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Abstract 

It is well known in classical electrodynamics that the magnetic field 
given by a current loop and the electric field caused by the 
corresponding electric dipoles in sheets are very similar, as far as we 
are far away from the loop, which enables us to deduce Ampère’s 
magnetic circuital law from the Biot-Savart law easily. The principal 
objective in this paper is to show that synthetic differential geometry, 
in which nilpotent infinitesimals are available in abundance, furnishes 
out a natural framework for the exquisite formulation of this similitude 
and its demonstration. This similitude in heaven enables us to transit 
from the Biot-Savart law to Ampère’s magnetic circuital law like a 
shot on earth. 

1. Introduction 

It is well known among physicists (see, e.g., [9]) that the magnetic field 
given by a current loop and the electric field caused by the corresponding 
electric dipoles in sheets are very similar, as far as we are far away from the 
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loop, which enables us to deduce Ampère’s magnetic circuital law from the 
Biot-Savart law easily. However, a mathematically satisfactory formulation 
of this similitude is by no means easy, let alone its proof based upon the 
Coulomb and Biot-Savart laws. 

In good old days of the 17th and 18th centuries, mathematicians and 
physicists could communicate easily with ones of the other species, and 
many excellent mathematicians were physicists at the same time and vice 
versa. The honeymoon was over when mathematicians rushed into 
eradication of their shabby nilpotent infinitesimals by replacing them with 
their authentic δε-  arguments. 

In the middle of the 20th century, moribund nilpotent infinitesimals were 
resurrected in not earthly but heavenly manners by synthetic differential 
geometers. They have constructed another world of mathematics, called a 
well-adapted model (a kind of Grothendieck toposes), in which they could 
indulge themselves in their favorite nilpotent infinitesimals. We have a route 
from the earth to heaven (internalization) and another route in the opposite 
direction (externalization), so that our synthetic formulation and 
demonstration of the similitude is of earthly significance. For synthetic 
differential geometry, the reader is referred to [2] and [3]. 

The very similitude is formulated and established synthetically in Section 
4, which is preceded by a synthetical approach to electric dipoles in sheets in 
Section 3. Once the similitude is firmly established within a well-adapted 
model, some of its consequences are externalized, which enables us to derive 
the Ampère’s magnetic circuital law from the Biot-Savart law, as is seen in 
Section 5. In a subsequent paper, we will discuss Vassiliev invariants in knot 
theory (cf. [7] and [8]) from this standpoint. 

2. Preliminaries 

In this section, we fix our notation for static electric fields and static 
magnetic fields. Since we would like to concentrate upon mathematical 
aspects, we omit unnecessary physical constants or the like from this 
standpoint. 
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2.1. Static electric fields 

Given a figure Ω in 3R  and a mapping R→Ω:q  (as the density of 

electric charge), the static electric field ( )
33

, : RRE →Ω q  associated with 

( )q,Ω  is given by an integral. Namely, the Coulomb law tells us that 

( )( ) ( ) ( )∫ΩΩ
−

−
= dpq

q 3,
px

pxpxE  

for any ,3Rx ∈  where the integral is the volume integral, the surface integral 

or the line integral according to whether the figure Ω is three-dimensional, 
two-dimensional or one-dimensional. As is well known, the following 
Maxwell equations obtain: 

( ) ,4div , qq π=ΩE  (1) 

( ) .rot , 0E =Ω q  (2) 

Now we consider electric dipoles. Let S be an oriented surface in 3R  and 

., R∈σ h  Let 3: Rn →SS  be the unit normal in the positive direction. We 

slide the surface S by S
h n2  to get the surface .

2
hS  The surface 

2
hS  endowed 

with the constant density σ of electric charge gives rise to the static electric 

field ( )
+

σ hS ,,E  by the Coulomb law. Similarly, we slide the surface S by 

S
h n2−  to get the surface .

