
 1 

Application of random forest algorithm for 

studying habitat selection of colonial herons 

and egrets in human-influenced landscapes  

Luis Carrasco · Miyuki Mashiko · Yukihiko Toquenaga 

 

Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-

8572, Japan  

 

E-mail: luis@pe.ska.life.tsukuba.ac.jp  

Tel: +81-20-853-6657 

Fax: +81-20-853-6657 



 2 

Abstract  Understanding the mechanisms of habitat selection is fundamental to the 

construction of proper conservation and management plans for many avian species. Habitat 

changes caused by human beings increase the landscape complexity and thus the 

complexity of data available for explaining species distribution. New techniques that 

assume no linearity and capable to extrapolate the response variables across landscapes are 

needed for dealing with difficult relationships between habitat variables and distribution 

data. We used a random forest algorithm to study breeding-site selection of herons and 

egrets in a human-influenced landscape by analyzing land use around their colonies. We 

analyzed the importance of each land-use variable for different scales and its relationship 

to the probability of colony presence. We found that there exist two main spatial scales on 

which herons and egrets select their colony sites: medium scale (4 km) and large scale (10-

15 km). Colonies were attracted to areas with large amounts of evergreen forests at the 

medium scale, whereas avoidance of high-density urban areas was important at the large 

scale. Previous studies used attractive factors, mainly foraging areas, to explain bird-colony 

distributions, but our study is the first to show the major importance of repellent factors at 

large scales. We believe that the newest non-linear methods, such as random forests, are 

needed when modelling complex variable interactions when organisms are distributed in 

complex landscapes. These methods could help to improve the conservation plans of those 

species threatened by the advance of highly human-influenced landscapes. 

Keywords  Breeding-site selection · Colonial birds · Habitat selection · Landscape 

ecology · Predictive models
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Introduction  

Understanding the mechanisms of habitat selection is fundamental to the construction of 

proper conservation and management plans for many avian species. Choosing breeding 

sites is a crucial task for avian species, but it is still not clear how they undertake it. 

Approximately 13% of birds breed in spatially packed colonies (Gill 2007). Colony site 

selection is a more difficult problem than choosing an individual nest site because the site 

selection affects the fate of all members of the colonies. 

Identifying those scales at which certain distribution pattern occur can help to clarify 

what mechanisms are involved in habitat selection. However, many studies on colonial 

birds have been conducted at a single spatial scale, so results about colony site selection 

and explanations for the mechanisms involved have been widely diverse. Most of them 

used linear models or simple correlations between landscape variables and the presence of 

the species for explaining the colony distribution (Fasola and Canova 1991, Tourenq et al. 

2004). The interaction between the explanatory variables are very intricate, and a high 

correlation among scales makes this analysis even more complicated, specially when 

studying mixed species colonies, when differential habitat selection among species could 

add more complexity. 

Some authors created habitat suitability models for colonial birds (Kelly et al. 2008, 

Parkes et al. 2012), but their methods assumed linear responses between the dependent 

variable and the explanatory variables. All of these methods are generally appropriate when 

studying relatively simple variable interactions and when responses to the explanatory 

variables are linear. However, widely used methods such as logistic regression are often 

misapplied. In many cases, applying a logistic regression does not guarantee maximum-

likelihood estimates and the odd ratios are not always proportional to the probability of 

presence of the species (Keating and Cherry 2004). For this reason, new methodologies that 
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can successfully incorporate non-linear and complex-variables’ relationships are needed to 

analyze differences in site selection for each scale. 

In the last decades, the high human impact on natural landscapes has challenged 

scientists to improve their predictive models in order to create effective conservation plans 

for bird species that share habitat with human beings. The complexity of the optimization 

problem in ecological models increases with spatial complexity (Seppelt and Voinov 2002), 

so including a higher fragmentation of agricultural landscapes may add difficulty to the 

analysis of the relationships between the habitat variables and the colony locations. 

Moreover, landscape complexity can affect the ability of the species to assess the habitat 

and for the detection of resources (Wiens and Milne 1989). Furthermore, for some 

agricultural landscapes affected by urban development, the explanatory data are too 

complex, and it is necessary to use other techniques without assuming linearity, such as 

classification trees or machine learning methods. These techniques are better tools for 

extrapolating the response variables across landscapes and for analyzing the importance of 

the predictors than are other methods such as linear regressions (Prasad et al. 2006). The 

random forest (RF) technique (Breiman 2001) does not need to assume linearity. It allows 

for the modelling of complex interactions among predictor variables and is becoming 

widely used due to its predictive power (in comparison with normal decision trees) and its 

capacity to measure variable importance (Cutler et al. 2007). 

