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Abstract 1 

Microfluidics is an emerging and promising interdisciplinary technology which offers powerful 2 

platforms for precise production of novel functional materials (e.g., emulsion droplets, 3 

microcapsules, and nanoparticles as drug delivery vehicles- and drug molecules) as well as high-4 

throughput analyses (e.g., bioassays, detection, and diagnostics). In particular, multiphase 5 

microfluidics is a rapidly growing technology and has beneficial applications in various fields 6 

including biomedicals, chemicals, and foods. In this review, we first describe the fundamentals 7 

and latest developments in multiphase microfluidics for producing biocompatible materials that 8 

are precisely controlled in size, shape, internal morphology and composition. We next describe 9 

some microfluidic applications that synthesize drug molecules, handle biological substances and 10 

biological units, and imitate biological organs. We also highlight and discuss design, applications 11 

and scale up of droplet- and flow-based microfluidic devices used for drug discovery and 12 

delivery. 13 

 14 
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1. Introduction 1 

 2 

Microfluidics is the science and technology of manipulating and processing fluids in 3 

microchannels (MCs) that have at least one dimension (e.g. channel depth, width or diameter) 4 

smaller than 1 mm [1]. The early applications of current microfluidic technology include blood 5 

rheology [2, 3] and chemical analysis [4], which were prompted by the capability of microfluidic 6 

devices to use very small volumes of samples and reagents, to carry out analysis in short time 7 

due to short diffusion distances and to achieve high levels of compactness due to process 8 

integration. The rapid progress in silicon microfabrication technology, which started in the 1980s, 9 

enabled the development of these silicon-based microfluidic devices. A number of recent 10 

microfluidic devices have been fabricated using transparent polydimethylsiloxane (PDMS) 11 

elastomer [1]. Microfluidic device (also referred to as lab-on-a-chip device) allows for single unit 12 

operation (e.g., mixing, separation, droplet generation, particle manipulation, heating, and 13 

detection) or incorporates multiple unit operations [5-8]. Microfluidic technology is a rapidly 14 

growing interdisciplinary field and has received a great deal of attention in a broad spectrum of 15 

fields from fluid physics to biomedicine within the past two decades. Promising applications of 16 

microfluidic devices also include drug discovery, drug development, and drug synthesis [9-11]. 17 

 18 

In microfluidic technology, continuous and multiphase fluidic systems are usually used 19 

for various applications including biomedicals, chemicals, and foods. Multiphase fluid flows in 20 

microfluidic devices can be classified into droplet-based flows and parallel (coaxial) flows. 21 

Droplet-based microfluidic devices have at least one droplet generation unit (e.g., T-, X-, and Y-22 

junctions, flow focusing, co-flow, and comb geometry) and have droplet splitting/merging unit 23 

for some applications [11-14]. At a droplet generation unit, a dispersed phase fluid is 24 

compartmentalized into numerous droplets that are surrounded by a continuous phase fluid in a 25 

channel. The growth of microfluidic drop generation processes in the past decade was driven by 26 

a rising number of applications that can take advantage of precision generation and manipulation 27 

of droplets on a microscale [15]. For instance, the generated monodisperse droplets are useful 28 

templates for producing monodisperse microcapsules and microparticles for delivering drugs and 29 

functional nutrients as well as for encapsulating living cells [11, 13]. Moreover, monodisperse 30 

droplets that range in volume from picoliter to nanoliter can function as numerous individual 31 
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microvessels for fast mixing and reaction [11, 13]. Wetting of a dispersed phase fluid and 1 

droplets to the channel wall is usually prevented by a thin wetting layer of a continuous phase, 2 

which is required for successful droplet generation/manipulation. It is also noteworthy that 3 

surfactant must be appropriately selected for successfully generating droplets [14, 16].  4 

 5 

The scale-up of droplet-based microfluidic devices is a challenging field. A single 6 

microfluidic device usually produces emulsions at a droplet throughput of tens to hundreds of 7 

microliters per minute, while much greater throughputs are needed, even for very expensive 8 

pharmaceutical and biomedical applications [17, 18].  Several research groups have increased the 9 

throughput capacity of droplet-based microfluidic devices by parallelizing droplet generation 10 

units and/or such devices [17, 19-23]. Kobayashi et al. [23] recently achieved the production of 11 

monodisperse emulsions at a droplet throughput higher than 1 L h
-1

 by MC emulsification using 12 

asymmetric straight-through MC arrays. Spontaneous-transformation-based droplet generation 13 

for MC emulsification [24] is basically insensitive to the flow rates of two phases, making the 14 

scale-up and parallelization of MC emulsification device easier. Although the robust scale-up of 15 

the other droplet-based microfluidic devices is still quite challenging, these devices are 16 

promising for producing compound droplets with precisely controlled inner structure and 17 

morphology [20, 25]. 18 

 19 

Continuous and parallel multiphase flows in a microfluidic device are formed 20 

downstream Y-, T-, and -junctions [5, 9, 26]. Flows in a straight MC are laminar due to low 21 

Reynolds number; e.g., pure water that flows in a 10-m diameter MC at its flow velocity of 10
-3

 22 

m s
1

 has a Reynolds number of ~10
-3

. Since it is difficult to stabilize immiscible multiphase 23 

flows in an MC with homogenous hydrophilic/hydrophobic surface, several selective surface 24 

modification methods have been proposed to realize stable parallel multiphase flows consisting 25 

of immiscible fluids [5]. Continuous and parallel-flow-based microfluidic devices can be applied 26 

to unit operations, such as mixing, reaction, extraction, and separation. These devices have also 27 

been used for forming self-assembled nanoparticles as drug delivery vehicles and for fabricating 28 

drug-loaded microfibers [8, 27]. Integrated microfluidic devices have been used in research labs 29 

for almost two decades. 30 

 31 
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The scale-up of these microfluidic devices through integration techniques increases their 1 

popularity in diagnostic and medical sciences [28]. The integration of nanoparticle and 2 

microreaction technologies also offers enormous opportunities for the further development of 3 

smart drug delivery systems and microreactors for drug development and other biochemical 4 

synthesis [29]. Microfluidic integration technology, referred to the development of microfluidic 5 

devices with thousands of integrated micromechanical valves, enables hundreds of assays to be 6 

performed in parallel with multiple reagents in an automated manner [30]. This technology has 7 

been used for protein crystallization [6], cell chemotaxis and morphogenesis [31], genetic and 8 

amino acid assays [32, 33], high-throughput screening [25], neurobiology [34], bioreactors [35], 9 

chemical and material processing and synthesis [36], three-dimensional (3D) cell cultures [37] 10 

and single cell analysis [38]. Integrated microfluidic systems can be readily extended to solar-11 

fuel generators, fuel-cell devices [27], organ-on-a-chip, human-on-a-chip, and point-of-care 12 