2
hS

−
 The surface 

2
hS

−
 endowed with the constant 

density σ−  of electric charge gives rise to the static electric field ( )
−

σ hS ,,E  

by the Coulomb law. They together yield the static electric field 

( ) ( ) ( )
−

σ
+

σσ += hShS
dp

hS ,,,,,, EEE  

by the Coulomb law. 
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2.2. The Biot-Savart law and Ampère’s magnetic circuital law 

The static magnetic field caused by a current loop is given by the so-

called Biot-Savart law, so that, given a loop [ ] ( ) ,,0: 3
0 Rm ∈∈ tttC  it 

gives rise to its static magnetic field CB  by 

( )
( )( ) ( )

( )∫ −

×−

π
=

0

0 34
1 t

C dt
t

tdt
dt

mx

mmx
xB  

( )∫ −
×−

π
=

C

d
34

1
rx

rrx  (3) 

for any ,3Rx ∈  where r moves along the curve C. Given another loop 

[ ] ( ) ,,0: 3
0 Rl ∈∈ tssL  Ampère’s magnetic circuital law claims that 

( ) ( )( ) ( ) ( )

( ) ( )∫ ∫ −

⋅⎟
⎠
⎞⎜

⎝
⎛ ×−

π
0 0

0 0 34
1 s t

ts

sds
dtdt

dts
dtds

ml

lmml
 

( )( )∫ ∫ −
⋅×−

π
=

L C

dd
34

1
rs

srrs  

( ),, LCLk=  (4) 

where s moves along the curve L, and ( )LC,Lk  is defined as follows: 

Definition 1. Let S be an oriented surface with its induced oriented 
boundary L, which is supposed to be transversal to C at their intersecting 
points. They are enumerated as 

{ }....,,1 kCS pp=∩  

We define ( )kii ...,,1=ε  to be 1 if the tangent of C at ip  transits S into the 

part that the orientation of S selects, and −1 otherwise. Now we define 

( ) ∑
=

ε=
n

i
iLC

1
.,Lk  
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The reader should note that the definition is independent of our choice of 
S. 

Topology tells us that 

Proposition 2. The number ( )LC,Lk  has the following properties: 

(1) It is symmetric in the sense that 

( ) ( ).,, CLLC LkLk =  

(2) For any oriented surface S with ,LLS ′−=∂ ∪  if it does not intersect 

C, then we have 

( ) ( ),,, LCLC ′= LkLk  

where L′−  denotes the same curve L′  with the orientation reversed. 

Notation 3. The first and the second formulas of (4) are denoted by 

( )., LCA  

3. Synthetic Differential Geometry of Electric Dipoles in 
Infinitesimal Sheets 

In this and the subsequent sections, we are working within a well-
adapted model. 

Notation 4. We denote by R  the set of real numbers containing nilpotent 
infinitesimals in abundance (called a line object in synthetic differential 
geometry). We denote by +R  the set 

{ }.0>|∈ xx R  

We denote by D the set 

{ }.02 =|∈ dd R  

Intuitively, D stands for the set of first-order infinitesimals. 

Let m be an integer and n be a natural number. For the mapping 

,RR ∈∈ +
mxx  
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we have 

 ( ) dmxxdx mmm 1−+=+  (5) 

for any ,Dd ∈  as is well known. For the mapping 

,RR ∈∈ +
n
m

xx  

we have 

Lemma 5. 

( ) .
1
dxn

mxdx n
m

n
m

n
m −

+=+  

Proof. By the Kock-Lawvere axiom, there exists a unique R∈a  such 
that 

( ) adxdx n
m

n
m

+=+  

for any .Dd ∈  On one hand, we have 

(( ) ) ( ) dmxxdxdx mmmnn
m 1−+=+=+  

by (5). On the other hand, we have 

( ) ( ) ( ) adxnxadx nn
m

nn
m

nn
m

1−+=+  

by the binomial theorem. Therefore, we have 

( ) axnmx nn
m

m 11 −− =  

so that 

 ( )
( ) ( )

.
111

11 −−+−
−− === n

m
n

nmmn
nn

m
m xn

mxn
mxxn

ma  ~ 

Corollary 6. Let 3, R∈ax  with .0x ≠  Then we have 

( )dd axxxax ⋅−=+ −−− 533 3  
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for any ,Dd ∈  where x  is the standard norm of x ( .,.ei  =x  

( ) ( ) ( )23
2

2
2

1 xxx ++  with ( ))321 ,, xxx=x  and ⋅  stands for the inner 

product. 