Our objective was to detect the factors that affect, at different scales, breeding site 

selection of colonial birds in a human-influenced landscape. Japan is a good example of a 

highly human-influenced complex landscape where we can still find birds breeding in 

mixed-species colonies, and where we can obtain precise data of land uses and breeding 

locations distribution. We used location data for heron and egret colonies distributed in the 

fairly complex agricultural landscape of Ibaraki and surrounding prefectures in Japan in 

2011, and compared the land types surrounding the colonies with those around unoccupied 
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sites using geographic information systems (GIS) techniques. Then we applied a RF 

algorithm to analyze the importance of the different land-use variables at different scales 

for establishing a colony. Our results showed that there were two main scales at which 

herons and egrets select colony sites: medium scale (4 km) and large scale (10-15 km). 

Evergreen forest was the most important land type for explaining colony distribution at the 

medium scale. Conversely, disturbance factors, such as urban areas, were determining 

factors for colony locations at larger scales. Foraging habitats were revealed to be 

unimportant predictors at all scales, especially at the smaller scales. 

 

Methods  

Study area and species  

The study area was the central and southern regions of Ibaraki Prefecture and some 

bordering regions of Tochigi, Gunma, Saitama and Chiba prefectures in central Japan (Fig. 

1). The region is limited by mountains to the north-west, by the Pacific Ocean to the east 

and by the Tone River to the south, with a total area of approximately 10 022 km. It is 

mainly a low altitude plain and its main geological feature is the presence of Lake 

Kasumigaura. The predominant human-influenced land use is agricultural, rice fields being 

the dominant cultivation (8.5% of the study area). There are residential areas of various 

sizes and forest patches spread all around the region. Six species of herons and egrets, Grey 

Heron (Ardea cinerea), Great Egret (A. alba), Little Egret (Egretta garzetta), Intermediate 

Egret (E. intermedia), Cattle Egret (Bubulcus ibis) and Black-crowned Night Heron 

(Nycticorax nycticorax), breed mainly in mixed-species colonies every year in the study 

area. They build their nests on conifers, broad-leaf trees and in bamboo thickets 

(Environmental Agency of Japan 1994). 
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Colony locations  

Twenty colony locations were recorded by ground surveys (Mashiko and Toquenaga 2013) 

in the study area during the breeding season, from March to August, of 2011. In our study, 

we aimed to analyze the land use surrounding the colonies, so we referred to the colony 

data for 2011 due to the limited availability of land-use maps with sufficient resolution up 

to this year. The site selection model for this study was based on differences in the areas 

surrounding colonies and the those surrounding unoccupied sites. For the statistical model 

to be consistent, we needed to compare the same number of colonies and unoccupied sites, 

so we randomly chose 20 locations, which corresponds with the number of observed 

colonies in this study, where a colony could, potentially, be formed. Locations available for 

colonization were defined as follows. First, a rectangular area of the study area was 

arbitrarily delimited (35°52’32”N - 36°35’43”N, 139°35’36”E - 141°00’00”E). Second, 

forest areas below an altitude of 100 m were selected, as colonies are seldom found at 

higher elevations in this area of Japan (Fig. 1). Unoccupied sites were then randomly 

selected among the potentially available regions. Because the random selection of sites 

could lead to slightly different results, we created 30 different data sets of 20 points each, 

and analyzed the data for each set. 

Landscape variables  

To analyze the information on land use in the areas surrounding the colonies and 

unoccupied sites, we used a land-use map of Japan provided by the Japanese Aerospace 

Exploration Agency (JAXA). This map was created with multi-satellite imagery from 2011. 

The final map had an approximately 45-m pixel size. The processing and classification 

details are explained at http://www.eorc.jaxa.jp/ALOS/lulc/lulc_jindex.htm.  
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Eight relevant land-use variables for herons and egrets were identified as follows: bare 

land, evergreen forest, deciduous forest, grassland, crop land, paddy field, urban area and 

body of water (Fig. 2). The selection of the variables was based on previous knowledge of 

the ecology of the heron species (Tojo 1996, Lane and Fujioka 1998) and examination of 

the satellite images. Layers of circular buffer zones were created around the colonies and 

the 20 randomly selected points, and areas of the eight selected land-use variables were 

identified within each. The radii of the buffer zones were 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 

20, 30, and 40 km, distances that cover the inter-distance of colonies with a high resolution 

as well as areas at coarser scales (Fig. 1). The raster package (Hijmans and van Etten 2012) 

in R 2.15.2 (R Development Core Team 2011) was used to extract the land-use information.  

