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Precipitation free boron (B)-doped as-grown pþ-BaSi2 layer is essential for the BaSi2 p-n junction

solar cells. In this article, B-doped p-BaSi2 layers were grown by molecular beam epitaxy on Si(111)

substrates, and the influence of substrate growth temperature (TS) and B temperature (TB) in the

Knudsen cell crucible were investigated on the formation of B precipitates and the activation

efficiency. The hole concentration, p, reached 1.0� 1019cm�3 at room temperature for TS¼ 600 and

TB¼ 1550 �C. However, the activation rate of B was only 0.1%. Furthermore, the B precipitates were

observed by transmission electron microscopy (TEM). When the TS was raised to 650 �C and the TB

was decreased to 1350 �C, the p reached 6.8� 1019 cm�3, and the activation rate increased to more

than 20%. No precipitation of B was also confirmed by TEM. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4885553]

To decrease the levelized cost of solar electricity as well

as emissions of greenhouse gases into the environment, it is

required for solar cells to achieve high efficiency. More pref-

erably, the solar cell materials are composed of earth abun-

dant elements. Recently, thin-film solar cell materials,

such as chalcopyrites and CdTe, have been attracting atten-

tion from the view point of their high optical absorption

coefficient and cost-effective growth procedure.1–4 A lot of

studies have also been carried out on thin-film Si solar cells

by utilizing an efficient light trapping system;5–14 however,

it is not easy to achieve efficiencies as high as Si bulk crys-

tals. Thus, exploring different materials other than Si,

Cu(In,Ga)Se2, and III-V compound semiconductors is also

very important. Among such materials, we have focused

much attention on semiconducting barium disilicide (BaSi2)

for thin-film solar cell applications. Composed of earth-

abundant Ba and Si, BaSi2 has a band gap of approximately

1.3 eV,15,16 and a long minority carrier diffusion length, L, of

approximately 10 lm,17 and thereby a long minority-carrier

lifetime (>10 ls).18–20 One of the most important features of

BaSi2 is that it has a large absorption coefficient, a, exceed-

ing 3� 104 cm�1 for photon energies greater than the band

gap in spite of its indirect band gap nature.16 The direct tran-

sition occurs approximately 0.1 eV above the band gap.21,22

Large L and large a facilitate to collect the photogenerated

carriers in BaSi2. We have achieved large photocurrent corre-

sponding to the internal quantum efficiency exceeding 70% for

the 400 nm-thick undoped n-BaSi2 layer grown on the

Sb-doped nþ-BaSi2/p
þ-Si tunnel junction.23 Thus, the remain-

ing step is the formation of a p-n junction. Since the top of va-

lence band in BaSi2 is mostly composed of Si 3s and 3p
orbitals,21,22,24–26 impurity doping of group-III and group-V

elements enables us to control the carrier type and conductivity

of BaSi2 theoretically27 and experimentally.28–30 As a p-type

dopant, B is considered a suitable candidate.30 Very recently,

we have controlled the hole concentration of B-doped BaSi2
in a wide range between 1017 and 1020 cm�3 at room

temperature (RT) by changing the temperature of the B

Knudsen cell crucible. The built-in voltage of the p-n diode,

thereby the open-circuit voltage, is limited by the difference

in work function between the n- and p-type films. Thus, the

heavily p-type doping is of essential importance. In the previ-

ous work, however, post annealing at 800 �C for 2 min was in-

evitable to realize an activation efficiency of 10%.30 Most

impurities, such as Al, Sb, and As, except B have large diffu-

sion coefficients in the BaSi2 layers.31–34 Thus, the enhance-

ment of activation efficiency in low-temperature grown B-

doped BaSi2 without post annealing is necessary to realize a

sharp p-n junction. Furthermore, it was found that the B-

doped BaSi2 layers contain precipitated B clusters due to low

substrate temperature as well as heavily doping of elemental

B. The precipitated B clusters could deteriorate the minority

carrier properties of the film. In this article, we investigated

the influence of substrate growth temperature and B tempera-

ture in the Knudsen cell crucible on the formation of B

precipitates and the activation efficiency. By optimizing the

above conditions, we achieved the hole concentration of

6.8� 1019 cm�3 in the as-grown precipitation-free B-doped

BaSi2 films, and the activation rate exceeded 20%.