(POC) devices [39]. The commercialization of these scaled-up devices would revolutionize the 13 

world. 14 

 15 

This review primarily focuses on multiphase microfluidics for producing biocompatible 16 

materials that are precisely controlled in size, shape, internal morphology and composition. The 17 

applications of continuous and multiphase microfluidics for bioassays, screening, detection 18 

systems, and diagnostics are in detail discussed in other review articles [10, 40-42], whereas their 19 

scale-up strategies have not yet been comprehensively evaluated. In the following sections, we 20 

first provide an overview of materials and fabrication techniques for existing microfluidic (lab-21 

on-a-chip) devices, as well as of on-chip unit operations (droplet generation, droplet 22 

splitting/merging/loading, and formation of parallel multiphase flows). We then describe recent 23 

applications of microfluidic devices for producing functional biocompatible materials including 24 

drugs as well as drug delivery vehicles, bioassays, diagnostics, screening and detection 25 

techniques. We further discuss the scale-up strategies of microfluidic devices together with large 26 

scale microfluidic integration techniques that aim at materials processing at industrial scales. 27 

 28 

 29 

 30 
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2. Chip materials and fabrication 1 

The most common materials used for fabrication of microfluidic devices along with fabrication 2 

methods are listed in Table 1.  3 

 4 

2.1 Fabrication of single-crystal silicon chips 5 

Single-crystal silicon MCs can be fabricated in the form of microgrooves [2], straight-through 6 

holes [44] or micronozzles [63]. Single crystal silicon is hydrophobic, but after anisotropic wet 7 

etching and subsequent thermal oxidation, the surface of silicon wafer becomes hydrophilic [64]. 8 

The hydrophobic surface can be obtained by the treatment with a silane coupling agent, such as 9 

n-octyltriethoxysilane [65] and octadecyltriethoxysilane [66].  10 

Microgrooves. Microgrooves are usually fabricated by photolithography and anisotropic wet 11 

etching, as shown in Figure 2.1.1a. Photolithography includes masking of substrate with SiO2 12 

and photoresist, UV exposure, and photoresist developing. A channel structure that will be 13 

etched into the substrate is first generated by computer and then drawn onto a transparent plate 14 

(mask). A positive photoresist is then applied to the substrate in a thin layer, usually by a spin-15 

coating process, and exposed to UV light through the mask. The illuminated areas of photoresist 16 

are then dissolved in a developer, exposing SiO2 and the silicon substrate below to the etchant. 17 

Wet etching includes: (i) etching the SiO2 layer by hydrofluoric acid at locations unprotected by 18 

photoresist; (ii) removing the remaining photoresist, usually by a mixture of sulfuric acid and 19 

hydrogen peroxide, and (iii) etching the silicon substrate. Anisotropic etching occurs when 20 

etchant (typically a KOH solution) etches silicon at different rates depending upon which crystal 21 

face is exposed. KOH etches silicon 12 orders of magnitude faster than SiO2, so the SiO2 layer 22 

remains intact. Anisotropic etching is greatly preferred in fabrication of microfluidic devices, 23 

because it produces channels with sharp, well defined edges. A typical isotropic etchant is a 24 

mixture of hydrofluoric acid and nitric acid. Isotropic etching is undesirable, because it results in 25 

undercutting of mask features.  26 

Straight-through microchannels. Deep vertical MCs that completely penetrate silicon substrate 27 

can be fabricated by deep reactive ion etching (DRIE) [44]. DRIE requires aluminium mask to 28 

protect the underlying substrate against etching (Figure 2.1.1b). DRIE is a three-step process, 29 

patented by Robert Bosch GmbH, that involves: (i) etching a shallow trench into silicon substrate 30 

using sulfur hexafluoride (SF6) plasma; (ii) passivating that newly formed cavity with 31 
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fluorocarbon polymer ((CF2)x) similar to teflon, created with the addition of 1 

octafluorocyclobutane (C4F8) plasma, and (iii) etching a subsequent and deeper trench with SF6 2 

plasma. Passivation with polymer prevents lateral etching of the sidewalls, while the hole 3 

becomes deeper. The reactive species (neutral radicals and ions) are formed by the collision of 4 

SF6 molecules with a cloud of energetic electrons excited by an electric field [67]: SF6 + e

  5 

SFn + (6n)F
*
 + e


 and SF6  SFn

+
 + (6n)F


 with n = 0, 1, 2, 3, 4, or 5. The reactive species (F

*
 6 

and SFn
+
) react with silicon forming SiF4 (e.g. Si + 4F

*
  SiF4), a gaseous substance that can be 7 

removed by a vacuum pump.  8 

Micronozzles (MNs). Micronozzles can be fabricated by two-step DRIE process, as described in 9 

Figure 2.1.1c. The purpose of the first DRIE process is to form a rectangular of cylindrical pillar 10 

on the surface of silicon wafer. The role of the second DRIE process is to create a straight-11 

through channel inside that pillar. MNs can be used for cross-flow droplet generation [68] or 12 

drop generation by flow focusing [63]. The main advantage of MNs over conventional straight-13 

through channels is in higher cross-flow velocity at the channel exit, which is useful when the 14 

viscosity of the dispersed phase is high [68].  15 

 16 

2.2 Fabrication of PDMS chips 17 

Poly(dimethylsiloxane) (PDMS) chips are usually fabricated by soft lithography [1, 69]. Soft 18 

lithography shown in Figure 2.2.1a begins with a creation of reusable master with positive relief 19 

features, which can be used to fabricate more than one hundred PDMS replicas [69]. Fabrication 20 

of the master usually consists in spin-coating negative photoresist (e.g. SU-8) onto a substrate 21 

(usually a silicon or glass wafer), exposing it to UV light through the mask and dissolving the 22 

non cross-linked photoresist. After master fabrication, a mixture of PDMS pre-polymer, a 23 

catalyst and curing agent is poured over the master, degassed, cured at elevated temperature, and 24 

peeled off the master. Channels fabricated using planar soft lithography are rectangular and open. 25 

To enclose the channels, the PDMS mold is sealed to the flat surface of a glass slide or another 26 

PDMS block either covalently by plasma oxidation or non-covalently by applying pressure. 27 

