
Performance Acceleration of Lattice Model Simulations

for Interacting Electrons Applying

Kernel Polynomial Method on GPUs

Graduate School of Systems and Information Engineering

University of Tsukuba

July 2013

Shixun Zhang

Abstract

Material research plays a role of great importance for the technology advance-

ment. Based on quantum mechanics, in condensed matter physics various materials

are studied through examining the behaviors of their constituent microscopic el-

ements such as lattices, atoms and electrons. Among many, there exists a class

of materials in which the interactions among electrons are considered as decisive

factors for some unusual properties, e.g. superconductivity. Numerical study is a

crucial approach to simulate such materials through solving Schrodinger equation.

Kernel Polynomial Method (KPM) is one the of most competitive numerical

methods due to its low time complexity and high flexibility. However, KPM relies on

the polynomial expansion technique which involves intensive recursive matrix vec-

tor operations. It is these recursive operations that prevent us from achieving very

high performance through massive parallelism on a large cluster or supercomputer

via MPI. Besides, as KPM is a highly memory bounded algorithm, the relatively low

memory bandwidth on a CPU-based machine severely limits the performance.

Motivated by the fast growth of GPU’s performance in recent years, this study fo-

cus on the GPU implementation of KPM to solve several fundamental physics quan-

tities, namely density of states, local density of states and Green’s function. The

performance evaluations indicates in most cases GPUs could significantly accelerate

KPM’s performance for all three applications, suggesting that GPU is a promising

tool to help break through the parallelization difficulty brought by the fine-grain

parallelism and the memory bound characteristics.

Finally, to ease the difficulties of implementing GPU programs in physics re-

search, a GPU-based library is proposed. The material research will benefit from the

friendly user interface provided in the KPM library.

Keywords: Condensed Matter Physics, Numerical Material Research, Kernel Poly-
nomial Method, Massively Parallel Computing, GPU, Density of States, Local Density of
States, Green’s function, Quantum Monte Carlo

ii

Contents

List of figures v

List of tables vii

1 Introduction 1

1.1 Numerical Study in Material Science and Kernel Polynomial Method 1

1.2 Parallel Computing in Computational Science 3

1.3 Research Objectives . 5

1.4 Originality and Contributions . 6

1.5 Organization of This Thesis . 7

2 The Kernel Polynomial Method 9

2.1 Definition . 9

2.2 Applying KPM to Solve Density of States 11

2.3 Applying KPM to Solve Local Density of States 14

2.4 KPM Algorithm Analysis . 15

2.4.1 Matrix Compression Techniques 16

2.4.2 Numerical Complexity . 23

2.4.3 Algorithm Profiling . 24

2.4.4 Limitations of Using Third-party Library 25

2.5 Sparse Matrix Vector Multiplication (SpMV) 26

2.6 Discussion and Summary . 28

3 GPU Architecture and CUDA Programming Model 29

3.1 GPU Architecture . 29

iii

3.2 CUDA Programming Model . 31

3.3 Optimization Techniques on GPU . 33

3.4 Experiment Environment . 35

3.5 Discussion and Summary . 35

4 KPM to Evaluate Density of States 36

4.1 Algorithm design . 36

4.2 Implementation on GPU . 39

4.2.1 The Full Map Method . 40

4.2.2 The Sliding Window Method 45

4.2.3 Discussion on Full Map And Sliding Window Method 47

4.2.4 Implementing KPM With Multiple CUDA Kernels 49

4.3 Discussion and Summary . 54

5 KPM to Evaluate Local Density of States 55

5.1 Algorithm for LDOS . 55

5.2 Implementation on CPU . 58

5.3 The Design and Implementation on GPU 59

5.3.1 Parallelization Methods on Single GPU 59

5.3.2 Implementation on Single GPU 62

5.3.3 Extend to GPU Cluster . 63

5.4 Experimental Performance Analysis 64

5.4.1 Performance Evaluation of Single CPU and Single GPU 64

5.4.2 Performance Evaluation on GPU cluster 66

5.5 Discussion and Summary . 69

6 KPM for Monte Carlo Simulations of Double Exchange Model 70

6.1 Model and Method Formulation . 70

6.1.1 Double Exchange Model . 70

6.1.2 Green-function-based Monte Carlo (GFMC) method 72

6.2 Implementation and Parallelization Schemes 80

6.2.1 Algorithm Design . 80

iv

6.2.2 Parallelization Methods . 81

6.2.3 Implementation on GPU . 82

6.3 Performance Evaluation . 85

6.3.1 Performance Scaling on Multi-core CPU 85

6.3.2 Performance Scaling for Increasing Hamiltonian Size 87

6.3.3 Performance Scaling for Increasing Number of Nodes 88

6.3.4 Performance Considerations 89

6.4 Discussion and Summary . 89

7 Library Implementation: An Introduction 90

7.1 Library Structure . 90

7.2 Implementation Techniques . 92

7.3 Examples of Using APIs and User Interface 93

8 Conclusions and Future Works 95

9 Acknowledgments 97

Appendix A: A Case Study of Evaluation of DOS 99

Appendix B: Evaluation of LDOS for Anderson Disorder Model 100

Appendix C: Monte Carlo Simulation of Double Exchange Model 101

v

List of Figures

2.1 Chebyshev expansion for step function and delta function 10

2.2 An example of construction of Hamiltonian matrix 17

2.3 Sparse matrix pattern for cubic lattice with open boundary condition 18

2.4 Body centered cubic lattice (bcc) . 18

2.5 Sparse matrix pattern for cubic and bcc lattice 19

2.6 Matrix compression formats: ELL and CSR 20

2.7 Memory storage for ELL and CSR . 21

2.8 SpMV in CSR format . 22

2.9 SpMV in ELL format . 22

3.1 NVIDIA’s GPU architecture . 30

3.2 CUDA programming model . 31

4.1 Implementation applying the full-map method. 41

4.2 Performance of the full map method with dense matrix 42

4.3 Performances of the full map method with the CSR format. 44

4.4 Implementation of the sliding window method 46

4.5 Performances of the sliding window method with the CSR format . . 48

4.6 Implementation of the multiple kernel version for evaluating DOS . . 50

4.7 Performances of multiple-kernel method for evaluating DOS 52

4.8 Performance comparisons of several versions 53

5.1 Performance scaling on the multicore CPUs for evaluating LDOS. . . 59

5.2 Parallelization for the recursive calculation in LDOS 60

5.3 GPU implementation code for LDOS. 62

vi

5.4 Memory allocation and parallelization scheme of LDOS 63

5.5 Parallelization of generation of LDOS on cluster 64

5.6 Performance comparison between single CPU and single GPU. 65

5.7 GPU bandwidth test for LDOS application 66

5.8 Performance scaling on multiple GPUs 67

5.9 Performance scaling on cluster . 68

6.1 Execution time scaling on Hamiltonian matrix size 78

6.2 Linearity of ∆seff with different expansion orders 79

6.3 Pseudocode of GPU implementation for GFMC 83

6.4 Implementation of recursion in GFMC 85

6.5 The performance scaling on multiple CPU cores for GFMC 86

6.6 Performance scaling with Hamiltonian matrix size on cluster for GFMC 87

6.7 Performance scaling of increasing number of nodes 88

7.1 Architecture of KPM Library and Road Map 91

7.2 Implementing GFMC as an executable 94

9.1 An example of DOS function evaluated by KPM 99

9.2 LDOS as a criteria for extended and localized states 100

9.3 MC simulation of magnetization as a function of temperature 101

vii

List of Tables

2.1 SpMV performance in related research 27

2.2 SpMV bandwidth in related research 28

viii

Chapter 1

Introduction

1.1 Numerical Study in Material Science and Kernel

Polynomial Method

The modern technological advancement that makes our life more convenient has

been based mostly on discovery of a new class of materials with rich functional-

ities such as semiconductors, magnets, and superconductors [1–3]. For example,

Giant Magneto Resistance (GMR) [4, 5] found in 1988 let us be able to develop

large-capacity hard drive through highly improving the data density on a silicon

substrate. In the last decades GMR has resulted in a revolution of data storage tech-

nology for computer system [6]. Now the hard disks inside almost every personal

computer and server are based on GMR. Therefore, synthesis of new special materi-

als has a significant meaning for development of the modern technology and a more

convenient society.

In addition to synthesis of new materials in laboratory, researchers in physics also

have been working for an ultimate alchemy to design those materials by modeling

the constituent atomic elements using the theory of quantum mechanics [7]. Al-

though the quantum mechanics that governs the electronic motion in materials was

established over 80 years ago, there still exist properties and phenomena whose

origins are not well understood. Such examples include copper based high tem-

1

perature superconductors [8] and peculiar magnetic insulators of certain organic

compounds [9]. The common feature of these materials is the strong quantum cor-

relation between electrons, which is turned out to be crucial for determining their

behaviour. It is exactly this strong quantum correlation that makes it difficult to

treat these systems analytically without introducing any bias.

One of the best ways to treat such system is to solve quantum mechanical equa-

tions numerically. As an exact numerical method with very high accuracy, full diag-

nolization [10] has been widely applied to study the spectral properties of various

systems with time complexity O(N3), where N represents the system size. However,

the degrees of freedom that increase exponentially with the number of electrons,

O(1023), may lead to huge computation amount, which makes the full diagnoliza-

tion method fail to handle the relatively larger system even on a large cluster or

supercomputer.

Given this situation, we have to resort to some sort of approximations. Unlike

the exact method, the approximation method could simulate much larger systems in

an expected accuracy within shorter computational time. Among many, well estab-

lished approximate numerical methods thus far are Quantum Monte Carlo (QMC)

method [11, 12], Density-Matrix Renormalization Group (DMRG) method [13–16],

and Kernel Polynomial Method (KPM) [17]. Each method is suited to particular sets

of problems, and also each has drawbacks [17].

Quantum Monte Carlo method has been widely applied to simulate the quan-

tum process. Through importance sampling, QMC can estimate the properties such

as phase transitions for quite large systems[18]. However, QMC method has lim-

itations as well. In order to reduce the time complexity from O(N3) to O(N), for

example, a QMC method, which is applied to electron systems coupled to classical

degrees of freedom, requires truncated expansion moments that may reduce the ac-

curacy of the calculation [18]. Regarding DMRG, it is able to evaluate the ground

state properties as well as the low energy excitations in high accuracy, but it is lim-

ited so far to (quasi) one-dimensional systems [15].

Comparing with QMC Method and DMRG, KPM is a more basic and general

2

method [17], since it is essentially created just for examining the spectral properties

of a given Hamiltonian, it provide users with many flexibilities such as choosing

appropriate Hamiltonian space and basis to optimize the calculation. Due to this

high flexibility, KPM is able to be combined with other numerical methods such as

QMC and DMRG to improve the computing performance and accuracy. KPM also has

some advantageous features such as low time complexity (O(N)) and controllable

accuracy achieved by truncating the expansion moments. In some occasions, for

example, when the partition function is calculated, a truncated-free spectrum in

high accuracy could be obtained through extrapolation [19].

However, being involved in KPM, CPE is known as an ill-conditioned problem

for algorithm implementation on CPUs using parallel programming techniques such

as OpenMP and MPI, as CPE relies on the series of recursive moments which can

not be calculated in a parallel manner [20], the performance suffers in a multi-

core system such as cluster or supercomputer. Fortunately, in the calculation for

each moment we could exploit the fine-grain parallelism introduced by matrix and

vector operations. However, on a traditional CPU-based multi-core system, the scale

of parallelism is strictly limited to the number of CPU cores within a node. Moreover,

considering the fact that KPM is an memory-bounded algorithm, the relatively low

bandwidth between CPU and DRAM dramatically reduce the performance can be

reached even on fast CPUs.

1.2 Parallel Computing in Computational Science

Due to the performance limitation of a single processor as a result of limited fre-

quency and number of transistors on a microchip, the parallel computing was nat-

urally introduced to computational science in which the workloads usually are able

to be divided into small pieces and distributed to many processors [21, 22]. In the

past decades numerous supercomputers have been built to address the sharply in-

creasing needs for high performance computing [23]. In a modern supercomputer,

hundreds of thousands processor cores [24] have been integrated to provide petas-

3

cale performance.

In the past decades, most of the supercomputers have been build based on CPU

processors varying from IBM’s Power series processor to Intel and AMD’s x86 based

CPUs [24]. Since the multi-core CPU had not been emerged in the market until

90s, at the early stage the supercomputers have to rely on single core CPUs and

therefore the number of parallelism can be reached was severely limited [24]. On

such systems the message passing interface (MPI) [25], whose prototype began to

emerge on the early 90s, plays an important role for making parallel programs [26].

In MPI if a threads needs to communicate with an another thread, it has to

explicitly call the runtime function to send the data, called message, to another

thread [27]. Since MPI lacks support of shared memory among threads to encour-

age the memory locality [25], the memory space for different threads are indepen-

dent, the "message sending mechanism" inevitably involves keeping multiple copies

of the same data in different threads even they are running on a shared memory

architecture. This not only result in more memory consumption but also decrease

the memory accessing efficiency. At the late of 90s, another technique to paral-

lelize the scientific computation called OpenMP was officially released [28], unlike

MPI, OpenMP focus on the parallelization on shared memory architecture (SMA), in

which multiple processors share the same memory area [29]. Therefore, OpenMP

usually is considered as a complementary programming approaches [25, 28, 29].

The multi-core CPUs that have began to be popular on supercomputers after

2000 use a similar architecture with desktop computers [24]. However, these CPUs

are actually designed for general purpose such as multimedia processing, documents

editing or gaming [30]. The capability of general purpose CPU to run various tasks

requires a balance of its performance in terms of different aspects such as floating

point (FP) and integer operations [31–33]. However, for scientific computing, the

requirement is much more dedicated, which usually is high FP operation perfor-

mance and large parallelism [34, 35].

Being considered an solution to address the needs for high performance comput-

ing (HPC), the scientific computing orientated co-processors, also known as accel-

4

erators, emerged in the past few years are now attracting more and more attentions

not only from the users but also from the processor manufacturers [36, 37]. In ad-

dition to the Tesla series GPU released by NVIDIA from 2008 [38], Intel also pushed

to the market its co-processor called Xeon Phi that integrates 60 x86 CPU cores on

2012 [39]. In the cluster market many extra large supercomputers have already

resorted to the co-processors to the break through peak performance record [24].

As for users, programming on co-processors becomes a necessary skill for the re-

searchers working on computational science [36, 40].

In this study, focusing on NVIDIA’s Tesla GPU and CUDA (Compute Unified De-

vice Architecture) [41] platform and employing hybrid programming techniques,

we apply KPM to implement high performance program to evaluate some impor-

tant physics quantities including density of states (DOS), local density of states

(LDOS)(for Anderson Localization study [42, 43]) and Green’s function combined

with Monte Carlo method to simulate double exchange model [44].

It should be noted that on a cluster although the co-processors may execute much

more workload than CPUs, the parallelism over CPUs among compute nodes should

not be ignored since it could provide different granularity of parallelism [45, 46].

i.e. the overall workload could be firstly divided and distributed to each node, for

each node, co-processors is then invoked for fine-grain parallelism. Therefore, pro-

gramming on accelerator-enabled system should follow a hybrid manner combining

with traditional parallel techniques such as OpenMP and MPI.

1.3 Research Objectives

In this study, based on CUDA platform and employing hybrid programming tech-

niques, we aim to solve the difficulty brought by the fine-grain recursion in KPM

through applying NVIDIA’s Tesla C2050 GPU, which has a peak bandwidth of 144GB/s

and peak performance of 500 GFLOPS for double precision operations [47].

Another objective is to find out an appropriate method to combine the MPI and

GPU by exploiting different granularity of parallelism, as the optimization over a

5

heterogeneous cluster is also a crucial issue [48, 49]. Moreover, we also aim to

develop optimization techniques to reduce memory usage, decrease the memory

bus traffic and achieve high memory bandwidth through compressing large sparse

matrix and coalescing memory access.

In order to help researchers in condensed matter physics perform simulations us-

ing KPM, currently we have established applications to evaluate three fundamental

physics quantities. Our final target is to build a GPU-based programming library that

can provide high performance, high stability and friendly user interface. The library

should be able to run on large cluster or supercomputer. Moreover, considering the

future extension, the library should be designed to provide enough flexibilities.

1.4 Originality and Contributions

On one hand, due to the interactions among numerous number of electrons and

nuclei in materials as well as quantum nature of electron motion, the numerical

simulation always require huge amount of computation [50]. On the other hand,

the larger scale simulations are able to reveal to researchers more detailed electronic

structures and various quantum phases [51]. In many occasions, one simulation

costs days or weeks even for small systems. Therefore, it comes as no surprise

that higher performance for material simulations is always desired eagerly for the

physics researchers.

To address the needs for high performance, the co-processors such as GPU have

the potential to be one of the main choices for scientific computing in the coming

years. With massive parallelism and high memory bandwidth, it is very advanta-

geous to implement KPM that could help to solve the fine-grain parallelism problem.

However, programming and optimizing a GPU program usually require a good

knowledge of the GPU hardware architecture and programming model [40]. In-

deed, some well established mathematics libraries such as BLAS [52] and Lapack [53]

has been ported to GPU platform and make utilizing GPU less complicated. How-

ever, as these mathematics libraries are designed for general purpose, dedicated

6

optimizing techniques for KPM such as unrolling the loops for Chebyshev expansion

are unable to be applied if we use these general libraries rather than establishing a

dedicated KPM implementation.

Currently, there is no public KPM implementation on GPU even using the general

libraries. Building a high performance library has significant meanings for physics

researcher, it is mainly because the GPU-based KPM library could shorten the sim-

ulation time significantly. With speedup of tens of times, a computational task that

takes several weeks can be shorten to several hours. And also, with speedup impact,

physics researchers could study much larger systems that may reveal more detailed

results with much better accuracy.

This research has a meaning of significance for the computer science as well, as

the traditional parallel programming techniques such as OpenMP and MPI may have

difficulty for fine-grain parallelism. This work is a productive attempt to overcome

the parallel granularity problem through hybrid programming combining MPI and

CUDA. In addition, the discussion of the architectural aspects in a heterogeneous

cluster such as memory bandwidth between CPU and GPU, communication over-

head among threads and nodes could be a helpful guideline for implementing other

similar algorithms.

1.5 Organization of This Thesis

This thesis is organized as follows: Chapter 2 gives an introduction to the back-

ground of material research and mathematical principle of kernel polynomial method

and its applications to evaluate two of the most fundamental physics quantities,

namely density of states (DOS) and local density of states (LDOS) [54–56]. Af-

ter a comprehensive explanation of KPM algorithm, the numerical complexity is

examined and algorithm profiling is performed. In addition, matrix compression

techniques are also introduced in order to reduce the memory consumption of large

Hamiltonian matrix. Given the significant importance of the multiplication between

sparse matrix and vector (SpMV), this chapter also demonstrates the latest research

7

on SpMV and shows the difficulties in implementing SpMV on conventional CPU-

based cluster.

Chapter 3 shows the GPU hardware architecture and CUDA programming envi-

ronment. Several optimization techniques are explained. At the end of this chapter,

the specifications of Yamgiwalab GPU clusters that used for KPM implementations

and performance evaluations in this thesis is introduced.

Chapter 4 demonstrates the an application of KPM that is applied to solve the

density of states (DOS) of a given Hamiltonian matrix in a straightforward manner.

Several implementation methods are demonstrated and evaluated.

In Chapter 5, a relatively more complicated KPM application is implemented on

GPU to solve local density of states. The performances of single GPU as well as GPU

cluster are examined.

Chapter 6 demonstrates Monte Carlo simulation of Double Exchange model [44]

using KPM to solve the Green’s function [19].

The topics regarding implementing KPM library is discussed in Chapter 7, the

conclusions and future works are addressed in Chapter 8.

8

Chapter 2

The Kernel Polynomial Method

2.1 Definition

The basis of KPM is the following (Chebyshev) polynomial expansion of a function

f(x) defined in [−1, 1],

f(x) =
1

π
√

1− x2

[
µ0 + 2

∞∑

n=1

µnTn(x)

]
, (2.1)

where

µn =

∫ 1

−1

dx f(x)Tn(x) , (2.2)

and Tn(x) is the Chebyshev polynomial defined as

Tn(x) = cos [n arccos(x)] . (2.3)

It should be mentioned that the Chebyshev polynomials satisfies the following re-

cursion relations,

T0(x) = 1 , T1(x) = x , (2.4)

Tn+2(x) = 2xTn+1(x)− Tn(x) . (2.5)

9

y(x) =

{
0, x < 0
1, x >= 0

δ(x) =

{
0, x != 0
∞, x = 0

!"# !$#

!1.0 !0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Step Function

M"20, with kernel

M"20

M"5

Step Function

0.0 0.2 0.4 0.6 0.8 1.0 1.2
!2

0

2

4

6

8

10

∆!x!0.5"

M"30, with kernel

M"30

M"20

Figure 2.1: Chebyshev expansion for (a) step function and (b) Dirac delta function, M represents the
expansion order, larger M leads to higher accuracy. A kernel factor could be applied to generate a
oscillation-free function denoted by the black thick curve

KPM is defined as

fKPM(x) =
1

π
√

1− x2

[
g0µ0 + 2

N−1∑

n=1

gnµnTn(x)

]
, (2.6)

where the additional coefficients gn given by a kernel which satisfies the limit

||f − fKPM|| N→∞−−−→ 0 , (2.7)

where || · || is suitable well-defined norm.

Discrete cosine transformation

Given the expansion coefficients µi, in a naive approach one should pick within

[-1, 1] a series of {x1, x2, ..., xS}, for each of which function f(xi) should be con-

structed using Equation 2.6. If the number of collection xi is S, the time complexity

for construction f(x), x ∈ {x1, x2, ..., xS} is O(NS), it may result in large perfor-

mance cost if function fKPM(x) is repeatedly and intensively constructed.

Taking advantage of the Chebyshev basis function (Equation 2.3), if use the

10

sampling method

x = cos(
πk

N − 1
) k = 0, 1, ..., N − 1 , (2.8)

Equation 2.6 becomes

1

π
√

1− x2

[
g0µ0 + 2

N−1∑

n=1

gnµncos(
πkn

N − 1
)

]
, (2.9)

the formula in [...] can be evaluated using discrete cosine transformation (DCT) of

time complexity O(Nlog(N))

Normalization of Hamiltonian matrix

We consider the system described by the Hamiltonian matrix H. First, we apply the

following linear transformation in order to fit the spectrum of H to [−1, 1],

H̃ = (H − α+)/α− , (2.10)

where

α± = (Eupper ± Elower)/2 , (2.11)

The parameters Eupper and Elower are the upper and lower limits of the eigenvalues

of H obtained by the Gerschgorin theorem [57].

2.2 Applying KPM to Solve Density of States

In quantum physics, we need to expand functions of the Hamiltonian matrix. In

this paper, we focus on the density of state (DOS). Then, we show an example of

application of KPM for calculation of DOS.