Statistical analyses  

Random forest model  

A colony site selection model was created using a random forests (RF) algorithm (Breiman 

2001), which relies on the ideas of classification and regression trees (CART) (Breiman et 

al. 1984), and on bagging methods (Breiman 1996). For input data against models, we used 

the area of each landscape variable surrounding the 20 colonies and the 20 randomly 

chosen unoccupied sites. One model for each scale around the colonies (each buffer radius) 

was built. For example, for creating the 3-km scale model the eight land use variables 

measured at a buffer radius of 3 km were used. Randomized models were created to 

compare the predictive power of our colony distribution models with the predictive power 

of the models when the outputs of the training sets (presence and absences) were randomly 

permuted. One third of the data was left out for each bootstrap sample (the out-of-bag data, 

OOB) for each tree and 500 trees were created for each classification model. The process 

was repeated for each of the 30 random points data sets. 
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Predictive accuracies  

We calculated the accuracy of the model as 1 − OOB error estimate (Breiman 2001). The 

results of the RF model can be slightly different each time it is performed, even when using 

the same parameters, so ten models were built for each scale. The mean value of the OOB 

error for the ten repetitions was used to measure the accuracy for one model. Disparate 

accuracy results are also obtained for the randomized models for different permutations of 

the presence-absence values, so the mean value of the accuracy out of 100 repetitions was 

used. The prediction accuracy of models tended to vary among random sets of hypothetical 

unoccupied colony locations. Each random set of hypothetical colonies plays a role similar 

to that of the data for supervised learning in a neural network model. Bad and good data 

could, respectively, cause low and high accuracies. So we calculated not only means but 

also maximum accuracies of the RF models for each scale. Mean accuracies represent the 

overall tendency of model performance across the scales, but the best performance of a RF 

model at each scale should be evaluated by the maximum accuracy values. This is because 

we wanted to use the set that best explained the colony distribution, not being interested in 

one “average model” for analyzing the important explanatory variables.  

Variable importance  

For the scales with the best accuracy models, the importance of each land use variable was 

analyzed using the mean decrease accuracy index (Breiman 2001). To do this, we selected 

the data-set with the maximum accuracy for a specific scale among all sets. As we found 

some variance each time the RF was constructed, the average of the mean decrease 

accuracy index over ten models was used.  

Variable effect on colony presence  



 9 

Partial dependence plots (Friedman 2001, Hastie et al. 2005) were used to graphically 

characterize relationships between individual predictor variables and predicted 

probabilities of colony presence (Cutler et al. 2007). The vertical axis of this plot is a 

measure of the marginal effect of a certain explanatory variable on the class probability. In 

our study, the vertical axis represents the effect of the area of each land use on the 

probability of colony presence. The horizontal axis represents the value of the variable for 

which partial dependence is sought. We interpreted that a colony “preferred” certain land 

use when the effect on the probability of colony presence was higher for higher areas of 

that land type. A colony, therefore, “avoided” a land type when the effect on the 

probability of colony presence decreased as that land-use area increased. The randomForest 

package (Liaw and Wiener 2002) in R was used for model creation and analysis.  

 

Results  

The accuracy values of the randomized models strongly depended on the random 

permutation of the output values (colony presence or absence) but, on average, all the 

scales showed an accuracy of between 47% and 48% (Figure 3). The 4-km scale model had 

the best accuracy on average, followed by the 15-, 30-, 10- and 1-km scales. The 4-km 

model had a relatively high accuracy for all the sets but, in most cases, it was not the scale 

with the best accuracy within the set. In contrast, 10-km or 15-km scales performed the best 

in many of the sets. 

