1	Large-grained (111)-oriented Si/Al/SiO2 structures formed by
2	diffusion-controlled Al-induced layer exchange
3	
4	Ryohei Numata ^a , Kaoru Toko ^{a, *} , Noritaka Usami ^b , and Takashi Suemasu ^a
5	
6	^a Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573,
7	Japan
8	^b Materials, Phys. and Energy Eng., Nagoya Univ., Aichi 464-8603, Japan
9	
10	
11	
12	
13	* Corresponding author: Kaoru Toko
14	Institute of Applied Physics, University of Tsukuba,
15	1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8573, Japan
16	Phone: +81-29-853-5472, Fax: +81-29-853-5205
17	E-mail: toko@bk.tsukuba.ac.jp
18	

19 Abstract

20	We investigated inverted Al-induced crystallization (AIC) technique of
21	amorphous Si films (thickness: 50-100 nm) for the formation of polycrystalline Si films
22	on Al coated glass substrates at low-temperature (< 500 °C). A SiO ₂ interlayer was
23	inserted in between Al and Si layers in order to control the Al-Si diffusion rate. As a
24	result, the crystal orientation of the AIC-Si layer strongly depend on the thickness of the
25	SiO ₂ interlayer: thin (1 nm) interlayer provided (100) orientation <u>while</u> thick (10 nm)
26	interlayer provided (111) orientation. Meanwhile, the thicker the SiO_2 interlayer, the
27	larger the grain size of the AIC-Si layer. In particular, for <u>a</u> sample with 10-nm-thick
28	SiO ₂ interlayer, the (111) orientation fraction reached 99% and the average grain size
29	over 50-µm diameters. This AIC-Si layer holds promise as epitaxial templates for
30	light-absorption layers of thin-film solar cells, as well as for functional silicide
31	materials.
32	
33	

Keywords: A1.Crystal orientation; A2.Solid phase crystallization; B1.Polycrystalline
films;

1. Introduction

38	The preparation techniques of high-quality polycrystalline Si (poly-Si) films on
39	insulators are essential for thin-film transistor (TFT) and highly-efficient thin-film solar
40	cells. For fabricating poly-Si films on inexpensive glass substrates (softening
41	temperature: 550 °C), many low-temperature crystallization techniques have been
42	developed [1-3]. Among them, the study of Al-induced crystallization (AIC) technique
43	is recently accelerated, which enables large-grained (diameters: 10-100 $\mu m)$ poly-Si
44	films at relatively low temperatures (420-550 °C) [4-24]. Moreover, the crystal
45	orientations of the poly-Si films can be controlled to either (111) or (100) plane by
46	modulating the Al/Si thickness, the annealing temperatures, and the interlayer thickness
47	between Al and Si layer [10-18].
48	For practical solar-cell application, a conducting layer, which works as a
49	bottom electrode, is required in between the poly-Si film and the glass substrate [25].
50	Lee et al. achieved preferentially (100)-oriented Si layers on conducting layer
51	(Al-doped ZnO) coated glass substrates using the AIC technique [26]. (111)-oriented
52	poly-Si on a conducting layer is desirable as epitaxial templates for advanced-functional
53	silicide materials [27-29]. To achieve this, an inverted-AIC technique has been studied
54	[30-32]. In this technique, the initial structure is Al/amorphous-Si (a-Si)/substrate which

55	in contrast to the conventional AIC structure: a-Si/Al/substrate. After annealing, an Al
56	conducting layer <u>was</u> formed under the poly-Si film through the layer exchange process.
57	Previously we found that the crystal orientation of the poly-Si layer, formed by the
58	inverted AIC, strongly depends on the Al/Si thickness [33]. The sample with the
59	50-nm-thick Si and Al layers provided highly (111)-oriented Si layer with the average
60	grain diameter of 20 µm. However, the Al/Si interlayer formation process was not
61	optimized, which is one of the important parameters for the AIC [11-18]. Hence, there is
62	the possibility to improve the crystal quality of the inverted-AIC-Si layer. In this paper,
63	we focused on the SiO ₂ interlayer formation process between Al and Si layers in the
64	inverted-AIC. As a result, we accomplished the enhancement of the average grain size
65	over 50-µm diameters.
66	
67	2. Experimental
68	Amorphous Si films (thickness: 50 nm and 100 nm) were prepared on SiO_2
69	glass substrates. Subsequently, SiO ₂ interlayers (thickness: 1 nm, 2 nm and 10 nm) were
70	formed on the Si films: 1-nm-thick interlayer was formed by dipping the sample in
71	APM solutions (NH ₄ OH: H ₂ O ₂ : H ₂ O = 1: 1: 10) for 30 min at 80 °C; 2-nm-thick and