The density of state (DOS) ρ(ω) of the D-dimensional Hamiltonian matrix H is

11

defined by

ρ(ω) =
1

D

D−1∑

k=0

δ(ω − Ek) , (2.12)

where Ek is the k-th eigenvalue and δ(x) is the delta function. We apply the linear

transformation (2.10) and obtain the equation

ρ(ω̃) =
1

D

D−1∑

k=0

δ(ω̃ − Ẽk) , (2.13)

where

ω̃ = (ω − α+)/α− . (2.14)

In order to obtain the approximated DOS using KPM, the coefficients µn (2.2) in this

case is obtained as

µn =

∫ 1

−1

dω̃ ρ(ω̃)Tn(ω̃)

=
1

D

D−1∑

k=0

Tn(Ẽk)

=
1

D

D−1∑

k=0

〈k|Tn(H̃)|k〉 =
1

D
Tr[Tn(H̃)] , (2.15)

where |k〉 is the k-th eigenvector and 〈k| = |k〉†.

Evaluation of Traces

In order to evaluate the trace in Equation 2.15, we introduce the stochastic eval-

uation method of traces, which estimates µn by average over only a small number

R� D of randomly chosen vector.

First, we introduce an arbitrary basis {|i〉} a set of independent identically dis-

tributed random variables {ξr,i|ξr,i ∈ R} which in terms of the statistical average 〈〈·〉〉
fulfill

〈〈ξr,i〉〉 = 0 , 〈〈ξr,iξr′,i′〉〉 = δrr′δii′ , (2.16)

12

a random vector is defined through

|r〉 =
D−1∑

i=0

ξr,i|i〉 . (2.17)

Using them, we can approximately evaluate the trace as follows,

µn =
1

D
Tr
[
Tn(H̃)

]

=
1

D

D−1∑

i=0

[
Tn(H̃)

]
ii

' 1

D

1

R

D−1∑

i,j=0

R−1∑

r=0

〈〈ξr,iξr,j〉〉
[
Tn(H̃)

]
ij

=

〈〈
1

D

1

R

R−1∑

r=0

〈r|Tn(H̃)|r〉
〉〉
. (2.18)

In order to make 〈r|Tn(H̃)|r〉, we use the following recursive relations for the

vectors |rn〉 := Tn(H̃)|r〉 derived from the relations (2.4) and (2.5),

|r0〉 = |r〉 , |r1〉 = H̃|r0〉 , (2.19)

|rn+2〉 = 2H̃|rn+1〉 − |rn〉 . (2.20)

Then µn is expressed by this expression as

µn '
〈〈

1

D

1

R

R−1∑

r=0

〈r0|rn〉
〉〉
. (2.21)

Performance Enhancement

In addition, the number M of coefficients is obtained with M/2 iterations if the

following equation is used,

T2m−i(H) = 2Tm−i(H)Tm(H)− Ti(H), i = 0, 1

13

applying 〈r| and |r〉 on the left and right side, respectively,

〈r|T2m−i(H)|r〉 = 2〈r|Tm−i(H) Tm(H)|r〉 − 〈r|Ti(H)|r〉, i = 0, 1

With the correspondence |rn〉 := Tn(H̃)|r〉, it becomes

〈r|r2m−i〉 = 2〈rm−i|rm〉 − 〈r|ri〉, i = 0, 1

µ2m−i = 2〈rm−i|rm〉 − µi. (2.22)

2.3 Applying KPM to Solve Local Density of States

The local density of state (LDOS) ρi(ω) of the D-dimensional Hamiltonian matrix H

is defined by

ρi(ω) =
1

D

D−1∑

k=0

|〈i|k〉|2δ(ω − Ek) , (2.23)

where Ek is the k-th eigenvalue and δ(x) is the delta function. We apply the linear

scale transformation (2.10) and the LDOS is given by

ρi(ω̃) =
1

D

D−1∑

k=0

|〈i|k〉|2δ(ω̃ − Ẽk) , (2.24)

where

ω̃ = (ω − α+)/α− . (2.25)

14

In order to calculate the LDOS using KPM, we need the coefficients µin defined in

Equation (2.2), which is obtained as

µin =

∫ 1

−1

dω̃ ρi(ω̃)Tn(ω̃)

=
1

D

D−1∑

k=0

|〈i|k〉|2Tn(Ẽk)

=
1

D

D−1∑

k=0

〈i|k〉Tn(Ẽk)〈k|i〉

=
1

D

D−1∑

k=0

〈i|Tn(H̃)|k〉〈k|i〉

= 〈i|Tn(H̃)|i〉 (2.26)

where |k〉 is the k-th eigenvector of H and 〈k| = |k〉†.

As a similar way that we used in DOS application, here we define |in〉 := Tn(H̃)|i〉,
with the relations (2.4) and (2.5), the following recursion is obtained,

|i0〉 = |i〉 , |i1〉 = H̃|i0〉 , (2.27)

|in+2〉 = 2H̃|in+1〉 − |in〉 . (2.28)

Therefore, the coefficients of the expansion for LDOS can be expressed by

µ̃n = 〈i|in〉 (2.29)

2.4 KPM Algorithm Analysis

KPM is quite a common numerical method that can be used to evaluate many func-

tions for many physics applications. However, it involves a recursive operations to

produce the expansion coefficients as shown in Equation 2.20. It is this recursion

that is considered as ill-condition problem for parallelization on cluster, because the

different expansion coefficients could not be calculated simultaneously by a large

number of threads via MPI. Therefore, it is necessary to review the algorithm and

15

Algorithm 1 Calculation of expansion moments µi using KPM
Input: Vector ~r
Input: Expansion order M
Input: Normalized Hamiltonian matrix H of dimension D ×D
Output: The expansion coefficients µ[i], i ∈ (0,M − 1)
Require: Vector ~r , ~r1, ~r2

1: for i = 0→M/2 do
2: if i = 0 then
3: ~r1 ← ~r
4: µ[0]← ~r ∗1 · ~r1

5: else if i = 1 then
6: ~r2 ← H × ~r1

7: µ[1]← 2~r1
∗ · ~r2 − µ[1]

8: µ[2]← 2~r2
∗ · ~r2 − µ[0]

9: else
10: ~r1 ← 2H × ~r2 − ~r1

11: Swap pointers of ~r1 and ~r2

12: µ[2i− 1]← 2~r ∗1 · ~r2 − µ[1]
13: µ[2i]← 2~r ∗2 · ~r2 − µ[0]
14: end if
15: end for

exploit potential parallelism.

At the beginning, let us examine the characteristics of the general KPM algorithm

to calculate the expansion coefficients µi. Applying Equation 2.22, Algorithm 1

demonstrates the subroutine for calculating the Chebyshev expansion coefficients,

it requires three input parameters: an initial vector ~r, expansion order M (Integer)

and the Hamiltonian matrixH of sizeD×D. The output is the expansion coefficients

µi. To ensure the convergence, Hamiltonian matrix should be normalized before

being passed to this subroutine.

Here should note that vector ~r consists of either real numbers or complex num-

bers depending on different physics models, in the algorithm the notion ~r ∗ is used

to represent the conjugate vector of ~r.

2.4.1 Matrix Compression Techniques

Using KPM, one’s main task is to evaluate the expansion coefficients µn, which in-

volves a recursive relation between the vectors. Especially, implied by Equation 2.20

16

!"

#$" #!"#%"

##"

#&"

'%"

#"

'&"

!

!"

#$

...
...

! %%% & %%% !! %%% !' !" !& %%% !$ %%% #' %%% #$

%%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%%

%%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%%

%%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%%

%%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%% %%%

ǫ14 t14,17 t14,23t14,5 t14,11(t14,13(((t14,15 ((((

(b) Hamiltonian matrix(a) Cubic lattice

Figure 2.2: An example of construction of Hamiltonian matrix

and Equation 2.28, inside the recursion the matrix and vector multiplication takes

the most percentage of computational workload, therefore, according to Amdahl’s

law [58], a high performance implementation of the recursion, especially the matrix

vector multiplication, is considered the key to boost the performance of KPM.

Another very important feature in KPM algorithm is that the size of Hamilto-

nian matrix could reach to a very large order in realistic simulation due to the

fact that physical system usually contains very large amount of atoms or molecules

which result in huge degrees of freedom [59, 60]. However, Hamiltonian matrix is

a very sparse matrix (e.g. the sparsity is in order of O(10−6)) and therefore can

be greatly compressed to reduce memory usage and improve computational perfor-

mance. Choosing which compression format usually depend on the matrix sparse

pattern and the types of operations (e.g. matrix-vector multiplication or matrix-

matrix multiplication) that the matrix will be involved [61–63].

Construction of Hamiltonian Matrix

Before discussing the matrix compression techniques, let us start with how to con-

struct the Hamiltonian matrix, and therefore the matrix sparse pattern could be

determined. Here we take Anderson disorder model as an example, which describe

the electron’s motions, called "hoping", from one site to one of its nearest neighbors

(nn) in the lattice. Figure 2.2 (a) depicts a 33 cubic lattice that consists of 27 sites,

each of which is labeled by a number from 1 to 27. The electron motion in this

lattice was described by the Hamiltonian matrix shown by Figure 2.2 (b), in which

17

(a) Cubic (b) BCC

Figure 2.3: Distribution of non-zero values in the sparse Hamiltonian matrix for cubic and bcc,
respectively. The two matrices are constructed based on Anderson disorder model with periodical
boundary condition.

Figure 2.4: A unit cell of body centered cubic lattice, each site is surrounded by 8 nearest neighbors

the matrix element ti,j represents the "hoping" integral from site i to j. For each

matrix element, ti,j 6= 0 only happens if site j and i are nearest neighbors with each

other, e.g. i is 14 and j is 5. Otherwise, ti,j is set to 0.

With Periodical Boundary Condition(PBC), each site is surrounded by 6 nearest

neighbors, e.g. nearest neighbors of site 14 include site 5, 11, 13, 15, 17 and 23.

Together with the on-site potential (t14,14 = ε14), each matrix row contains only 7

none-zero values no matter how large the lattice is. It should be noted here that for

the sites on the boundary of a lattice, the number of its nearest neighbors are also

seen as 6, since, for example, site 23 can be seen as nn of site 5.

Figure 2.3 visualizes the distributions of non-zero values, also known as sparse

pattern, of Hamiltonian matrices for cubic and bcc lattice, respectively. As for bcc

lattice shown by Figure 2.4, each site has 8 nearest neighbors and therefore each

matrix row only contains 8 + 1 = 9 none-zero values.

18

Figure 2.5: Distribution of non-zero cubic lattice applying open boundary condition

It should be noted that the number of non-zeros in each row are not always

same, it may varies in some occasions, e.g. when Open Boundary Condition(OBC) is

applied. With open boundary condition, in Figure 2.2 (a), site 23 is no longer the

nn of site 5. Therefore, the site 14 has 6 nearest neighbors while site 5 only has

5 nn. Figure 2.5 shows the sparse pattern for a cubic lattice with open boundary

condition. Comparing with Figure 2.3 (a) that is based on periodical boundary

condition, the number of non-zeros in the matrix varies between 4 ∼ 7.

Matrix compression techniques: CSR and ELL

CSR (Compressed Sparse Row) [64] and ELLPack [65] are both effective formats

to compress a sparse matrix for SpMV. However, both CSR and ELL have pros and

cons, choosing which format in a given application, for maximum compression ratio

and computational performance, depends on the sparse matrix pattern and also the

operation type, e.g. multiplication or addition. In this study, we apply both CSR and

ELL format.

CSR format

Figure 2.6 (a) shows a 6 × 6 matrix in dense format that contains many zero el-

ements. Figure 2.6 (c) shows the matrix compressed in CSR format, CSR requires

three one-dimensional arrays: A, CA, RA, where A stores the values of the non-zero

19

Non-zero values

Column indices

Row indices

Non-zero values Column indices

(a) Dense matrix
(b) ELL format

(c) CSR format

! " # $ % & ' () !! !" !# !$!% !&

* ! * ! " ! " # " # $ # $ % $

* " % (!! !$

!*

%

! " * * * *

$ % * * *

* & ' (* *

* *) !* !! *

* * * !" !# !$

* * * * !% !&

! "

$ %

& ' (

) !!!*

!" !# !$

!% !& +

+ * !

* ! "

! " #

" $#

$ %

$ % +

+

G= JA=A=

CA=

A=

RA= !&

Figure 2.6: Matrix compression techniques. figure (a) shows a 6× 6 dense matrix, figure (b) and (c)
demonstrate how to compress the dense matrix by ELL and CSR, respectively.

elements in the matrix, CA stores the column indices of the non-zero elements in

A, and RA stores the indices of which element in array A starts a new row. For the

sake of convenience for SpMV, the number of all values in A, i.e. 16, is appended to

the end of array RA.

Assuming all values of the dense matrix are stored in double precision, the mem-

ory consumption ratio of CSR is given by

CSR
Dense

=

A︷ ︸︸ ︷
P × 8 +

CA︷ ︸︸ ︷
P × 4 +

RA︷ ︸︸ ︷
(D + 1)× 4

D ×D × 8︸ ︷︷ ︸
Dense matrix

=
32P + 4(D + 1)

8D2
, (2.30)

in which P denotes the number of non-zeros in the matrix and D represents the

matrix size. In the expression the two vectors CA and RA in CSR are assumed to

be stored in four-bytes integers.

20

! "

$ %

& ' (

) !!!*

!" !# !$

!% !&

! "

$ %

& ' (

) !!!*

!" !# !$

!% !& +

+

(a) CSR (b) ELL

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

Figure 2.7: row/column-major storage format for ELL and CSR

ELL format

ELL format is an another effective compression format for sparse matrix in SpMV.

Figure 2.6 b) demonstrates how to compress the dense matrix in Figure 2.6 a) using

ELL format. As shown in the figures, ELL requires two 2D arrays to store the non-

zeros and their column indices respectively. In many cases, since the number of non-

zeros in every row varies, additional data (e.g. both 0 for A and CA in SpMV) should

be padded to ensure that A and CA are 2D matrices. Therefore, the compression

efficiency of ELL largely depends on the sparse pattern of the matrix, which here

refer to the difference among the numbers of non-zero in every row.

Using double precision as well, the compression ratio of ELL format is as follows

ELL
Dense

=

A︷ ︸︸ ︷
D ×W × 8 +

JA︷ ︸︸ ︷
D ×W × 4

D ×D × 8︸ ︷︷ ︸
Dense matrix

=
3W

2D
, (2.31)

in which W represents the width of matrix A and JA after padding the extra data.

Discussion for ELL and CSR

CSR and ELL are both compression formats widely applied in various applications,

according to the detailed explanation in the last section, we could compare them

21

void spMV_CSR(float *A, float *CA, float * RA, size_t dim, float *V, float *R)
{
 int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
 int num_threads = blockDim.x * gridDim.x;
 for(int i=0; i<dim, i += num_threads){
 int row_start = RA[i];
 int row_end = RA[i + 1];
 float sum = 0;
 for(int j=row_start; j < row_end; j++){
 sum += A[j] * V[CA[j]];
 }
 R[i] = sum;
 }
}

Figure 2.8: SpMV in CSR format

void spMV_ELL(float *A, float *CA, int num_row, int num_col, float *V, float *R)
{
 int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
 int num_threads = blockDim.x * gridDim.x;
 for(int i = 0; i < num_row, i += num_threads){
 float sum = 0;
 for(int j=0; j < num_col; j++){
 int index_1d = i * num_col + j; //for row-major
 //int index_1d = i + j * num_row; //for column-major
 sum += A[index1d] * V[CA[index_1d]];
 }
 R[i] = sum;
 }
}

Figure 2.9: SpMV in ELL format

with each other in terms of the memory consumption and performance.

When the number of non-zeros in each row varies sharply in the matrix, CSR is

a more appropriate choice since there is no requirement of extra padding data. In

this case ELL is less efficient since it requires large amount of padding data not only

for matrix A but also for JA. In addition, CSR’s performance is also superior to ELL

format, since ELL may include unnecessary memory access and calculations for the

padding data.

However, when the number of non-zeros in each row is a constant, just as the

periodical condition case, ELL becomes a better choice due to: 1) Higher compres-

sion ratio due to no requirement for padding data and no requirement for storing

the row indices, i.e. vector RA in CSR format. 2) Higher performance due to less

memory access.

It should be noted that ELL provides us with an opportunity to choose row or

22

column-major storage format to keep the matrix in global memory while the CSR

format does not. This feature may become crucially important when we try to im-

plement the program using massive parallel threads running on a shared memory

architecture such as GPU.

Let us take the sparse matrix-vector (SpMV) multiplication as an example. Fig-

ure 2.8 and Figure 2.9 show two naive implementations of GPU-based SpMV (A ×
V = R) for CSR and ELL, respectively. In a parallel environment with many concur-

rently running threads, the multiplication usually is assigned to threads by rows, e.g.

each thread calculates the multiplication between a row and the vector as shown in

Figure 2.7. In CSR case, Figure (a), no consecutive data is accessed, however, using

ELL and column-major storage thread 0 ∼ 5 read the consecutive data, which may

greatly improve the cache performance. In addition, GPU may combine the mul-

tiple memory access request to consecutive data into one instruction [41] to help

programmers reach very high bandwidth, sometimes the realistic throughput could

be very close the theoretical peak bandwidth.

2.4.2 Numerical Complexity

This algorithm mainly consists of three types of operations, SpMV, vector-vector

multiplication and abstraction. It is easy to understand the most intensive calcula-

tion exists in line 10.

For a given dense matrix G of D ×D, the time complexity of matrix-vector mul-

tiplication is represented by O(D2), however, in our case, the Hamiltonian matrix is

compressed in sparse format and maximum number of non-zero values in each row

does not scale with the matrix size D. Again, taking the cubic lattice as an exam-

ple, in Hamiltonian matrix each row contains 7 non-zeros values, which result in 14

floating point operations for the multiplication between one row and the vector, the

total operations for H × ~r is 14D, therefore the time complexity of SpMV is O(D)

rather than O(D2). Regarding the vector abstraction in line 10 and vector multipli-

cation in line 12 and 13, they both contribute time complexity of O(D). Therefore,

for M/2 loops the total time complexity is presented by O(MD).

23

Indeed, larger D requires a lager expansion order M, but usually M is much

smaller than D, comparing with the full diagnolization of complexity O(D3), KPM

has a great advantage in terms of the computational performance.

2.4.3 Algorithm Profiling

It is easy to understand that the recursion relation in line 10 (Algorithm 1) is most

time consuming part, in which the SpMV occupies very high percentage of floating

point operations. In order to reveal and analysis more features of the recursion,

here we use a simple profiling model [66], in which the criteria to determine if an

algorithm is memory or computational bounded regarding a given hardware can be

expressed by

c =
peak performance (GFLOPS)

peak memory bandwidth(GB/s)
=

number of floating point operations
1 byte

,

(2.32)

The value of c represents that for every byte read from memory, how many

floating point operations is supposed to be executed to cover the memory latency.

For example, the theoretical peak performance of Tesla GPU C2050 is 500GFLOPS

while its peak bandwidth is 144GB/s, so c is about 500/144 = 3.47.

For a given algorithm, we calculate p to determine if the algorithm is mem-

ory/computation bounded, if

p =
number of floating point operations

number of bytes loaded from memory
(2.33)

is smaller than c, the algorithm generally considered as memory bound, otherwise,

it can be recognized as computational bounded.

Here assuming using the real number of double precision, for the recursion in

line 10, there are 14D floating point operations for H × ~r2, D operations for multi-

plying the result of H×~r2 by 2, and another D operations caused by the substraction

of vector ~r1. Therefore the total floating point operations is 16D.

As for the memory read in line 10, assuming we use ELL format and double

24

precision, the recursion needs to access

D × 7× 8︸ ︷︷ ︸
matrix values (read)

+ D × 7× 4︸ ︷︷ ︸
values’ column indices (read)

+ D × 8︸ ︷︷ ︸
vector ~r2(read)

(2.34)

+ D × 8︸ ︷︷ ︸
vector ~r1(read)

+ D × 8︸ ︷︷ ︸
vector ~r1(write)

= 108D (2.35)

bytes. Divided 16D by 108D, the p value for the recursion is obtained as 0.148,

which is much smaller than 3.47, indicating this algorithm is highly memory bounded.

Hardware Limitations

Therefore the memory bandwidth would be the bottleneck for KPM. The recent

CPU achieves the following theoretical peak I/O bandwidth applying dual channel

DDR2-800 memory modules:

400MHz × (2channels)× (64bits/channel)× (2bits/clock)

= 12.5GB/s

Actually in our system the Intel’s Core i7 processor achieves about 9 GB/s given by

the stream benchmark [67], which is only less than 10% of the peak bandwidth of

Tesla C2050 (144GB/s).

An another disadvantage of CPU is that the memory bus is shared among mul-

tiple cores, this may lead to poor performance scaling in terms of number of CPU

cores. This analysis is consistent with our experimental result that will be discussed

in the following chapters.

2.4.4 Limitations of Using Third-party Library

In order to ease the difficulties of making high performance program, some well

optimized math libraries such as Lapack [53] and BLAS [52] were established and

serving as important tools for computational science researchers. As the GPU com-

puting becomes more and more popular in recent years, the GPU-based math li-

25

braries such as CULA [68] and CUBLAS [69] have been established in correspon-

dence to CPU version of Lapack and BLAS library. There are also some libraries

designed mainly focusing on sparse matrix operations such as CUSP [70].

However, since these third-party libraries are designed for very general purpose

such as a matrix-vector multiplication, using these libraries to implement KPM al-

gorithm sometimes may bring difficulties for us to make custom optimizations. For

example, if we use the third-party library to implement the recursion (line 10 in

Algorithm 1), we have to follow two steps: First, call a function to calculate the

matrix-vector multiplication and store the produced vector, say V, into global mem-

ory. Second, call another function to perform vector-vector subtraction. In the sec-

ond step we have to read the vector V from memory again, which is not necessary

if we combine the two steps into one kernel.

Therefore, implementing a dedicated KPM library with high performance kernels

is very necessary and important.

2.5 Sparse Matrix Vector Multiplication (SpMV)

Since SpMV plays a role of great importance in solving the linear algebra equa-

tions [71, 72] that widely exists in physics numerical simulations, it has been inten-

sively studied both on CPUs and GPUs [73–80].

Among many researches on SpMV, Table 2.1 lists two papers [75, 77] focusing

the sparse matrix vector multiplication on many core architecture. The reason to

choose these two papers is that they include the SpMV performance evaluation of

sparse matrix atmosmodd (in UFL Sparse Matrix Collection1) and Laplace 7pt, these

two matrices have a similar sparse structure/pattern to our Hamiltonian matrix in-

troduced in Section 2.4.1. The matrix size for atmosmodd and Laplace 7pt [77] are

106× 106 and 1, 270, 432× 1, 270, 432, respectively. The number of non-zeros in each

row for both of the two matrices is near to 7, which is close to our Hamiltonian ma-

trix. The last column represents the percentage of the reached SpMV performance

1http://www.cise.ufl.edu/research/sparse/matrices/

26

Table 2.1: SpMV performance in related research

Paper Matrix
Format

Storage
Major

FP a Hardware Theo.
Peak Perf.