Cylindrical channels can be fabricated by bonding two PDMS blocks with semi-circular channels 28 

face-to-face [70] or introducing compressed air inside a rectangular PDMS channel pre-filled 29 

with PDMS pre-polymer [71]. As shown in Figure 2.2.1b, semi-circular PDMS channels can be 30 

fabricated by combining mechanical micromilling, polymer molding and soft lithography [70]. 31 
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First, high-precision micromilling is used to create a brass or aluminium alloy master with semi-1 

circular channels. This master is then employed to create a poly(vinyl siloxane) (PVS) [70] or 2 

poly(methyl methacrylate) (PMMA) [72] mold with positive features that is used in the final 3 

fabrication step to cast channel structures into the PDMS substrate. This technique can be used to 4 

fabricate semi-circular channels of different patterns and shapes, such as T-shaped and S-shaped 5 

channels [70], and there is no limitation on substrate size or channel length that can be generated. 6 

 7 

In planar PDMS devices, an emerging droplet typically contacts the channel walls during 8 

the process of drop generation, which can be exploited in fabrication of non-spherical particles 9 

[73], but it may lead to damage of the newly formed fragile solid/liquid interface or wetting 10 

problems [74]. Three-dimensional PDMS devices in which the dispersed phase is completely 11 

surrounded by the continuous phase during droplet formation process can be produced by 12 

embedding a microfiber in PDMS mold before curing [74], as shown in Fig. 2.2.1c. In this 13 

technique, insulated optical fibre is employed as a master for circular channel. A section of the 14 

insulation is removed using a scalpel to expose the bare fibre in the central region. The fibre is 15 

molded in PDMS, and after curing, the fibre is removed from the PDMS block, leaving the 16 

circular channel with a narrow section in the middle suitable for flow focusing. An inlet for the 17 

dispersed phase and an outlet for the droplets can be formed by inserting glass capillaries into 18 

both sides of the orifice. Topographical features can be created in PDMS channels using laminar 19 

flows of etching solutions [75], whereas a complex non-branching interwoven network of 20 

channels can be fabricated by pouring and curing PDMS pre-polymer between two masters 21 

fabricated by two-level photolithography [76]. PDMS is hydrophobic material, but the surface 22 

can be rendered hydrophilic by plasma oxidation of PDMS surface [77], coating with inorganic 23 

materials such as silica and titania via sol–gel chemistry [78], layer-by-layer deposition of 24 

polyelectrolytes [79], and ultraviolet graft polymerization of acrylic acid [80].  The surface 25 

modification in multistream microfluidic devices includes plasma oxidation, ultraviolet (UV) 26 

irradiation, chemical vapor deposition and sputter coating of metal compounds. All of these 27 

techniques are regarded as gas-phase methods. Wet chemical methods like layer-by-layer 28 

deposition, sol-gel coatings, silanization, dynamic modification with surfactants and protein 29 

adsorption are also very important as sometime used in combination with gas-phase methods 30 

[81]. Scaled-up versions of PDMS microfluidic devices are discussed in Section 5.2.  31 
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 1 

2.3 Fabrication of glass/metal/PMMA chips 2 

PDMS channels swell in strong organic solvents and siloxane-based compounds and tend to 3 

deform with applied pressure due to their high elasticity. On the other hand, glass is more 4 

chemically robust than PDMS, does not swell, has excellent optical properties, low electrical 5 

conductivity, smooth surface, and can easily be functionalized to control surface properties (zeta 6 

potential and contact angle). A treatment with octadecyltrimethoxysilane (OTMS) will make the 7 

glass surface hydrophobic, whereas a treatment with 2-8 

[methoxy(polyethyleneoxy)propyl]trimethoxysilane will enhance the hydrophilicity of the glass 9 

surface [82]. A glass surface is normally negatively charged due to dissociation of silanol groups, 10 

but positive charges can be introduced by the treatment with amino trialkoxysilanes, such as (3-11 

aminopropyl)-trimethoxysilane (APTMS) and (3-aminopropyl)-triethoxysilane (APTES). 12 

 13 

A wide range of glass micromachining processes is available [83] including wet etching 14 

using hydrofluoric acid based etchants and Cr/Au and/or acid resistant photoresist masks [47], 15 

deep reactive ion etching (DRIE) using SF6 plasma [84], powder blasting using fine abrasive 16 

particles injected by compressed air [85], laser drilling using CO2, Nd:YAG and excimer lasers 17 

[86], ultrasonic drilling using high frequency vibration of a microstructured tool [87], hot press 18 

imprinting [88], mechanical sawing [46], and pulling and microforging [82, 89]. Glass capillary 19 

microfluidic devices are coaxial assemblies of tapered borosilicate glass capillaries glued onto 20 

the surface of a microscope slide [82, 89, 90]. Shaping the tip of a glass capillary using a 21 

micropipette puller and microforge is a labour intensive, manual microfabrication process not 22 

suitable for large scale production. However, glass capillary microfluidic devices are very useful 23 

for small-scale production of complex multiphase droplets and particles (see Section 3.2), due to 24 

a wide range of possible multiphase flow configurations that can be achieved in these devices.  25 

 26 

In addition to the above mentioned methods, photo etchable glasses have been used to 27 

fabricate high aspect ratio structures such as inkjet printer heads [91], microlens arrays [92], and 28 

hollow microneedle arrays for transdermal drug delivery [93]. As shown in Fig. 2.3.1a [92], the 29 

fabrication of microstructures in lithium silicate photo etchable glasses consist of Cr mask 30 

patterning on the glass wafer, UV exposure, heat treatment and glass etching. As a result of the 31 
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adsorption of UV light in the areas of photosensitive glass unprotected by the chromium, Ce
3+

 is 1 

combined with Ag
+
 to form silver nanoparticles (Ce

3+
 + Ag

+
  Ce

4+
 + Ag

0
). During heat 2 

treatment at 550–590 °C, heterogeneous crystallization occurs around silver nuclei resulting in 3 

the formation of lithium metasilicate (Li2SiO3) crystals. The crystallized parts, when etched with 4 

a solution of hydrofluoric acid have an etching rate up to 20 times higher than that of the vitreous 5 

region.  6 

 7 

Shallow horizontal MCs can be fabricated in poly(methyl methacrylate) (PMMA) by hot 8 

embossing [56], laser drilling [59], injection molding [57, 94], and mechanical micromilling [95]. 9 

