1	Development of a New Rice Beverage by Improving the Physical Stability of Rice
2	Slurry
3	Masaru Koyama ^a , Yutaka Kitamura ^a *
4	
5	^a Graduate School of Life and Environmental Sciences, University of Tsukuba,1-1-1
6	Tennoudai, Tsukuba city, Ibaraki Pre 305-8572, Japan
7	
8	*Corresponding author. Tel./fax: +81 29 853 6987.
9	E-mail address: kitamura.yutaka.fm@u.tsukuba.ac.jp (Y. Kitamura).
10	
11	
12	
13	
14	
15	
16	
17	
18	

19 Abstract

"Rice slurry" made from brown rice with wet stone milling, which was developed as a 20 new liquid food material. Raw brown rice is hard to be chewed and eaten unlike 21 cooked rice. Therfore, "rice milk", a beverage made from rice slurry, was developed to 22 ingest raw brown rice. The rice particles in the rice slurry settled to the bottom when 23 the slurry was allowed to remain for several hours. Two conditions, overly fine 24 25 particles or an increase in the viscosity, suppress the sedimentation velocity of the particles. A separated milling method was established, which reduced the particle size 26 to less than 20 µm. Moreover, the sedimentation velocity decreased exponentially with 27 the viscosity and was steady at more 80 mPa·s when the concentration of xanthan gum 28 exceeded 0.1 wt%. A sensory evaluation indicated a favorable rate of 55.6% for the 29 30 rice slurry containing 0.3 wt% xanthan gum. 31 Keywords: rice slurry, wet stone milling, separated milling method, sensory evaluation 32 33

34 **1. Introduction**

Rice has been used as a staple food in Japan since ancient times. However, the
consumption of rice, which was maximized at 118.3 kg per person in 1963, has

37	recently decreased to 59.5 kg in 2010 (MAFF, 2012). In addition, the number of
38	abandoned rice paddies that are no longer cultivated has increased twofold between
39	1990 and 2010 (MAFF, 2011a). A Japanese official document for agriculture and
40	food states that a reduction in the self-sufficiency rate of Japanese food is a serious
41	problem, and Japan is obligated to ensure the future reliability of the food supply
42	(MAFF, 2011b). A reliable rice supply can mitigate the observed reduction, and an
43	increase in the level of rice consumption is desired. These improvements can be
44	achieved by establishing new demands for rice, instead of rice flour and bioethanol.
45	Thus, "rice slurry" was developed as new liquid food material to replace rice flour.
46	Rice slurry is made from brown rice with wet stone milling. Rice slurry can be used to
47	make processed food for which rice flour is unsuitable, such as pudding, ice cream,
48	and beverages.
49	Brown rice contains multiple functional ingredients: GABA (gamma-aminobutyric aci
50	d), resistant starch, γ -oryzanol, and tocotrienol (Taniguti et al, 2012). Non-heated raw
51	brown rice is ideal for health because these ingredients can be lost by heat. However,
52	raw brown rice is unfit for consumption because it is too hard. Thus, beverages made
53	from rice slurry were investigated as a way to eat raw rice. The beverage was defined
54	as "rice milk". However, using rice slurry for food materials was difficult because the
55	rice slurry was not physically stable. The rice particles in the rice precipitate when the

slurry is allowed to rest for an extended period of time. Equation (1) shows Stokes's

57 law for the sedimentation velocity of particles in a solution.

$$Vs = \frac{D_p^2 (p_p - p_f)g}{18\eta}$$
 Eq.(1)

58 where Vs is the sedimentation velocity, D_p is the particle size, p_p and p_f are the density of the particles and solution, respectively, g is the gravitational acceleration, and η is 59 the viscosity. The law shows that two conditions, overly fine particles and an increased 60 viscosity, suppress the sedimentation velocity of the particles. 61 In this study, the investigation of the milling conditions was carried out to generate fine 62 rice particles. Also, the effect of a thickener on the physical stability was examined. 63 The milling conditions were defined to result in a particle size of less than 20 µm, 64 which ensures that the particles are fit for consumption (Inoue, 2011). In addition, the 65 possibility of developing rice milk for human consumption was investigated through a 66 sensory evaluation. 67 68