Reached
Perf.

Percentage

E. Saule,
et. al.,
2012b

CSR row double C2050 (448 cores) 500GFlops 6.5GFlops 1.3%
CSR row double Dual X5680 (12cores) 160GFlops 3GFlops 1.9%
CSR row double Xeon Phi(61cores) 1TFlops 7GFlops 0.7%

Nathan
Bell, et.
al., 2008c

ELL column single GTX280(240cores) 933GFlops 23Gflops 2.4%
CSR row single GTX280(240cores) 933GFlops 5GFlops 0.53%
ELL column double GTX280(240cores) 78GFlops 12.5GFlops 16.0%
CSR row double GTX280(240cores) 78GFlops 2.5GFlops 3.2%

afloating point precision, single or double
busing atmosmodd which is a structured sparse matrix.
cusing Laplace 7pt structured matrix.

comparing to the peak performance shown in column 6.

A common observation in Table 2.1 is that, for all three processors, namely Tesla

C2050 GPU, Xeon X5860 CPU and Xeon Phi, the obtained performances take very

small percentage (mostly less than 4%) of the theoretical peak performance no mat-

ter for CSR or ELL format.

Besides, the performance difference between CSR and ELL format can be also

observed in Table 2.1. For example, for double floating point operation, the perfor-

mance of applying ELL (12.5Gflops) is about 5 times of CSR performance(2.5GFlops)

on GTX280, mainly because the ELL is stored in column major to trigger coalesced

memory access while CSR is restricted to row-major format.

In order to improve the performance of SpMV, various new storage formats have

been proposed. G. Jeswin et. al. use a revised DIA format [81] that improves the

performance of SpMV for structured sparse matrix by over 75% on GTX580 GPU.

F. Vázquez, et. al. proposed ELLPACK-R [82] format to achieve an acceleration

factor of over 80 comparing to the CSR on Intel’s Dual Core E8400 CPU. G. Jeswin,

et. al. [78] proposed a new C-DIA compression format and improves the SpMV

performance by 75% in maximum.

The bandwidth research between global memory (DRAM) and L2 cache is given

by Table 2.2. On the contrary to the low floating performance shown in Table 2.1,

the realistic memory bandwidth reach much higher percentage of the theoretical

bandwidth. Especially, applying column-major storage format to ELL matrix, the

27

Table 2.2: SpMV bandwidth in related research

Paper Matrix
Format

Storage
Major

FP a Hardware Theo. Peak Band-
width

Reached
Bandwidth

Percentage

Nathan
Bell, et.
al.,
2008b

ELL column single GTX280(240cores) 141GB/s 110GB/s 78.0%
CSR row single GTX280(240cores) 141GB/s 20GB/s 14.1%
ELL column double GTX280(240cores) 141GB/s 110GB/s 78.0%
CSR row double GTX280(240cores) 141GB/s 17GB/s 12.1%

Nathan
Bell, et.
al., 2009c

ELL column single GTX285(240cores) 159.0 GB/s 120GB/s 75.4%
CSR row single GTX285(240cores) 159.0 GB/s 25GB/s 15.7%

afloating point precision, single or double
busing Laplace 7pt structured sparse matrix.
cusing Laplace 7pt structured sparse matrix.

bandwidth can be drastically boosted. For example, for single floating point opera-

tion, the reached memory bandwidth is as high as 110GB/s on GTX 280, suggesting

an over 75 % of the peak bandwidth (141GB/s).

2.6 Discussion and Summary

At the beginning of this chapter we reviewed the mathematical formulation of ker-

nel polynomial method and its applications to evaluate DOS and LDOS, which is

followed by a comprehensive introduction to KPM algorithm and characteristics

through detailed analysis.Through performance profiling, it can be learned that

KPM is a highly memory bounded algorithm due to the heavy sparse matrix-vector

multiplication in the recursion.

As the Hamiltonian matrix is a sparse matrix, two matrix compression formats,

namely CSR and ELL, are applied in this study. The two formats are reviewed in

terms of several aspects such as compression ratio and storage format.

Since SpMV plays such an important role in KPM, the end of the chapter focus on

introducing related works on this topic that has been intensively studied. The con-

clusions is consistent with our analysis through algorithm profiling in Section 2.4.3,

which is that the memory accessing speed is the bottleneck to achieve high perfor-

mance. The related research also indicates that GPU performs much better than CPU

regarding SpVM. Therefore, implementing KPM on GPU has promising perspective.

28

Chapter 3

GPU Architecture and CUDA

Programming Model

In the past few years remarkable advancement has been made not only on GPU

hardware performance but also on programmability. The number of processing units

and size of memory is increasing steadily. For example, the latest Nvidia’s Tesla K20x

has embed around 2500 processing units, which is almost 19 times more than the

first generation GPU released on 2008. Another important improvement of GPU is

memory bandwidth, which is crucial for memory bounded applications. With latest

DDR5 memory and 384-bit wide memory bus, K20x could provide up to 250 GB/s

bandwidth between the processing units and memory.

As co-processor, GPU could not work independently without CPU. GPU requires

a programming model that is bounded with the hardware architecture, understand-

ing the programming model and the corresponding hardware architecture is very

necessary for users.

3.1 GPU Architecture

A video adapter that includes a GPU and a Video RAM (VRAM) which is connected to

a CPU’s peripheral bus such as PCI Express. The video adapter works as a peripheral

device of the CPU, the GPU is controlled by the CPU to perform a part of tasks in

29

!"#$%&'(!

)*+,%*##-(.+/0!

!"#$!

123-#

"%&'&()*+,,)-./0!

112%()*+&-./0!

45!

4'%/(6#

-(.+/0!
!7#$%&'(!

2(89:;(/:!

3456789:;$00:9)+)

<+=()*')-./0)

45! 45!

-!>)

"!>!

45! <!

Figure 3.1: NVIDIA’s GPU architecture

the system. To utilize the GPU as a computing resource for GPGPU applications,

the CPU downloads the application program, called kernel program, to the GPU’s

instruction memory and also prepares input data for the program.

The recent GPUs have only one kind of processor called the stream processor

(SP). Hundreds of the stream processors are massively integrated in an LSI chip and

work together concurrently fetching the SIMD style program, these SPs are grouped

into several multiple processors (MP), in each of which SPs share the registers and L1

cache, besides, in each MP there exists some amount of fast accessing cache, called

shared memory, exposed to programmers for performance optimization. All the MP

share the same L2 cache, which connect to the GPU’s global memory. As the GPU

originally designed for processing graphics, even the general purpose computing

follows the stream-based style.

In addition to the massively parallel processing ability of the GPU, it has a large

I/O capacity in the memory interface. For instance, the NVIDIA’s Tesla C2050 used

in this study provides its peak memory bandwidth up to 144GB/s, according to

its profiler computeprof given by NVIDIA. For the memory bounded applications,

the large I/O performance is attractive to fully exploit the potential ability of the

multiple stream processors working concurrently.

30

int main(){
 float *h_a, *h_b, *h_c; //pointers to host memory

 . . . //initialise host vector h_a, h_b, h_c

 float *d_a, *d_b, *d_c; //pointers to GPU memory

 //allocate memory on GPU
 cudaMalloc((void**)&d_a, sizeof(float) * num);
 cudaMalloc((void**)&d_b, sizeof(float) * num);
 cudaMalloc((void**)&d_c, sizeof(float) * num);

 //copy the input data from host memory to GPU memory
 cudaMemcpy(d_a, h_a, sizeof(float) * num, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, h_b, sizeof(float) * num, cudaMemcpyHostToDevice);

 //invoke the kernel function
 //num_blocks: number of blocks
 //num_threads: number of threads in a block
 VectorAdd<<<num_blocks, num_threads>>>(d_a, d_b, d_c);

 //copy the calculation result from GPU to host memory
 cudaMemcpy(h_c, d_c, sizeof(float) * num, cudaMemcpyDeviceToHost);
}

//this is kernel function executed as a thread on GPU
__global__ void VectorAdd(float *a, float *b, float *c)
{
 int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
 c[thread_id] = a[thread_id] + b[thread_id];
}

Figure 3.2: CUDA programming model

3.2 CUDA Programming Model

Regarding the programming environment for GPU-based computing, the Compute

Unified Device Architecture (CUDA) has been proposed by NVIDIA corporation [41].

CUDA provides an easy way to access to the computational resource and transparent

interface for the numerical computation. In CUDA programming model, a thread is

described as a stream-based function written in C, also called a kernel function. All

of the threads are grouped into many thread blocks, each of which corresponds to a

MP in Figure 3.1. Thread block can be tiled into one, two or three dimensions, the

number of threads in a thread block also called block size.

The comprehensive programming model of CUDA is illustrated by Figure 3.2, in

which it performs addition of two vectors. The overall program can be seen as two

parts targeted to CPU and GPU, respectively. The "main" function is executed by

CPU while the kernel function "VectorAdd", with prefix "__global__", is executed on

GPU. As co-processor, GPU usually only execute the intensive operations, e.g. vector

31

addition. CPU is in charge of preparing the data and controlling the program flow.

Because the CPU and GPU have independent memory space, memory copy op-

eration is necessary. One typical procedure of the CUDA program execution is

copy the data from host memory to GPU memory

⇓
call kernel function to perform calculation

⇓
copy the result back to host memory

In Figure 3.2 the pointers "h_a", "h_b" and "h_c" point to the host memory space

that is allocated using C function malloc. The pointers "d_a", "d_b" and "d_c" is the

corresponding pointers that hold the addresses of GPU’s global memory space, they

are allocated using CUDA API function cudaMalloc.

The initial data are prepared in host side, therefore before the calculation, we

have to use cudaMemcpy to copy the data from host to GPU memory, the option

cudaMemcpyHostToDevice parameter is used to specify the direction of copy oper-

ation. After finishing copying the data, kernel function VectorAdd is involved to

perform the calculation. To invoke the kernel function, we have to specify at least

two parameters, here we use num_block and num_theads to represent the number

of blocks and the block size (also known as number of threads in each block).

After the calculation finish, through specifying the option cudaMemcpyDeviceToHost

we use function cudaMemcpy again to copy the result back to host memory.

All the copy operation between CPU and GPU must via PCIe bus as depicted in

Figure 3.1. Comparing to the bandwidth between GPU’s L2 cache to global memory,

the current PCIe bus can not provide high memory throughput, therefore frequent

or intensive memory copy between CPU and GPU may greatly decrease the per-

formance, therefore, we should avoid frequent communication between CPU and

GPU.

32

3.3 Optimization Techniques on GPU

Comparing to implementing the GPU program, the work to optimize the GPU code

is usually considered much more challenging. Users are required to have a good

knowledge not only on the programming model but also a comprehensive under-

standing of hardware architecture and program profiling skills. Among many, the

follow are some of the most important techniques that could dramatically boost

GPU’s performance.

Coalescing Memory Access

Accessing the data in GPU’s global memory is critical to the performance especially

for the memory bound algorithms such as KPM. To increase the memory capacity

and bandwidth, the DRAM consists of multiple chips to provide larger memory bus

width [83]. For example, one 128-bit data bus needs sixteen 8-bit chips. In this

mechanism the data are accessed in parallel, if one location is accessed, many of

its adjacent locations are also transferred to processor’s cache no matter if they are

required by the processor. In CUDA if the consecutive locations are accessed by

multiple processors at the same time, the GPU automatically combines the multiple

memory read request into one read transaction, for example, the 16 requests to read

16 8-bit integers will be combined into one 128-bit transaction. This data reading

style called coalesced memory accessing.

The parallel memory accessing nature is not only the motivation of coalescing

access but also plays a crucial role in cache effectiveness. When a memory location is

accessed, its adjacent locations are also transferred to the cache, if they are accessed

in the follow short period before being flushed out the cache, it can be passed to the

processor without global memory accessing [41].

Involving Shared Memory

Shared memory is a very important feature to boost GPU’s performance by greatly

reducing the memory read latency [41]. Actually, shared memory is a visible and

33

programmable memory with an equal accessing speed to L1 cache, in NVIDIA’s Fermi

architecture, the size of shared memory and L1 cache can be exchanged, suggesting

they are implemented in a similar way.

The latency of shared memory is about 20∼40 clock cycles while the global

memory requires 400∼600 cycles for one read transaction [84]. Therefore keeping

the frequently used or intermediate data in shared memory would improved the

performance greatly.

Parallelization Scheme

Usually the parallelization scheme does not play an independent role to the perfor-

mance, for example, for different parallelization designs, we can or can not take

advantage of the shared memory. Take the multiplication between a row-major

dense matrix and a vector as an example, in the first scheme, we distribute the

workload by rows to each treads, that means thread i calculate the multiplication

between row i and the vector. In second scheme, all the threads read the data in

a row simultaneously, multiply the data with the vector and make the reduction.

In the second scheme, we can take the advantage of the shared memory but the

reduction operation may decrease the performance. Therefore, how to parallelize a

target algorithm should be carefully designed.

Minimizing Memory Bandwidth Bottleneck

A method that could minimize the memory bandwidth bottleneck is much more

useful to the memory bound algorithms such as the SpMV in KPM. The target of

the optimization is to increase the “FP instructions/byte” ratio to perform more FP

operations for every bytes read from memory. There are many techniques can help

us to achieve this goal by maximizing the shared memory and cache effect. For

example, we unroll the loops in SpMV to archieve high “FP instructions/byte” ratio

and also give the compiler more hints to optimize the cache.

34

3.4 Experiment Environment

All the programs in this study are implemented and evaluated on Yamagiwalab’s

cluster. The hardware architecture and software environment are as follows:

The cluster consists of a head node and 16 compute nodes of the NEC LX se-

ries. All nodes are connected with 40GByte/sec Infiniband network. The head node

contains one Intel’s Core Quad i7 (3.2GHz) processor of four cores and 12GB DDR2

memory. Besides, one Tesla C2050 compute card is attached via x16 PCI express.

The head node also serves as NIS [85] and NFS [86] server in order to share the

user accounts and home directory, respectively.

Each node contains 12 CPU cores (Dual Xeon E5645 2.4GHz) and two NVIDIA

Tesla M2050 GPUs being connected to the x8 PCI Express buses. Besides, 12GB

memory is attached to each node. Totally there are 192 CPU cores and 32 GPUs on

the compute nodes.

As for the software environment, The OS for all the node is CentOS 5.5 and the

CUDA version is 4.0. The compiler for CPU is gcc-4.4.4. All experiments performed

below use the compiler option “-O3” for CPU and GPU programs.

3.5 Discussion and Summary

This chapter briefly reviews the NVIDIA GPU’s hardware architecture and CUDA pro-

gramming model that provides us with high performance and friendly programming

interface, respectively.

Comparing to the programming, optimizing the program on GPU is more chal-

lenging, several optimization techniques are discussed in this chapter, including

coalescing memory access, involving shared memory and choosing parallelization

methods. Since KPM is a highly memory bounded algorithm, given GPU’s much

higher bandwidth than that of CPU, it is resealable to seek a GPU-based implemen-

tation of KPM that could reach to high performance.

35

Chapter 4

KPM to Evaluate Density of States

Since most properties of materials are determined by the behaviour of electrons,

the electron density of state is considered as one of the most important physical

quantities. For instance, DOS behaves differently for metals, semiconductors, and

insulators [87]. In mathematics, it represents the distribution of eigenvalues.

Comparing to Lanczos method [10], which is considered as an excellent tool

for evaluating extremal eigenvalues, KPM is a more appropriate choice to evaluate

distribution of eigenvalues [17]. In this chapter, applying KPM, an effective DOS

implementation is proposed on GPU. This chapter also includes discussions of var-

ious aspects that play a role in the computational performance such as the format

of Hamiltonian matrix, paralleization methods and memory management schemes.

The performance evaluation indicates that GPU could significantly accelerate the

KPM’s performance [20, 88, 89].

4.1 Algorithm design

Based on the mathematical derivation of KPM and the application for DOS func-

tion in Section 2.1 and Section 2.2, Algorithm 2 illustrates the algorithm. At the

beginning it constructs and normalize the Hamiltonian matrix that is compressed

in CSR format here. Evaluation the trace of Hamiltonian matrix requires a large

number of random vectors that are in normal distribution, here the number of the

36

Algorithm 2 Calculate DOS applying KPM

Require: Integer RS to represents the number of random vectors
Require: Hamiltonian matrix H of dimension D ×D
Require: Integer N to represents the number of moments
Require: Vector ~r , ~r1, ~r2, ~r3, µ

1: Construct matrix H according to the physical model
2: Normalize matrix H
3: for j = 1→ RS do
4: Create a random vector ~r, its elements in normal distribution
5: for i = 1→ N do
6: if i = 1 then
7: ~r1 ← ~r
8: µ[1]← µ[1] + ~r · ~r1

9: else if i = 2 then
10: ~r2 ← H × ~r1

11: µ[2]← µ[2] + ~r · ~r2

12: else
13: ~r3 ← 2×H × ~r2 − ~r1

14: µ[i]← µ[i] + ~r · ~r3

15: Swap pointers of ~r1,~r2 and ~r3

16: end if
17: end for
18: end for
19: for i = 1→ N do
20: µ[i] = µ[i]/(RSD)
21: end for
22: Construct DOS function using µi using Equation 2.6

random vectors is represented by product of two integers RS, for each of random

vector ~r, it performs the the recursive iteration, which mainly involves SpMV and

dot product of two vectors. Since the expansion coefficients µn is an average that is

evaluated using a stotistical method, in the implementation µn is accumulated for

each loop of j and then divived by RSD (line 20). Finally, using Equation 2.6 the

DOS function is re-constructed with the estimated coefficients µn

In this algorithm, the SpMV is the most computational intensive part, an effective

parallel implementation would be crucial for the overall performance.

37

Time Complexity Discussion

The construction and normalization (line 1 and line 2 in Algorithm 2) of Hamilto-

nian matrix H is of O(D) complexity and contribute little to the overall performance

overhead. As the length of the vector ~r (in line 4) is D, creation of a random vec-

tor contributes another O(D) complexity. Considering the loop from line 3 to line

18, the overall complexity for line 4 becomes O(DRS). The recursion part which

mainly involves matrix-vector multiplication and vector-vector abstraction (VVA), if

the matrix H is compressed in CSR format and each row has 7 none-zero values, one

SpMV and one VVA contributes O(D) complexity. Since the recursion is iterated for

N times, where N represents the polynomial expansion order, the code from line

5 to line 17 contributes O(DRSN) complexity. Together with the code line 19-21

which contributes O(N), the total time complexity is obtained as

O(D) +O(D) +O(RSD) +O(DRSN) +O(N)

In realistic case, as

RS � 1, D � N,

The time complexity can be briefly represented as

O(DRSN), (4.1)

suggesting that the execution time will be scaling linearly with matrix size D.

Since the accuracy of the obtained DOS function largely determined by the ex-

pansion orderN , an increasingD demands an increasingN to keep the resolution of

DOS function unchanged[90]. Parameter RS represents how many random vectors

to use for evaluation the trace.

38

4.2 Implementation on GPU

Implementing an algorithm is not only a problem of archiving the best performance

on a given processor, but also a task that involves making the trade-offs among

various aspects such as scalability and usability. As the first attempt to implement

KPM on GPU, in this study several different implementations are proposed to show

KPM’s features from different aspects and find out an appropriate implementation.

These different implementations include

(i) single CUDA kernel version

(a) full map method (using dense matrix)

(b) full map method (using CSR matrix)

(c) silding window method (using CSR matrix)

(ii) multiple CUDA kernel version

(a) multiple CUDA kernel method (using CSR matrix)

All the four versions (i.a, i.b, i.c, ii.a) above can be divided into two groups, (i)

the single kernel version and (ii) the multiple kernel version.

In version (i), all the code that runs on GPU is embed into a single CUDA kernel

function, which means the loop from line 3 to line 21 in Algorithm 2 is placed inside

a kernel function, the advantage of doing this way is that we can avoid the overhead

caused by data transfer between CPU and GPU as well as frequent invocation of

kernel functions. With the single kernel concept, three different implementations

are made: (a) the full map method using dense matrix format, which is the most

naive implementation in which the matrix H is stored without compression and

there is no memory optimization at all. (b) the full map method applying CSR

format to Hamiltonian matrix, and (c) sliding window method using CSR matrix.

Version (c) implements a relatively complicated memory management system to

reduce the memory usage and bus traffic.

In KPM algorithm, synchronizations must be placed after/before each iteration

for the recursion. However, the explicit synchronization among all the threads in

39

different blocks is not supported by CUDA [41]. To overcome this difficulty, in

single kernel versions, the loops that begins from line 3 is divided to each block, so

every block performs the recursion independently as shown in Figure 4.1 (1). The

total memory consumption is the sum of memory usage in each block, therefore,

this method usually requires large amount of memory.

In order to reduce the memory consumption, version (ii), called multiple-kernel,

version is proposed by dividing the whole algorithm into several small kernel func-

tions. In this version the code from line 4 to line 17, that will be executed by GPU,

is divided into several kernel functions. In this case, the loop clause from line 3

is placed outside the kernel function and executed by CPU. Unlike version (i), this

implementation do not need explicit synchronizations because there is a implicit

synchronization between two kernel functions in CUDA programming model. In

this implementation, since all the threads across every block share the same vector

~r, ~r1, ~r2 and ~r3, the memory consumption is significantly reduced. Therefore, this

version can calculate much larger Hamiltonian size, e.g. 2563 × 2563.

All evaluations in this section apply N = 128, R = 14 and S = 128 for the

KPM parameters. In the aspects of the architectural parameters on GPU, we apply

BS = 128, Number of Blocks = 32 for all the evaluations.

4.2.1 The Full Map Method

Implementation

Figure 4.1 (1) shows the generation part for the ~rn. ~rn needs ~rn−1, ~rn−2. ~r is ran-

domly generated at the beginning. These four vectors are kept in the global memory

and the recursion is performed by swapping the pointers without memory copy. The

matrix-vector multiplication is distributed to BS threads by row. After vector ~rn is

generated, it is then multiplied to ~r by BS threads to generate µn. Therefore, this

part will generate µ̃1, µ̃2 ... µ̃N using ~r and ~rn where n is from 1 to N .

Figure 4.1 (2) depicts the parallelization for generation of µn. The dot product

result of ~rn and ~r is stored into µ̃, another memory area. As a dot product of two

40

...............

............

...

......
H_SIZE

1~µ 2~µ... �µ~
...
...

mBLOCK
1BLOCK2BLOCK 1~µ2~µ�µ~ 1~µ2~µ�µ~

nµSummation for

(2) Parallelizing generation of nµ

..................

