339

- 34. Moore, S. and Link, K.P. (1940) Carbohydrate characterization: I. The oxidation of aldoses by hypoiodide methanol. *J. Biol. Chem.* **133**, 293-311
- 35. Yoshida, K., Yamaguchi, M., Morinaga, T., Kinehara, M., Ikeuchi, M., Ashida, H., and Fujita, Y. (2008) *myo*-inositol catabolism in *Bacillus subtilis. J. Biol. Chem.* **283**, 10415-10424
- 36. Ramaley, R., Fujita, Y., and Freese, E. (1979) Purification and properties of *Bacillus subtilis* inositol dehydrogenase. *J. Biol. Chem.* **254**, 7684-7690
- 37. Morinaga, T., Ashida, H., and Yoshida, K. (2010) Identification of two *scyllo*-inositol dehydrogenase from *Bacillus subtilis*. *Microbiology* **156**, 1538-1546
- McLaurin, J., Golomb, R., Jurewicz, a, Antel, J. P., and Fraser, P. E. (2000) Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid β peptide and inhibit A β-induced toxicity. J. Biol. Chem.. 275, 18495–18502
- Yamaoka, M., Osawa, S., Morinaga, T., Takenaka, S., and Yoshida, K. (2011) A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol to scyllo-inositol, a potential therapeutic agent for Alzheimer's disease. *Microbial cell factories* 10, 69
- 40. Groeve, M.M., Depreitere, V., Desmet, T., Soetaert, W. (2009) Enzymatic production of α -D-galactose 1-phosphate by lactose phosphorolysis. *Biotechnol. Lett.* **31**, 1873-1877
- Babbit, P.C., Mrachko, G.T., Hasson, M.S., Huisman, G.W., Kolter, R., Ringe, D., Petsko, G.A., Kenyou, G.L., and Gerlt, J.A. (1995) A functionally diverse enzyme superfamily that abstracts the alpha protons of carboxylic acid. *Science* 267, 1159-1161
- Kim, S., and Lee, S. B. (2005) Identification and characterization of *Sulfolobus solfataricus* D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner-Doudoroff pathway. *Biochem. J.* 387, 271–80
- 43. Kuorelahti, S., Jouhten, P., Maaheimo, H., Penttilä, M., and Richard, P. (2006) L-galactonate dehydratase is a part of the fungal path for D-galacturonic acid catabolism. *Mol. Microbiol.* **61**,

1060-1068

- 44. Blumenthal, H.J. and Jepson, T. (1964) Asymmetric dehydration of galactarate by bacterial galactarate dehydratase. *Biochem. Biophys. Res. Commun.* **17**, 282-287
- Meloche, H.P. and Wood, W.A. (1964) The mechanism of 6-phosphogluconic dehydratase. J. Biol. Chem. 239, 3505-3510
- Dreyer, J. L. (1987) The role of iron in the activation of mannonic and altronic acid hydratases, two Fe-requiring hydro-lyases. *Eur. J. Biochem.* 166, 623–30
- 47. Deacon, J. and Cooper, R.A. (1977) D-galactonate utilization of enteric bacteria. The catabolic pathway in *Escherichia coli*. *FEBS. Lett.* **77**, 201-205
- Szmiło, T. (1981) Pathway for D-galactonate catabolism in nonoathogenic mycobacteria. J. Bacteriol. 148, 368-370
- Cooper, R.A. (1979) The pathway for L-galactonate catabolism in *Escherichia coli* K12. *FEBS*. *Lett.* 103, 216-220
- Reed, J.L., Patel, T.R., Chen, K.H., Joyce, A.R., Applebee, M.K., Herring, C.D., Bui, O.T., Knight, E.M., Fong, S.S., and Palsson, B.O. (2006) System approach to refining genome annotation. *Proc. Natl. Acad. Sci. U.S.A.* 103, 17480-17484
- Bausch, C., Peekhaus, N., Utz, U., Blais, T., Murray, E., Lowary, T., and Conway, T. (1998) Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals novel pathway for L-idonic acid catabolism in *Escherichia coli*. J. Bacteriol. 180, 3701-3710
- 52. Cooper, R.A. (1980) The pathway for L-gulonate catabolism in *Escherichia coli* K-12 and *Salmonella typhimurium* LT-2. *FEBS. Lett.* **115**, 63-67
- 53. Kalyananda, M.J., Engel, R., and Tropp, B.E. (1987) Metabolism of L-glyceraldehyde 3-phosphate in *Escherichia coli*. *J. Bacteriol*. **169**, 2488-2493
- 54. Radionova, I.A., Leyn, S.A., Burkart M.D., Boucher, N., Noll, K.M., Osterman, A.L. and Rodionov, D.A. (2013) Novel inositol catabolic pathway in *Thermotoga maritima. Environ*.