69 2. Material and Methods

70 2.1 Materials

Hokuriku 193 brown rice (Indica rice, crop in NARO Hokuriku research center in
2011) was used in this study. The rice can cut the cost of processing because the yield

73	is larger. Furthermore the rice contains more protein and fatty acids than regular rice.
74	
75	2.2 Material preparation
76	Brown rice
77	The brown rice was washed by hand, dried completely, and pasteurized wet at 70° C
78	and 95% humidity for 180 min. The wet pasteurization uses a low temperature and
79	high humidity, which prevents the starch in the rice from gelatinizing. Thus, the
80	pasteurized rice can be used as the raw rice material. The rice was soaked for 300 min
81	at 2°C.
82	
83	White rice
84	The brown rice material was washed by hand, dried completely, and separated into
85	white rice and rice bran with a rice sweeper (PK-30A, Taiwa Seiki Corporation). The
86	white rice was pasteurized and soaked at same conditions as the brown rice.
87	
88	Rice bran
89	Rice bran was pasteurized at same conditions as above and mixed with water at a ratio
90	of 1:5 (w/w).
91	

92 **2.3 Wet stone milling system**

Rice can be milled either by dry milling or wet stone milling (Naganuma, 2003). Dry 93 milling uses dried materials, and wet stone milling uses soaked materials with flowing 94 water. Soaking and flowing water can soften the rice and improve the efficiency of the 95 milling process. Figure 1 shows a drawing of the layout of the improved electric stone 96 mill system used in this experiment. The rice feeder equipment feeds the rice matelials, 97 98 and the tubing pump simultaneously feeds water to the stone mill. The electric motor 99 only rotates the lower stone mill. The rice slurry can be obtained by simultaneously milling rice materials and water. Three stone mills with different grooves and exterior 100 contact surfaces were used and classified in ascending order of their contact surfaces: 101 Mill A(38 cm²), Mill B(111 cm²), and Mill C(207 cm²). Figure 2 shows the lower mill 102 103 of Mill A and Mill C. The radius of these stone mills is 12 cm. The upper and lower stones were used with the same groves as one set. A smaller contact surface mills 104 materials with particle sizes on the order of millimeters, while a larger contact surface 105 mills particles with sizes on the order of micrometers. 106

107

108 **2.4 Wet stone milling condition**

109 Brown rice slurry

110 The brown rice slurry was defined as the rice slurry made from the brown rice

111	materials with wet stone milling. Initially, the feeding rate of water was set to 40, 90,
112	130, and 190 mL/min, and the material feeding rate was set to 18 or 24 g/min. The
113	rotational speed of the mill could be set between 20 and 50 rpm. At the aforementioned
114	conditions, the rotation speed of the mill was set to 20 rpm to investigate the effect of
115	the water and material feeding rates. Mill A was used for milling.
116	For the second milling condition, the water feeding rate was set to 40 mL/min, and the
117	materials feeding rate was either 18 or 24 g/min. The rotational speed of the mill was
118	set to either 20, 30, 40, or 50 rpm to investigate the effect the milling speed. Mill A was
119	used for milling.
119 120	used for milling.
	used for milling. White rice slurry
120	
120 121	White rice slurry
120 121 122	White rice slurry The white rice slurry was defined as the rice slurry made from white rice materials
120 121 122 123	White rice slurry The white rice slurry was defined as the rice slurry made from white rice materials with wet stone milling. To investigate the effect of the material feeding rate, the water

127 Rice bran slurry

128 The rice bran slurry was defined as the rice slurry made from the rice bran materials 129 with wet stone milling. The particle size of the rice bran materials was less than 500

130	μm after being separated from the brown rice. Mill B and Mill C fit effectively ground
131	the rice bran to micrometer-sized particles. The rice bran could not be fed with the rice
132	feeder equipment due to its oil content, which made it sticky. Thus, the rice bran
133	materials that were mixed with water were fed with the tubing pump used to feed water.
134	The material feeding rate was set to 40 mL/min, and the milling speed was 50 rpm.
135	Mill A, Mill B, and Mill C were used to investigate the effect of the contact surface.
136	
137	2.5 Mixed rice slurry and rice milk
138	Brown rice is composed of white rice and rice bran at a ratio of 9:1. The mixed rice
139	slurry was defined a mixture of the white rice slurry and the rice bran slurry at a solid
140	content ratio of 9:1.
141	The rice milk was defined as a mixture of the mixed rice slurry and additional water at
142	a solid:liquid ratio of 1:9, which is the solid:liquid ratio of standard milk.
143	
144	2.6 Modifying viscosity
145	The viscosity of the mixed rice slurry was modified with a thickener, namely pure
146	xanthan gum, at 0.1, 0.2, and 0.3 wt%.
147	
148	2.7 Particle size and particle size distribution