72 10-nm-thick SiO₂ interlayers were prepared by RF magnetron sputtering. After that, Al

73	films with the same thickness as the a-Si films were prepared on the SiO_2 membranes.
74	Si and Al depositions were carried out at room temperature by RF magnetron sputtering
75	with Ar plasma. Finally all samples were annealed in N ₂ ambient at 375 °C for 100 h,
76	400-425 °C for 50 h, and 450-500 °C for 10 h. The scheme of the sample structure is
77	shown in Fig. 1. The surface morphology and crystal orientation of the AIC-Si layers
78	were characterized by Nomarski optical microscopy and electron backscatter diffraction
79	(EBSD) analysis, respectively.

81 **3. Results and discussion**

Fig. 2 shows the growth evolution of AIC-Si observed by Nomarski optical microscopy. For this sample, the Al and Si thickness (Al/Si thickness) is 100 nm, the SiO₂ interlayer thickness is 1 nm, and <u>the annealing condition is 450 °C for 10 h</u>. In these micrographs, the dark area indicates crystallized Si and the bright-color area Al. These suggest that the Si atoms diffuse to the top surface, grow laterally, and cover the whole surface of the sample during the annealing. This growth morphology is almost the same as the conventional AIC process [5-18].

89 The dependence of the SiO₂ interlayer thickness on the crystal orientation of 90 the AIC-Si layers was investigated using EBSD measurements. The results for the

91	100-nm-thick sample annealed at 450 °C for 10 h are shown in Fig. 3(a)-(c). These
92	orientation mappings indicate that the crystal orientation strongly depends on the SiO_2
93	interlayer thickness. The area fractions of (100) and (111) orientations were derived by
94	EBSD analysis. Fig. 3(d) clearly indicates that the (111) fraction increases with
95	increasing the SiO_2 interlayer thickness; in contrast, the (100) fraction decreases with
96	increasing the SiO ₂ interlayer thickness. This trend is the same with the conventional
97	AIC [18], and can be explained as follows. The interlayer-thickness dependence of
98	crystal orientation of AIC-Si is probably attributed to the different growth rates between
99	Si (100) and (111). When the SiO ₂ interlayer is thick, the diffusion rate of Si atoms into
100	Al is slow. This results in the dominant (111) orientation, because (111) is a stable plane
101	[34]. In contrast, when the SiO ₂ interlayer is thin, the diffusion rate of Si atoms into Al
102	is fast. Because the (111) growth rate is much lower than the (100) growth rate [35],
103	(111) plane cannot follow the fast diffusion rate. As a result, (100) orientation is
104	dominant when the SiO ₂ interlayer is thin. Therefore, we found that the thick interlayer
105	is preferable for (111)-oriented Si layers.
106	Regarding the Al/Si thickness, we have found that the 50-nm-thick sample
107	provides higher (111) fraction than the samples with thick (\geq 100 nm) Al/Si films [33].
108	Therefore, we prepared 50-nm-thick samples with thick SiO ₂ interlayers. The EBSD