The shape of the maximum accuracies graph was quite similar to that of the mean 

accuracies graph, but the 4-km models did not have the maximum values for accuracy 

(Figure 3). The scale with the highest maximum accuracy was the 10-km scale, with almost 

78% accuracy, 30% more accurate than its equivalent randomized model.  
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Some scales were ineffectual for explaining colony distribution, even when nearby scales 

were important. This was the case for the 0.5-, 2-, 5-, 6- and 7-km scales, showing low 

mean accuracy levels (Figure 3). Variable importance was analyzed for the sets that 

showed maximum accuracies for the 4-, 10- and 15-km scale models (Figure 4). Evergreen 

forest was the most important variable for explaining colony distribution at the 4-km scale, 

followed by urban and crop areas (Figure 4A). The importance of the evergreen forests 

decreased as scale size increased, being very low for 15 km. For the 10- and 15-km scales, 

urban areas and bare land were the most important variables for the model (Figure 4B and 

C). Paddy fields were revealed to have low importance for the model, although their 

importance increased with scale. 

Partial dependence plots of each landscape variable were very similar for the different 

scales, so we chose the most important ones of the best explanatory scales to analyze the 

relationship between the area of each landscape predictor and the probability of colony 

presence. Evergreen forest was an attractive land type for establishing a colony (Figure 5). 

For the 4-km scale, regions made up of less than 7% evergreen forest were strongly 

avoided. On the other hand, areas made up of more than 35% evergreen forest were neither 

attractive or repellant. We used the 10-km model to analyze the importance of urban areas, 

as this variable was the most important at this scale. Regions made up of at least 10% urban 

areas were strongly avoided (Figure 5). Colonies tended to be established where urban 

areas made up between 5% and 10% of the area within the 10-km radius. Bare soil 

produced similar results to those of urban land types. Crops and paddy fields were 

attractive land types when they were relatively important variables in some models.  

 

Discussion  
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We obtained highly accurate colony site selection models for 4-, 10- and 15-km scales. At 

the 4-km scale, evergreen forest was the most important variable, being an attractive factor. 

At the 10- and 15-km scales, urban areas and bare land were the main variables for 

explaining the models, both of which were avoided when they were present in high ratios. 

Paddy fields, the main foraging habitat for all the species, was not a high-importance 

variable for any of the scales, although its importance increased with scale. The highest 

accuracy obtained was 78% for the 10-km model.  

It was revealed that there are two very distinct general scales by which site selection is 

most affected: the 4-km range (medium scale) and the 10-15 km range (large scale). The 4-

km scale had the highest average accuracy for all sets, the 10-km scale had the highest 

maximum accuracy values and the 15-km scale had high average and maximum values. 

The 30-km scale also exhibited good performance on average and when analyzing the 

maximum accuracy. The variables that best explained the distribution of the colonies at 30 

km were very similar to those at 15 km, so we consider this scale to be highly correlated 

with the 15-km scale. Herons and egrets could be mainly using these two scales to decide 

where to establish their colonies. Scales in between these two and also small scales were of 

very low importance for colony site selection. 

Scale dependence could explain the diversity of results obtained in previous studies on 

the accuracy of various models used for predicting colony sites of herons and egrets, and 

could also provide a different explanation for which factors affect colony distribution. For 

example, Gibbs and Kinkel (1997) used a 15-km scale to explain colony distribution. On 

the other hand, Fasola and Alieri (1992) and Tourenq et al. (2004) used a 5-km scale, while 

Boisteau and Marion (2007) used 25 km. In these cases, foraging habitats were used as 

predictors, so the scales were justified by the observed foraging ranges. Our study reveals 

that studying one single scale could lead to models with low predictive power, and with 
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potentially fatal consequences when erroneously considering explanatory variables as key 

factors, while other variables could be much more important at different scales. 

Most of the past studies on herons and egrets analyzed areas not highly inhabited by 

humans. Scale is a crucial factor when studying colony site selection, and it could depend 

strongly on the landscape configuration. Among the studies that have considered different 

scales, Kelly et al. (2008) showed that the 1-km scale was best for explaining the colony 

distribution of herons and egrets in tidal marshes. Parkes et al. (2012) also found that small 

scale (below 1.5 km) was very important for the sites of Cattle Egret colonies in upland 

residential areas (although their model did not consider interaction between the explanatory 

variables). Bigger scales (from 1 to 10 km), however, were more important in rice field 

related colonies in France (Tourenq et al. 2004), depending on the study species. The scale 

at which the colony site selection is performed could strongly depend on the land types 

surrounding the colonies. Landscape configuration and different levels of fragmentation of 

important habitats could be crucial factors for determining which scales allow the species to 

assess the surroundings and choose optimal colony sites. 