149	The particle size (D50 and D75) and particle size distribution were measured by a laser
150	diffraction particle size analyzer (SALD-2200, Shimadzu corporation) in wet
151	measurement mode.
152	D50 is known as the median diameter, defined as the average particle size by mass;
153	D75 is defined as the particle size corresponding to 75% of the particles being
154	undersized by mass.
155	
156	2.8 Viscosity
157	The viscosity was measured using a Brookfield-type viscometer (DV-E, Brookfield
158	Engineering) at 25°C and 12 rpm .
159	
160	2.9 Particle density
161	The dried solid content was obtained by drying the mixed rice slurry with an oven at
162	110° C for 5 hours, and the particle density was measured using a pycnometer.
163	
164	2.10 Sensory evaluation
165	Four rice slurries mixed with xanthan gum concentrations of 0, 0.1, 0.2, and 0.3 wt%
166	were evaluated. The panel consisted of 27 people, 12 men and 15 women, and the
167	average age was 23.6 years. A 7-point scaling method was used to evaluate the mixed

168	rice slurry containing xanthan gum. The slurry containing 0.1 wt% xanthan gum was
169	evaluated and allocated an average of 4 points. Five evaluation criteria were used:
170	powderless, aftertaste, ability to drink, smell, and total taste. Moreover, materials were
171	ranked as part of a comprehensive evaluation. Significant differences were determined
172	by using Microsoft Excel® (Microsoft Corporation).
173	

3. Result and Discussion 174

3.1 Effect of milling conditions on the particle size of the brown rice slurry 175

Figure 3 shows the particle size (D50 and D75) of the brown rice slurry produced with 176

177 different water feeding rates. The particle size correlated positively with the water

feeding rate at each material feeding rate. This result suggests that increasing the water 178

179 feeding rate discharges the rice particles to the outside of the stone mill before they are

- sufficiently milled. Moreover, these findings suggest that extended milling can 180
- effectively refine the particle size. Based on these results, the water feeding rate was 181

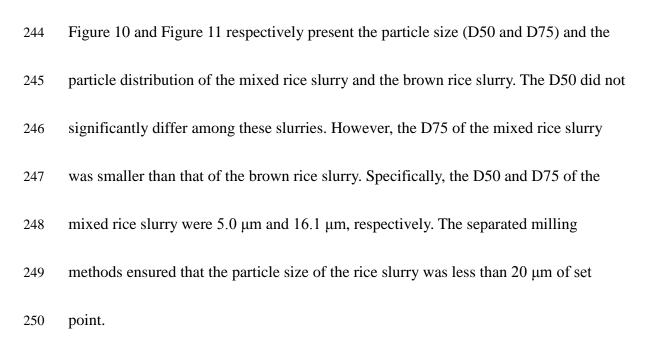
set at 40 mL/min. The particles generated with a material feeding rate of 18 g/min were 182

finer than those generated at a water feeding rate of 24 g/min. This difference could be 183

- attributed to a subtle gap introduced by the stack of materials between the upper and 184
- lower stone mills at 24 g/min. The rice slurry is a non-Newtonian and Bingham plastic 185
- fluid. Equation (2) shows the relationship between the viscosity and shearing stress in 186