An ion-pumped molecular beam epitaxy (MBE) system

equipped with standard Knudsen cells for Ba and B sources

and an electron-beam evaporation source for Si was used for

the growth of B-doped BaSi2 films. Details of the growth pro-

cedures are provided previously.28–30 Briefly, a 10-nm-thick

BaSi2 epitaxial film was first grown by reactive deposition epi-

taxy on floating-zone n-Si(111) substrates (q> 1000 X�cm) at

substrate temperature, TS, of 510 �C, and then it was used as

a template layer for BaSi2 overlayers. Then, Ba, Si, and

B were co-evaporated on the BaSi2 template at TS¼ 600

(sample A) or 650 �C (samples B and C) to form approximately

0.25–lm-thick a-axis-oriented B-doped BaSi2 epitaxial films

by MBE. The temperature of B crucible, TB, was varied as

1550, 1450, and 1350 �C, respectively, for samples A-C. The

electrical properties were characterized at RT by Hall

0003-6951/2014/104(25)/252104/4/$30.00 VC 2014 AIP Publishing LLC104, 252104-1
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measurements using the van der Pauw method. Depth pro-

files of B atoms in B-doped BaSi2 films were characterized

by secondary ion mass spectroscopy (SIMS) using O2 ions.

The crystalline qualities of the samples were characterized

by out-of-plane h–2h x-ray diffraction (XRD) and in-plane

/–2hv XRD using Cu-Ka x-ray (wavelength 1.5418 Å).

In the /–2hv XRD measurement, the scattering vector

was set along the in-plane Si[�110] direction. In order to

investigate the domain boundaries of BaSi2 and B precipi-

tates, plan-view transmission electron microscopy (TEM)

samples prepared by mechanical polishing and ion milling

were observed using TOPCON EM-002B operated at

120 kV.

Figure 1(a) shows the h–2h XRD patterns of samples

A-C. Diffraction peaks of (100)-oriented BaSi2 were con-

firmed. Reflection high-energy electron diffraction exhibited

streaky patterns for all the samples, meaning that B-doped

BaSi2 films were epitaxially grown. However, we see the

peak at around 2h¼ 36� corresponding to the rhombohedral

B(110) plane in samples A and B. This result suggests that

the BaSi2 films contain B precipitates in those samples. On

the other hand, the diffraction peak of B was not observed in

the h–2h XRD patterns for sample C. In order to enhance the

detection sensitivity of grown layers in sample C, we per-

formed the in-plane /–2hv XRD measurement on sample C

as shown in Fig. 1(c). Although we see intense diffraction

peaks of BaSi2(020) and (040) planes, diffractions due to B

precipitates are difficult to observe.

Figures 2(a)–2(c) show the plan-view TEM images.

The incident beam direction was almost parallel to the

BaSi2[100] zone axis, but was slightly tilted for the domain

boundaries to be seen clearly. Because domain boundaries

are parallel to the surface normal, their contrast vanishes in

the exact [100] zone axis. As shown in Figs. 2(a) and 2(b),

we see a lot of B precipitates in samples A and B. The size

of B precipitates is approximately 5 and 3 nm in diameters,

respectively. a-axis-oriented BaSi2 film consists of three epi-

taxial domains rotating 120� around the surface normal with

each other, and the domain boundaries are quite sharp in

undoped BaSi2 films.17 In contrast, the domain boundaries of

FIG. 1. (a) h-2h XRD patterns (out-of-plane) of samples A-C, and (b) /-2hv

XRD pattern (in-plane) of sample C. The asterisk shows the diffraction from

the Si substrate.

FIG. 2. (a)-(c) Bright-field plan-view TEM images along the [100] azimuth

of BaSi2 for samples A-C, respectively.
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the B-doped BaSi2 film in sample A are not clearly observed

in Fig. 2(a). We see the same tendency in sample B, and the

domain boundaries are roundish in Fig. 2(b). We should note

here, in Fig. 2(c), that we cannot observe B precipitates in

sample C. In addition, the domain boundaries are quite sharp

like those in undoped BaSi2 films. It is reasonable to think

that the decrease of TB resulted in the decrease of NB, and

additional higher TS increases the solubility limit of B in

BaSi2 and enables us to form the precipitation-free B-doped

BaSi2 film in sample C.