Micromilling is a fast and low-cost microfabrication technique, which can be used to produce 10 

channel features down to 50 μm, including semi-circular and 3D structures that are difficult to 11 

create with optical lithography techniques [96]. The ability of mechanical micromilling to 12 

produce semi-circular channels in PMMA was exploited to fabricate complex artificial 13 

microvascular networks with circular channels by bonding face-to-face two milled PMMA 14 

sheets [97]. These artificial microvascular networks that closely mimic key geometrical features 15 

of real human vasculature can find applications in a wide range of biophysical, biochemical and 16 

clinical investigations in areas such as hemodynamics, cell mechanics, cell mechanotrasduction, 17 

and intravenous carrier-mediated drug delivery [97]. Despite the advantages over other 18 

microfabrication techniques, the surface roughness obtained by micromilling is generally poor 19 

(hundreds of nanometers) and very far from optical grade, i.e. <15 nm [96]. To improve the 20 

surface quality of micromilled PMMA channels, a number of post-processing methods have been 21 

developed, including thermal cycling, coating with different materials, and exposure to a solvent 22 

vapour [96]. A treatment with solvent vapour can be used not just to reduce the surface 23 

roughness of PMMA channels, but also to irreversibly bond microfluidic chips [96].  24 

 25 

Hot embossing shown in Figure 2.3.1b is a three-step process, which can be used to 26 

fabricate PMMA microfluidic devices with optical grade (less than 15 nm surface roughness) 27 

channel walls. The silicon mold and PMMA plate are brought into contact and heated up above 28 

the glass transition temperature of PMMA. The mold is then pressed into a softened polymer to 29 

force it to flow into the cavities of the mold. Once the polymer has conformed to the shape of the 30 

stamp, it is cooled to a temperature below the glass transition temperature so that it is sufficiently 31 
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hard to be separated from the mold. Finally, a transparent cover plate must be bonded to the 1 

PMMA substrate. Deep vertical MCs can be fabricated in PMMA by X-ray lithography 2 

using synchrotron radiation and subsequent etching [98]. PMMA straight-through MCs were 3 

used for the production of W/O emulsions without any surface modification of the channels [98]. 4 

Monolithic PMMA microfluidic devices can be fabricated by stereolithography [60]. The main 5 

advantage of stereolithography is that peripheral units such as inlet and outlet ports can be 6 

incorporated within the device without bonding. 7 

 8 

In addition to glass and plastic microfluidic devices, metallic chips are increasingly being 9 

used in microfluidics, due to their superior mechanical and thermal properties, especially for 10 

undertaking high-temperature chemical conversions in microreactors [99, 100], but also as a 11 

master mold in soft lithography and hot embossing lithography, as explained in Figures 2.2.1b 12 

and 2.3.1b. Stainless steel is among the most common materials for manufacture and handling of 13 

food and pharmaceutical products. Stainless steel chips with grooved MC arrays have been 14 

fabricated using an end mill [101] and dicing saw [62]. Stainless steel chips with asymmetric 15 

straight-through channels have been fabricated by end-milling and used for generation of 16 

millimeter-sized droplets [102]. Microengineered nickel membranes with regular hexagonal 17 

array of cylindrical or slotted pores can be fabricated using UV-LIGA process [103].  18 

 19 

3. Microfluidic unit operations 20 

 21 

3.1 Generation of simple droplets and bubbles  22 

The most common microfluidic strategies for generation of liquid-liquid or gas-liquid 23 

dispersions (droplets and bubbles) are shown in Fig. 3.1.1.  24 

 25 

T-junction. T-junction is the simplest microfluidic structure for producing droplets and bubbles 26 

[55, 104-107]. In standard geometry (Fig. 3.1.1a), the main channel carries the continuous phase 27 

and the dispersed phase is injected through the orthogonal (inlet) channel. The shear stress 28 

generated by the continuous phase and evolution of the pressure upstream of the emerging 29 

droplet causes the tip of the dispersed phase to distort in the downstream direction until the neck 30 

of the dispersed phase breaks up into a droplet [11, 108, 109]. Several modifications of the 31 
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standard T-junction geometry have been implemented, including injection of the dispersed phase 1 

through the main channel into the continuous phase supplied from the orthogonal channel (Fig. 2 

3.1.1b) [95], head-on geometry (Fig. 3.1.1c) [110], capillary-embedded T-junction [95, 111], and 3 

double-pore T-junction [112]. In head-on geometry, the two fluids are injected from two 4 

opposite sides of the main channel and the droplets are collected from the orthogonal channel 5 

[110, 113].  6 

 7 

The dispersed phase should not wet the walls at the junction, e.g. hydrophilic channel 8 

walls are required to produce O/W or W/O/W emulsions. The wetting properties of microfluidic 9 

channels can be altered by surface modification [114] or changing the concentration of surfactant 10 

dissolved in the continuous phase [115]. It has been found that both monodisperse O/W and W/O 11 

emulsions can be prepared in the same T-junction device, solely by the appropriate choice of 12 

surfactants added to the oil or aqueous phase [115].  13 

 14 

Three distinct regimes of droplet formation in T-junction are squeezing, dripping, and 15 

jetting [116]. In squeezing regime, the tip of the dispersed phase stream occupies almost the 16 

entire cross section of the main channel because the shear stresses exerted by the continuous 17 

phase are small compared to interfacial stresses. As a result, the continuous phase is confined to 18 

thin films between the droplet (or bubble) and the channel walls, which leads to a build-up of 19 

pressure in the continuous phase upstream of the droplet [109, 116, 117]. It causes the 20 

continuous phase to squeeze the neck of the stream until breakup occurs. Within squeezing 21 

regime, the droplet size is a function of the ratio of the flow rates of the two fluids and does not 22 

depend significantly on the interfacial tension or the viscosities of the two liquids [116]. In 23 

dripping regime, the size of the droplet (or bubble) is determined by a balance between the drag 24 

force that the continuous phase exerts on the emerging droplet and the interfacial force that 25 

opposes the elongation of the neck [116]. The capillary number of the continuous phase, Cac (= 26 

µcuc/, where µc and uc are the viscosity and mean velocity of the continuous phase  and  is the 27 

interfacial tension), can be used to predict a dominant mechanism of droplet formation: Cac < 28 

0.002 within squeezing regime and 0.01< Cac <0.3 within dripping regime [118]. As Cac is 29 

further increased, the breakup point moves progressively downstream, which leads to a transition 30 

from the stable dripping regime to a jetting regime.  31 
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 1 