187 Bingham plastic fluids:

188	where τ is the shearing stress (N/m²), τ_0 is the yield strength(N/m²), η is the
189	non-Newtonian viscosity (Pa \cdot s), u is the shear rate (m/s), and y is the distance (m). For
190	simplicity, the shear rate and the distance in this equation should be replaced with the
191	milling rotation (rpm) and the gap (m) between the upper and lower stone mills while
192	materials are milled, respectively. The equation suggests that two unit operations,
193	decreasing the gap and increasing the milling speed, are important for improving the
194	shearing stress and effective in refining/decreasing the particle size.
195	Figure 4 shows the particle size (D50 and D75) of the brown rice slurry as a function
196	of the milling speed. The minimum D50 and D75 values of the brown rice slurry were
197	$6.2 \ \mu m$ and $45.4 \ \mu m$, respectively. This size is smaller than that of usual rice flour,
198	which is 100~400 μ m in size (Shoji, 2012), but bigger than the set point of 20 μ m.
199	The D75 value inversely correlated with the milling speed at each material feeding rate.
200	The two feeding rates (18 and 24 g/min) did not show differences at speeds exceeding
201	30 rpm. More than 30 rpm rotaion had an effect on milling of the material uniformly,
202	because of the improvement the shearing stress. Nevertheless, increasing the milling
203	speed shortened the milling time, which contradicts previous suggestions. These results


204	suggest that shear stress had a more significant effect on the wet stone milling system
205	than the milling time.
206	Figure 5 shows the particle size distribution of brown rice slurry at 50 rpm. Two peaks
207	were obtained at $6.1\mu m$ and $153.4\mu m$. Kainuma and Tanaka (2009) reported that the
208	minimum particle size of a rice starch particle is $5\mu m$, and Juliano (1985) reported that
209	the size of soluble protein in rice is approximately 1-2 μ m. The peak at 6.1 μ m indicates
210	that the principal ingredient of white rice is starch.
211	In contrast, the peak of 153.4 μ m corresponds to rice bran in the absence of white rice.
212	Refining brown rice to particles smaller than 20 μ m appears to be difficult, which
213	complicates the production of slurry from rice bran compared to white rice.
214	
215	3.2 Effect of the separated milling
216	A fine rice slurry was generated using a separated milling method to mix the white rice
217	slurry and rice bran slurry after separately milling the white rice and rice bran materials.
218	Figure 6 shows the particle size (D50 and D75) of the white rice slurry produced at
219	different material feeding rates. The feeding rate did not significantly affect the particle
220	size. The D50 and D75 particle sizes were confirmed to be 5.0 μm and 8.5 $\mu m,$
221	respectively. This result shows that the rice starch was milled to particle sizes near 5.0
222	μm, as mentioned above.

224	feeding rate of 35 g/min as well as the particle size distribution of the brown rice slurry
225	from Figure 5. The result shows that the majority of particles were now larger than
226	$5\mu m$, while fewer particles exceeded 100 μm in size. These results also suggest that
227	particles larger than 100 μ m primarily consisted of rice bran.
228	
229	Figure 8 shows the particle sizes (D50 and D75) of the rice bran slurry produced with
230	different stone mills. Mill A and Mill B did not show significant differences. Mill C
231	yielded slurries with significantly smaller particles. However, the grooves clogged
232	when materials were milled for more than 15 min because the fiber in the materials
233	was denatured by the heat of the mill. These results show that milling with Mill C
234	increases the shearing stress, frictional force, and the frictional heat, which entangles
235	the fiber and gelatinates the starch.
236	Figure 9 shows the particle distribution of the rice bran slurry produced by the different
237	stone mills. Increasing the contact surface decreased the number of particles that were
238	100µm in size, especially when the slurry was milled with Mill C. Vishwanathan et al.
239	(2011) reported that the shearing stress and cutting force significantly affect the
240	particle size of milled products. Nevertheless, the contact surface affects the shearing
241	stress but not the cutting stress. We hypothesize that the compressive force of stone

Figure 7 shows the particle size distribution of the white rice slurry at a material

223

242 milling flattens the milled materials and reduces the gap, which decreases the particle243 size.

251

252 **3.3 Effect of the viscosity on the sedimentation velocity**

Equation (3) shows the relationship between the viscosity and sedimentation velocity, which is calculated by substituting using 1.55 g/cm³ as the particle density, 5 μ m as the particle size (D50), 0.997 g/cm³ as the density of water, and 9.81 m/s² as the

256 gravitational acceleration in Equation(1).

$$Vs = \frac{652.2}{\eta} \times 86.4$$
 Eq.(3)

where Vs is sedimentation velocity (mm/day) and η is the viscosity (mPa · s). The sedimentation velocity is assumed to exponentially decrease with the viscosity and reach a constant value at 80 mPa·s.