Proof. We have 

 ( ) 2
323 −− +=+ dd axax  

( ) ( )( ) 2
3−+⋅+= dd axax  

( ) ( )( ) 2
3

2 −⋅+⋅= daxxx  

( )daxxx ⋅−= −− 53 3     [by Lemma 5]. ~ 

Proposition 7. Let ,,, Dhed ∈  R∈σ  and 3,,, R∈rbax  with ,rx ≠  

.0ba ≠×  Let S be the infinitesimal parallelogram spanned by axx d+,  

and :bx e+  

bax
b

ax

aa

bx
b

x

ed
e

d

dSd

e
e

++
→

+

↓↓

+
→

 

Then we have 

( )( ) ( ) ( ) .33,, ⎟
⎠
⎞

⎜
⎝
⎛ ×−

−
−

⎟
⎠
⎞

⎜
⎝
⎛ ×⋅

−
−

−

σ=σ baxr
xrbaxr

xr
xr

rE dehdp
hS  

Proof. 

( )( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

×
×+−⎟

⎠
⎞

⎜
⎝
⎛

×
×+−×σ=

−
+

σ ba
baxrba

baxrbarE 22

3

,,
hhdehS  

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛

×
×−−

×
×−−×σ=

−

ba
baxrba

baxrba 22

3 hhde  
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( ) ( )( )
⎟
⎠
⎞

⎜
⎝
⎛ −

×
×⋅−+−×σ= −− 53

2
3 xrba

baxrxrba hde  

( ) ⎟
⎠
⎞

⎜
⎝
⎛

×
×

−−
ba
baxr

2
h       [by Corollary 6]. 

On the other hand, we have 

( )( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

×
×−−⎟

⎠
⎞

⎜
⎝
⎛

×
×−−×σ−=

−
−

σ ba
baxrba

baxrbarE 22

3

,,
hhdehS  

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛

×
×+−

×
×+−×σ−=

−

ba
baxrba

baxrba 22

3 hhde  

( ) ( )( )
⎟
⎠
⎞

⎜
⎝
⎛ −

×
×⋅−−−×σ−= −− 53

2
3 xrba

baxrxrba hde  

( ) ⎟
⎠
⎞

⎜
⎝
⎛

×
×+− ba

baxr 2
h      [by Corollary 6]. 

Therefore, we have 

( )( )rEbp
hS ,,σ  

( )( ) ( )( )rErE −
σ

+
σ += hShS ,,,,  

( ) ( )( ) ( ) ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
×

×
−

−−
×

−×⋅−
×σ=

−−
baba

xrxrba
xrbaxrba

353 hhde  

( ) ( ) .33 ⎟
⎠
⎞

⎜
⎝
⎛ ×−

−
−

⎟
⎠
⎞

⎜
⎝
⎛ ×⋅

−
−

−

σ= baxr
xrbaxr

xr
xr
deh  ~ 

4. The Similitude between the Electric Fields of Electric Dipoles in 
Sheets and the Magnetic Fields of Current Loops within 

Synthetic Differential Geometry 

The principal objective in this section is to establish the similitude 
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between the electric fields of dipoles in sheets and the magnetic fields of 
current loops synthetically. The discussion is very similar to that in Stokes’ 
Theorem, for which the reader is referred to [4], [5] and [6]. Let us begin 
with 

Lemma 8. For any vectors 3, R∈ba  and any unit vector ,ˆ 3R∈r  we 

have 

(( ) ) ( ) ( ) .ˆˆˆˆˆˆ rabrrbarbarrba ×⋅−×⋅+×=⋅×  

Proof. Fixing arbitrarily ( )321 ˆ,ˆ,ˆˆ rrr=r  with ( ) ( ) ( ) ,1ˆˆˆ 2
3

2
2

2
1 =++ rrr  

both the left-hand and the right-hand of the above formula can be regarded as 

functions of ( ) (( ) ( )) .ˆ,ˆ,ˆ,ˆ,ˆ,ˆ, 33
321321 RR ×∈= bbbaaaba  It is easy to see 

that both functions are bilinear, so that it suffices to show the above formula 
in cases of kjia ,,=  and ,,, kjib =  where kji ,,  are the standard base of 