The size of droplets produced in T-junctions can be controlled passively, through the 2 

control of the fluid flow rates, and actively, through external actuation. The active control of the 3 

droplet size can be achieved using controllable moving wall structures [11], integrated 4 

microheaters [119] (Fig. 3.1.1d), and pneumatically [120, 121] or magnetically [122] actuated 5 

microvalves. When generating droplets by opening and closing valves, the resulting droplet 6 

volume and breakup frequency can be controlled independently from each other by varying the 7 

opening time (topen) and cycle time (tclose + topen) of the valve, respectively [120].  8 

 9 

X- and Y-junction. In a cross-junction (Fig. 3.1.1e), droplets are generated using a microfluidic 10 

modification of Rayleigh’s approach [123], with two streams of the continuous phase fluid 11 

flanking a stream of the dispersed phase [45, 124, 125]. The flow conditions in cross-junction 12 

can be described by the Weber number of the dispersed phase, Wed (= dud
2
l/, where d and ud 13 

are the density and velocity of the dispersed phase, respectively, and l is the diameter of the 14 

channel) and Cac. For Wed, Cac > 1, the dispersed phase does not break into droplets, whereas for 15 

Wed, Cac < 1, a dripping instability occurs, breaking the dispersed phase into droplets [126]. In a 16 

Y-junction, the dispersed and continuous phases are injected through two separate inlet channels 17 

and the emulsion is removed using a common outlet channel (Fig. 3.1.1f). The size of the 18 

droplets formed in Y-junction is independent on the flow rate and viscosity of the dispersed 19 

phase [127], which is a behaviour different to that in a T-junction. At low Reynolds numbers, 20 

two fluids (miscible of immiscible) introduced into a Y-junction from two different inlets will 21 

form two parallel laminar streams in a downstream channel. Mixing of the two streams can occur 22 

by diffusion only, and is restricted to an interfacial width at the centre of the channel. Utilization 23 

of this phenomenon in microfluidic systems has resulted in a number of applications such as 24 

membraneless microfluidic fuel cells [128, 129], blood diagnostics [130], generation of 25 

anisotropic (Janus) particles [45, 131, 132] and continuous crystal lines, metal wires and polymer 26 

strings that are less than 5 m wide [133, 134]. 27 

 28 

 29 

Co-flow. A co-flow microfluidic device consists of two coaxially aligned tubes; the inner one is 30 

usually a glass capillary tube with a tapered tip made by microforging [135]. At low flow rates of 31 



 

16 

 

both fluids, droplets grow spherically from the tip of the inner tube until they reach a size where 1 

the viscous drag exerted by the co-flowing continuous phase exceeds the interfacial tension (the 2 

dripping regime). At faster flows, the dispersed phase forms a thin stream that breaks into 3 

droplets further downstream due to Rayleigh-Plateau instability (the jetting regime). Two distinct 4 

classes of transitions from dripping to jetting have been identified [136]. The first is driven by 5 

the flow rate of the continuous phase; as it is increased, droplets formed at the tip decrease in 6 

size until a long narrowing jet is formed and drop breakup occurs at the end of this jet. The 7 

second class of dripping to jetting transition is driven by the flow rate of the dispersed phase; as 8 

it is increased, the emerging drop is pushed downstream and is ultimately pinched off at the end 9 

of the jet forming large droplets. In the first jetting regime, the shear stress exerted on the droplet 10 

by the continuous phase is large compared to interfacial tension. In the second jetting regime, the 11 

inertial forces of the dispersed phase are large compared to interfacial tension [14, 136, 137]. At 12 

very high flow rate ratios, viscous stress exerted by the continuous phase becomes so large that 13 

the growing drop takes a conical shape (“Taylor cone”) and a very thin fluid jet can evolve from 14 

its sharp tip, which subsequently breaks into tiny droplets (the tip-streaming regime) [138]. 15 

 16 

Microfluidic flow focusing. When droplets are generated in co-flowing streams or at a cross-17 

junction, the combined two-phase flow is often forced through a small orifice which is known as 18 

hydrodynamic flow focusing [117, 139, 140]. Planar microfluidic flow focusing device (MFFD) 19 

developed by Anna et al. [141] is depicted in Fig. 3.1.1h and scaled-up versions of these devices 20 

are shown in Figure 5.2.3 and 5.2.5. The dispersed phase (focused fluid) flows through the 21 

middle channel and the continuous phase (focusing fluid) is supplied through the two outside 22 

channels. Both fluids are forced to flow through a small orifice located downstream of the three 23 

channels. The continuous phase exerts pressure and shear stress that force the dispersed phase 24 

into a narrow thread, which breaks inside or downstream of the orifice. The principle may be 25 

extended to two or more coaxial fluids [54] and depending of the geometry of the feed channels 26 

and orifice, the flow pattern may be planar or cylindrical (axisymmetric) [117, 142]. In Fig. 27 

3.1.1h, the liquid in the middle channel does not wet the walls of the orifice and thus, hydrophilic 28 

and hydrophobic walls are needed to produce O/W and W/O emulsions, respectively. If the 29 

liquid in the middle channel wets the orifice walls, droplets of the liquid flowing through the 30 

outside channels will be formed downstream of the orifice (Fig. 3.1.1i). The size of the droplets 31 
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formed in flow focusing devices can be reduced by using an electric field [143], active 1 

pneumatic choppers [144], and controllable moving wall structures [145]. An alternative flow 2 

pattern in flow focusing devices is a counter-current flow shown in Fig. 3.1.1j. In contrast to co-3 

flow design, the two fluids are supplied from the two ends of the same channel in opposite 4 

directions and droplets are collected from another, coaxially aligned, channel. A major advantage 5 

of MFFDs compared to co-flow devices is that they can be used to produce droplets with the 6 

sizes smaller than that of the orifice at the entrance of the collection channel. This feature is 7 

useful because for any given droplet size, a channel with a larger orifice size can be used 8 

compared to that in the co-flow design, which minimizes the probability of clogging the orifice 9 

by the suspended particles or any entrapped debris.  10 

 11 

Four distinct regimes of drop generation in MFFDs are squeezing, dripping, jetting and 12 

tip-streaming [146]. The squeezing or “geometry-controlled” regime is characterised by droplet 13 

sizes that are roughly equal to the orifice size and independent on Cac [146]. The mechanism of 14 

droplet breakup is similar to that observed in T-junction geometry at low Cac values [147]. The 15 

dispersed phase liquid occupies a significant portion of the cross-sectional area of the orifice, 16 

forcing the continuous phase to flow through a narrow gap between the interface and the orifice 17 

wall. To maintain the applied flow rate, a higher upstream pressure is needed in the continuous 18 

phase stream, which leads to pinching of the interface. In the dripping regime, the dispersed 19 