Next, we discuss the electrical properties of the B-doped

BaSi2 films. The electrical properties are summarized in

Table I. The hole concentration, p, in the B-doped BaSi2
gradually increased from 1.0� 1019 cm�3 in sample A to

6.8� 1019 cm�3 in sample C at RT. The acceptor level, EA,

calculated using Eq. (1) was almost the same as approxi-

mately 23 meV as shown in Fig. 3(a)

p / exp � EA

2kBT

� �
: (1)

Here, kB is the Boltzmann’s constant, and T the absolute

temperature.

Figure 3(b) shows the TB dependence of NB. The inset

shows one example of the SIMS depth profiles of B atoms

(sample A). The NB values in the SIMS profiles were cor-

rected using reference samples, where controlled number of

B atoms was doped in the BaSi2 films by ion implantations.

The obtained B concentrations are explained relatively well

by the difference in vapor pressure of B. From the macro-

scopic viewpoint, the doped B atoms were relatively uni-

formly distributed within the layers. The average NB

decreased from 1� 1022 to 2� 1021 and 3� 1020 cm�3, in

samples A-C, respectively. The activation efficiency of B

atoms can thus be estimated, that is, p/NB¼ 0.1 (sample A),

3 (sample B), and >20% (sample C). This value of 20% is

the highest ever achieved for pþ-BaSi2. Higher TS than

650 �C might enhance the activation efficiency of B and

therefore result in a higher p. However, the low-TS formation

of B-doped BaSi2 layers is inevitable when we grow a BaSi2
p-n diode structure since the diffusion coefficients of impur-

ities atoms, especially n-type dopants, such as Sb and P, are

large.33,34. According to the previous work,30 when the TS

was lowered down to 600 �C for TB¼ 1350 �C, it was diffi-

cult to obtain reliable p values due to difficulties in forming

ohmic contacts on the surface.30 The effective density of

states of valence band is approximately 2.0� 1019 cm�3

from the effective mass tensors of hole in BaSi2.21 Discussed

in this way, it can safely be stated that the obtained p
value of 6.8� 1019 cm�3 is large enough for as-grown

precipitation-free B-doped BaSi2 films formed at low TS.

Regarding the remaining 80% B atoms, we speculate that

there is the possibility that B atoms occupy the interstitial

sites of the unite cell of BaSi2 because BaSi2 has a relatively

low-dense structure. In Ref. 35, it is described that interstitial

compounds of magnetic elements (Mn, Fe, Co, and Ni) and

BaSi2 are energetically possible. Since B is much smaller

than these magnetic elements, occupation of B atoms in the

interstitial sites is probable. A first-principle calculation may

help us to discuss further on this matter.

In conclusion, we have achieved precipitation-free

B-doped heavily p-type doping in BaSi2 by MBE. By

decreasing the TB from 1550 to 1350 �C, thereby the average

NB from 1� 1022 to 3� 1020 cm�3 and by increasing the TS

from 600 to 650 �C, the precipitation-free B-doped BaSi2
films were achieved. We have realized the hole concentra-

tion of 6.8� 1019 cm�3 and the activation rate exceeded 20%

at RT without post annealing.
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TABLE I. Preparation of samples A-C: Growth temperature (TS), tempera-

ture of B (TB), measured B concentration (NB), measured hole concentration

(p), electrical resistivity (q), and activation efficiency of B atoms (p/NB) are

shown.

Sample TS (�C) TB (�C) NB (cm�3) p (cm�3) q (X�cm) p/NB (%)

A 600 1550 1� 1022 1.0� 1019 0.099 0.1

B 650 1450 2� 1021 6.5� 1019 0.12 3

C 650 1350 3� 1020 6.8� 1019 0.092 >20

FIG. 3. (a) Temperature dependences of hole concentration for samples A

and C. (b) TB dependence of NB. The inset shows the SIMS depth profile of

B in sample A.
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