109	mappings, along the normal direction (ND) with respect to the substrates, were
110	summarized in Fig. 4 as a matrix of annealing temperature and the SiO ₂ interlayer
111	thickness. The AIC-Si layers are preferentially oriented to (111) due to the thin (50 nm)
112	Al/Si layers except the three blanks in Fig. 4. For the 475 °C (10 h) annealed sample
113	with a 1-nm-thick interlayer, the interlayer was broken by the high temperature
114	annealing, which resulted in an Al/Si mixed layer with random-oriented small grains.
115	Meanwhile, for the sample with a 10-nm-thick interlayer, AIC did not occur at 425 °C
116	and 450 °C for 10 h because of the thick interlayer, which is a diffusion barrier for Si
117	and Al atoms. The high temperature annealing (475 °C) facilitated the diffusion, and
118	enabled the AIC of the sample as shown in Fig. 4(f). In order to evaluate the grain size,
119	we obtained EBSD orientation mappings along the transverse (in-plane) directions (TD)
120	with respect to the sample surfaces. The results are shown in Fig. 5, which correspond
121	to the ND mappings of the same areas shown in Fig. 4. The black solid lines in these
122	images indicate random grain boundaries, which were drawn by EBSD analysis. For all
123	samples, the grain sizes are estimated over 10-µm diameters. In particular, the grain
124	sizes in Fig. 5(c) and (f) are larger than those in the other samples.
125	EBSD analysis derived the area-fraction of (111) orientation and the grain size

126 from the orientation mappings in Fig. 4 and 5. The results are illustrated in Fig. 6(a) and

127	(b), respectively. By definition, the (111) fraction contains planes that are tilted within
128	15° of the exact (111) plane. The (111) fraction clearly increases with decreasing
129	annealing temperature, and reaches as high as 99% for all of the samples with 1-nm,
130	2-nm, and 10-nm-thick SiO ₂ interlayers. Meanwhile, Fig. 6(b) indicates that the grain
131	size increases with thickening the SiO2 interlayer. In general, the grain size is
132	determined by nucleation rate and lateral growth rate [36]. The nucleation occurs as a
133	result of a supersaturation of Al with Si diffused from the a-Si layer, after that, Si atoms
134	migrating in Al adhere to the Si nucleus, which causes the lateral growth [12]. Hence,
135	the interlayer thickness dependent grain size can be explained as follows. The thicker
136	SiO ₂ interlayer yields a lower diffusion rate of Si atoms into Al, which results in a lower
137	nucleation rate. On the other hand, the migration rate of Si atoms in Al is constant with
138	the SiO ₂ interlayer thickness. Considering that, when the Si nucleation rate is low, Si
139	atoms in Al have much time to migrate and adhere to the Si nucleus before the other
140	nucleation occurs. Therefore, the thicker interlayer enables a wider margin between the
141	nucleation rate and lateral growth rate, which resulted in the larger grain size.
142	On the other hand, Fig. 6(b) also indicates that the grain size increases with
143	decreasing annealing temperature. Mina et al. indicates that the higher annealing
144	temperature yields a higher (100) fraction because of the high diffusion rate of Si atoms

145	[13]. On the other hand, concerning the grain size, Sarikov et al. theoretically
146	demonstrated that the higher annealing temperature yields a higher nucleation density
147	because of the reduction of the Si supersaturation level in Al [12]. Therefore, the crystal
148	orientation and grain size of AIC-Si are determined by the balance of the interlayer
149	thickness and annealing temperature. Consequently, the 475 °C annealed sample with
150	10-nm-thick interlayer provides the largest grain size of 57 μ m diameters.
151	
152	4. Conclusion
153	The inverted Al-induced crystallization (AIC) of a-Si film was investigated
154	focusing on the SiO_2 interlayer thickness to obtain a larger grain size than the
155	conventional inverted AIC-Si. We found that the grain size and crystal orientation of the
156	inverted AIC-Si layers strongly depended on the SiO2 interlayer thickness: The thicker
157	the interlayer, the larger the grain size and the higher (111) orientation fraction. By
158	combining the thin Al/Si films (50 nm each) and the thick (10 nm) SiO ₂ interlayer, the
159	average grain size over 50-µm diameters and (111) orientation fraction reached as high
160	as 99%. Therefore, the effects of the SiO ₂ interlayer on inverted-AIC-Si were clarified,
161	which enabled more than doubled size of (111)-oriented grains compared to the
162	conventional technique. This large-grained (111)-oriented poly-Si film on a conducting

163 layer holds promise as epitaxial seeds for advanced functional silicide materials.

164

165 Acknowledgements

- 166 This work was partially supported by Yazaki Memorial Foundation for Science
- and Technology, and was performed under the Inter-University Cooperative Research
- 168 Program of the Advanced Research Center of Metallic Glasses, Tohoku University.