260	Figure 12 shows the viscosity of the mixed rice slurries containing different
261	concentrations of xanthan gum. The sedimentation velocity of the material without
262	xanthan gum was not expected to decrease. However, the materials containing xanthan
263	gum clearly showed a decrease in the sedimentation velocity. Materials that did not
264	contain xanthan gum showed precipitated rice particles after resting for one day.
265	However, this phenomenon was not observed in materials containing xanthan gum.
266	Adding more than 0.1% xanthan gum physically stabilized the rice slurry.
267	
268	3.4 Sensory evaluation
269	Table1 shows the result of the sensory evaluation and the favorable evaluation. In the
270	sensory evaluation, the material without xanthan gum received significantly a higher
271	grade than the others in powderless and aftertaste. Materials containing 0.1, 0.2, and
271 272	grade than the others in powderless and aftertaste. Materials containing 0.1, 0.2, and 0.3 wt% xanthan gum did not differ. Hukai (1998) reported that the ideal viscosity of
272	0.3 wt% xanthan gum did not differ. Hukai (1998) reported that the ideal viscosity of
272 273	0.3 wt% xanthan gum did not differ. Hukai (1998) reported that the ideal viscosity of milk drinks consisting of mixed rice flour and milk was 15±5 mPa·s . As such, the

higher grade than the others in smell and total taste in the sensory evaluation, and

278	obtained the highest favorability rate of 55.6%. The second most favorable material did
279	not contain xanthan gum and received a 29.6% favorability rating. This result differed
280	from the Hukai report. Many panelists indicated that the 0.3 wt% xanthan gum was
281	favorable because they could "feel the thickness of rice", while the material that did
282	not contain xanthan gum was "easy to drink". However, many panelists indicated that
283	the material that did not contain xanthan gum was also "tasteless and weak". These
284	opinions suggest that the viscosity significantly impacts the taste of rice milk. The
285	"thickness" likely is a preferred characteristic because Japanese people usually do not
286	eat rice thinned with water. Japanese people sometimes consume Okayu, which is a
287	rice porridge steamed with water at a ratio of approximately 1:6. However, the rice to
288	water ratio of this slurry is 1:10. The "thinness" of this solution was not palatable to the
289	Japanese public. Based on these findings, the material containing 0.3 wt% was deemed
290	most suitable to be used as rice milk, not only due to its physical stability but also its
291	high favorability rating.
292	However, Takahashi et al (1999) reported that sensory evaluations based only on one
293	dynamic characteristic were not appropriate . This study only evaluated changes in
294	viscosity, and flavors were not added. Cooked rice is usually sweet; however, this rice

295 milk was not sweet because it was obtained from unheated raw rice. Future sensory

296 evaluations should consider additional flavors as well as the viscosity.

297

298 **4. Conclusions**

The decreasing consumption of rice is a serious problem in Japan. Thus, a "rice slurry" 299 was developed as a new liquid food material to replace rice flour. We investigated the 300 milling conditions to create fine rice particle smaller than 20 µm and the effects of a 301 thickener to improve the physical stability of the slurry. In addition, this rice milk was 302 303 subjected to a sensory evaluation. 304 The minimum D50 and D75 of the brown rice slurry were 6.2 µm and 45.4µm, respectively, with a water feeding rate of 40 mL/min and milling speed of 50 rpm. 305 Milling brown rice finer than 20 µm appears to be challenging. 306 Separated milling method was used to mix the white and rice bran slurries to establish 307 308 a fine rice slurry after separately milling the white rice and rice bran materials. The minimum D50 and D75 of the mixed rice slurry were 5.0 µm and 16.1µm, respectively, 309 which was less than 20 µm. 310 Stokes's law predicted that the sedimentation velocity decreases exponentially with the 311 viscosity and reaches a constant value at 80 mPa · s. The rice slurry was stabilized by 312 adding more than 0.1% xanthan gum. 313