Evergreen forest, an attractive land type for herons and egrets, was the most important 

variable at the medium scale, while repelling factors such as urban areas and bare land were 

most important at large scales. Evergreen forest includes bamboo thickets, the most 

important nest substrate for herons and egrets, followed by trees, which explains the higher 

importance of this land use over deciduous forest. Identifying regions with greater amounts 

of bamboo thickets, places available for the establishment of a colony, could be one of the 

most important steps of habitat assessment after the arrival of the individuals. The 

importance of the medium scale for colony site selection might reflect an effect of the study 

area landscape patterns, where high densities of evergreen forest could be easily detected at 

the 4-km scale. At different scales, the distribution patterns of this land use could make the 

habitat assessment more difficult for herons and egrets, being unable to discriminate high 
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density forest regions at small or large scales. Colonies demonstrated, however, a 

preference for lower urban- and bare-area densities (the latter being highly related to 

human-influenced land types) at large scales. When food and forest availability does not 

determine colony locations, mechanisms such as avoiding disturbances become more 

important. There is evidence of heron and egret colonies avoiding urban areas at small 

scales (Fasola and Alieri 1992) but our current study is the first study to show this effect on 

the distribution of colonies at large scales. Avoiding large urban areas could be 

advantageous in terms of lower levels of disturbances for the colonies. In Saitama 

Prefecture, located in the south-west of our study area and in the northern suburbs of Tokyo, 

there has been a great deal of urban development since 1960; population sizes of herons 

and egrets have decreased and some colonies have disappeared, even where paddy fields 

and forest patches that are available for the establishment of colonies remain (Narusue 

1992). The effect of the high density of urban areas at the large scale could have been the 

main reason for the extinction of heron and egret colonies in central Japan. 

Paddy fields, the main foraging areas for the study species, was revealed to be 

unimportant for predicting colony site, in contrast to results of past studies on herons and 

egrets. However, its importance seemed to increase with scale. Previous studies showed 

weak relationships between food habitats and the colony distribution of these species 

(Fasola and Alieri 1992, Boisteau and Marion 2007) in agricultural landscapes, but they 

included only attractive factors, and no repelling factors, in their models. Fasola and 

Canova (1991) had the same results for mixed-species colonies of gulls and terns, where 

foraging sites were not an important factor in colony location, allowing us to infer that this 

could also be true for other wading bird families. Landscape complexity in developed urban 

regions, as exist in the present study area, could lead to difficulties in the assessment of the 

quality of food habitats for herons and egrets. Difficulties for many species on the 

evaluation of food availability for the breeding period have been widely discussed (Orians 
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and Wittenberger 1991, Fuller 2012). Also, the capacity for evaluating the amount and 

quality of foraging habitats could be damaged by surrounding urban landscapes (Battin and 

Lawler 2006). Our study area is highly affected by urban development and some regions 

are experiencing very rapid landscape changes, so even resident species could have 

problems assessing habitat quality, despite that their evaluation process continues even 

during non-breeding seasons. 

The study of positively and negatively associated factors on different scales revealed 

two main characteristics of colony distribution of herons and egrets: colony sites were 

established near large amounts of evergreen forests at medium-scale distances and where 

there are less urban areas at higher-scale distances. Including avoidance factors could 

improve the performance of predictive bird colony distribution models, especially when 

analyzing at large scales. Conservation and management of colonial wading birds living in 

human-influenced landscapes should not only focus on the maintenance of the available 

foraging and breeding habitats, but also on controlling urban development around the 

colonies. 

In the present study, the predictive accuracy for the best models was higher than that of 

a predictive colony distribution model for mixed-species herons and egrets by Kelly et al. 

(2008) and similar to the predictive model for Cattle Egret by Parkes et al. (2012). This 

shows that the RF method can be a good tool for predicting the colony sites of herons and 

egrets, and that it can handle the complexity of human-influenced landscapes. However, the 

predictive power of the RF model was lower than that of those using other colonial but 

non-wading and single-species data (Bustamante 1997, Lauver et al. 2002, Heinänen et al. 

2008). This is probably due to the relative simplicity of those data, where linear statistical 

tools could be sufficient for explaining the distribution data. 