,3R  namely, ( ),0,0,1=i  ( )0,1,0=j  and ( ).1,0,0=k  In case of ,ba =  

it is easy to see that both sides degenerate into 0. In case of ia =  and ,jb =  

we have ,kba =×  so that the left-hand is ( ( ) ),ˆ,ˆˆ,ˆˆ 2
32313 rrrrr  while the right-

hand is 

( ) ( ) ( )rirj ˆˆˆˆ1,0,0 21 ×−×+ rr  

( ) ( ( ) ) ( ( ) )2
232

2
131 ˆ,ˆˆ,0ˆ,0,ˆˆ1,0,0 rrrrrr −−−+=  

( ( ) )2
32313 ˆ,ˆˆ,ˆˆ rrrrr=  

[since ( ) ( ) ( )23
2

2
2

1 ˆˆˆ rrr ++  is equal to 1]. 

The remaining five cases are safely left to the reader. ~ 

Theorem 9 (The infinitesimal similitude). Let Ded ∈,  and bax ,,  
3R∈  with .0ba ≠×  Let C be the infinitesimal oriented curve moving from 

x to ax d+  by da, moving from ax d+  to bax ed ++  by eb, moving from 
bax ed ++  to bx e+  by ad−  and finally moving from bx e+  to the start 

x by :be−  
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bax
b

ax

aa

bx
b

x

ed
e

d

dSd

e
e

++
→

+

−↑↓

+
←
−

 

Let S be the infinitesimal oriented parallelogram spanned by axx d+,  and 

bx e+  with its induced oriented boundary C. Let Dh ∈  and .R∈σ  Then 
we have 

( )( ) ( )rBrE C
dp

hS h=,1,  

for any 3R∈r  with .xr ≠  

Proof. On one hand, thanks to Proposition 7, we have 

( )( ) ( ) ( ) .33,1, ⎟
⎠
⎞

⎜
⎝
⎛ ×−

−
−

⎟
⎠
⎞

⎜
⎝
⎛ ×⋅

−
−

−
= baxr

xrbaxr
xr

xr
rE hdedp

hS  

On the other hand, we have 

( )rBC  

( ) ( )( )
( )

( )( )
( )

( )
3333 xr
xrb

bxr
bxra

axr
axrb

xr
xra

−

−×−
+−

+−×−
+−

+−×+
−

−×= e
e

ed
d

ded  

( ) ( )( )
( )

( )( )
( )

( )
3333 xr
xrb

bxr
bxra

axr
axrb

xr
xra

−

−×−
−−

−−×−
−−

−−×+
−

−×= e
e

ed
d

ded  

( ) ( )( )( ) ( ( )( ) )dded axrxrxraxrb
xr

xra ⋅−−+−−−×+
−

−×= −− 53
3 3  

( )( )( ) ( ( )( ) )eed bxrxrxrbxra ⋅−−+−−−×− −− 53 3  

( )
3xr
xrb

−

−×
−

e  
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( )( )( )( ( )( ) ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−

−×−⋅−−+−−−×= −−
3

53 3
xr

xrbaxrxrxraxrb edde  

( )( )( )( ( )( ) ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−×−⋅−−+−−−×− −−

3
53 3

xr
xrabxrxrxrbxra deed  

{ ( ) ( )( ) ( )( )}xrbaxrxrabxr −×⋅−−+×−−= −− 53 3dede  

{ ( ) ( )( ) ( )( )}xrabxrxrbaxr −×⋅−−+×−−− −− 53 3dede  

( )
⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

−
−×⎟

⎠
⎞

⎜
⎝
⎛ ⋅

−
−+×−= −

xr
xrbaxr

xrbaxr 323de  

.3
⎭
⎬
⎫
⎟
⎠
⎞

⎜
⎝
⎛

−
−×⎟

⎠
⎞

⎜
⎝
⎛ ⋅

−
−− xr

xrabxr
xr  

Therefore, the desired result follows by dint of Lemma 8. ~ 

Theorem 10 (The general similitude). Let S be an oriented surface with 
its induced oriented boundary C. Let .Dh ∈  Then we have 