............

...

......
H_SIZE

rr 2−nrr 1−nrrnrrrr 2−nrr 1−nrrnrrrr 2−nrr 1−nrrnrrmBLOCK
1BLOCK 2BLOCK

Cyclically changing pointers
Cyclically changing pointers
Cyclically changing pointers

(1) Parallelizing generation of nrr
Figure 4.1: Implementation applying the full-map method.

vectors, µ̃ should be a scalar, but here, in order to increase the parallelism, µ̃ is

stored and accumulated as a vector. In the final, working in parallel, all threads in

a block just make summation from left side to right side to produce a scalar µ̃n.

Here, let us consider the required memory amount for the full map method in the

case of double precision. For the operation (1) depicted in Figure 4.1, four ~r vectors

per block are kept in the global memory. Each ~r vector has H_SIZE elements.

Therefore, this part consumes Number of Blocks × 4 ×H_SIZE × 8 bytes. As for

the operation (2), each block performs summations to produce N µ̃s. Each µ̃n is

spread horizontally to a vector of H_SIZE long. Therefore, it needs totally

Number of Blocks×N ×H_SIZE × 8

bytes.

Because both operations need the H matrix, the matrix is permanently stored

in the memory in dense format and being shared among all blocks, occupying

H_SIZE2 × 8 bytes. Therefore, the total number of memory needed for the full

41

0

1

2

3

4

5

6

0

10000

20000

30000

40000

50000

60000

8x8x8 16x16x16 24x24x24

SS SS
pp pp
ee ee
ee ee
dd dd
uu uu
pp pp
 ((((CC CC

PP PP
UU UU

// // GG GG
PP PP

UU UU
))))EE EE

xx xx
ee ee
cc cc
uu uu
tt tt ii ii
oo oo
nn nn
 tt tt
ii ii mm mm

ee ee
 ((((

ss ss
ee ee
cc cc
))))

HHHH____SIZESIZESIZESIZE

16KB

48KB

16KB

48KB

H_SIZE 8x8x8 16x16x16 24x24x24

16KB cache 19 sec 1332 sec 56258 sec
48KB cache 13 sec 942 sec 37208 sec

Figure 4.2: Performances of the full map method comparing among 16KByte/48KByte cache and the
speedup.

map method is calculated as follows:

H_SIZE2 × 8 +Number of Blocks×H_SIZE × (8×N + 32)

This implementation is very straightforward and have an advantage of less con-

trol overhead because all variables are prepared in memory simply. However, the

memory usage increases linearly by the number of thread blocks. Thus, this method

will lead to low parallelism, i.e. reducing the number of thread blocks, to increase

the capability for simulating larger lattice model.

Evaluation for The Full Map Method With Dense Format

The first evaluation analyses the performance of the full map method keeping the

dense matrix H in global memory. Figure 4.2 shows the performances of applying

dense format to full map method on Tesla C2050, the performance difference of

applying different L1 cache sizes are also shown.

42

As we discussed in Section 2.4.2, due to the dense matrix, the performance

follows the complexity of O(SRMD2). Therefore, changing H_SIZE causes expo-

nential growth of the execution time. Moreover, the required amount of memory

on the GPU is exhausted by the full map method when H_SIZE is 32 × 32 × 32.

Therefore we applied 8× 8× 8, 16× 16× 16 and 24× 24× 24 to the experiments in

this section.

It can be learned in Figure 4.2 that the performances with 48KB cache size

achieves about 30-35% better performance than the ones with 16KB cache size,

suggesting that the larger cache size enhances the performance because the cached

part of the vector ~r or matrix H can be effectively shared with all the threads in a

block.

Because, with dense format, the full map method achieves only less than six

times better performance than a recent single CPU core. This speedup factor does

not have a big impact since, in modern systems, dual quad-core CPUs (8 cores to-

tally) may produce higher performance than a GPU. Therefore, although the full

map method does not include much control code, it can not achieve reasonable

performance comparing to the recent CPU and also it is very hard to increase the

problem size because it consumes very large amount of memory.

Evaluation for The Full Map Method With the CSR Format

Let us apply the CSR format to the full map method. Figure 4.3 presents the perfor-

mance evaluations. It indicates the CSR format can drastically improve the perfor-

mance not only on GPU but also on CPU, because the calculation amount is much

reduced by ignoring redundant calculations with zeros in the dense format matrix.

It also can be learned that the time complexity becomes O(SRMD) from the per-

formance shown in Figure 4.3, as that has been discussed in Section 2.4.2.

The speedup seems to be saturated to about 4-5. CSR does not improve the

speedup of GPU/CPU because applying CSR the CPU performance is also greatly

improved. However, the execution time decreases drastically, indicating that the

sparse matrix compression techniques, such as CSR, are indispensable for speeding

43

SSSSppppeeeeeeeedddduuuupppp ((((CCCCPPPPUUUU////GGGGPPPPUUUU))))EEEExxxxeeeeccccuuuuttttiiiioooonnnn ttttiiii
mmmmeeee ((((sssseeeecccc))))

01
23
45
67

05
1015
2025
3035

8x8x8 16x16x16 32x32x32HHHH____SIZESIZESIZESIZE

16KB48KB16KB48KB

H_SIZE 8x8x8 16x16x16 32x32x32

16KB cache 0.39 sec 3.69 sec 32.95 sec
48KB cache 0.36 sec 3.34 sec 30.03 sec

Figure 4.3: Performances of the full map method with the CSR format.

up the KPM. Applying CSR format, calculation for larger H_SIZE, e.g. 32× 32× 32

becomes possible since the required amount of memory is greatly reduced.

Although CSR compression to matrix H could reduce the memory consumption

greatly, the memory consumption for the calculation in Figure 4.1 (1) and (2) does

not reduce. Considering there are only about 2.6GB memory on GPU, calculation of

very large H_SIZE such as 128× 128× 128 is still not possible. It is very necessary

for the KPM algorithm on GPU to reduce the required amount of memory. There-

fore, another implementation method, called sliding window method, is proposed

targeting to reduce the total memory consumption for the operations in Figure 4.1

(2).

44

4.2.2 The Sliding Window Method

Implementation

At the beginning, Let us discuss how much large memory consumption that the

full map method uses in the case when H_SIZE is 100 × 100 × 100, N = 128

and Number of Blocks = 8. The operation (1) in Figure 4.1 costs 256 MBytes,

and the operation (2) in Figure 4.1 costs 8 GBytes. However, the later increases

explosively when we increase the expansion order N and number of blocks. This

HSIZE is not able to be simulated by the full map method because 8GBytes for the

data structure of Figure 4.1(2) actually does not exist technically on the recent GPU

boards. Therefore, although the control overhead would increase, the operation (2)

should be improved not to consume such a large memory area.

Therefore, an another method for the operation (2) is proposed, called sliding

window method. The former part of the sliding window method corresponds to

the operation (1) in Figure 4.1. Figure 4.4 summarizes the operation in the sliding

window method that corresponds to the operation (2) of the full map method. The

operations are performed by two parts: one is accumulation of µ̃i partially and

another is final reduction of µ̃i.

For the first part, it prepares a memory area where the square is BS × BS × 8

bytes in each thread block, where BS represents the block size. Each block per-

forms generations of µ̃i where 1 ≤ i ≤ N from the dot product ~rn · ~r according to

the operation (1). Each multiplication performed in the dot product (i.e. ~rn[i]× ~r[i]
where 1 ≤ i ≤ H_SIZE), which is reduced to a 1×BS array, is stored and accumu-

lated into the window memory. After the window is full filled, BS threads within

a block concurrently accumulating the data horizontally to produce scalar µi. This

means that BS threads in a thread block calculates the dot products in parallel and

it iterates the parallel calculation for BS µ̃s.

Figure 4.4 shows how the calculation is performed using the sliding window.

The thread block needs to prepare only the window memory. Making summation

of the µ̃s from the dot products of ~rn · ~r, and reducing all µ̃s with summations into

45

H_SIZE

N

1

~µ

2

~µ

Nµ~

3

~
µ

4

~
µ

1
µ

N

∑ iµ
~

BS

...

..
.

...

Window

BS

S
li

d
in

g

∑
=

BS

i

i

1

~µ

nn rr µ~=⋅
rrEvery iµ~ calculatedfrom

(Op.1) Each block performs sliding

window accumulation using BS*BS

sized memory

(Op.2) Each thread in a

block accumulates a part

of summations of
Nµ~

iµ~reducing

iµ~reducing

iµ
~

reducing

..
.

2
µ

3
µ

4
µ

Nµ

Figure 4.4: Implementation applying the sliding window method. Each thread block manages this
operations using the memories.

the window, the window slides to the next BS µ̃s. For example, assume BS = 4,

H_SIZE = 12, N = 24 and the window is w[][], to calculate the vector product

~rn × ~r, The thread i produces

∑

m

~rn[m×BS + i]× ~r[m×BS + i] (4.2)

where m represents the number of sliding windows in horizon, 0 ≤ m ≤ 2, and

saves it to w[j%4][i] where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 24. Thus, using Equation 4.2, the

dot product is reduced to a 1×BS array.

The second part just makes summations in parallel assigning each row to a

thread and reduces the final summation of µ̃i to an array allocated in another mem-

ory area sized in N × 8 bytes as depicted in Figure 4.4 (Op.2). Because every

iteration of R× S times accumulates the summation of µ̃i to the memory. Using the

same parameters above, the second part makes summations of w[i][j] for solving µi

by the thread i, and saves the µi to the different memory area of Figure 4.4 (Op.2)

where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4. To calculate the µi where 5 ≤ i ≤ 8, the window

is shifted below and then repeated the first and the second parts until the window

46

includes µN .

Here, let us estimate the total memory size needed when H_SIZE is 100×100×
100, N = 128 and Number of Blocks = 8, as the same case considered for the full

map method. The generation of ~rn in the KPM needs the same memory size as

the one in the full map method, which is 256MBytes. In addition, the generation

of µn becomes Number of Blocks × (BS × BS × 8 + N × 8). When apply the

actual parameters to this equation, it becomes about 1MB. Thus, the sliding window

method reduces the memory usage drastically, and makes the large size simulation

available.

According to the discussion about the memory usage of the sliding window

method above in the case of double precision, the memory cost is estimated using

the equation below:

H_SIZE × 88︸ ︷︷ ︸
Matrix H

+Number of Blocks×H_SIZE × 4× 8︸ ︷︷ ︸
Figure 4.1 (1)

+Number of Blocks× (BS ×BS × 8 +N × 8)︸ ︷︷ ︸
Figure 4.4

4.2.3 Discussion on Full Map And Sliding Window Method

This section focused on two methods that parallelize the KPM on the GPU. The KPM

has a fatal bottleneck regarding the required amount of memory. When we apply the

CSR format to theH, it is clear that we can reduce the consumed amount of memory.

Moreover, each row of the H has only seven non-zero elements, therefore the sizes

of A, IA′ and JA is H_SIZE × 7 × 8 bytes, H_SIZE × 4 bytes and H_SIZE × 4

bytes respectively when the index is stored in a 32bit integer. When we consider

H_SIZE is 256×256×256, the dense case needs 2 Peta Bytes for the H matrix. But

the CSR format needs only 1 GBytes. Thus, the size problem can be moderated by

the CSR format.

GPU has another technical optimization possibility in the architecture. GPU also

has a data cache memory between the stream processors and the global mem-

ory. It is actually implemented on a thread block. In the default configuration

47

024
6810
121416

0200400600800100012001400160018002000

32x32x32 64x64x64 128x128x128 256x256x256

SSSSppppeeeeeeeedddduuuupppp ((((CCCCPPPPUUUU////GGGGPPPPUUUU))))EEEExxxxeeeeccccuuuuttttiiiioooonnnn ttttiiii
mmmmeeee ((((sssseeeecccc))))

HHHH____SIZESIZESIZESIZE
16KB48KB 16KB48KB

H_SIZE 32x32x32 64x64x64 128x128x128 256x256x256

16KB cache 18 sec 157 sec 1435 sec 307499 sec
48KB cache 13 sec 110 sec 926 sec 103122 sec

Figure 4.5: Performances of the sliding window method with the CSR format comparing among
16KByte/48KByte cache and the speedup.

of NVIDIA C2050 case, the GPU assigns 16Kbytes to the L1 cache memory and

48Kbytes to the shared memory accessed by the threads within a block. Calling

cudaFuncSetCacheConfig function in CUDA API from the CPU side, it swaps the sizes

between the cache memory and the shared memory. Thus, we can extend the size of

the data cache memory related to a thread block. The larger the data cache memory

is, the more effective threads read the H matrix allocated in the global memory.

As discussed in the sections above, the implementations on GPUs will perform

highly parallelism with the enormous numbers of threads concurrently working to-

gether. Thus, it is expected that the KPM on GPU will extract the potential perfor-

mance of the massively parallel platform and achieves better performance than the

recent CPUs.

Evaluation for The Sliding Window Method With CSR Format

We have confirmed that the CSR format is very effective for the performance in

the previous section. Therefore, this section additionally applies the format to the

48

sliding window method. Moreover, the method can increase the problem size dras-

tically due to reduction of the required amount of memory for summation for µ̃i.

Applying large size H_SIZE, we can expect that the KPM is fully parallelized on

the stream processors and the method will extract the potential high performance

of GPU.

Figure 4.5 shows the performances and the speedups of the sliding window

method applying the CSR format. Although the sliding window method includes

many control code to reduce µ̃i to the window memory, it achieves better perfor-

mance than the full map method comparing the execution times of H_SIZE =

32× 32× 32. The sliding window method has an advantage in the required amount

of memory. Therefore, it can accept the problem size of H_SIZE = 128×128×128.

The speedup reaches about 14.4 times due to the optimized memory access that

only occurs after accumulating a part of µ̃n into a register. This is reasonable to

use GPU as the advanced processing platform for the KPM as this speedup factor is

usually larger than the maximum number of processing cores in a recent CPU. Thus,

we have confirmed that the sliding window method invokes the KPM effectively

although it includes much larger control code than the full map method.

4.2.4 Implementing KPM With Multiple CUDA Kernels

Let us consider additional possibilities to improve the performance of the sliding

window method. The sliding window method can execute the problem size when

H_SIZE = 256× 256× 256. However, as seen in Figure 4.5, the speedup degrades

very much because in order to reduce the required amount of memory we have to

reduce the Number of Blocks to one. Therefore, only a thread block is working

for all KPM operations, and others are idle. To avoid the decrease of the number of

active thread blocks, we finally propose another technique to reduce the required

amount of memory through distributing the program into several kernel functions.

The part where the sliding window method consumes memory at most is the

operation (1) in Figure 4.1. To reduce the required amount of memory for the op-

eration (1), we propose a technique that divides the operations to multiple kernel

49

... H_SIZE
2−jrr 1−jrr jrr

(b) Memory consumption and thread assignment for generating

For i=1 to R*S createR<<<BLOCK,BLOCK_SIZE>>>(); For j=1 to N createRn<<<BLOCKS,BLOCK_SIZE>>>(); If(j%TS == 0) then SumMu<<<BLOCKS,BLOCK_SIZE>>>(); End If End ForEnd For
irr

(a) Pseudo code Used in the divided kernel version invoked in CPU
To perform the sliding window method with the window sized in

nrr
TSTS× BSBlocksof	umberTS ×= __where

TS
TS
TS

Shifting
ShiftingShifting

Figure 4.6: Implementation of the multiple kernel version.

programs and calls the kernels repeatedly from the CPU. Here, we divide the opera-

tions into three kernels as shown in Figure 4.6 (a); the createR randomly generates

~r, the createRn calculates ~rn using ~rn−2 , ~rn−1 and ~r and then also saves ~rn · ~r into

the window memory. Finally the SumMu performs the operation (2) in the sliding

window method for µN .

The createR and createRn kernels share a single memory area in GPU’s global

memory with size of H_SIZE × 4 × 8 bytes. The elements of the ~rn are calculated

in parallel based on the thread numbers (TS = NumberofBlocks × BS) as illus-

trated in Figure 4.6. The createR is called once per N iterations of createRn. The

createRn kernel also saves a part of µi into the sliding window used by the SumMu

kernel. All threads are working concurrently for calculating µi in the SumMu kernel.

Therefore the maximum number of parallelism of createR and createRn corresponds

to the number of threads that do not related to the required amount of memory.

Finally, the SumMu kernel needs a size of window memory of TS × TS × 8 Bytes.

Thus, through dividing a kernel program to several small ones, the required amount

of memory can be reduced because the total memory size does not have any rela-

50

tionship to the number of thread blocks as seen in Figure 4.1(1) and the parallelism

become available to be controlled flexibly.

Because every kernel must be loaded into GPU’s instruction memory before the

execution, the divided kernels contain the potential overhead caused by loading and

discarding every kernel execution for eath iteration. The overhead may significantly

degrade the performance when the problem size is small. We have measured the

performances of the divided kernel version with the sliding window method varying

H_SIZE from 32 × 32 × 32 to 256 × 256 × 256 as shown in Figure 4.7 when 32

thread blocks and 128 BS are used for all kernels. Therefore, the total number of

threads working concurrently is 4096. The sliding window is 4096× 4096. The data

cache size is also exchanged between 16Kbytes and 48Kbytes. As we have expected,

the overhead for loading/discarding the kernel to/from GPU causes performance

degradation. However, when H_SIZE is 256 × 256 × 256, the performance has

become very much better than the one of the single kernel version because of the

massive parallelism is applied to each kernel. Thus, according to the performances

in the graphs, we can conclude that when H_SIZE is less than 256× 256× 256, we

should employ the single kernel version. If H_SIZE is larger than it, the divided

kernel version must be selected.

Let us discuss the speedups among the different implementations proposed in

this paper. Figure 4.8 shows the comparisons from different performance aspects.

Regarding the effect of data cache size illustrated in (a), (c) and (e), any implemen-

tation achieves a performance improvement from 1.10-1.65 times. On the other

hand, the effect of the CSR format shown in (b) is remarkable because it achieves a

drastic performance improvement both for CPU and GPU versions. The speedup in-

creases as the problem size increases. Therefore, it is very clear that the CSR format

has a large performance impact when H_SIZE becomes very large.

According to the performance improvements between the algorithms shown in

(d), the sliding window method is about two times faster than the full map method,

although this comparison is performed only with the H_SIZE of 32 × 32 × 32,

the performance speedup increases if the comparison is performed with a larger

51

0

2

4

6

8

10

12

14

0

200

400

600

800

1000

1200

1400

1600

1800

2000

32*32*32 64*64*64 128*128*128 256*256*256

SS SS
pp pp
ee ee
ee ee
dd dd
uu uu
pp pp
 ((((

CC CC
PP PP

UU UU
// // GG GG

PP PP
UU UU

))))

EE EE
xx xx
ee ee
cc cc
uu uu
tt tt ii ii
oo oo
nn nn
 tt tt
ii ii mm mm

ee ee
 ((((

ss ss
ee ee
cc cc
))))

HHHH____SIZESIZESIZESIZE

16KB

48KB

16KB

48KB

H_SIZE 32x32x32 64x64x64 128x128x128 256x256x256

16KB cache 37 sec 235 sec 1862 sec 14994 sec
48KB cache 23 sec 126 sec 1067 sec 8941 sec

Figure 4.7: Performances and speedup of the divided sliding window method with the CSR format
with 16KByte/48KByte data cache.

H_SIZE. The overall performance improvement from the full map method with a

dense H matrix to the sliding window method with a sparse one has become about

2600 times. Additionally, using the best algorithm, we are able to simulate a lattice

of 256 × 256 × 256 in a PC with a GPU by about 10 times shorter simulation time

than the CPU-based implementation of a single thread. It can be concluded that the

GPU-based implementation achieves much higher performance than the CPU-based

one because of the high parallelism and high memory bandwidth.

Here, let us compare the performances in floating point operations per second

(FLOPS). The total FP operations in double precision consist of a) the generation of

random vector ~r , b) the generation of vector ~rn recursively, c) the vector dot prod-

ucts for µ̃i. Part a) occupies very few percentage in the total execution time using the

CUDA’s random number generation library. Ignoring the part a), the computation

amount consists of part b) and part c) can be expressed by

52

Full map method with dense format
Full map method with CRS formatSliding window method with CRS format

16KB cache48KB cache16KB cache48KB cache16KB cache48KB cache
(a)(b)(c)(d)(e)(f)

GPU: 1.52 timesGPU: 1.10 timesGPU: 1.65 times
GPU: 35-1239 timesCPU: 31-1425 timesGPU: 2.12 timesGPU: 2625 timesCPU: 1510 times

Figure 4.8: Performance comparisons between each implementation of KPM on GPU and CPU

H_SIZE × 16×N ×R× S︸ ︷︷ ︸
Part b)

+H_SIZE × 2×N ×R× S︸ ︷︷ ︸
Part c)

= H_SIZE × 18×N ×R× S (4.3)

When we apply the actual parameters (N = 128, R = 14 and S = 128) to

the multiple kernel version, the performance achieved on Tesla C2050 is about

7.7 GFLOPS for H_SIZE = 256 × 256 × 256. Because the peak performance of

C2050 based on double precision floating point operations is 500 GFLOPS, the KPM

on GPU achieves about 1.5% of potential GPU performance. Using the same pa-

rameters, the CPU achieves 0.9 GFLOPS, only about 3.0% of the peak performance

of the Core i7 processor. The low GFLOPS values comes as no surprise as it has

explained in Chapter 2 that KPM is a highly memory bound algorithm. It is also

consistent with other research results on SpMV shown in Section 2.5. Therefore,

the key technique that improves the entire performance of the KPM is to reduce the

number of I/O operations for read/write the compressed sparse matrix in the global

memory.

53

4.3 Discussion and Summary

This chapter demonstrates how to calculate DOS function using KPM. Because of

the approximation nature of KPM, it can be used to simulate very large Hamilto-

nian, e.g. up to 256 × 256 × 256. Because KPM contains a fine-grain recursive part,

which is hard to parallelize using thread level parallelism on a supercomputer or

a cluster computer, here we focuses on parallelizing KPM on a massively parallel

environment, i.e. GPU, aiming to achieve high parallelism for more speedups than

the recent CPUs.

In order to evaluate KPM’s features in terms of parallelization methods, in this

chapter several implementations on GPU has been demonstrated, namely, the full

map method with/without CSR format, the sliding window method and the mul-

tiple kernel implementation. Their performances are also evaluated and analyzed

comparing with each other. To enlarge available simulation sizes and at the same

time to enhance the performance, this chapter also describes additional optimiza-

tion techniques and proposed an implementation of multiple kernel version. The

performance evaluation indicates that using multiple kernel implementation, the

performance of KPM could be accelerated by over 10 times for Hamiltonian matrix

size of 256× 256× 256.