314 Materials that did not contain xanthan gum were rated higher in the sensory evaluation.

However, the material that contained 0.3 wt% xanthan gum received the highest

316	favorability rating of 55.6%.
317	The development of "rice milk" is expected to be improved by the addition of flavors
318	and regulation of its composition.
319	
320	References
321	Hukai, Y., Matsuzawa, T., Ishitani, T., 1998. Soubetu komeko wo riyousita
322	mirukudorinku no kentou -kometubu no touseibuiti no rikagakutekitokusei to riyou,
323	part II (Examination of milk drink using rice powder by its layer –Physiochemical
324	property of milled layer separated from rice grains and its utilization, part II -). The
325	Japan Sciety of Cookert Science 31, 114-116.
326	Inoue, Y., 2011. Shokuhinbunya ni okeru huntaigijutu -daizu wo tyuusin
327	tosite-(Powder Technology for Food Applications, Especially for Processing
328	Soybeans). Journal of the Japanese society for food science and technology 58,
329	552-558.
330	Juliano, B., 1985. Criteria and tests for rice grain qualities. American Association of
331	Cereal Chemists 2nd ed, 443-524.
332	Kainuma, Y., Tanaka, Y., 2009. Kometenkapan no tyousei ni pe-sutojou no kome wo
333	riyou suru kouka (Use of Rice Paste in Rice Bread Processing,). Journal of the
334	Japanese society for food science and technology 56, 620-627.

335	Naganuma, S., 2003. Komeko no rikagakutekiseisitu oyobi tyouritokusei ni oyobosu
336	bihunnkano eikyou (Effect of granular size of rice powder on physicochemical and
337	cooking properties). Akita university(Natural science) 58, 29-35.
338	Shoji, N., Hanyu, Y., Mohri, S., Hatanaka, S., Ikeda, M., Togashi, C., Fujii, T., 2012.
339	Seihunhouhou no kotonaru komeko no huntaitokusei to kyuushuutokusei no hyouka
340	(Evaluation of Powder and Hydration Properties of Rice Flour Milled by Different
341	Techniques). Journal of the Japanese society for food science and technology 59,
342	192-198.
343	Takahashi, T., Ogoshi, H., 1999. Nentyou na eikjoushokuhin no nomikomitokusei to
344	rikigakutekitokusei no kankei (Effect of thicker characteristics on the swallowing of
345	liquid food). Japan society of home economics 50, 333-339.
346	Taniguti, H., Hashimoto, H., Hosoda, A., Kometani, T., Tsuno, T., Adachi, S., 2012.
347	Komenuka ganyuuseibunn no kinousei to sono koujou (Functionality of compounds
348	contained in rice bran and their improvement). Journal of the Japanese society for
349	food science and technology 59, 301-318.
350	Vishwanathan, K., Singh, V., Subramanian, R., 2011. Wet grinding characteristics of
351	soybean for soymilk extraction. Journal of Food Engineering 106, 28-34.
352	

353 Web references

- 354 "Komeko no riyou suisin ni tuite (Transition of utilization of rice flour)" *Ministry of*
- 355 Agriculture, Forestry and Fisheries in Japan (2012),
- 356 http://www.maff.go.jp/j/seisan/keikaku/komeko/pdf/20121210.pdf
- 357 "Kousakuhoukiti no genjou ni tuite (State of fields and rice paddies that have been
- abandoned and are no longer cultivated)" *Ministry of Agriculture, Forestry and*
- 359 Fisheries in Japan (2011a)
- 360 http://www.maff.go.jp/j/nousin/tikei/houkiti/pdf/genjou_1103r.pdf
- 361 "Basic Plan for Food, Agriculture and Rural Areas" *Ministry of Agriculture, Forestry*
- 362 *and Fisheries in Japan* (2011b)
- 363 http://www.maff.go.jp/j/keikaku/k_aratana/pdf/kihon_keikaku_22.pdf

Figure captions

- Fig.1. Improved electric stone system
 - ①:Rotary rice feeding equipment ②:Motor ③:Stone mill ④:Tubing pump
 - (5):Water tank (6):Rubber spatula ⑦Sample bottle
- Fig.2. Picture of the lower stone of Mill A (upside) and Mill C (downside).
- Fig.3. Relationship of the particle size (D50 and D75) of the brown rice slurry and the water feeding rates. ●, indicate D75, and ○, □ indicate D50 at 24 and 18 g/min of the material feeding rate. The mill A was used.
- Fig.4. Relationship of particle sizes (D50 and D75) of the brown rice slurry and the milling speed. ●, indicate D75, and ○, □ indicate D50 at 24 and 18 g/min of the material feeding rate. The mill A was used.
- Fig.5. Particle size distribution of the brown rice slurry at 50 rpm and different material feeding rates. Solid line and broken line indicate 18 and 24 g/min of rice feeding rate. The mill A was used.