phase jet narrows due to viscous stresses from the continuous phase, and the resulting droplet 20 

sizes are within one order of magnitude smaller than the orifice size. In the jetting regime, the 21 

dispersed phase forms a long jet that extends downstream of the orifice resulting in less 22 

controlled droplet breakup. The droplet size is larger than in the dripping regime and can be 23 

larger than the orifice size [146]. In both dripping and jetting regimes, droplet breakup occurs 24 

because of the combined effects of capillary instability and viscous drag [148]. Tip-streaming 25 

regime occurs in the presence of surfactants and at very high flow rate ratios of outer to inner 26 

phase of 300 and above [146]. Here, a very thin and long thread is formed, which breaks up into 27 

small droplets with a diameter of 1/20 of the orifice size and smaller. The tip streaming is an 28 

alternative route to the generation of submicron emulsions and particles without using 29 

nanofluidic channels [149].  30 

 31 
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Cross flow. In a cross-flow microfluidic device, the dispersed phase is injected through a porous 1 

substrate (membrane) containing a single pore [150, 151] or an array of pores [152] into a 2 

continuous phase flowing tangentially over the membrane surface. The main difference between 3 

microfluidic cross-flow (Fig. 3.1.1k) and T-junction (Fig. 3.1.1a) geometry is that in a cross-flow 4 

device, the dimensions of the cross-flow channel are large compared to the width or depth of the 5 

inlet channel (pore), so that the droplet generation process is unaffected by the geometry of the 6 

cross-flow channel. The droplet size mainly depends on the pore size, the flow rate of the 7 

dispersed phase, the shear stress at the surface of the membrane, and physical properties of the 8 

dispersed and continuous phase [14, 153]. Apart from simple cross flow, a shear stress at the 9 

surface of the membrane required for drop detachment can be produced by pulsed cross-flow 10 

[154] or rotating [155-157] or vibrating [158, 159] the membrane within otherwise static 11 

continuous phase. 12 

 13 

Spontaneous drop generation. Monodisperse droplets can be formed in the absence of any bulk 14 

flow of the continuous phase which is known as “spontaneous drop generation” [160]. In order to 15 

create driving force for spontaneous drop generation, the dispersed phase emerging from a 16 

vertical or horizontal channel is squeezed in a confined geometry and thus forced to take a disc-17 

like shape which is characterized by a higher interfacial area per unit volume than a spherical 18 

shape, resulting in hydrodynamic instability (Fig. 3.1.1i) [24]. The discoid shape may be a result 19 

of expansion of the dispersed phase on a horizontal terrace [161] or in a vertical slit [162]. Three 20 

main regimes of spontaneous drop generation are size-stable, size-expanding and continuous 21 

outflow [163]. In the size-stable regime, the drop generation is dominated by the interfacial 22 

tension; the droplet size is independent on the fluid flow rates and proportional to the channel 23 

size. In the size-expanding regime, the interfacial stress is still dominant force acting on the 24 

droplet, but the inertial forces cannot be completely ignored and the droplet size slightly 25 

increases with increasing the dispersed phase flow rate. In the continuous outflow regime, the 26 

dispersed phase flows out continuously from the channel, forming a very large droplet that 27 

eventually pinches-off. Recently, a new method of spontaneous droplet generation was 28 

developed based on generation of multiple droplets at the edge of a shallow, but rather wide and 29 

long microfluidic plateau (typically 13 m deep, 200 m long and 50010,000 m wide) [21].  30 

 31 
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3.2 Generation of compound (multiphase) droplets 1 

The ability to create compound droplets with versatile inner structure and morphology is one of 2 

the major advantages of microfluidic technology. Typical microfluidic strategies for producing 3 

core/shell droplets are shown in Fig. 3.2.1. These strategies are based on a single-step break-up 4 

of co-axial fluid thread composed of two immiscible fluids or two sequential drop break-up 5 

events in drop makers with alternating wettability. In a planar MFFD, core/shell droplets can be 6 

formed using either of the two strategies mentioned above. In Fig. 3.2.1a, a coaxial jet composed 7 

of two immiscible fluids (inner and middle phase) breaks up and forms core/shell droplets in the 8 

outer phase [54]. In Fig. 3.2.1b, core/shell droplets are formed using two consecutive flow 9 

focusing generators with alternating wettability [166]. If the middle phase is a mixture of 10 

monomer and initiator, these core/shell droplets can be used as templates in the production of 11 

hollow polymeric particles [54].  12 

 13 

In axisymmetric devices, core/shell droplets can be generated by combining co-flow and 14 

counter-current flow (Figs. 3.2.1c and 3.2.1e) [74, 89] or employing stepwise emulsification of 15 

co-flowing streams (Fig. 3.2.1d) [167]. In axisymmetric glass capillary devices, the shell 16 

thickness can range from several microns to several tens of microns and can be controlled by 17 

adjusting the ratio of the middle phase flow rate to the inner phase flow rate [103]. To obtain 18 

shells in the nanometer region (100 nm or even less), a modified design was used with a biphasic 19 

flow in the injection capillary [168]. A similar design was used to produce core/shell structures 20 

with gas core and oil shell [169]. The shell material can be polymerised or cross-linked to 21 

produce polymer or ceramic shells around the inner phase [169-173] or a chemical reaction can 22 

take place within the core material which allows controlled addition of reactants through the 23 

shell [174]. Alternatively, a shell may contain dissolved amphiphilic molecules or particles 24 

which can undergo self-assembly upon solvent evaporation, leading to the generation of giant 25 

vesicles such as liposomes [175], polymersomes [176, 177] and colloidosomes [178]. 26 

Two co-flow (Fig. 3.2.1d) or T-junction (Fig. 3.2.1f) drop makers with alternating surface 27 

wettability were used to produce multiple emulsions containing a controlled number of inner 28 

phase droplets within each middle phase drop [48, 131, 167]. The number of inner droplets can 29 

be controlled by adjusting the fluid flow rates to satisfy the following equation: f1/f2 = N, where 30 

f1 and f2 is the frequency of drop generation at the upstream and downstream drop maker, 31 
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respectively and N is a positive integer (1, 2, ...). Core/shell droplet morphology will be obtained 1 

when N = 1. These emulsions can be used as templates for synthesis of non-spherical particles 2 