54

Chapter 5

KPM to Evaluate Local Density of

States

Local Density of States (LDOS), known as the spatially resolved density of states,

is another fundamental quantity in quantum mechanics since it provides impor-

tant information to study the effects of randomness and crystal imperfection that

might exist in materials. Namely, a transition between conductive metal and non-

conductive insulator driven by randomness (called Anderson transition [91–93]) is

manifested by a change of behaviour for LDOS [94, 95]. Regarding the numeri-

cal methods to solve the LDOS, KPM is effective due to its reduced complexity and

adaptive accuracy.

In this chapter, applying KPM, a high performance GPU-based LDOS implemen-

tation is proposed. Unlike the DOS application in Chapter 4, which is implemented

only on a single GPU, for LDOS application here we have to resort to MPI to par-

allelize the task since evaluating LDOS involves much more computation amount

than DOS.

5.1 Algorithm for LDOS

Based on mathematical principles introduced in section 2.3, Algorithm 3 demon-

strates how to evaluate LDOS function using the KPM. The output of this algorithm

55

Algorithm 3 Calculate LDOS applying KPM

Require: Hamiltonian matrix H of dimension D ×D
Require: Set of vectors ρj(E) to store ldos
Require: Integer S to represents the sampling number
Require: Integer M to represents the number of moments
Require: Vector ~r , ~r1, ~r2, µ

1: Construct matrix H according to the Anderson disorder model
2: Normalize matrix H
3: for j = 1→ S do
4: Create a random vector ~r
5: for i = 1→ N do
6: if i = 1 then
7: ~r1 ← ~r
8: µ[1]← µ[1] + ~r · ~r1

9: else if i = 2 then
10: ~r2 ← H × ~r1





Part 1
(line 3 to 17)

11: µ[2]← µ[2] + ~r · ~r2

12: else
13: ~r1 ← 2×H × ~r2 − ~r1

14: µ[i]← µ[i] + ~r · ~r1

15: Swap pointers of ~r1 and ~r2

16: end if
17: end for
18: for s = 1→ L do
19: Construct function value ρj(Es) applying Equation 2.1





Part 2
(line 18 to 20)

20: end for
21: end for

is a set of LDOS functions ρj(E), where j ∈ {1, 2, ..., S}. At the beginning it defines

three integer parameters: N , S and D, where S represents the number of ran-

dom vectors. Integer N denotes the number of moments of Chebyshev expansion,

it is used to control the accuracy (truncation) of eigenvalue spectrum. S denotes

the number of samples in energy interval, which fit into (-1, 1) as required by the

Chebyshev expansion. D is the size of matrix H (i.e. the number of elements

in H is D × D), here H is a sparse matrix compressed using the ELL format and

D ≡ H_SIZE.

At first Hamiltonian matrix H has to be constructed and normalized, here An-

derson disorder model is applied. Then it (line 4) chooses a random vector ~r of the

form (0, ..., 0, rk, 0, ..., 0) in which rk ≡ 1 and k is randomly chosen. For each ~r, a new

vector ~ri is generated at every iteration of the recursive part illustrated by lines from

56

6 to 15. Here only two vectors, ~r1 and ~r2, are used to perform the recursion through

swapping the pointers after each iteration as noted by line 15. A dot product of ~r

and ~ri is performed and produces Chebyshev expansion moment coefficient µi.

Given the µi generated, lines from 18 to 20 reconstructs LDOS function (Equa-

tion 2.23) through the similar recursive operations using Equation 2.1.

Time Complexity Discussion

According to the algorithm above, let us discuss the complexity. The algorithm can

be roughly divided into two parts: 1) calculation of the coefficient (from line 4 to

line 17) µ and 2) reconstruction of LDOS function (line 18 to line 19).

In Part 1), due to the ELL format, the number of non-zero elements in a row of

the matrix H is fixed to seven in any case of H_SIZE, the number of operations

for the recursion denoted by line 13 is 16 × D, thus the time complexity is O(D).

Considering the outside loops between the line 3 to 17, the total complexity of Part

1) is O(DSN).

As for Part 2), the time complexity is becomes O(LSN), where L represents the

number of energy samples between (-1, 1). Therefore, the total time complexity is

presented by O(DSN) + O(LSN). Note that the latter part may be ignored when

integer D is large enough, e.g. D = 403 and L = 256. Therefore,in this study we use

the approximate time complexity for LDOS, which is

O(DSN) (5.1)

Let us recall the time complexity of DOS, which is O(DRSN) as derived in sec-

tion 4.1. Unlike DOS application in which RS and D is not bounded, suggesting

RS can be kept as constant for increasing D, LDOS requires that S should be in-

creased for a large D, e.g. in this study we choose S = D. This bound relation

results in much larger computational amount to evaluate LDOS functions than DOS

function. This is an important reason why in this chapter MPI is employed to extend

the parallelism to cluster scale.

57

5.2 Implementation on CPU

Using the algorithm mentioned above, we implemented the algorithm on a CPU-

based platform that has two Xeon E5645 2.4GHz 6-core CPUs and 12 GByte mem-

ory. 12 cores can work concurrently sharing the memory. We implemented Algo-

rithm 3 in a straightforward manner applying the row major dynamic assignment

for vectors and matrices. Considering that the vector ~r is chosen randomly and no

relationship exists among the different vectors, the most outside loop for S can be

divided among CPU cores and therefore each thread assigned to a CPU core calcu-

lates S/num_of_threads loops. For the computations among CPU cores within a

node, the matrix H is shared through the threads without explicit communications.

Figure 5.1 shows the performance of our implementation by varying the number

of CPU cores (i.e. the number of threads) from one to twelve. When the H_SIZE is

small (e.g. 163), the performance linearly increases with the number of parallelism,

for example, the doubled number of threads leads to half execution time. However,

when H_SIZE becomes large, the linearity is broken.

We can further examine the performance in FLOPS. Here, ignoring the Part 2,

FLOPS value can be roughly calculated by the following expression

(16×D ×N ×R︸ ︷︷ ︸
Part 1

)/T (5.2)

where T is the execution time in second. As we can see in Figure 5.1, the best per-

formance achieved at 323 for 12 cores, which is 10.3GFLOPS. For larger H_SIZE,

the GFLOPS begins to drop significantly. Probably because the memory begins to

be saturated as increasing the number of CPU cores. The cache miss rate also may

increase for larger H_SIZE.

This represents the KPM for solving LDOS has memory intensive computational

characteristics. To avoid this performance saturation, we have two methods to im-

prove the performance: one is to reduce the number of memory accesses in the

algorithm and another is to apply a processor resource that has a large memory

I/O bandwidth. Since GPU can provides much higher bandwidth than CPU, it is

58

1

10

100

1000

1 2 4 6 8 10 12

of CPU cores

E
x

e
c
u

ti
o

n
 t

im
e

 (
s

e
c
)

in
 l

o
g

 s
c
a

le

H_SIZE = 8*8*8
H_SIZE = 16*16*16

H_SIZE = 32*32*32
H_SIZE = 64*64*64
H_SIZE = 128*128*128

10000

Core 1 2 4 6 8 10 12(GFLOPS)

83 19 9 5 3 2 2 2 (2.2)
163 30 15 8 5 4 3 3 (6.7)
323 127 73 37 26 19 16 14 (10.3)
643 1045 591 334 245 213 184 173 (6.4)
1283 9300 4874 2657 1926 1686 1537 1448 (6.1)

Figure 5.1: Performance scaling on the multicore CPUs for evaluating LDOS.

reasonable for applying GPU to solve LDOS.

5.3 The Design and Implementation on GPU

In this section, we firstly review the parallelization design for Algorithm 3, which

is followed by the implementation accordingly. To exploit high parallelism, we also

extend the implementation to GPU cluster.

5.3.1 Parallelization Methods on Single GPU

The first approach to speedup the KPM for solving LDOS is to assign the computa-

tional intensive part to the stream processors on a single GPU. We divide the algo-

rithm into two different kernel functions corresponding to Part 1 and Part 2 in the

algorithm and the kernels are invoked in the order. Let us explain the design detail

below:

59

...

...

...

...

...

...

...

...

...

..
.

...

...

...

H matrix 2−n
r

r

1−n
r

r

n
r

r

..
.

× −× 2

..
.

..
. ..
.

=

Thread 0

Thread 1

Thread 2

Thread 3

Thread 0

Thread 1

Thread 2

Thread 3

Thread 0

Thread 1

Thread 2

Thread 3

R0 R1 R1

BS

threads

The memory areas

R0 and R1 are cyclically exchanged.

TS

Figure 5.2: Memory allocation and parallelization method for the recursive calculation in Part 1. The
memory area R0 and R1 are reused at every iteration.

Parallelization of Part 1

This part produces the Chebyshev polynomial coefficients µn for a given j. It is

the most calculation intensive with the recursive computation for ~ri that performs

a matrix multiplication and a subtraction of a vector. As depicted in Figure 5.2,

the multiplication between each row of H and the vector ~rn−1 are assigned to a

single thread, which also subtract the corresponding element of vector ~rn−2. This

result in the concurrent execution with TS threads reducing the dot products of

~rn and ~r for µn. Due to the recursive computation, this parallel execution must be

synchronized after the iteration. Even if this fine-grain work assignments to many

threads increases the parallelism, this synchronization becomes a fatal overhead

when implemented on a CPU-based cluster across its nodes via a network because

the communication overhead among nodes is very large. Therefore, this part is very

suitable to work efficiently on GPU architecture.

60

Parallelization of Part 2

This part reconstructs the LDOS function ρj(E) applying the coefficients calculated

by Part 1. Here the loop from 18 to 20 calculate the value ρj(Es) for each Es ∈
(−1, 1). As a straightforward implementation, Es is chosen in uniform distribution.

Since ρj(Es) is independent regarding different s. we can assign a single thread s

for the calculation of a ρj(Es) and expect the concurrent execution of L threads.

Through this way, Part 2 is also fully parallelized up to L concurrent threads.

Memory Resource Assignment

Let us estimate amount of memory consumed by the KPM for solving LDOS. The

amount of memory needed for the algorithm is similar to the one for the CPU-based

implementation as shown in section 5.2. The required memory areas are mainly

consisted of three memory areas which are: 1) the matrix H, 2) the vectors ~r, ~r1, ~r2

for Part 1, and 3) LDOS function ρi(E) for Part 2.

Regarding the area 1), we use the ELL format to compress the sparse matrix.

The non-zero values take H_SIZE × 8× 7 bytes and the column indices matrix for

the non-zero elements is estimated as H_SIZE × 4 × 7 bytes because the indexes

are based on integer numbers. Thus the total size of H is H_SIZE × 84 bytes. The

matrix H is stored in column major order to trigger coalescing memory access by

the concurrently running threads.

The area 2) employs the optimization due to the recursive operation. Unlike

the DOS application which requires tree vectors of H_SIZE length as introduced in

chapter 4, here it reduces to only two ~r vectors (i.e. ~r1 and ~r2 because the calculation

is performed by exchanging the memory pointers. ~r0 is created by simply copying

the data from ~r to R0. As for ~r1, the vector memory R0 is used as the read memory

and the ~r1 is generated to the vector memory R1. The generation of the following

~rn is illustrated by Figure 5.2, in which the pointers of R0 and R1 are exchanged.

The memory for this area equals to H_SIZE × 8 × 2 bytes as the data is stored in

double precision.

61

double *r, * , *R0, *R1;

...

for(i=0;i<R;i++){

 int r = random();

 for(j=0;j<N;j++){

 cukpmCreateRn<<<>>>(R0, R1, r, ,...);

double *pTemp = R0;

R0=R1;

R1=pTemp;

 }

...

cukpmCreateDOS<<<>>>(,...);

...

}

Figure 5.3: Code for GPU implementation.

Finally area 3) is allocated for S LDOS functions of ρj(E), each of which takes L

samples. Therefore when the value is based on a double precision floating point, this

memory area occupies L × S × 8 bytes. Totally, the KPM for solving LDOS requires

100×H_SIZE + 8× L× S bytes. For example, when we choose H_SIZE = 1283,

S = 2048 and L = 1024, about 224MBytes memory is required for the algorithm.

5.3.2 Implementation on Single GPU

Figure 5.3 demonstrates the host side code of the implementation for single GPU. It

executes two CUDA kernel functions called cukpmCreateRn for Part 1 and cukpmCre-

ateLDOS for Part 2. The advantage to divide the algorithm to multiple kernels pro-

vides easy control of memory resource management because each kernel requires

Part 1 and Part 2 respectively and independently, and also the reduced synchroniza-

tion timings because the result of a kernel is passed to the host side to reset the

parallel execution.

cukpmCreateRn performs Part 1 that includes the recursive operations and the

dot products between ~ri and ~r. The parallelism equals to TS = BS × num_blocks.

Kernel function cukpmCreateDOS reconstructs LDOS function using the polyno-

mial coefficient µ generated by Part 1. Figure 5.4 shows how to parallelize LDOS

62

E1 E2 E3 E4 E5 E6 E7 E8 EL...





a0 = Es

a1 = Es × a0
ai = 2Es × ai−1 − ai−2

for i = 0 to N

ρj(Es) += aiµigi

ρj(E1) ρj(E2) ρj(E3) ρj(E4) ρj(E5) ρj(E6) ρj(E7) ρj(E8) ρj(EL)ρj(EL)ρj(E)

E

Figure 5.4: Memory allocation and parallelization scheme of LDOS calculation in Part 2.

reconstruction. For each Es, the s-th thread produces ρj(Es) through the recursion.

Therefore, the total number of parallelism is L.

According to the design and implementation proposed above, Part 1 and Part 2

in the algorithm are separated into different kernels that each kernel has the largest

number of parallelism to exploit the available concurrency of the calculations.

5.3.3 Extend to GPU Cluster

Applying the implementation for a single GPU, we parallelize the KPM for LDOS on a

GPU cluster using MPI. As shown in Figure 5.5, firstly we focus on the parallelization

of the outside loop of S, which is distributed to several nodes, e.g. three nodes in

the figure, therefore each nodes calculate S/3 loops. Since each node has two Tesla

GPUs, S/3 loops are future distributed by half (S/6) to each GPU which is used for

the paralelization of matrix vector operations in the recursion. Since S is bounded

with the matrix size D as explained in section 5.1, the resulted large number of S

by a large matrix could be effectively parallelized among large number of nodes in

a supercomputer.

63

!"#$%&%'()*%+"",-.!

/0-1%'(%+"",-.!

234!

5678!

!"#$%9%'()*%+"",-.! !"#$%*%'()*%+"",-.!

/$-+0%:! /$-+0%&! /$-+0%:! /$-+0%&! /$-+0%:! /$-+0%&!

Figure 5.5: Parallelization of generation of LDOS on cluster

5.4 Experimental Performance Analysis

Let us see the performance evaluation of LDOS on both CPU and GPU, we performed

two types of experimental performance evaluations. One is the performance com-

parison of between the single GPU and the single CPU core to investigate the impact

of parallelism brought by the GPU. Another comparison investigates the scalability

in the cluster environment as the CPU-based implementation is also parallelized us-

ing MPI to many computing nodes regarding the parameter S. In our experiment,

BS = 128 and num_blocks = 64 are applied because the performance becomes the

best using these parameters according to our experiment.

5.4.1 Performance Evaluation of Single CPU and Single GPU

Figure 5.6 illustrates the performance of the KPM for solving LDOS on a single CPU

core and single GPU through varying H_SIZE from 8×8×8 to 128×128×128. The

bars depict the execution times of the LDOS on the GPU and the CPU in log scale.

The line shows the speedups of GPU-based implementation against the CPU one

(i.e. CPU time/GPU time). In the small H_SIZE case, the execution times does not

scale linearly according to the complexity O(SDN), which is an approximation for

large D. But when the size is large enough, the O(SDN) is followed, for example,

the D of system 643 is 8 times of 323, which result in 1047/126 = 8.3 times execution

64

0

2

4

6

8

10

12

14

1

10

100

1000

10000

8*8*8 16*16*16 32*32*32 64*64*64 128*128*128

H_SIZE

S
p

e
e
d

u
p

 (1
C

P
U

/ 1
G

P
U

)

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
)

in
 l

o
g

 s
c
a

le
CPU
GPU

Speedup (CPU/GPU)

H_SIZE 83 163 323 643 1283

CPU 19 sec 31 sec 126 sec 1047 sec 9300 sec
GPU 3 sec 3 sec 12 sec 84 sec 750 sec

Figure 5.6: Performance comparison between single CPU and single GPU.

time on CPU. The CPU-based implementation has the performance turning point at

the H_SIZE between 16×16×16 and 32×32×32. As a result of higher bandwidth

of GPU, we can see that the speedup factor increases for larger H_SIZE, over 12x

better performance is achieved on GPU finally.

In order to analyze the access saturation in the memory bus, we measured the

effective bandwidth (between Cache and DRAM) on memory bus. Figure 5.7 shows

the percentages of GPU’s memory bus usage against the peak bandwidth (about

144GB/sec) and the GPU usage percentage denoted by lines, and the actual memory

bus usage with bars measured by the NVIDIA profiler called computeprof. For the

small size of H_SIZE, the memory bus usage rate is small. This means that the

calculation amount is not much against the performance capability. This is also

proved by the percentage of the GPU calculation amount that is less than 40%.

When H_SIZE is increased, the memory bus usage increases to nearly the peak

bandwidth. In the case of 128× 128× 128, the bus usage ratio becomes 85%.

Due to the parallelism and the large memory bus bandwidth of GPU architec-

ture, the performance of GPU-based implementation of the KPM for solving LDOS

65

0

10

20

30

40

50

60

70

80

90

100

0

20

40

60

80

100

120

140

8*8*8 16*16*16 32*32*32 64*64*64 128*128*128

H_SIZE

Bandwidth

% of GPU calculation

B
a
n

d
w

id
th

 o
f

G
P

U
 m

e
m

o
ry

 (
G

B
y

te
/s

e
c

)

P
e

rc
e

n
ta

g
e
(%

)

% of Peak Bandwidth

Figure 5.7: The realistic bandwidth and its effective ratio against peak (144 GByte/sec) of memory
bus, the percentage of the GPU calculation comparing to the total execution time are also displayed.

shows about from 6 to 12 times better than the CPU-based one according to Fig-

ure 5.6 without considering memory bus saturation of the CPU. Actually, since the

performance of 12 CPU cores is not equivalent to this characteristics (considering

the case of H_SIZE = 128 × 128 × 128, the estimated execution time on 12 CPU

cores should become 9300 sec / 12 = 775 sec. However, Figure 5.1 shows 1448 sec

in the case of 12 cores), providing larger bandwidth is the most important to keep

high performance for the algorithm. According to the analysis above, our approach

to implement the algorithm on GPU utilizes not only its highly parallel execution

of the calculation, mainly of Part 1, but the large bandwidth provided by the GPU

hardware.

5.4.2 Performance Evaluation on GPU cluster

We parallelized the KPM for solving LDOS to the GPU cluster to investigate the

scalability of the performance according to the parallelization scheme described in

section 5.3.3. In a node of the cluster, two GPUs are connected with CPU via PCI

express. Therefore, the case with more than two GPUs includes communication

via Infiniband using MPI among the nodes. The execution steps on GPUs includes

1) input data generated from a lattice model, 2) data distribution among nodes, 3)

66

1

10

100

1000

2 4 8 16 32
of GPUs

H_SIZE = 8*8*8

H_SIZE = 16*16*16
H_SIZE = 32*32*32
H_SIZE = 64*64*64
H_SIZE = 128*128*128

E
x

e
c
u

ti
o

n
 t

im
e

 (
s

e
c

)
in

 l
o

g
 s

c
a

le

of GPUs 2 4 8 16 32

83 7 sec 9 sec 8 sec 5 sec 4 sec
163 8 sec 8 sec 9 sec 8 sec 4 sec
323 14 sec 12 sec 10 sec 9 sec 4 sec
643 61 sec 35 sec 21 sec 12 sec 7 sec
1283 429 sec 219 sec 112 sec 60 sec 31 sec

Figure 5.8: Performance comparison of parallelizing into multiple CPUs and GPUs.

configuring GPU execution and initializing data on the GPUs, 4) invoking calculation

and finally 5) gathering data from GPUs. The execution time in this experiment is

measured from 2) to 5). We also parallelize the CPU-based implementation using

MPI dividing the work regarding the loop of S. The execution time evaluation for

CPU does not include the steps 2), 3) and 5), we measured only 4) on the CPU-based

cluster.

Figure 5.8 shows the execution times of the MPI version to examine the perfor-

mance scaling through varying the H_SIZE from 8 × 8 × 8 to 128 × 128 × 128 as

well as the number of GPUs from 2 to 32. An important observation here is that:

Unlike the poor performance scaling among multiple CPUs as shown in Figure 5.1,

the data shown in Figure 5.8 indicates an almost ideal performance scaling with

number of GPUs. For example, for 1283 the double number of GPUs always leads to

half execution time. It is one of the advantages of GPU cluster that multiple CPU

cores share the same memory bandwidth while every GPU has their independent

67

0

200

400

600

800

1000

1200

1400

2/1 4/12 8/24 16/48 32/96
of GPUs / # of CPUs

Parallelized on multiple GPUs

Parallelized on multiple CPU cores
E

x
e

c
u

ti
o

n
 t

im
e

 (
s

e
c

)

96 CPUs

48 CPUs

24 CPUs

12 CPUs

32 GPUs
16 GPUs

8 GPUs

4 GPUs

2 GPUs

Figure 5.9: Performance comparison between multiple CPUs and GPUs in the case of H_SIZE=1283.

bandwidth to access the global memory. This feature is specially useful for memory

bounded algorithm like KPM.

In the case of H_SIZE = 128 × 128 × 128 on 32 GPUs, the cluster achieves

about 319 GFLOPS. Since 96 CPU cores achieve about only 50 GFLOPS, the perfor-

mance on the GPU cluster with larger H_SIZE can provide about 6 times higher

performance.

The performance scaling regarding number of GPUs and CPUs are also inves-

tigated and shown in Figure 5.9, in which the result is obtained in the case of

H_SIZE = 128 × 128 × 128. Because there are very few communications between

MPI threads, the performance scaling linearly regarding the number of nodes, each

of which contains 12CPUs and 2GPUs. In addition, it can be observed that two GPUs

require same execution time with 24 CPU cores, this relation could be also observed

for 4GPUs and 96CPUs, suggesting that for LDOS solved using KPM, a single GPU is

equivalent of 24 CPU Xeon E5645 cores.

68

5.5 Discussion and Summary

This chapter proposes implementations of LDOS which is another essential quantity

used condensed matter physics. Focusing on the memory bounded characteristics

of the KPM, we parallelize the algorithm to a single GPU as well as extend it to the

GPU cluster using MPI. Through comparing the performance of multiple CPUs and

GPUs, It can be observed that the single GPU version shows about 12 times higher

performance comparing to a single CPU core. The MPI version on the GPU cluster

shows the equivalent performance of 24 times computational capacity of CPU-based

implementation.