- Fig.6. Relationship of the particle size (D50 and D75) of the white rice slurry and material feeding rate. The mill A was used.
- Fig.7. Particle size distributions of the white rice slurry at 35 g/min of the material feeding rate and the brown rice slurry in Fig.5. The mill A was used.

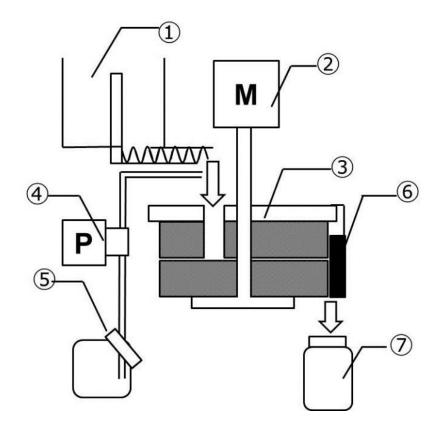
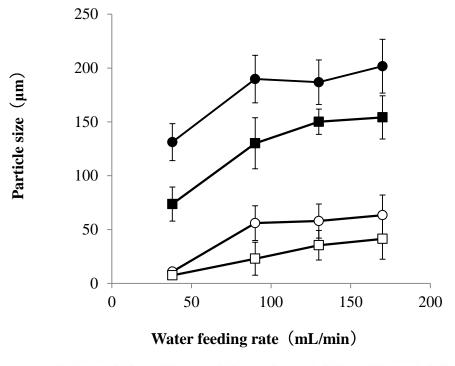
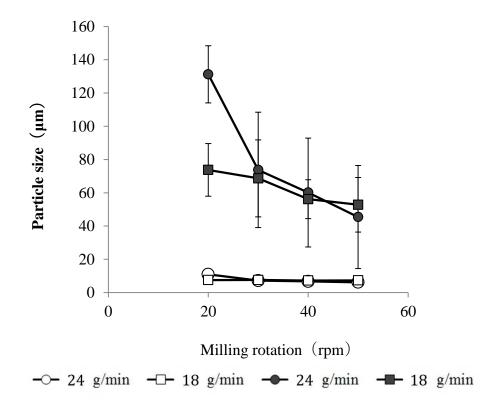

Fig.8. Relationship of the particle size of the rice bran slurry and stone mills.

Fig.9. Particle size distributions of the rice bran slurry milled with different stone mills.

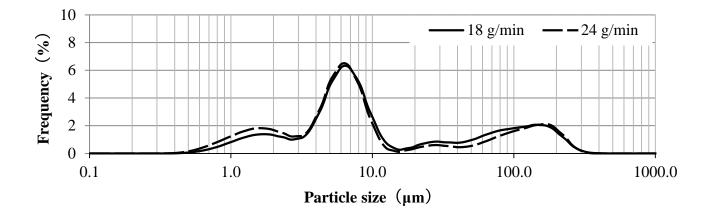
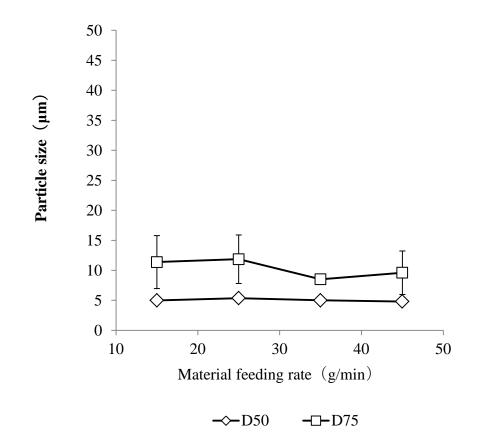
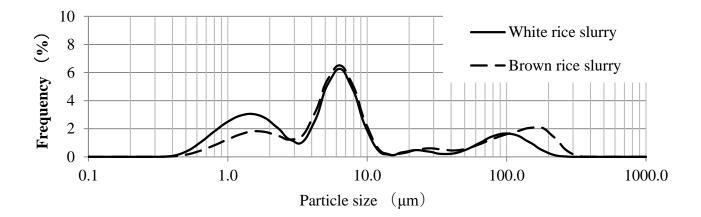
- Fig.10. Particle size (D50 and D75) of the mixed rice slurry and the brown rice slurry in Fig.5.
- Fig.11. Particle size distributions of the mixed rice slurry and the brown rice slurry in Fig.5.