( )( ) ( )rBrE C
dp

hS h=,1,  

for any 3R∈r  with .S∉r  

Proof. We divide the oriented surface S into MN infinitesimal oriented 
parallelograms, where M and N are very great natural numbers. It is depicted 
partially and schematically in the following diagram: 

2,21,2,2

1,1,1

2,11,1,1

1,,

2,1,,

+++++

+++

+++++

+

++

→→
↑↓↑↓

←
→

←
→

↑↓↑↓
←←

jijiji

jiji

jijiji

jiji

jijiji

x
SS

x

SS

xx

xx

xxx
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Then surely we have 

 ( )( ) ( )( )∑ ∑
−

=

−

=
=

1

0

1

0
,1,,1, .

,

M

i

N

j

dp
hS

dp
hS ji

rErE  (6) 

Proposition 7 enables us to conclude that 

 ( )( ) ( )∑ ∑ ∑ ∑
−

=

−

=

−

=

−

=
=

1

0

1

0

1

0

1

0
,1, .

,,

M

i

N

j

M

i

N

j
C

dp
hS jiji

h rBrE  (7) 

The boundary jiC ,  of the infinitesimal parallelogram jiS ,  consists of the 

infinitesimal segment from ji,x  to ,,1 ji+x  that from ji ,1+x  to ,1,1 ++ jix  that 

from 1,1 ++ jix  to 1, +jix  and that from 1, +jix  to ., jix  Unless ,1−= Mi  

the second segment from ji ,1+x  to 1,1 ++ jix  is shared by the infinitesimal 

parallelogram jiS ,1+  as its boundary in the opposite direction. Similarly, 

unless ,1−= Nj  the third segment from 1,1 ++ jix  to 1, +jix  is shared by the 

infinitesimal parallelogram 1, +jiS  as its boundary in the opposite direction. 

Therefore, we have 

 ( ) ( )∑ ∑
−

=

−

=

=
1

0

1

0
.,

M

i

N

j
CC ji rBrB  (8) 

Therefore, the desired formula follows readily from (6), (7) and (8). ~ 

Corollary 11. With the same notation and assumptions in the above 
theorem, we have 

( )( ) .rot 0rB =C  

Proof. We have 

( ) ( ) ( ( ) ) ( )rErB dp
hSCh ,1,rotrot =    [by Theorem 10] 

0=        [by (2)] 

for any ,Dh ∈  so that we have 

 ( ) ( ) .rot 0rB =C  ~ 
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5. From the Biot-Savart Law to Ampère’s Circuital Law 

This section owes much to [1]. 

Proposition 12. For any ,C∉x  we have 

( ) ( ) .rot 0xB =C  

Proof. Since ,C∉x  it is not difficult to find a surface S dodging x with 
its boundary being C. By internalizing these entities in a well-adapted model 
and externalizing Corollary 11, we get the desired result. ~ 

Proposition 13. The number ( )LC,A  has the following properties: 

(1) It is symmetric in the sense that 

( ) ( ).,, CLLC AA =  

(2) For any oriented surface S with ,LLS ′−=∂ ∪  if it does not 
intersect C, then we have 

( ) ( ).,, LCLC ′= AA  

Proof. The first property follows simply from 

( ) ( )( ) ( ) ( )sds
dtdt

dts lmml ⋅⎟
⎠
⎞⎜

⎝
⎛ ×−  

( ) ( )

( )

( ) ⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
−

=

s
ds
d

t
dt

d
ts

l

m
ml

det  

( ) ( )

( )

( ) ⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
−

=

t
dt

d

s
ds
d

st

m

l
lm

det  

( ) ( )( ) ( ) ( ).tdt
dsds

dst mllm ⋅⎟
⎠
⎞

⎜
⎝
⎛ ×−=  



Hirokazu Nishimura 220 

The second property follows simply from Stokes’ Theorem, as is seen in the 
following computation: 