[179]. Higher-order multiple emulsions containing four or more immiscible liquid phases can be 3 

made by adding more sequential stages [167, 180]. Chu et al. [167] made triple emulsions by 4 

adding a third co-flow stage and both the diameter and the number of the individual droplets was 5 

controlled at every level. Using this approach, triple emulsions have been formed containing 6 

between one and seven innermost droplets and between one and three middle droplets in each 7 

outer drop. The integration of a large number of triple emulsion drop generation units on a single 8 

chip is shown in Figure 5.2.7a. 9 

 10 

Core/shell droplets were also produced using two serial planar cross-junctions with 11 

alternating wettability (hydrophilic and hydrophobic) [79, 126] or non-planar cross-junction with 12 

the same hydrophobic properties [181] (Figs. 3.2.1g and 3.2.1h). An extension of this principle to 13 

three or more cross-junctions in series can lead to the production of higher-order multiple 14 

emulsions, such as triple (Fig. 3.2.2c), quadruple, and quintuple emulsions [182, 183]. Two 15 

sequential hydrophobic cross-junctions with different depth of the main channel can produce 16 

core/shell droplets with an ultra-thin (<1 m) oil shell surrounding a water core [184, 185]. 17 

When forming core/shell droplets using two cross-junctions in series, dripping instabilities are 18 

normally present in both junctions. This produces core/shell droplets in a two-step process, as 19 

shown in Figs. 3.2.1b and 3.2.1g: the inner drop is formed in the first T-junction and 20 

encapsulated in the outer drop in the second. Core/shell droplets can also be formed in a one-step 21 

process by removing the first dripping instability, by increasing the flow rates in the first T-22 

junction [126]. This produces a jet of the inner phase that extends into the second junction, where 23 

it is surrounded by a layer of middle phase, producing a coaxial jet, as illustrated in Fig. 3.2.1g. 24 

If the flow rates in the second junction are set to induce a dripping instability, the coaxial jet is 25 

pinched into core/shell droplets, as illustrated in Fig. 3.2.1b. One-step mode is preferred in 26 

microfluidic generation of core/shell droplets, since it avoids the difficulty of matching the 27 

frequencies of different drop-maker junctions, which improves drop uniformity. A large-scale 28 

integration of core/shell drop generation units operating in one-step mode is shown in Figure 29 

5.2.9. 30 

 31 
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  When two different liquids are injected from two opposite T inlets, cross-junction can 1 

produce an array of droplets of alternating composition, e.g. an array of alternately coloured 2 

droplets [48, 186, 187]. Multiple emulsion droplets with two distinct inner phases can be 3 

generated by combining an upstream cross-junction and a downstream T-junction (Fig. 3.2.2a) 4 

[48] or using a glass capillary device with two separate internal channels in the injection tubes 5 

(Fig. 3.2.2b) [188]. Gas-in-water-in-oil emulsions with a controlled number of gas bubbles 6 

encapsulated within each water droplet can be generated by combining an upstream flow 7 

focusing drop generator and a downstream T-junction [189].  8 

 9 

3.3 Droplet splitting    10 

To split a droplet into two or more daughter droplets, a droplet is flowed into a bifurcating T or 11 

Y-junction or past isolated obstacles of different shapes. At a bifurcation, the droplet is split 12 

either symmetrically or asymmetrically depending on the downstream flow resistance [190]. The 13 

ratio of volumes of the two daughter droplets V1/V2 is inversely proportional to the ratio of 14 

hydrodynamic resistances of the two side arms, R1/R2 [190]. Provided the hydrodynamic 15 

resistances of the two arms are equal and the flow rate is sufficiently high, the drop will be 16 

bisected into two equal portions [182], as illustrated in Figure 3.3.1a. An extension of this 17 

strategy to microfluidic tree network consisting of four consecutive Y junctions is shown in 18 

Figure 5.2.6a. For optimal splitting, the capillary number of the continuous phase, Cac, should 19 

have an optimum value. If it is too low, droplets may not split and if it is too high, it leads to 20 

production of satellite droplets [182].  21 

 22 

Droplets can also be split into two portions by flowing past isolated obstacles. When a 23 

single stream of droplets, with size comparable to the channel, flows past a square obstruction 24 

placed symmetrically in the channel, each drop breaks into two identical daughter droplets, as 25 

shown in Fig. 3.3.1c [190]. If the obstruction is off-centered, daughter droplets of two different 26 

sizes will be formed, as shown in Fig. 3.3.1d. The ratio of droplet sizes produced by the obstacle 27 

corresponds to the ratio of gap widths at each side of the obstacle. When two coexisting streams 28 

of droplets encounter an obstacle placed off centre, under certain flow conditions only droplets in 29 

one of the streams break, resulting in a regular sequence of three different sizes of droplets, as 30 

illustrated in Fig. 3.3.1e [190]. Similar results can be achieved with other patterns, such as three 31 
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coexisting streams where every third droplet breaks. Droplet splitting can also be achieved using 1 

a flow focusing junction (Fig. 3.3.1f) [191]. In contrast to splitting with bifurcation or obstacles, 2 

here the droplet is divided along its length in the flow direction. The number and size of the 3 

daughter droplets can be tuned by changing the flow rate of the splitting liquid supplied through 4 

two T inlets.  5 

 6 

3.4 Droplet merging 7 

Microfluidic strategies for droplet merging can be divided into passive and active. Passive (flow-8 

induced) methods utilize microchannel geometry to bring into contact two droplets in a MC. The 9 

pairwise merging of two adjacent droplets can be initiated by temporary trapping or slowing 10 

down one droplet inside a channel until a subsequent droplet arrives and merges with the trapped 11 

droplet [192]. Three different types of traps can be used: an obstruction placed in the channel 12 

(Fig. 3.4.1a) [192], a circular expansion chamber (Fig. 3.4.1b) [192, 193] and a locally deformed 13 

cross section of the channel [192]. The expansion chamber enables fusion by draining the 14 

continuous phase that separates two adjacent droplets in a channel. Upon entering the expansion 15 

chamber, the continuous phase spreads around the droplets to occupy the increased volume, 16 

causing the droplets to come into contact with each other in the center of the chamber (Fig. 17 

3.4.1b). The removal of spacing between the droplets induces their fusion owing to minute 18 

disturbances in surface tension [194].  19 

 20 

Alternatively, droplets can be merged at Y-, - or T-junctions [192, 195, 196]. The 21 

pairwise droplet coalescence occurs spontaneously when droplet production in two upstream 22 

generators is synchronized. In Fig. 3.4.1c, the droplets of two different liquids (DP1 and DP2), 23 

generated synchronically at two upstream T-junctions, are transported to the downstream T-24 

junction, where they collide and flow together into a common outlet channel. No collision occurs 25 

when there is a timing difference between the arrivals of the two droplets at the junction [196]. 26 