170 **References**

- 171 [1] C. Hayzelden and J.L. Batstone, J. Appl. Phys. 73 (1993) 8279.
- 172 [2] K. Toko, H. Kanno, A. Kenjo, T. Sadoh, T. Asano, M. Miyao, Appl. Phys. Lett. 91
- 173 (2007) 042111.
- [3] Y. Sugawara, Y. Uraoka, H. Yano, T. Hatayama, T. Fuyuki, T. Nakamura, S. Toda, H.
- 175 Koaizawa, A. Mumura, K. Suzuki, Appl. Phys. Lett. 91(2007) 203518.
- 176 [4] G.Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, M. A. Hasan, J. Appl.
- 177 Phys. 69 (1991) 6394.
- 178 [5] O. Nast, T. Puzzer, L.M. Koschier, A.B. Sproul, S.R. Wenham, Appl. Phys. Lett. 73
- 179 (1998) 3214.
- 180 [6] P. Widenborg, A. G. Aberle, J. Cryst. Growth 242 (2002) 270.
- 181 [7] Y. Sugimoto, N. Takata, T. Hirota, K. Ikeda, F. Yoshida, H. Nakashima, H.
- 182 Nakashima, Jpn. J. Appl. Phys. 44 (2005) 4770.
- 183 [8] J.Y. Wang, Z.M. Wang, and E.J. Mittemeijer, J. Appl. Phys. 102 (2007) 113523.
- 184 [9] B.I. Birajdar, T. Antesberger, B. Butz, M. Stutzmann, E. Spiecker, Scripta Materialia
- 185 66 (2012) 550.
- 186 [10] H. Jeong, S. Boo, Int. J. Photoenergy 2012 (2012) 593257.
- 187 [11] M. Kurosawa, N. Kawabata, T. Sadoh, M. Miyao, Appl. Phys. Lett. 95 (2009)

- 188 132103.
- 189 [12] A. Sarikov, J. Schneider, J. Berghold, M. Muske, I. Sieber, S. Gall, W. Fuhs, J.
- 190 Appl. Phys. 107 (2010) 114318.
- [13] M. Jung, A. Okada, T. Saito, T. Suemasu, N. Usami, Appl. Phys. Express 3 (2010)
 095803.
- 193 [14] O. Ebil, R. Aparicio, R. Birkmire, Thin Solid Films 519 (2010) 178.
- 194 [15] M. Kurosawa, K. Toko, N. Kawabata, T. Sadoh, M. Miyao, Solid-State Electron. 60
- 195 (2011) 7.
- 196 [16] C. C. Peng, C. K. Chung, J. F. Lin, Acta Materialia 59 (2011) 6093.
- 197 [17] S. Y. Wei, S. M. Yu, L. C. Yu, W. C. Sun, C. K. Hsieh, T. S. Lin, C. H. Tsai, F. R.
- 198 Chen, Cryst. Eng. Comm. 14 (2011) 4967.
- [18] A. Okada, K. Toko, K. O. Hara, N. Usami, T. Suemasu, J. Cryst. Growth 356(2012) 65.
- 201 [19] D. Dimova-Malinovska, O. Angelov, M. Sendova-Vassileva, M. Kamenova, J. C.
- 202 Pivin, Thin Solid Films 451-452 (2004) 303.
- 203 [20] S. K. Patil, Z. Celik-Butler, D. P. Butler, Thin Solid Films 519 (2010) 479.
- 204 [21] T. Wang, H. Yan, M. Zhang, X. song, Q. Pan, T. He, Z. Hu, H. Jia, Y. Mai, Appl.
- 205 Surf. Sci. 264 (2013) 11.