( ) ( ) ∫ ′−
⋅

π
=′−

LL L dLCLC
∪

rBAA
4
1,,  

( )∫ ⋅
π

=
S C dSBrot

4
1     [by Stokes’ Theorem] 

0=     [by Proposition 12]. ~ 

Lemma 14. Let n be a natural number with .2≥n  The curve L is the 
unit circle on the xy plane with center ( )0,0,0  rounding counterclockwise 

against the positive part of the z axis. The curve ,nC  to begin with, moves up 

straight from ( )n−,0,0  to ( ),,0,0 n  moves horizontally from ( )n,0,0  to 

( ),,0, nn  moves down straight from ( )nn ,0,  to ( ),,0, nn −  and finally 

moves horizontally from ( )nn −,0,  to ( ):,0,0 n−  

( ) ( )

( ) ( )nnn

nnn

−←−
↓↑
↓
↓↑

→

,0,,0,0

,0,,0,0

 

Then we have 

( ) 1, =LCnA  

while trivially we have 

( ) .1, =LCnLk  

Proof. Thanks to Proposition 13, we are sure that ( )LCn ,A  is 

independent of n, for we have 

( ) 0,1 =− + LCC nn ∪A  
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as is to be seen easily. The curve nC  is composed of the curve 1
nC  moving up 

straight from ( )n−,0,0  to ( )n,0,0  and the curve 2
nC  moving horizontally 

from ( )n,0,0  to ( ),,0, nn  then moving down straight from ( )nn ,0,  to 

( )nn −,0,  and finally moves horizontally from ( )nn −,0,  to ( ).,0,0 n−  

Now we have 

( ) ( )( ) ( )( ) ,4
1

4
1, 1 2 33∫ ∫ ∫ ∫ −

⋅×−
π

+
−

⋅×−
π

=
L C L Cn

n n

ddddLC
rs

srrs
rs

srrsA  

where s moves along the curve L and r moves along the curve 1
nC  or .2

nC  It 

is easy to see that we have 

( )( )∫ ∫ →
−

⋅×−
π L Cn

dd
2 04

1
3rs

srrs  

as ,∞→n  while we have 

( )( ) ( )( )∫ ∫ ∫ ∫ ∞ −

⋅×−
π

→
−

⋅×−
π L C L Cn

dddd
1 33 4

1
4
1

rs
srrs

rs
srrs  

as ,∞→n  where the curve ∞C  is no other than the z-axis moving from ∞−  

to .∞+  It is well known that 

( )( )
∫ ∫ ∞ =

−

⋅×−
π L C

dd .1
4
1

3rs
srrs  

Therefore, we are done. ~ 

Theorem 15 (The general Ampère’s circuital law). The Ampère’s law (4) 
obtains. 

Proof. Let ε  be a very small positive number. To each [ ],,0 0tt ∈  we 

consider the circle ( )tεC  with its center ( )tm  and its radius ε in the plane 

perpendicular to ( ).tdt
dm  Then the totality of ( )tC  with t ranging over [ ]T,0  
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forms a cylinder-like figure, which cuts out k circle-like curves from S. They 
are denoted by ,...,,1 kLL  which surround the surfaces kSS ...,,1  containing 

,...,,1 kpp  respectively. They are endowed with the orientations induced 

from that of the surface S. Then the surface S ′  carved out by the curve 
( ) ( )kLLL −− ∪∪∪ 1  from S no longer intersects the curve C, so that we 

have 

( ) ( )( ) 0, 1 =−− kLLLC ∪∪∪A  

by dint of Stokes’ Theorem and Proposition 12. On the other hand, we are 
sure by the very definition that 

( ) ( )( ) ( ) ( )∑
=

−=−−
k

i
ik LCLCLLLC

1
1 ,,, AAA ∪∪∪  

while we have 

( ) ( )ii LCLC ,, LkA =  

by dint of Lemma 14 with the aid of Proposition 13. Therefore, we are done. 

 ~ 
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