69

Chapter 6

KPM for Monte Carlo Simulations of

Double Exchange Model

In addition to solve the DOS and LDOS, KPM can be also combined into other nu-

merical methods such as quantum Monte Carlo method to boost the performance

through evaluating the correlation functions, e.g. Green’s function [17, 19]. In this

chapter based on the Green’s-function-based Monte Carlo method (GFMC), a high

performance GPU implementation is proposed. The performance evaluation indi-

cates that applying GPU the computational performance can accelerated by over 30

times comparing to a single CPU core [96].

6.1 Model and Method Formulation

6.1.1 Double Exchange Model

The double exchange (DE) model [44, 97] describes electrons interacting the clas-

sical spins via Hund’s rule coupling. The Hamiltonian is given by

H = −t
∑

〈i,j〉

(
c†iσcjσ + H.c.

)
+ JH

∑

i,αβ

~Si · c†iα~σαβciβ, (6.1)

70

where c†iσ is a creation operator of electron at site i and with spin σ = (↑, ↓), 〈i, j〉
runs over a pair of nearest neighbor sites i and j, ~Si is the classical spin at site i with

its normalization |~Si| = 1, and JH denotes the Hund’s rule coupling with JH > 0. In

the limit of infinite JH (JH →∞), the Hamiltonian becomes

H = −
∑

〈i,j〉

tij

(
c†iσcjσ + H.c.

)
(6.2)

with the hopping amplitude

tij = cos
θi − θj

2
cos

φi − φj
2

+ i cos
θi + θj

2
sin

φi − φj
2

, (6.3)

(6.4)

where θi and φj denote the polar and the azimuthal angles of the classical spin ~Si,

respectively.

The grand partition function of the DE model is written as

Z =
N∏

i

∫
d3~SiTre

[
exp(−βH({~Si})− µN

]
, (6.5)

where β = 1/T is inverse of temperature T , µ is the chemical potential, N is the

total number operator of electrons, and Tre[· · ·] indicates the trace over the electron

degrees of freedom in the Fock space. The trace over classical spin degrees of free-

dom, i.e.,
∏N

i

∫
d3~SiP ({~Si}), is evaluated by the Monte Carlo importance sampling

with its weight P ({~Si}) for a given spin configuration {~Si},

P ({~Si}) = Tre

[
exp(−βH({~Si} − µN)

]
= exp[−Seff({~Si})], (6.6)

where

Seff({~Si}) = −
N∑

i

log(1 + e−β[εi({~Si})−µ]) (6.7)

= −
∫

log(1 + e−β[E−µ])ρ(E)dE, (6.8)

71

εi is the i-th eigenvalue of Hamiltonian H({~Si}), and ρ(E) is the electron density of

state (DOS) for a given spin configuration {~Si}. Using the Metropolis algorithm [98,

99], the possibility P ({~Si} → {~S ′i}) of accepting a new spin configuration {~S ′i} is

given by

P ({~Si} → {~S ′i}) =
P ({~S ′i})
P ({~Si})

= e−Seff({~S′
i})+Seff({~Si}).

Therefore, the quantity ∆seff define by

∆seff = Seff({~S ′i})− Seff({~Si}) = −
∫

log(1 + e−β[E−µ])(ρ′(E)− ρ(E))dE (6.9)

is all we need to carry out the Monte Carlo calculation. Here, ρ′(E) is DOS for a

given spin configuration {~S ′i}.

Using full diagonalization method, we can exactly diagonalize H({~Si}) with

O(N3) complexity to evaluate ∆seff [100–102], or we can use Kernel Polynomial

Method (KPM) with O(N2) or O(N) complexity to estimate the DOS directly [18,

103]. However, the latter one with O(N) complexity must truncate the moment

calculations. Here, we use the recently proposed GFMC method [19], as will be

explained below for completeness.

6.1.2 Green-function-based Monte Carlo (GFMC) method

In this O(N) GFMC method, we need to evaluate only several elements of the

Green’s function to calculate ∆seff given in Eq. (6.9), provided that the change

of spin configuration {~Si} → {~S ′i} is local, i.e, only a single spin at site i is changed

with the rest of spins unaltered. We first give the definition of the Green’s function

G(z) in the complex plane:

G(z) =
1

H − z , z = E + iε, (6.10)

where E is real and ε is a very small positive real. The Hamiltonian for a given spin

configuration {~Si} ({~S ′i}) is denoted by H (H ′), and the Hamiltonian difference ∆

72

is thus ∆ = H ′ −H.

The determinate of G(z)(H ′ − z), i.e.,

d(z) := Det
[
G(z)(H ′ − z)

]
= Det [G(z)(H − z) +G(z)∆] = Det [1 +G(z)∆]

(6.11)

= Det [G(z)]
[
(H ′ − z)

]
=

N∏

i

1

εi − z
N∏

i

ε′i − z, (6.12)

has a special role in the GFMC method, where εi and ε′i are the i-th eigenvalues of

H and H ′, respectively. It is readily shown that

1

π
lim
ε→0

Im
d log(d(z))

dz
=

1

π
lim
ε→0

Im

(
N∑

i

1

εi − z
−

N∑

i

1

ε′i − z

)

=
N∑

i

δ(E − ε′i)−
N∑

i

δ(E − εi)

= ρ(E)− ρ′(E). (6.13)

Thus, this equation in the left hand side can be used in Eq. (6.9), and ∆seff is

now described using d(z):

∆seff =
1

π
lim
ε→0

Im

∫
log(1 + e−β[E−µ])

d log(d(z))

dz
dE

=
β

π

∫
1

1 + eβ(E−µ)
lim
ε→0

Im log(d(z))dE. (6.14)

It is important to notice that we need only several elements of G(z) to evaluate

d(z) = Det [1 +G(z)∆]. As an example, here we consider the simple cubic lattice

with the nearest neighbor hopping, and we assume that only one spin at site o is

changed: ~So → ~S ′o. In the cubic lattice, site o has 6 nearest neighbors (NN) denoted

73

by {n, e, s, w, t, b}. Then, the ∆ matrix has a very simple form of

∆ =




0 0 0 ∆n,o 0 0 0

0 0 0 ∆e,o 0 0 0

0 0 0 ∆s,o 0 0 0

∆o,n ∆o,e ∆o,s 0 ∆o,w ∆o,t ∆o,b

0 0 0 ∆w,o 0 0 0

0 0 0 ∆t,o 0 0 0

0 0 0 ∆b,o 0 0 0




. (6.15)

Therefore, to evaluate d(z), only the following 7× 7 Green’s functions have to be calculated

G =




Gn,n Gn,e Gn,s Gn,o Gn,w Gn,t Gn,b

Ge,n Ge,e Ge,s Ge,o Ge,w Ge,t Ge,b

Gs,n Gs,e Gs,s Gs,o Gs,w Gs,t Gs,b

Go,n Go,e Go,s Go,o Go,w Go,t Go,b

Gw,n Gw,e Gw,s Gw,o Gw,w Gw,t Gw,b

Gt,n Gt,e Gt,s Gt,o Gt,w Gt,t Gt,b

Gb,n Gb,e Gb,s Gb,o Gb,w Gb,t Gb,b




. (6.16)

The computation can be further simplified by expanding d(z) as the following:

d(z) = det(1 + G(z)∆) (6.17)

= [1 +
∑

j∈NN

∆joGoj(z)][1 +
∑

j∈NN

∆ojGjo(z)] (6.18)

−Goo[
∑

j,k∈NN

∆jo∆okGkj(z)], (6.19)

where

∆jo = 〈j|∆|o〉, Goj = 〈o|G|j〉. (6.20)

74

Moreover, using the following state |v〉:

|v〉 = ∆|o〉 =
∑

j∈NN

∆jo|j〉, (6.21)

d(z) can be compactly expressed as

d(z) = [1 +Gov(z)][1 +Gvo(z)]−Goo(z)Gvv(z). (6.22)

Notice that we now need only a 2× 2 Green’s function to evaluate d(z).

Now, a question is how to calculate efficiently the local Green’s functions G(z).

For this purpose, we use the KPM [17], which can be efficiently implemented in a

GPU cluster [89]. Using two types of Chebyshev polynomials (m: integer),





Tm(x) = cos [m arccos(x)]

Um(x) =
sin [(m+ 1)arccos(x)]

sin [arccos(x)]

, (6.23)

the diagonal elements of the Green’s function are expanded as

Gii(w̃ + iε) =
i√

1− w̃2

[
µ̃0 + 2

M−1∑

m=1

µ̃mTm(w̃)

]
+ 2

M−1∑

m=1

µ̃mUm(w̃)

=
i√

1− w̃2

[
µ̃0 + 2

M−1∑

m=1

µ̃mexp [−imarccos(w̃)]

]
. (6.24)

Since the Chebyshev polynomials Tm(x) and Um(x) requires that the argument x

should be within [−1, 1], we must renormalize the energy spectrum E to w̃. The µ̃m

represents the m-th moment (defined below) after applying a kernel function, µ̃m =

µmgm, where gm is the kernel function to eliminate Gibbs oscillations [17]. Here,

we apply Lorenz kernel function which is defined as gm = sinh[λ(1−m/M)]/sinh(λ)

75

with appropriate choice of λ [17]. The m-th moment µm is defined as

µm =
1

π
lim
ε→0

Im

∫
Gii(w̃ + iε)Tm(w̃)dw̃

=

∫ ∑

n

〈i|n〉〈n|i〉δ(w̃ − ε̃n)Tm(w̃)dw̃

=
∑

n

〈i|n〉〈n|i〉Tm(ε̃n)dE

=
∑

n

〈i|Tm(H̃)|n〉〈n|i〉

= 〈i|Tm(H̃)|i〉, (6.25)

where H̃ is the renormalized Hamiltonian to fit the spectra within [−1, 1].

Defining |am〉 = Tm(H̃)|i〉 and thus µm = 〈i|am〉, the Chebyshev series in Eq. (6.23)

yeilds the recursive relation of these vectors |am〉, namely,





|a0〉 = |i〉

|a1〉 = H̃|a0〉

|am〉 = 2H̃|am−1〉 − |am−2〉

. (6.26)

In addition, the number M of coefficients is obtained with M/2 iterations if the

following equation is used,

T2m−i = 2Tm−iTm − Ti, i = 0, 1 (6.27)

µ2m−i = 2〈rm−i|rm〉 − µi. (6.28)

When the coefficients µm are all calculated, we can evaluate the Green’s function

using fast Fourier transform [17]. In Eq. (6.24), if we choose

w̃ = cos
π(k + 1

2
)

M
, (k = 0, 1, ...,M − 1)

76

the Green’s function becomes

Gii(w̃ + iε) =
2i√

1− w̃2

M−1∑

m=0

µ′mexp

[
−imπ(k + 1

2
)

M

]
, (6.29)

where

µ′m =




µ̃0/2, m = 0

µ̃m, m > 0
. (6.30)

Let us now denote the summation part in Eq. (6.29) by χk:

χk =
M−1∑

m=0

µ′mexp

[
−imπ(k + 1

2
)

M

]
.

It should be recalled that the following expression is required for the fast Fourier

transformation [104]:

γn =
M−1∑

m=0

cmexp

[−i2mπn
M

]
, (m = 0, 1, . . . ,M − 1) (6.31)

where

cm = µ′mexp

[−imπ
2M

]
(6.32)

Using the following correspondence between χj and γj




χ2j = γj,

χ2j+1 = γ∗M−j−1

j = 0, 1, ...,M/2− 1,

χj can be evaluated using the fast Fourier transformation, and thus the time com-

plexity of calculating Eq. (6.29) reduces to O(M log(M)), where M is the number

of moments kept.

The off diagonal elements of the Green’s function, Gov and Gvo, can be evaluated

similarly if we use the follow mixed elements of the Green’s function (note that i

77

Hamiltonian size

E
xe

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

a)

0
1

0
0

0
2

5
0

0

1000 2000 3000 4000

Hamiltonian size

E
xe

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

b)

2
4

6
8

4096 32768 64000

Figure 6.1: Execution time for (a) the exact diagonalization method [100–102] and (b)the GFMC
method. Here, for simplicity, we performed only 10 Monte Carlo trial flips of spins, and M is fixed
for different Hamiltonian sizes. We can clearly see that the time consumption for the exact diag-
nolization method roughly follow the complexity of O(N3), but for the GFMC method it is almost
linear.

below is the imaginary unit):

Go+v,o+v = (〈v|+ 〈o|)G(|v〉+ |o〉) = Goo +Gvv +Gov +Gvo (6.33)

Go+iv,o+iv = (−i〈v|+ 〈o|)G(|o〉+ i|v〉) = Goo +Gvv + iGov − iGvo, (6.34)

Gov and Gvo are now expressed by the diagonal elements of the Green’s functions:

Gov =
1

2
[Go+v,o+v −Goo −Gvv + i(Goo +Gvv −Go+iv,o+iv)], (6.35)

Gvo =
1

2
[Go+v,o+v −Goo −Gvv + i(Go+iv,o+iv −Goo −Gvv)]. (6.36)

Using these four elements of the 2 × 2 Green’s function, we can readily calculate

d(z) and thus ∆seff can be evaluated.

Finally, it should be noted that if Hamiltonian matrix H is stored in a com-

pression format, the time complexity of Equation (6.26) is O(N), where N is the

dimension of H. As mentioned above, the time complexity to calculate Equa-

tion (6.24) is O(M log(M)), and thus the total time complexity is expected to be

O(N) + O(M log(M)). When M is fixed, the time complexity should scale linearly

with the dimension ofH. Indeed, we find, as shown in Figure 6.1, that the execution

time is approximately proportional to the Hamiltonian size N .

78

● ●

●

●

●

1
2
.1

1
2
.3

1
2
.5

1
2
.7

d
_
s
ff

Exact 1/512 1/256 1/128

●

●

●

●

●

6
.0

6
.5

7
.0

7
.5

d
_
s
ff

Exact 1/512 1/256 1/128

●

●

●

●

●

8
.0

8
.2

8
.4

8
.6

8
.8

d
_
s
ff

Exact 1/512 1/256 1/128

●

●

●

●

●

−
1
3

−
1
1

−
9

−
8

−
7

d
_
s
ff

Exact 1/512 1/256 1/128

●
●

●

●

●

8
.6

9
.0

9
.4

9
.8

d
_
s
ff

Exact 1/512 1/256 1/128

●

●

●

●

●

−
1
4
.5

−
1
4
.0

−
1
3
.5

−
1
3
.0

d
_
s
ff

Exact 1/512 1/256 1/128

●
●

●

●

●

−
3
.4

−
3
.3

−
3
.2

−
3
.1

d
_
s
ff

Exact 1/512 1/256 1/128

●

●

●

●

●

1
0

1
1

1
2

1
3

1
4

d
_
s
ff

Exact 1/512 1/256 1/128

●

●

●

●

●

3
.9
5

4
.0
0

4
.0
5

4
.1
0

d
_
s
ff

Exact 1/512 1/256 1/128

∆ s
ef

f
∆ s

ef
f

∆ s
ef

f

∆ s
ef

f
∆ s

ef
f

∆ s
ef

f

1/10241/1024 1/1024

∆ s
ef

f
∆ s

ef
f

∆ s
ef

f

1/10241/1024 1/1024

1/10241/1024 1/1024

1/M

(a)
1/M

(b)
1/M

(c)

1/M

(d)
1/M

(e)
1/M

(f)

1/M

(g)
1/M

(h)
1/M

(i)

Figure 6.2: Linearity of ∆seff in terms of 1/M , where M is Chebshev expansion order

Truncated-free formulation of ∆seff

Since the Green’s function Goo, Gvv, Go+v, Go+iv is obtained by KPM which inevitably

involves truncated Chebyshev expansion with a finite order M , errors are naturally

exists in ∆seff . Indeed, one can use a larger M to achieve high accuracy, but the

computational amount will also increase sharply as a result.

In order to improve the computational accuracy without a significant increase

of the computational amount, one can use 2-point fit method [19] to extrapolate a

truncated-free result if the following relation could be noticed

∆seff ∝
1

M
(6.37)

The truncated-free result, i.e. the result obtained when M →∞, which implies

1

M
→ 0 (6.38)

If we know the value of ∆
(M)
seff and ∆

(2M)
seff , which correspond to the expansion

79

order M and 2M respectively, the exact value can be expressed

∆
(∞)
seff = 2∆

(2M)
seff −∆

(M)
seff (6.39)

To verify this relation, several ∆seff of low temperature (T=0.01) are evaluated

for expansion order 128, 256, 512 and 1024, respectively.

Figure 6.2 plot these values of ∆seff . The exact values of ∆seff given by full

diagnolization (using Equation 6.7) are also shown in each figure. It can be learned

that the linearity(Equation 6.37) is valid in most cases. However, it also can be seen

that sometimes this method may fail to produce a result closer to the exact value,

as shown in Figure 6.2 (c), probably due to the errors introduced by the numerical

integral of ∆seff (Equation 6.14) and Green’s function (Equation 6.31).

6.2 Implementation and Parallelization Schemes

6.2.1 Algorithm Design

For a given temperature T , we use Algorithm 4 to calculate the magnetization M for

the classical spins through the average over S Monte Carlo sweeps (the loop from

line 1), where each sweep corresponds to N spin trail flips (the loop from line 2).

Since the direction of the magnetization is trivial, the magnetization M is defined

here as the length of the total spin vector.

In the implementation, we apply the Metropolis method (line 10 in the Algo-

rithm 4) to determine whether a trail flip is accepted by comparing with a random

number between 0 and 1.

Section 6.1 has illustrated how to calculate the ∆seff (from line 4 to 9) using the

GFMC method. Especially, the calculation of the expansion coefficients µm plays a

curial role (line 6). This part occupies most of the execution time since the recur-

sion [denoted by Eq. (6.26)] involves intensive matrix-vector multiplication (SpMV)

with complexity of O(N). Note, however, that GPU is an ideal platform to par-

allelize SpMV, because the multiplications between the rows and the vector could

80

be distributed to hundreds of streaming processors. Therefore, we focus on a GPU

implementation with the highly parallelism and expect a large speedup factor as

compared with the CPU one.

Algorithm 4 Calculate the magnetization as a function of temperature

Require: Integer S to represent number of Monte Carlo sampling sweeps
Require: Hamiltonian matrix H of dimension N ×N
Require: Scalar M to store accumulated magnetization

1: for i = 1→ S do
2: for j = 1→ N do
3: Randomly choose site o and change the spin randomly
4: Calculate the modification matrix ∆← H −H ′ using Eq. (6.3)
5: Get vector −→v ← ∆−→o
6: Calculate the coefficients µ̃

(o)
m , µ̃

(v)
m , µ̃

(o+iv)
m , µ̃

(o−iv)
m applied Lorentz kernel

function gm, where µ̃(V)
m = 〈V |Tm(H̃)|V 〉gm

7: Calculate 4 elements of the Green’s function Goo, Gvv, Go+iv,o+iv and
Go−iv,o−iv using Eq. (6.24)

8: Calculate d(z) using Eq. (6.22)
9: Calculate ∆seff using Eq. (6.14)

10: if e−∆seff > rand() then
11: Accept the new spin configuration.
12: Update H : H ← H + ∆
13: end if
14: end for
15: M = M +

|∑N
i
~Si|

N

16: end for
17: Magnetization←M/S

6.2.2 Parallelization Methods

The magnetization M as a function of temperature T is obtained through the aver-

age over a large number of Monte Carlo sweeps. If the system stays in the thermal

equilibrium, the Monte Carlo sweeps are independent with each other. Therefore,

we could divide the outside loop S (line 1) into many threads. However, the warm

up sweeps, which are necessary to achieve the thermal equilibrium, should be aban-

doned for taking the average, and this condition may prevent us from dividing S to

too many threads because some threads may have too few sweeps to reach thermal

81

equilibrium.

In addition to this parallelism for the Monte Carlo sampling, the intensive matrix-

vector and vector-vector multiplications in line 6 can be effectively parallelized

into multi-core CPU processors using OpenMP or many-core GPU processors us-

ing CUDA. In this paper, we focus on the implementation based on GPU to archive

higher parallelism than multi-core CPU.

In our algorithm, we combine two parallelizations to achieve high efficiency, i.e.,

the Monte Carlo sweeps are divided into several MPI threads while in each thread

we employ GPU to calculate matrix-vector operations.

6.2.3 Implementation on GPU

Compression Format of Hamiltonian Matrix

Here ELL format is applied to Hamiltonian matrix, In order to trigger coalesced

memory access on GPU device, the ELL matrix for storing the non-zero values and

column indices are both stored in column major. Because the periodical boundary

condition, which leads to a constant number of non-zeros of each row, is applied,

there is no extra padding data for ELL.

Arrangement of CUDA Kernel Functions

One important issue that should be well addressed is the communication between

GPU and CPU. Since the Hamiltonian matrix and the spin configurations may be

updated after each iteration, if the Hamiltonian matrix are stored in CPU memory,

the data transfer between CPU and GPU may significantly decrease the performance.

This is especially true when the lattice size is small because the execution time for

numerical calculation occupies a low percentage of the overall time consumption.

According to our test, the simulation of 6 × 6 × 6 cubic lattice on a 8x PCIe Tesla

C2050 is about 30% slower than on a 16x PCIe C2050. Therefore, the data transfer

may not only decrease the performance, but also make the program to be more

dependent on the bandwidth between the CPU and GPU.

82

for i = 1→ S

for j = 1→ N

/∗ choose a spin randomly and flip a spin with a
random direction and calculate matrix ∆ ∗/
FlipSpinAndCalculateDelta <<<>>> ();

// prepare vectors |o〉, |v〉, |o〉+ i|v〉, |o〉 − i|v〉
PrepareVector <<<>>> ();

/∗ calculate the expansion coefficients for each Green’s
function ∗/
for each vector in { |o〉, |v〉, |o〉+ i|v〉, |o〉 − i|v〉 }
for m=0 to M/2

// cacluate 2 coefficients for each iteration

CalculateCoefficient <<<>>> ();

end for

end for

// transform Eq. (6.24) to meet the requirement of FFT

PrepareForFFT<<<>>> ();

// perform FFT to obtain 4 Green’s functions

PerformsFFT<<<>>> ();

// Calculate ∆seff

CalculateDSEFF<<<>>> ();

// If a trial spin flip is accepted, update the status

UpdateStatus<<<>>> ();

// Calculate the magnetization

MeasureSpin<<<>>> ();

end for

end for

Figure 6.3: Pseudocode of GPU implementation for GFMC

83

To avoid the memory transfer between CPU and GPU as much as possible, in our

implementation the matrix H and the spin configurations are kept in GPU memory.