- 206 [22] K. Toko, M. Kurosawa, N. Saitoh, N. Yoshizawa, N. Usami, M. Miyao, T. Suemasu,
- 207 Appl. Phys. Lett. 101 (2012) 072106.
- 208 [23] I. Gordon, L. Carnel, D.V. Gestel, G. Beaucarne, J. Poortmans, Thin Solid Films
- 209 516 (2008) 6984.
- 210 [24] B.R. Wu, S.Y. Lo, D.S. Wuu, S.L. Ou, H.Y. Mao, J.H. Wang, R.H. Horng, Thin
- 211 Solid Films 520 (2012) 5860.
- 212 [25] C. Becker, E. Conrad, P. Dogan, F. Fenske, B. Gorka, T. Hänel, K. Y. Lee, B. Rau,
- 213 F. Ruske, T. Weber, Sol. Energy Mater. Sol. Cells 93 (2009) 855.
- [26] K. Y. Lee, M. Muske, I. Gordon, M. Berginski, J. D'Haen, J. Hüpkes, S. Gall, B.
- 215 Rech, Thin Solid Films 516 (2008) 6869.
- 216 [27] D. Tsukada, Y. Matsumoto, R. Sasaki, M. Takeishi, T. Saito, N. Usami, T. Suemasu,
- 217 Appl. Phys. Express 2 (2009) 051601.
- 218 [28] M. Suzuno, T. Koizumi, T. Suemasu, Appl. Phys. Lett. 94 (2009) 213509.
- [29] Y. Ando, K. Hamaya, K. Kasahara, Y. Kishi, K. Ueda, K. Sawano, T. Sadoh, M.
- 220 Miyao, Appl. Phys. Lett. 94 (2009) 182105.
- [30] G. Ekanayake, T. Quinn, H. S. Reehal, J. Cryst. Growth 293 (2006) 351.
- [31] C. Jaeger, T. Matsui, M. Takeuchi, M. Karasawa, M. Kondo, M. Stutzmann, Jpn. J.
- 223 Appl. Phys. 49 (2010) 112301.

- [32] H. Kuraseko, N. Orita, H. Koaizawa, M. Kondo, Appl. Phys. Express 2 (2009)
 015501.
- 226 [33] R. Numata, K. Toko, N. Saitoh, N. Yoshizawa, N. Usami, T. Suemasu, Crystal
- 227 Growh and Design 13 (2013) 1767.
- [34] A.A. Stekolnikov, J. Furthmuller, F. Bechstedt, Physical Review B 65 (2002)
 <u>115318.</u>
- 230 [35] L. Csepregi, E.F. Kennedy, J.W. Mayer, J. Appl. Phys. 49 (1978) 3906.
- 231 [36] C. Spinella, S. Lombardo, F. Priolo, J. Appl. Phys. 84 (1998) 5383.
- 232

233	Figure captions
234	
235	Fig. 1. Scheme of the layer exchange growth in the inverted-AIC of a-Si.
236	
237	Fig. 2. Nomarski optical micrographs of the 100-nm-thick Al/Si sample with 1-nm-thick
238	SiO ₂ interlayer, annealed at 450 $^{\circ}$ C for (a) 0 h, (b) 1 h, and (c) 10 h.
239	
240	Fig. 3. EBSD (ND) images of the grown 100-nm-thick Al/Si sample with (a) 1 nm, (b) 2
241	nm, and (c) 10 nm SiO ₂ interlayers. (d) Area fraction of (111) and (100) orientations as a
242	function of the SiO_2 interlayer thickness. The inserted color key corresponds to crystal
243	orientations.
244	
245	Fig. 4. EBSD (ND) images of the 50-nm-thick Al/Si sample after annealing summarized
246	as a matrix composed of annealing temperature (425, 450 and 475 $^{\rm o}{\rm C})$ and SiO_2
247	interlayer thickness (1, 2 and 10 nm).
248	
249	Fig. 5. EBSD (TD) images of the 50-nm-thick Al/Si sample after annealing summarized
250	as a matrix composed of annealing temperature (425, 450 and 475 $^{\rm o}C)$ and SiO_2

interlayer thickness (1, 2 and 10 nm). Each image corresponds to the ND EBSD images

shown in Fig. 4.

253

- **Fig. 6.** (a) (111) orientation fraction and (b) grain size of the 50-nm-thick Al/Si samples
- with SiO_2 interlayers (1, 2, 10-nm thickness) as a function of annealing temperature.

Fig. 1

Fig. 2

Fig. 3

50 µm

Fig. 4

50 µm

Fig. 5

Fig. 6