The use of GIS in combination with the newest classification techniques, such as RF, 

seems to be an appropriate analysis method for complex ecological data that includes the 
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complexities of human-influenced agricultural landscapes. Logistic regressions are often 

powerless, especially with complicated land-use patterns. Resultant logistic models are 

often very specific to data sets, and the same model cannot be applied to other similar data 

sets. Neural networks and decision trees are alternatives for such complicated land use 

patterns, but our approach of using RF has two prominent advantages against neural 

networks and other decision trees. The first is that we can evaluate the relative importance 

of competing variables, or land-use types. The second is that RF can avoid over 

specialization and remain generalized for similar problems (Breiman 2001). 

In summary, we applied a RF algorithm for analyzing the distribution of herons and 

egrets colonies in a strongly human-influenced landscape in Japan, and we were able to 

clarify some important characteristics of the colony site selection strategies of these species. 

We strongly believe that non-linear methods as RF are more appropiate when dealing with 

predictive suitability models for birds living in highly human-influenced landscapes than 

classic linear methods. These methodologies could be a big help to rethink and improve the 

conservation plans of those species threatened by the advance of the agricultural and urban 

landscapes.  
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FIGURE LEGENDS 

Fig. 1  Locations of heron and egret colonies in 2011 in our study area. Each dot 

represents a colony location (20 colonies in total). Mean nearest neighbor distance between 

colonies was 9.97 km. Grey regions show an altitude greater than 100 m where the 

distribution of herons and egrets is much lower. 

Fig. 2  Land-use map of the study area. Map provided by JAXA combining ALOS 

satellite imagery and ground surveys from 2011. BL: bare land, EF: evergreen forest, DF: 

deciduous forest, GL: grassland, CL: crop land, PF: paddy field, UA: urban area, and WB 

body of water. 

Fig. 3  Model accuracies for each scale. The mean graph represents the average accuracy 

for all of the 30 random-points datasets. The maximum graph considers only the random set 

that provide the maximum accuracy for each scale. The randomized accuracy graph 

represents the average accuracy of the randomized models for all 30 random-points data 

sets. 

Fig. 4  Variable importance of each land use for three scale models (4, 10 and 15 km) 

represented by the mean decrease accuracy index. Error bars represent a 95% confidence 

interval. EF: evergreen forest, UA: urban areas, CL: crop land, BL: bare land, DF: 

deciduous forest, PF: paddy field, WB: body of water, and GL grassland. 

Fig. 5  Partial dependence plot for evergreen-forest land use for the 4-km scale model and 

urban land use for the 10-km scale model.
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FIGURE 4: 
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FIGURE 5: 
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Table 1 Proportion of each land use (%) of the whole study area and of the average among all buffers surrounding the
colonies for the two most important scales

Land use Study Area 4-km Scale 10-km Scale

Body of water 3.8 2.7 4.9
Urban areas 11.7 11.2 8.8
Paddy field 22.8 21.8 22.7
Crop land 13.2 17.2 16.0
Grassland 6.7 6.3 6.7
Decidious forest 17.1 20.5 17.9
Evergreen forest 22.7 18.0 20.5
Bare land 2.1 2.2 1.9

Table 2 Correlation (Pearson’s coefficient) between land use variables among all buffers of 4-km scale

Urban Paddy Crop Grassland Decidious Evergreen Bare
areas field land forest forest land

Body of water -0.01 -0.46 -0.30 -0.18 -0.52 -0.06 0.42
Urban areas 0.07 -0.30 -0.43 0.01 -0.66 0.71
Paddy field 0.28 -0.11 0.06 -0.54 -0.15
Crop land 0.12 0.17 -0.19 -0.26
Grassland -0.25 0.43 -0.38
Decidious forest -0.09 -0.13
Evergreen forest -0.58
Values higher than 0.7 are shown in bold.

Table 3 Correlation (Pearson’s coefficient) between land use variables among all buffers of 10-km scale

Urban Paddy Crop Grassland Decidious Evergreen Bare
areas field land forest forest land

Body of water -0.18 -0.44 -0.38 -0.60 -0.77 -0.06 0.13
Urban areas 0.02 -0.21 -0.47 -0.06 -0.61 0.81
Paddy field 0.42 -0.10 0.43 -0.53 0.07
Crop land 0.26 0.54 -0.26 -0.09
Grassland -0.02 0.32 -0.46
Decidious forest -0.10 -0.03
Evergreen forest -0.75
Values higher than 0.7 are shown in bold.
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