Microbiol. doi: 10.1111/1462-2920.12096. [Epub ahead of print]

- Linster, C.L. and Van Schafitingen, E. (2004) A spectrophotometric assay of D-glucuronate based on *Escherichia coli* uronate isomerase and mannonate dehydrogenase. *Protein Expr. Purif.* 37, 352-360
- Simon, R., Priefer, U., and Puhler, A. (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. *Nat. Biotechnol.* 1, 784-791
- 57. Szpirer, C.Y., Faelen, M. and Couturier, M. (2001) Mobilization function of the pBHR1 plasmid, a derivative of the broad-host-range plasmid pBBR1. *J. Bacteriol.* **183**, 2101-2010
- 58. Khersonsky, O., Roodveldt, C., and Tawfik, D. S. (2006) Enzyme promiscuity: evolutionary and mechanistic aspects. *Curr. Opin. Chem. Biol.* **10**, 498–508
- Jensen, R.A. (1976) Enzyme recruitment in evolution of new function. *Annu. Rev. Microbiol.* 30, 409-425
- 60. Vries, G. E. De, Harms, N., Hoogendijk, J and Stouthamer, A. H. (1989) Isolation and characterization of Paracoccus denitrificans mutants with increased conjugation frequencies and pleiotropic loss of a (nGATCn) DNA-modifying property. *Arch. Microbiol.* **152**, 52–57
- 61. Frey, J., Mudd, E. a, and Krisch, H. M. (1988) A bacteriophage T4 expression cassette that functions efficiently in a wide range of gram-negative bacteria. *Gene* **62**, 237–47
- Baker, S. C., Ferguson, S. J., Ludwig, B., Page, M. D., Richter, O. M., and van Spanning, R. J. (1998) Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. *Microbiol. Mol. Biol. Rev.* 62, 1046–1078
- Rojas, A., Sequra, A., Guazzaroni, M.E., Telan, W., Hurtado, A., Gallegos, M.T. and Ramos, J.L. (2003) *In vivo and in vitro* evidence that TtgV is the specific regulator of the TtgGHI multidrug and solvent efflux pump of *Pseudomonas putida*. *J. Bacteriol.* 185, 4755-4763
- 64. Lu, D., Fillet, S., Meng, C., Alguel, Y., Kloppsteck, P., Bergeron, J., Krell, T., Gallegos, M.-T., Ramos, J., and Zhang, X. (2010) Crystal structure of TtgV in complex with its DNA operator

reveals a general model for cooperative DNA binding of tetrameric gene regulators. *Genes Dev.* **24**, 2556–65

- Manso, I., Torres, B., Andreu, J.M., Menendez, M., Rivas, G., Alfonso, C., Diaz, E., Garcia, J.L. and Galan, B. (2009) 3-Hydroxyphenylpropionate and phenyl propionate are synergistic activators of the MhpR transcriptional regulator from *E. coli. J. Biol. Chem.* 284, 21218-21228
- 66. Guazzaroni, M.E., Krell, T., Felipe, A., Ruiz, R., Meng, C., Zhang, X., Gallegos, M.T. and Ramos, J.L. (2005) The multidrug efflux regulator TtgV recognize a wide range of structurally different effectors in solution and complexed with target DNA: evidence from isothermal titration calorimetry. J. Biol Chem. 280, 20887-20893
- Oehler, S., Amouyal, M., Kolkhof, P., von Wilcken-Bergmann, B., and Müller-Hill, B. (1994) Quality and position of the three *lac* operators of *E. coli* define efficiency of repression. *EMBO J.* 13, 3348–55
- Schleif, R. (2010) AraC protein, regulation of the L-arabinose operon in *Escherichia coli*, and the light switch mechanism of AraC action. *FEMS. Microbiol. Rev.* 34, 779-796
- 69. Pouyssequr, J. and Stoeber, F. (1974) Genetic control of the 2-keto-3-deoxy-d-gluconate metabolism in *Escherichia coli* K-12: kdg regulon. *J. Bacteriol.* **117**, 641-651
- Ibañez, E., Campos, E., Baldoma, L., and Aguilar, J. (2000) Regulation of expression of the *yiaKLMNOPQRS* operon for carbohydrate utilization in *Escherichia coli*: Involvement of the main transcriptional factors. *J. Bacteriol.* 182, 4617-4624
- 71. Say, R.F. and Fuchs, G. (2010) Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenetic enzyme. *Nature* **464**, 1077-1081

謝辞

本研究を行うにあたり研究指導教員として終始御指導、御助言いただきました筑波大学 大学院生命環境科学研究科准教授、中村顕先生に心より御礼申し上げます。

また研究を行ううえでの心構え、方向性について終始御指導いただきました筑波大学大 学院生命環境科学研究科教授、星野貴行先生、同教授、高谷直樹先生に心より御礼申し上 げます。

筑波大学大学院生命環境科学研究科教授 小林達彦先生には、本論文の作製に際しまし てご指摘、ご助言を頂きましたこと深く感謝致します。

東京農業大学大学院応用生物科学部教授 矢嶋俊介先生、深野和紘修士には、タンパク 質の結晶構造解析を行っていただき、心より御礼申し上げます。

神戸大学大学院農学研究科教授 吉田健一先生には、貴重なデータを提供していただき、 深く感謝致します。

筑波大学研究基盤総合センター分析部門 中薗広行技官には核磁気共鳴スペクトル解析 の際にご指導、ご助言を頂き、心より御礼申し上げます。

またつくばでの生活や、研究室の実験においてお世話になりました、負荷適応分子生物 学研究室の先輩、同輩、後輩方に心から感謝致します。

最後に、精神的にも経済的にも支えてくれた家族に対し、心から感謝致します。