With these considerations, we propose a multi-kernel GPU implemenation shown

in the Figure 6.3, in which the kernel functions are indicated by "<<<>>>" and

arranged as the following:

Function "FlipSpinAndCalculateDelta" flips a spin with a random direction and

calculates the Hamiltonian matrix difference ∆, which is used in the function "Pre-

pareVector" to create four vectors {|o〉, |v〉, |o〉+ i|v〉, |o〉 − i|v〉}. For each vector, the

function "CalculateCoefficient" calculates two expansion coefficients µm in every it-

eration. After all the coefficients are ready, function "PrepareForFFT" prepares the

data for fast Fourier transformation (FFT), including applying Lorentz kernel func-

tion and transform Eq. (6.24) to meet the requirement of FFT. After performing FFT

by function "PerformsFFT", we obtain ∆seff using function "CalculateDSEFF". If the

flip is to be accepted, function "UpdateStatus" will update the spin configuration

and the Hamiltonian matrix. After one MC sweep finishes, function "MeasureSpin"

accumulates the spins to calculate the magnetization.

Implementation of the Recursion

The most important kernel function is "CalculateCoefficient", which involves the

most intensive computation due to the recursive matrix-vector operations. Fig-

ure 6.4 demonstrates the implementation of this CUDA kernel function to calculate

the coefficients µ2m. In CUDA architecture, the parallel running threads are divided

into several thread groups, called "Blocks". For example, in Figure 6.4 there are

p thread blocks and each block has 4 threads, indexed from 0 to 3. Each thread

performs the multiplication between a row and the vector |am−1〉 that is stored in

a 1D array R1. Since the produced vector |am〉 could be placed on R0 overwriting

the vector |am−2〉, we only need two 1D memory arrays, R0 and R1, to perform

calculations by exchanging their pointers after each iteration.

After the vector |am〉 is ready, a production 〈am|am〉 is performed, shared memory

is applied to store the product result. 〈am|am〉 is a dot product, for CUDA, it is a

84

...

...

...

...

...

...

...

...

...

..
.

...

...

...

H matrix

..
.

..
.

..
.

Thread 0

Thread 1

Thread 2

Thread 3

Thread 0

Thread 1

Thread 2

Thread 3

Thread 0

Thread 1

Thread 2

Thread 3

R1 R0

..
.

R0

The memory areas
R0 and R1 are cyclically exchanged.

× ×2− → ·

shared
memory

block 1

block 2

block p

|am−1〉 |am〉|am−2〉 〈am|am〉|am〉

µ2m
atomic

accumulation

→

reduction

in block

block 1

block 2

block p

..
.

R0

..
.

Figure 6.4: Implementation of function "CalculateCoefficient" to calculate the moments µ2m

reduction problem, which will be carried out in two steps, first, the product result

in each block is accumulated to produce a scalar and then the scalar in each block

is further accumulated to get coefficient µ2m using Eq. 6.28.

This implementation could eliminate the most data transfers during the calcula-

tion. The bandwidth test shows the performance difference between a 8x and 16x

PCIe based Tesla C2050 is very small (less than 6%) while calculating a 63 cubic

lattice.

6.3 Performance Evaluation

We evaluate the performance in two ways. The first is to measure the performance

of a single CPU core and a single GPU with different Hamiltonian matrix sizes. The

second is to evaluate the overall performance comparison between all CPU cores

and all GPUs.

6.3.1 Performance Scaling on Multi-core CPU

Section 6.2.1 has explained that the process of calculating coefficients µ̃ involves in-

tensive SpMV operations. The performance of SpMV largely depends on the memory

access speed. Therefore, the memory bandwidth plays an essential role in the over-

85

!
"
#
$
%
&'
(
)
*&
'+
#
*,
*)
-
.(
$
/

1650

1700

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

1 2 3 4 5 6 7 8 9 10 11 12

Execution time

nprocs

Figure 6.5: The performance scaling on multiple CPU cores within a node

all performance. This conclusion is consistent with our multi-core CPU performance

scaling test shown in Figure 6.5.

This test is performed on a single node that has 2 CPUs, totally 12 cores and

12GB DDR2 800 memory with a peak bandwidth of 12.5GB/s. In order to eval-

uate the parallelization efficiency, we examined the quantity expressed by y =

execution time×nprocs, in which nprocs represents the number of MPI threads. As

the outside loop [from line 1] in Algorithm 4 is divided into multiple MPI threads

and there is very little communications among these threads, in an ideal case of

parallelization, y should be a constant. However, we have noticed that when the

threads number becomes larger than 4, y begins to increase fast, suggesting that the

efficiency become to decrease rapidly.

It indicates that the memory bandwidth becomes saturated when nprocs grows

to be larger than 4. Therefore, we can conclude that the bottleneck of this method is

memory bandwidth. In this paper we resort to solve the problem using Tesla C2050

GPU with maximum bandwidth of 144GB/s [41].

86

!"

#"

$"

%"

&"

'"

("

#"

#!"

#!!"

#!!!"

()()(" *)*)*" #()#()#(" %$)%$)%$"

#+$",-."/0123"

%$"4-.3"

5622786"

!"#$%&'($"()*$+,

-
.
,
/0
&$
'
(
)1
$#
,
)2
3,
/4
)$
(
)5
'
6
"
7$
&8
#
)*
/"
%,
)

*
9
,
,
:
0
9
)2;
<
=
>
?
<
=
4

Figure 6.6: Performance scaling with Hamiltonian matrix size on cluster, the result is obtained with
38400 trail flips calculated and Chebyshev truncation number kept as 256

6.3.2 Performance Scaling for Increasing Hamiltonian Size

Figure 6.6 shows the performance scaling on the cluster while the Hamiltonian size

is increasing from 63 to 323. 38400 Monte Carlo trail flips are calculated while the

number of Chebyshev moments are kept as 256. It can be observed that when the

H matrix is small, e.g. 63 or 83, 192 CPU cores are much faster than 32 GPUs. To

explain the reason, let us divide the total time consumption of GPU program into

two parts: a) the time for numerical calculation and b) the time for other works

such as initializing GPU device, copying memory between CPU and GPU, and MPI

communication, etc. Usually the latter part consumes very little time, but when the

matrix size is small, comparing with the first part, time consumption of the latter

part can not be neglected and significantly decrease the performance. However, the

speedup increases rapidly with increasing H matrix size and in the best case, i.e.

323, 32GPU is about over than 5 times faster than 192 CPU cores. If we define the

speedup factor as the equivalent number of CPU cores comparing with one GPU. For

Hamiltonian with size of 323, this factor is about 30 (192/32 * 5).

87

!"

!#$"

!#%"

!#&"

!#'"

$"

$#$"

$#%"

$#&"

("

$(("

%(("

&(("

'(("

!((("

!$(("

!%(("

!&(("

!'(("

$((("

!")*+," $")*+,-" %")*+,-" '")*+,-" !&")*+,-"

./0" 1/0" 23,,+43"

!"#$"%&'(")"!"#$"*&'"+#,-(

.
/
-
+0
12
#
3
"4
25
-
"6
(-
+7
""

8!"# 9)89 :)9: ;<)=<" >8);=8

?
@
-
-
A
0
@
"6*
&
'
)
%
&
'
7

Figure 6.7: Performance scaling for increasing number of nodes, each node has 2 Tesla C2050 and 12
Xeon 2.4GHz cores. 8000 Monte Carlo trail flips of a 203 cubic lattice Hamiltonian are calculated with
the Chebyshev truncation number kept as 256. The blue/green lines represent time consumption of
CPU cores/GPUs

6.3.3 Performance Scaling for Increasing Number of Nodes

The performance scaling for increasing number of nodes is also very important refer-

ence for implementing the algorithm on a large cluster or even supercomputer. Here

8000 trail flips of a 203 cubic lattice Hamiltonian is calculated on our cluster that has

2 Tesla C2050 and 12 Xeon 2.4GHz cores in each node. The performance evaluation

is shown in Figure 6.7. As there is very little communication among MPI threads, it

can be noticed that for both CPU and GPU implementation, the time consumption

always decreases by half when the number of nodes is doubled , suggesting an ideal

performance scaling with number of nodes.

88

6.3.4 Performance Considerations

As shown in Figure 6.5, the bottleneck of this algorithm is the memory band-

width, GPU could solve the memory bandwidth limitation very well and shows

high speedup ratio. Due to the nature that there is little communication among

MPI threads, this algorithm is also capable to run on many compute nodes while

keeping good parallelization efficiency.

However, due to the thermal equilibrium problem explained in Section 6.2.2, the

of number of MPI threads is limited, in this case, a combination of parallelization

techniques such as MPI, OpenMP and CUDA should be introduced. For example,

the workload is firstly distributed into different nodes using MPI, and then in each

node we use OpenMP to calculate the SpMV, if the CUDA is capable, the OpenMP

thread may employ GPU to calculate the SpMV. The combination can increase the

parallelism and gain high performance. However, it should be pointed out that the

process to combine these techniques may not be very straightforward since we have

to take trade-offs in many occasions.

6.4 Discussion and Summary

In this chapter, we have provided the detailed formulation of the GFMC method for

the DE model. Based on the algorithm analysis, the implementation is proposed to

parallelize the GFMC method using MPI on CPU as well as CUDA on GPU. In order to

eliminate the data transfer between CPU and GPU as much as possible, the program

is implemented on GPU using several kernel functions. The performance evaluation

indicates that the GPU implementation could effectively overcome the CPU memory

bandwidth limitation and shows more than 30 speedup factor when Hamiltonian

size is 323. The performance scaling test for increasing number of processors in-

dicates that the MPI parallelization is very effective for this algorithm. Finally we

discussed more considerations on the performance for future optimization.

89

Chapter 7

Library Implementation: An

Introduction

In order to ease the difficulty of utilizing the GPU in material simulations, imple-

menting a KPM-based library for various applications with GPU acceleration capable

is an important part of this work. Although currently this work is not finished yet, in

this chapter we give a brief introduction to the libraries’ architecture, programming

interface as well as the extension targeting to address the future’s needs.

7.1 Library Structure

Before introduction to the architecture, let us see the basic requirements from physics

users’ perspectives. The following features are considered necessary for the KPM li-

brary

• As the CPU is still the main choice for most scientific applications, in addi-

tion to the GPU-based implementation, this library should contain the CPU

implementation as well.

• To meet the requirement of other numerical method, e.g. exact diagonaliza-

tion that can produce high precision, a mechanism of switching between KPM

and other third party libraries(e.g. Lapack) should be supported.

90

• As KPM is a common numerical expansion technique, it suppose to be applied

to evaluate various functions other than DOS, LDOS or Green’s function in this

study.

• User should be able to switch operations between single precision and double

precision.

KPM

BLAS,
Lapack

KPM

DOS, LDOS, Green's function...

CPUGPU

Physics Simulations, QMC, DMRG, ...

User Interface

Step 1

Step 2

Step 3

Step 4

Figure 7.1: Architecture of KPM Library and Road Map

Based on the requirements, Figure 7.1 displays the brief structure of the library.

Two versions of KPM is established targeting for CPU and GPU, receptively. Some

fundamental and well used functions, e.g. DOS, LDOS, Green’s function, are imple-

mented not only using KPM as well as using other third party libraries, for example,

the full diagnoalization method in Lapack. These fundamental functions could be

directly invoked in the simulations of QMC, DMRG, etc. In addition, the simulation

is able to call the KPM and other third-party libraries directly. On the very top of

the architecture an user interface is provided and can be used directly to perform

simulations with few input parameters.

As shown in Figure 7.1, the project roughly consists of 4 phases. At the very

beginning, we have implemented the KPM and used it to evaluate several simple

functions to examine its characteristics. In the second phase, several APIs has been

91

proposed to evaluate the DOS and LDOS function. Especially, motivated by the

study of using LDOS as criteria of Anderson Localization [43], we implement the

GPU based program to evaluate LDOS functions using KPM as shown in chapter 5,

Appendix B visualize the LDOS functions in three dimension for a cubic lattice.

At the moment this project goes into the third phase, where we make more com-

plete simulation applications, e.g. quantum monte carlo simulation for DE model as

shown in Chapter 6. Finally, a friendly user interface should be established.

7.2 Implementation Techniques

Currently, C++ is used for the CPU code and CUDA C for the NVIDIA’s GPU. In order

to provide a common KPM kernel not only for the fundamental functions(e.g. DOS,

LDOS), C++ template is applied to provide uniform APIs.

In addition, for a given hardware platform, calculation based on double floating

point operation is usually slower than operations based on single precision, however,

double precision is necessary in many occasions that requires high accuracy. Thus

it is important to provide mechanism to enable the users to switch between double

or single floating point. In the KPM library, this feature is provided through C++

template. For example, the following API is used to create a DOS function from

given expansion coefficients

template<typename T>

T* create(T* expan_coef, unsigned int num, T* kernel, HamiltonianInfo* hi);

we can switch to the single or double precision through

create<float>(...); // using single precision

create<double>(...); // using double precision

92

7.3 Examples of Using APIs and User Interface

Here let us take a look at two examples of how to use APIs and the user interface.

The following code is an example of evaluation of DOS for a given Hamiltonian,

here the Hamiltonian matrix of Anderson disorder model is used.

//create a plan for DOS, the “plan” should contain the information including expansion
order, number of random vectors, Hamiltonian matrix, etc.
DOSPlan<T> plan;

//create a HamiltonianInfo structure to store such as number lattice sites, disorder
value, etc.
HamiltonianInfo hi;

//initialize object “hi” with a 8*8*8 cubic lattice and disorder value 10.0
hi.InitialConfig(8, 8, 8, 10.0);

//initial a random vector generator
MersenneTwist mt;
mt.init_genrand(2011);

//specify number of random vectors, corresponding to RS in Algorithm 2
plan.num_r = 1792;

//Chebyshev expansion order, corresponding to N in Algorithm 2.
plan.m = 2048;

//allocate memory for storing the coefficients µi
plan.U = (T*)malloc(sizeof(T) * plan.m);

//create Hamiltonian matrix of a cubic lattice, the matrix is stored in ELL format.
plan.H = Hamiltonian::createCubeSingleElectron_ELL<T>(hi, mt);

//invoke this function to evaluate the expansion coefficients.
solveDOSPlan_gpu<T>(&plan); // using GPU
//solveDOSPlan_cpu<T>(&plan); //using CPU

//reconstruct DOS function
KPMDOS* dos = KPMDOS::create<T>(plan.U, plan.m, 1000, &hi);

//write result to files.
dos->writeToFile("result_dos.dat");

The user just need a few steps to set up a program for calculating the DOS

function, as shown in the following chart.

Create A DOS Plan → Set Parameters → Create Hamiltonian

→ Perform Calcualtion → Output Result (7.1)

In addition to providing API functions, for QMC simulation of DE model, a simple

93

interface has been established to ease the programming difficulty. As shown in

Figure 7.2 (a), several parameters are set in a configuration file (config.txt) that is

basically a plain text file. In this example, the lattice size is set to 12 × 12 × 12,

the expansion order is set to 256 and chemical potential is set to 0. Totally 30

temperature samples ranging from 0.05 to 0.3 are going to simulated. After 500

warm up steps where each step corresponds to 123 spin trail flips, 50000 measures

is taken for every 123 trail flips.

In Figure 7.2 (b), we simply use MPI to execute the program on 30 threads,

the program will distribute the work into 30 threads. As there are 30 temperature

samples in this example, every thread therefore just simulate 1 temperature. The

simulation result is shown in Appendix C.

!"#$%&'()*+,,,,,,,,,,,,--."#$%,/'(%01'203,4%5%,'6,'1,*+7*+7*+,

89(:2(%061)+;<,,,--09(=%5,2>,?4%=@14%A,%BC"01'203,$20652.,"$$95"$@,

?4%()D,,,,,,,,,,,,,,,,,,,,,,,--$4%('$".,C26%0E".,

!"(=/")DFG,,,,,,,,,,,,,,,,--H%50%.,C"5"(%6%53,$20652.,"$$95"$@,

89(I%(C1)JD,,,,,,,,,,,--09(=%5,2>,6%(C%5"695%,1"(C.'0K1,

I%(C1)DFD;LDFJ,,,,,,,,,--6%(C%5"695%,5"0K%,

M"5(9CN6%C1);DD,,,--09(=%5,2>,:206%,?"5.2,16%C1,62,16"='.'O%,64%,1@16%(,

:%"195%1),;DDDD,,,,,,--09(=%5,2>,(%"195%(%061,!

(a)

(b)

Figure 7.2: Implementing GFMC as an executable

94

Chapter 8

Conclusions and Future Works

As a competitive numerical methods for solving Hamiltonians in various physics

models, a high performance implementation of KPM is very necessary. However,

the fine-grain and memory bounded recursion in KPM brings great difficulty for

parallelization of KPM algorithm using lager number of threads on a supercomputer

or cluster via MPI.

In this study, based on GPU platform, several KPM implementations are proposed

and demonstrated to evaluate some fundamental quantum quantities in condensed

matter physics such as DOS and LDOS. We also propose optimization techniques to

enhance the performance. Through the study of the memory accessing characteris-

tics of KPM, we mainly focus on the optimization of KPM’s memory accessing.

The final performance evaluation for all the three applications indicates that,

with high memory bandwidth, GPU could well handle the fine-grain parallelism to

achieve higher performance than CPU. As for DOS application, one GPU achieves

over 12x higher performance than a CPU core. In LDOS application, combining

with MPI, GPU shows much better performance scaling, it can be learned in clus-

ter environment, one GPU is equivalent of 24 Xeon E5645 CPU cores. In the third

application, we demonstrates the quantum Monte Carlo simulation using KPM to

evaluate Green’s function, the performance evaluation indications that one Tesla

C2050 is faster than 30 Xeon E5645 CPU cores. The material simulation is dramati-

cally accelerated on the GPU cluster.

95

In order to ease the difficulty of making simulation programs on GPU, estab-

lishment of a KPM library is very necessary and helpful. An architecture of KPM

library is proposed from software engineering perspective, through two examples,

the using of APIs and executable are demonstrated.

However, the establishment of the library is not finished so far, currently we are

considering implementing a framework that provides a uniform accessing interface

and support multitask scheduling on a heterogeneous cluster. We also have room

to further optimize the current KPM implementation, for example, the "roofline"

model [105] could be applied as a tool to analyze the KPM algorithm’s characteris-

tics on a given hardware architecture.

96

Chapter 9

Acknowledgments

It is for sure that with out the guidance, help and support from my professors,

friends and my family, this dissertation would not be accomplished.

First and foremost, I would like to demonstrate my deep appreciation to my

supervisor in University of Tsukuba, Prof. Yamagiwa, without whom I would not get

my PhD in less than three years. I will never forget that it is him who picked me

from China and therefore I have a chance to make a difference to my life. It was

because of his effort that I was rewarded the scholarship from China Scholarship

Council. In addition, Prof. Yamagiwa provides me with excellent research platform

and environment where I could use the cluster freely, which was such a great help

for me to accomplish the experiment for my papers. I have also learned so many

things under his supervision, such as how to conduct research in computer science,

how to organize materials and write scientific papers. With no doubt, these skills

gained through so much training are most precious treasures throughout my life.

I also would like to express my grateful appreciation to Dr. Yunoki, associate

chief scientist in Computational Condensed Matter Physics Laboratory of RIKEN,

where I was assigned an interesting project in which I began to lift my confidence

and realize that I could do something different. In addition, he help me with kind-

ness and great patience, without his insightful comments and suggestions, I would

not get over the difficulties I ever met in my research. I also want to thank Dr. Oku-

mura who used to be very kind and helpful, without his comprehensive explanations

97

I could not push my work forward smoothly at the beginning.

In addition, I would like to deliver my grateful thanks to Prof. Wada, chief of

my dissertation committee, for his comprehensive advice and guidance to help me

prepare the necessary documents for the dissertation. Without his kind advice and

help, my dissertation would not proceed so smoothly.

In the pre-dissertation, I received from the committee professors Prof. Yasunaka,

Prof. Sakurai and Prof. Yamaguchi, very insightful advice, suggestions and com-

ments, which are so helpful for me improving the quality of my thesis and the final

dissertation. I am so grateful for their kindness.

I also would like to thank Prof. Chaoyang Li and my friends in Kochi University

of Technology as well as in University of Tsukuba, for their motivated words and

sincere encouragement.

Thanks for the support and encouragement from Prof. Ronghui Luo, Prof. Qiang

Sun and Prof. Fuming Zhou in Zhengzhou University, their warm reception when I

was staying in Zhengzhou University will be always appreciated.

The secretaries and staffs also helped me immensely. Ms. Ajiro in RIKEN, Ms.

Sakurai in University of Tsukuba and Ms. Yamanaka in Kochi University of Technol-

ogy require special mention here.

Last but not the least, I must thank my enlightened parents and family for their

precious support and understanding on my pursing PhD in Japan. Every year I

could spend only about 10 days with them that make me feel very guilty, they have

sacrificed so much that I could never pay back. For many years, their prayers and

sacrifices have been always the greatest encouragement to keep me moving forward.

98

Appendix A: A case study of evaluation of DOS

To demonstrate the availability of KPM, here the DOS for Anderson model of disor-

der is evaluated,

H = −t
∑

<i,j>

(c†icj +H.c.) +
∑

i

εic
†
ici (9.1)

where t = 1 and εi is set to 0 for the sake of simplicity.

Applying this model, the DOS function for a cubic lattice of size 1283 is evaluated

with expansion order N=512 and N=128, respectively. The Hamiltonian matrix is

compressed using CSR format. In the calculation, the parameter R and S, which

represent the number of random vectors, is chosen to be 14 and 128, respectively.

Figure 9.1 visualized the DOS function, it can be noticed that the larger N , i.e.

512, leads to higher spectrum resolution.

0

0.005

0.01

0.015

0.02

-1 -0.5 0 0.5 1

N=128

N=512

Figure 9.1: The DOS comparison with truncation between N=128 and N=512 when the lattice is
128× 128× 128, R = 14 and S = 128.

99

Appendix B: Evaluation of LDOS for Anderson disorder

model of a cubic lattice system

The GPU implementation proposed in section 5.3.2 is verified through calculating

LDOS for Anderson model of disorder,

H = −t
∑

<i,j>

(c†icj +H.c.) +
∑

i

εic
†
ici (9.2)

where t = 1 and εi is a random number in uniform distribution between (−ω/2, ω/2),

in which ω represents the magnitude of disorder.

Figure 9.2 a) and b) demonstrate spatial distribution of ρi(ω̃ = 0) of a 403 lattice

model with weak (ω = 3t) and strong disorder (ω = 18t), respectively. Each lattice

site is represented by a sphere, with transparency corresponding to the magnitude

of ρi(ω̃ = 0) (the larger value is represented by the darker shadow). With weak

disorder, the calculation shows extended states (Figure 9.2 a)), where the wave

function of electron is spread over the whole system, suggesting that the system

is conducting. With strong disorder demonstrated in Figure 9.2 b), electrons are

confined to finite regions, suggesting that the system is insulating.

a) Extended sate b) Localized sate

Figure 9.2: a) Extended states (ω = 3t) and 2) Localized states (ω = 18t) resulted from the KPM for
solving LDOS.