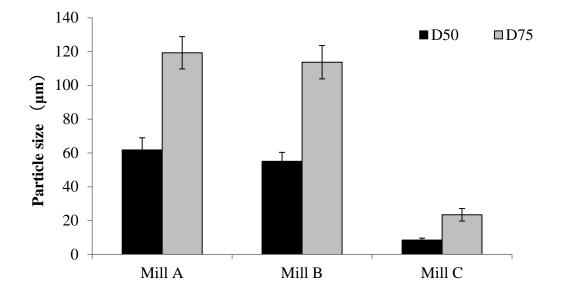
Fig.12. Relationship of dropping velocity and viscosity of mixed rice slurry

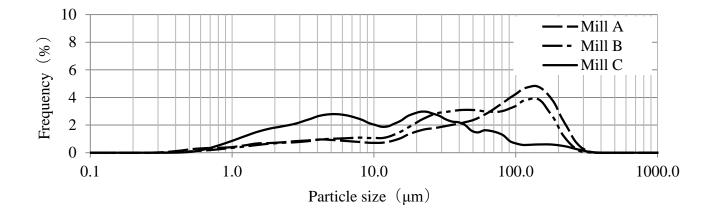


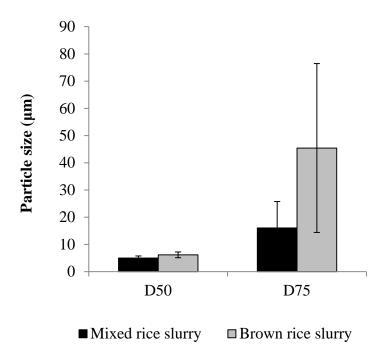


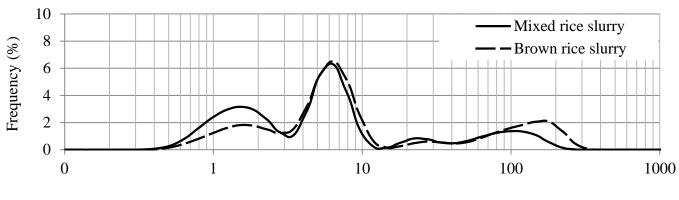
-O- 24 g/min -D- 18 g/min -D- 24 g/min -D- 18 g/min

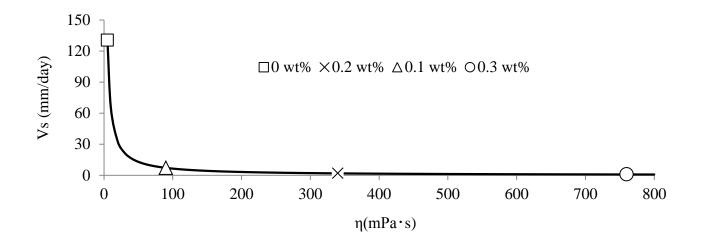





Figure 6









Particle size (µm)

Tables

Amount of	sensory evaluation (pt.)					Favorable
xanthan gum (%)	Powder less	Aftertaste	Ability to drink	Smell	Total taste	evaluation (%)
	5.00 ^a	4.81 ^a	4.63 ^a	3.74 ^a	3.67 ^a	20.6
0	±1.80	±1.80	±1.76	±0.94	±1.41	29.6
0.1	4 ^b	4 ^b	4^{a}	4 ^a	4 ^a	3.70
0.2	3.96 ^b	3.67 ^b	4.04 ^a	4.11 ^a	4.11 ^a	11.1
0.2	±1.32	±1.30	±1.29	±1.22	±1.31	11.1
0.3	4.19 ^{ab}	3.48 ^b	3.70 ^a	4.41 ^b	4.52 ^b	55.6
0.5	±1.55	±1.76	±1.61	±1.22	± 1.48	55.0

Tabale 1. Result of Sensory evaluation and Favorable evaluation

Each value of the sensory evaluation is the mean \pm SD

Means with the same latter are not significantly (p>0.05) different.