100

Appendix C: Monte Carlo Simulation of Double Exchange

(DE) Model

In order to check the availability of the GPU implementation, a DE model on the

simple cubic lattice is simulated. The magnetization M as a function of tempera-

ture T is examined and the results are shown in Figure 9.3. The simulations are

performed with the following parameters: Chebyshev truncation number is 256,

chemical potential µ is 0, the average is taken over 5000 MC sweeps.

0.05 0.10 0.15 0.20 0.25

0
.0

0
.2

0
.4

0
.6

0
.8

M

T/t

6*6*6

8*8*8

12*12*12

Figure 9.3: Magnetization M as a function of temperature T for different sizes (indicated in the
figure) of the simple cubic lattice.

101

References

[1] S. M. Sze, Semiconductor Devices: Physics and Technology. Wiley, 2002.

[2] B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials. Wiley-IEEE Press, 2008.

[3] Rose-Innes, A. Christopher, and E. Rhoderick, Introduction to superconductivity. Pergamon

Press Oxford, 1969.

[4] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered

magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B, vol. 39, pp.

4828–4830, 1989.

[5] M. N. Baibich et al., “Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices,”

Phys. Rev. Lett., vol. 61, pp. 2472–2475, 1988.

[6] C. Shong, S. Haur, and A. Wee, Science at the Nanoscale: An Introductory Textbook. Pan

Stanford Publishing, 2010.

[7] K. Ohno, K. Esfarjani, and Y. Kawazoe, Computational Materials Science. Springer, 1999.

[8] J. G. Bednorz and K. A. Müller, “Possible high Tc superconductivity in the Ba-La-Cu-O system,”

Zeitschrift für Physik B Condensed Matter, vol. 64, no. 2, pp. 189–193, 1986.

[9] M. Yamashita et al., “Highly mobile gapless excitations in a two-dimensional candidate quan-

tum spin liquid,” Science, vol. 328, no. 5983, pp. 1246–1248, 2010.

[10] E. Dagotto, “Correlated electrons in high-temperature superconductors,” Review of Modern

Physics, vol. 66, no. 3, pp. 763–840, 1994.

[11] W. Foulkes, L. Mitas, R. Needs, and G. Rajagopal, “Quantum monte carlo simulations of

solids,” Review of Modern Physics, vol. 73, no. 1, pp. 33–83, 2001.

[12] J. Grotendorst, D. Mark, and A. Muramatsu, Quantum Simulations of Complex Many-Body

Systems: From Theory to Algorithms. NIC-Directors, 2002.

102

[13] S. R. White, “Density matrix formulation for quantum renormalization groups,” Physical Re-

view Letters, vol. 69, no. 19, pp. 2863–2866, 1992.

[14] S. R. White, “Density-matrix algorithms for quantum renormalization groups,” Physical Review

B, vol. 48, no. 14, pp. 10 345–1035, 1993.

[15] U. Schollwöck, “The density-matrix renormalization group,” Review of Modern Physics, vol. 77,

no. 1, pp. 259–315, January 2005.

[16] S. Yamada, M. Okumura, T. Imamura, and M. Machida, “Direct extension of the density-

matrix renormalization group method toward two-dimensional large quantum lattices and

related high-performance computing,” Japan Journal of Industrial and Applied Mathematics,

vol. 28, no. 1, pp. 141–151, 2011.

[17] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, “The kernel polynomial method,” Review

of Modern Physics, vol. 78, no. 1, pp. 275–306, January 2006.

[18] N. Furukawa and Y. Motome, “Order N Monte Carlo Algorithm for Fermion Systems Coupled

with Fluctuating Adiabatical Fields,” Journal of the Physical Society of Japan, vol. 73, pp.

1482–1489, June 2004.

[19] A. Weiße, “Green-Function-Based Monte Carlo Method for Classical Fields Coupled to

Fermions,” Physical Review Letters, vol. 102, no. 15, pp. 17–20, April 2009.

[20] S. Zhang, S. Yamagiwa, M. Okumura, and S. Yunoki, “Performance acceleration of kernel

polynomial method applying graphics processing units,” 2012 IEEE 26th International Parallel

and Distributed Processing Symposium Workshops & PhD Forum, vol. 0, pp. 569–576, 2011.

[21] E. F. V. de Velde, Concurrent Scientific Computing. Springer, 1994.

[22] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The

Art of Scientific Computing. Second Edition. Cambridge University Press, 1992.

[23] M. S. Susan L. Graham and C. A. Patterson, Getting Up to Speed: The Future of Supercomputing.

The National Academies Press, 2004.

[24] Top500, “Top 500 supercomputer sites,” http://www.top500.org/, 2013.

[25] Argonne National Laboratory, “The message passing interface (mpi) standard,” 2013.

[Online]. Available: http://www.mcs.anl.gov/research/projects/mpi/

[26] I. Foster, Designing and building parallel programs: concepts and tools for parallel software

engineering. Addison Wesley, 1995.

103

http://www.mcs.anl.gov/research/projects/mpi/

[27] W. Gropp, E. Lusk, and A. Skjellum, Using Mpi: Portable Parallel Programming With the

Message-Passing Interface. The MIT Press, 1999.

[28] OpenMP Architecture Review Board, “Openmp,” 2013. [Online]. Available: http:

//openmp.org/wp/openmp-specifications/

[29] B. Chapman, G. Jost, and R. v. d. Pas, Using OpenMP: Portable Shared Memory Parallel Pro-

gramming (Scientific and Engineering Computation). The MIT Press, 2007.

[30] D. Godse, Microprocessors And Applications. Technical Publications, 2009.

[31] Intel Corporation, Microprocessors. Intel Corporation, 1992.

[32] J. Evans and G. Trimper, Itanium Architecture for Programmers: Understanding 64-Bit Proces-

sors and Epic Principles. Prentice Hall PTR, 2003.

[33] S. Burd, Systems Architecture: Hardware and Software in Business Information Systems. Course

Technology, 2010.

[34] G. Dahlquist and Å. Björck, Numerical Methods in Scientific Computing: Vol. 1. SIAM, 2008.

[35] M. Overton, Numerical Computing with IEEE Floating Point Arithmetic: Including One Theorem,

One Rule of Thumb, and One Hundred and One Exercises. Society for Industrial and Applied

Mathematics, 2001.

[36] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Performance Programming. Elsevier

Science, 2013.

[37] A. Sarje, J. Zola, and S. Aluru, Scientific Computing with Multicore and Accelerators. Chapman

and Hall/CRC, 2010.

[38] NVIDIA Corporation, “Tesla supercomputing solutions,” 2008. [Online]. Available:

http://www.nvidia.com/object/tesla-supercomputing-solutions.html

[39] Intel Corporation, “The intel xeon phi coprocessor: Parallel processing, unparal-

leled discovery,” 2012. [Online]. Available: http://www.intel.com/content/www/us/en/

high-performance-computing/high-performance-xeon-phi-coprocessor-brief.html

[40] D. Kirk and W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach. Else-

vier Science, 2010.

[41] NVIDIA Corporation, “CUDA: Compute unified device architecture programming guide,”

2008. [Online]. Available: http://developer.nvidia.com/cuda

104

http://openmp.org/wp/openmp-specifications/
http://openmp.org/wp/openmp-specifications/
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://www.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-phi-coprocessor-brief.html
http://www.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-phi-coprocessor-brief.html
http://developer.nvidia.com/cuda

[42] B. Kramer and A. MacKinnon, “Localization: theory and experiment,” Reports on Progress in

Physics, vol. 56, no. 12, pp. 1469–1564, 1993.

[43] G. Schubert, J. Schleede, K. Byczuk, H. Fehske, and D. Vollhardt, “Distribution of the local

density of states as a criterion for anderson localization: Numerically exact results for various

lattices in two and three dimensions,” Phys. Rev. B, vol. 81, p. 155106, 2010.

[44] C. Zener, “Interaction between the d-shells in the transition metals,” Phys. Rev., vol. 82, pp.

403–405, May 1951.

[45] R. Farber, CUDA Application Design and Development. Elsevier Science, 2011.

[46] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing With GPUs. Elsevier

Science, 2012.

[47] NVIDIA Corporation, “Tesla product literature.” [Online]. Available: http://www.nvidia.

com/object/tesla_product_literature.html

[48] I. Zelinka, V. Snasel, and A. Abraham, Handbook of Optimization: From Classical to Modern

Approach. Springer, 2012.

[49] A. Lastovetsky, Parallel Computing on Heterogeneous Networks. John Wiley & Sons, 2008.

[50] G. Wellein and H. Fehske, “Towards the limits of present-day supercomputers: Exact diago-

nalization of strongly correlated electron-phonon systems,” High Performance Computing in

Science and Engineering ’99, pp. 112–129, 2000.

[51] D. Sénéchal, A. Tremblay, and C. Bourbonnais, Theoretical Methods for Strongly Correlated

Electrons. Springer, 2004.

[52] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic linear algebra subprograms

for fortran usage,” ACM Trans. Math. Softw., vol. 5, no. 3, pp. 308–323, 1979.

[53] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-

marling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK’s user’s guide. Society for

Industrial and Applied Mathematics, 1992.

[54] M. Razeghi, Fundamentals of Solid State Engineering. Springer, 2009.

[55] L. Mihály and M. Martin, Solid State Physics. Wiley, 2009.

[56] R. Martin, Electronic Structure: Basic Theory and Practical Methods. Cambridge University

Press, 2004.

105

http://www.nvidia.com/object/tesla_product_literature.html
http://www.nvidia.com/object/tesla_product_literature.html

[57] R. Varga, Geršgorin and His Circles. Springer, 2004.

[58] G. M. Amdahl, “Validity of the single processor approach to achieving large scale computing

capabilities,” Proceedings of the spring joint computer conference, pp. 483–485, 1967.

[59] Y. Barlas, Role of Electron-electron Interactions in Chiral 2DEGs. The University of Texas, 2008.

[60] J. Chen and W. Hu, “Reproducing kernel partition of unity: from continuum to quantum,”

Computational Mechanics, pp. 167–179, 2009.

[61] S. Pissanetzky, Sparse Matrix Technology. Academic Press, 2007.

[62] R. P. Tewarson, Sparse matrices. Elsevier Science, 1973.

[63] T. Davis, Direct Methods for Sparse Linear Systems. Cambridge-USA, 2006.

[64] J. Dongarra. (1995) Compressed row storage (crs). [Online]. Available: http://netlib.org/

linalg/html_templates/node91.html

[65] R. Grimes, D. Kincaid, and D. Young, ITPACK 2.0 User’s Guide. University of Texas, 1979.

[66] P. Micikevicius, “Identifying performance limiters,” 2011. [Online]. Avail-

able: http://developer.download.nvidia.com/CUDA/training/cuda_webinars_dentifying_

performance_limiters.pdf

[67] J. D. McCalpin, “Memory bandwidth and machine balance in current high performance com-

puters,” IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newslet-

ter, December 1995.

[68] E. Photonics, “Gpu accelerated linear algebra,” 2013. [Online]. Available: http:

//www.culatools.com/

[69] NVIDIA Corporation, “Cublas,” 2013. [Online]. Available: https://developer.nvidia.com/

cublas

[70] N. Bell and M. Garland. (2009) Cusp : Generic parallel algorithms for sparse matrix and

graph computations. [Online]. Available: http://code.google.com/p/cusp-library/

[71] P. Sexton, A Performance Analysis of Sparse Matrix-vector Multiplication in a Templated C++

Linear Algebra Library. University of Illinois at Chicago, 2006.

[72] G. Strang, Introduction to linear algebra. Wellesley-Cambridge Press, 2003.

[73] M. Baskaran and R. Bordawekar, “Optimizing sparse matrix-vector multiplication on gpus,”

IBM Research, Tech. Rep., December 2012.

106

http://netlib.org/linalg/html_templates/node91.html
http://netlib.org/linalg/html_templates/node91.html
http://developer.download.nvidia.com/CUDA/training/cuda_webinars_dentifying_performance_limiters.pdf
http://developer.download.nvidia.com/CUDA/training/cuda_webinars_dentifying_performance_limiters.pdf
http://www.culatools.com/
http://www.culatools.com/
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
http://code.google.com/p/cusp-library/

[74] J. D. Davis and E. S. Chung, “Spmv: A memory-bound application on the gpu stuck between

a rock and a hard place,” Microsoft Research, Tech. Rep., 2012.

[75] K. K. Erik Saule and Ü. V. Çatalyürek, “Performance evaluation of sparse matrix multiplication

kernels on intel xeon phi,” The Ohio State University, Tech. Rep., 2013.

[76] B. Nathan and G. Michael, “Implementing sparse matrix-vector multiplication on throughput-

oriented processors,” Proceedings of the Conference on High Performance Computing Network-

ing, Storage and Analysis, pp. 1–11, 2009.

[77] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication on CUDA,” NVIDIA

Corporation, Tech. Rep., December 2008.

[78] G. Jeswin, H. Justin, and P. Sadayappan, “High-performance sparse matrix-vector multiplica-

tion on gpus for structured grid computations,” Proceedings of the 5th Annual Workshop on

General Purpose Processing with Graphics Processing Units, pp. 47–56, 2012.

[79] F. Vázquez, G. Ortega, J. Fernández, and E. Garzón, “Improving the performance of the sparse

matrix vector product with gpus,” Computer and Information Technology (CIT), pp. 1146–

1151, 2010.

[80] M. M. Wolf, E. G. Boman, and B. A. Hendrickson, “Optimizing parallel sparse matrix-vector

multiplication by corner partitioning,” PARA08, 2008.

[81] Y. Saad, Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied

Mathematics, 2003.

[82] F. Vázquez, E. M. Garzón, J. A. Martinez, and J. J. Fernández, “The sparse matrix vector

product on GPUs,” University of Almeria, Tech. Rep., June 2009.

[83] S. Dandamudi, Fundamentals of Computer Organization and Design. Springer, 2003.

[84] NVIDIA Corporation, “Cuda c best practices guide,” 2012. [Online]. Available: http:

//docs.nvidia.com/cuda/cuda-c-best-practices-guide/

[85] T. Kukuk, “Homepage of the linux nis/nis+ projects.” [Online]. Available: http:

//www.linux-nis.org/

[86] M. T. Jones, “Network file systems and linux.” [Online]. Available: http://www.ibm.com/

developerworks/library/l-network-filesystems/

[87] N. W. Ashcroft and N. D. Mermin, Solid State Physics. Brooks/Cole, 1975.

107

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://www.linux-nis.org/
http://www.linux-nis.org/
http://www.ibm.com/developerworks/library/l-network-filesystems/
http://www.ibm.com/developerworks/library/l-network-filesystems/

[88] S. Zhang, S. Yamagiwa, M. Okumura, and S. Yunoki, “Parallelizing kernel polynomial method

applying graphics processing units,” International Journal of Networking and Computing,

vol. 2, no. 1, 2012.

[89] S. Zhang, S. Yamagiwa, M. Okumura, and S. Yunoki, “Kernel polynomial method on gpu,”

International Journal of Parallel Programming, vol. 41, no. 1, pp. 59–88, 2013.

[90] G. Schubert and H. Fehske, “Quantum percolation in disordered structures,” Quantum and

Semi-classical Percolation and Breakdown in Disordered Solids, vol. 762, pp. 1–28, 2009.

[91] P. W. Anderson, “Absence of diffusion in certain random lattices,” Physical Review, vol. 109,

no. 5, pp. 1492–1505, March 1958.

[92] D. J. Thouless, “Electrons in disordered systems and the theory of localization,” Physics Re-

ports, vol. 13, no. 3, pp. 93–142, October 1974.

[93] P. Lee and T. V. Ramakrishnan, “Disordered electronic systems,” Review of Modern Physics,

vol. 57, no. 2, pp. 287–337, April 1985.

[94] V. Dobrosavljević and G. Kotliar, “Mean field theory of the mott-anderson transition,” Physical

Review Letters, vol. 78, no. 20, pp. 3943–3946, March 1997.

[95] G. Schubert, A. Weiße, and H. Fehske, “Localization effects in quantum percolation,” Physical

Review B, vol. 71, no. 4, p. 045126, January 2005.

[96] S. Zhang, S. Yamagiwa, and S. Yunoki, “A study of parallelizing o(n) green-function-based

monte carlo method for many fermions coupled with classical degrees of freedoms,” Journal

of Physics: Conference Series, 2013.

[97] P. G. de Gennes, “Effects of double exchange in magnetic crystals,” Phys. Rev., vol. 118, pp.

141–154, April 1960.

[98] N. Metropolis and S. Ulam, “The monte carlo method,” Journal of the American statistical

Association, vol. 44, no. 247, pp. 335–341, 1949.

[99] N. Metropolis, “The beginning of the monte carlo method,” Los Alamos Science, January 1987.

[100] S. Yunoki, J. Hu, A. L. Malvezzi, A. Moreo, N. Furukawa, and E. Dagotto, “Phase separation

in electronic models for manganites,” Phys. Rev. Lett., vol. 80, pp. 845–848, January 1998.

[101] S. Yunoki and A. Moreo, “Static and dynamical properties of the ferromagnetic kondo model

with direct antiferromagnetic coupling between the localized t2g electrons,” Phys. Rev. B,

vol. 58, pp. 6403–6413, September 1998.

108

[102] E. Dagotto, S. Yunoki, A. L. Malvezzi, A. Moreo, J. Hu, S. Capponi, D. Poilblanc, and N. Fu-

rukawa, “Ferromagnetic kondo model for manganites: Phase diagram, charge segregation,

and influence of quantum localized spins,” Phys. Rev. B, vol. 58, pp. 6414–6427, September

1998.

[103] Y. Motome and N. Furukawa, “A Monte Carlo Method for Fermion Systems Coupled with

Classical Degrees of Freedom,” Journal of the Physical Society of Japan, vol. 68, pp. 3853–

3858, December 1999.

[104] P. Duhamel and M. Vetterli, “Fast fourier transforms: A tutorial review and a state of the art,”

Signal Processing, vol. 19, no. 4, pp. 259 – 299, 1990.

[105] S. Williams, A. Waterman, and P. David, “Roofline: an insightful visual performance model

for multicore architectures,” Commun. ACM, vol. 52, no. 4, pp. 65–76, April 2009.

109

Publication List

Journals

[1] Shixun Zhang, Shinichi Yamagiwa, and Seiji Yunoki, “A Study of Parallelizing O(N) Green-

Function-based Monte Carlo Method for Many Fermions Coupled with Classical Degrees of

Freedoms,” Journal of Physics: Conference Series, IOP, 2013

[2] Shixun Zhang, Shinichi Yamagiwa, Masahiko Okumura, and Seiji Yunoki, “Kernel Polynomial

Method on GPU,” International Journal of Parallel Programming, vol. 41, no. 1, pp. 59-88,

Springer, 2013

[3] Shixun Zhang, Shinichi Yamagiwa, Masahiko Okumura, and Seiji Yunoki, “Parallelizing Kernel

Polynomial Method Applying Graphics Processing Units,” International Journal of Networking

and Computing, vol. 2, no. 1, pp. 41-55, Hiroshima University, 2012

Peer-Reviewed Conferences

[1] Shinichi Yamagiwa and Shixun Zhang, “Scenario-based Execution Method for Massively Par-

allel Accelerators,” in Proceedings of International Symposium on Parallel and Distributed Pro-

cessing with Applications (ISPA-13), IEEE CS, 2013

[2] Shinichi Yamagiwa and Shixun Zhang, “CarSh: A Commandline Execution Support for Stream-

based Acceleration Environment,” in Proceedings of International Conference on Computational

Science, Elsevier, Nov. 2013

[3] Shixun Zhang, Shinichi Yamagiwa, and Seiji Yunoki, “GPU-based Parallelization of Kernel

Polynomial Method for Solving LDOS,” in Proceedings of ScalA/Supercomputing12, pp. 633-

642, IEEE CS, 2012

[4] Shixun Zhang, Shinichi Yamagiwa, Masahiko Okumura, and Seiji Yunoki, “Performance Accel-

eration of Kernel Polynomial Method Applying Graphics Processing Units,” in Proceedings of

the 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum,

pp. 569-576, IEEE CS, 2011

[5] Shixun Zhang, Shinichi Yamagiwa, Masahiko Okumura, and Seiji Yunoki, “Performance Im-

pact Applying Compression Format to Sparse Matrix on Kernel Polynomial Method Using

GPU,” in Proceedings of the Second International Conference on Networking and Computing,

pp. 337-341, IEEE CS, 2011

110

	List of figures
	List of tables
	Introduction
	Numerical Study in Material Science and Kernel Polynomial Method
	Parallel Computing in Computational Science
	Research Objectives
	Originality and Contributions
	Organization of This Thesis

	The Kernel Polynomial Method
	Definition
	Applying KPM to Solve Density of States
	Applying KPM to Solve Local Density of States
	KPM Algorithm Analysis
	Matrix Compression Techniques
	Numerical Complexity
	Algorithm Profiling
	Limitations of Using Third-party Library

	Sparse Matrix Vector Multiplication (SpMV)
	Discussion and Summary

	GPU Architecture and CUDA Programming Model
	GPU Architecture
	CUDA Programming Model
	Optimization Techniques on GPU
	Experiment Environment
	Discussion and Summary

	KPM to Evaluate Density of States
	Algorithm design
	Implementation on GPU
	The Full Map Method
	The Sliding Window Method
	Discussion on Full Map And Sliding Window Method
	Implementing KPM With Multiple CUDA Kernels

	Discussion and Summary

	KPM to Evaluate Local Density of States
	Algorithm for LDOS
	Implementation on CPU
	The Design and Implementation on GPU
	Parallelization Methods on Single GPU
	Implementation on Single GPU
	Extend to GPU Cluster

	Experimental Performance Analysis
	Performance Evaluation of Single CPU and Single GPU
	Performance Evaluation on GPU cluster

	Discussion and Summary

	KPM for Monte Carlo Simulations of Double Exchange Model
	Model and Method Formulation
	Double Exchange Model
	Green-function-based Monte Carlo (GFMC) method

	Implementation and Parallelization Schemes
	Algorithm Design
	Parallelization Methods
	Implementation on GPU

	Performance Evaluation
	Performance Scaling on Multi-core CPU
	Performance Scaling for Increasing Hamiltonian Size
	Performance Scaling for Increasing Number of Nodes
	Performance Considerations

	Discussion and Summary

	Library Implementation: An Introduction
	Library Structure
	Implementation Techniques
	Examples of Using APIs and User Interface

	Conclusions and Future Works
	Acknowledgments
	Appendix A: A Case Study of Evaluation of DOS
	Appendix B: Evaluation of LDOS for Anderson Disorder Model
	Appendix C: Monte Carlo Simulation of Double Exchange Model