The precision of pairing of alternating droplets can be improved by implementing various 27 

passive microfluidic components into the device [197] or using electric field [198]. Hung et al. 28 

[199] have developed a tapered chamber with diverging walls to generate velocity gradient and 29 

allow droplets to approach each other (Fig. 3.4.1d). The spacing between alternately generated 30 
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droplets gradually decreases as they travel along the diverging section, which leads eventually to 1 

droplet coalescence.  2 

 3 

Flow-induced droplet merging has also been achieved using a trifurcating junction (“flow 4 

rectifying design”) to aid film drainage (Fig. 3.4.1e) [192, 200, 201]. In the trifurcating junction, 5 

the continuous phase is removed via the upper and lower channels at equal flow rates, so that the 6 

droplets trapped at the junction do not experience any net force along the vertical axis and stay 7 

aligned with incoming droplets until coalescence occurs. Alternatively, the continuous phase can 8 

bypass the trapped droplets using microfluidic pillar arrays [202]. As shown in Fig. 3.4.1f, the 9 

merging chamber is divided into three branches by two sets of pillars. A droplet entering the 10 

merging channel is stopped in the middle branch and merged with the subsequent droplet, whilst 11 

the continuous phase is allowed to flow between the pillars and through two side branches. 12 

 13 

Active droplet coalescence methods employ an externally generated energy to achieve 14 

droplet coalescence. The examples of active droplet merging strategies are electro-coalescence 15 

[198, 203-205], use of pneumatically driven membrane valves [120], optical tweezers [105], and 16 

thermo-coalescence [206, 207]. The pneumatically driven membrane valve consists of a flat 17 

elastic membrane sandwiched between the control and flow channel. Whenever a sufficient 18 

pressure is applied to the upper control channel, the membrane deflects downward and blocks the 19 

lower flow channel, which leads to the accumulation of droplets in the space between the valve 20 

and the last pair of the bypassing branches (Fig. 3.4.1g). Eventually, the entrapped droplets 21 

would fuse together after which, the membrane valve is opened to allow the combined droplet to 22 

leave the waiting zone. Temperature-induced droplet coalescence can be achieved by 23 

incorporating heater directly in a merging chamber (Fig. 3.4.1h) [206, 207] or in a bypass line 24 

(Fig. 3.4.1i) [192]. In the latter case, a bypass line allows passage of the lower viscosity 25 

continuous phase when the heater is activated. The drainage of the continuous phase via bypass 26 

line forces the adjacent droplets to approach each other and merge. When the heating is turned 27 

off, the continuous phase flows only through the main channel, which has a larger cross-sectional 28 

area than the bypass line. Optical tweezers [105] and electric panel devices [208] have also been 29 

used for active droplet merging. Electric panel devices consist of a thin polyester substrate 30 

containing electrode arrays or electrode dots on its surface coated by an insulating film. Droplets 31 
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on an electrode panel can be moved toward each other by a travelling electric field, which arises 1 

on applying a sequential voltage to the electrodes [208].  2 

 3 

3.5 Formation of parallel multiphase flows 4 

Microstructured devices with multiphase flow can find numerous chemical and biological 5 

applications in fine chemicals synthesis [210], nano-materials preparation [211], drug 6 

development [212], microfluidic fuel cells [129] and highly efficient separations [213]. The main 7 

advantage of a multiphase microstructured chemical device is the small cross-sectional area of 8 

MCs, which provides much shorter mixing distance and much larger interfacial area in 9 

comparison with common chemical engineering processes [214, 215]. Besides this effect of 10 

reagent mixing and mass/heat transport processes, the stable flow patterns in MCs are also 11 

important features for process control [15]. Due to these special characteristics, the 12 

microstructured chemical device has become a new tool to increase process yield [216], to 13 

control product structure and morphology [90], and to develop new chemical and biochemical 14 

engineering processes [217]. 15 

Two phase microflows (gas-liquid and liquid-liquid phases) in bubbles and droplets 16 

(squeezing, dripping, jetting, etc.) in the T-junction, flow focusing, coaxial and some other 17 

modified MC devices have been extensively discussed in section 3.1 to 3.4, and have numerous  18 

applications in drug delivery, drug formulation, food science, oil and dairy industries. Besides 19 

two phase microflows, three-phase systems such as gas-liquid-liquid are also important for 20 

industrial chemical and biochemical engineering processes. These multiphase systems commonly 21 

exist in the organic synthesis reaction and extractive distillation process, and together they play a 22 

significant role in drug formulation and delivery [218]. Multiphase parallel microflows are used 23 

in microfluidic devices such as microreactors [219], micro heat exchangers [220] and lab-on-a-24 

chip modules [221] and are characterized by rectangular channels with cross-sectional 25 

dimensions on the order of tens or hundreds of microns. Multiphase parallel microflows have 26 

potential scale-up applications in the generation of monodisperse emulsions, high-throughput 27 

catalyst screening and combinatorial material science. In the life sciences, applications range 28 

from pharmaceutical research to diagnostic testing and DNA manipulation [222]. The concept of 29 

parallel multiphase microflows can also be applied on low cost microfluidic fuel cells, also 30 
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called laminar flow-based fuel cells or membraneless fuel cells [129, 223]. Microfluidic fuel 1 

cells uses laminar flow to operate without a solid membrane separating fuel and oxidant, making 2 

possible to produce efficient alkaline fuel cells that could provide cheap and effective power for 3 

small electronic devices [223]. These cells can be an alternative towards miniaturized power 4 

supplies, and easily be scaled up in parallel arrays to produce more power for industrial 5 

applications. 6 

3.5.1 Types of flows 7 

Parallel multiphase microfluidic flows are readily manipulated by using many kinds of external 8 

fields (pressure, electric, magnetic, and so on) (Fig. 3.5.1) [224]. Depending on the type of 9 

driving force, the most important flows in microfluidic channels are pressure differential, electro-10 

osmotic, capillary, and free-surface. In pressure differential flow, fluid is transported by means 11 

of applied pressure difference [225]. In electro-osmotic (electrokinetic) flow [226, 227], transport 12 

is initiated by application of a high electric field. The third type involves the capillary driving 13 

forces driven by surface tension, wetting of surfaces by the fluid, and pressure gradients in 14 

various liquids [228]. Free-surface (Marangoni) flows are caused by gradients in interfacial 15 

tension and can be manipulated using the dependence of surface tension on temperature or 16 

chemical concentration [229, 230].  17 

 18 

The basic channel configurations used to generate parallel multiphase flows (liquid-liquid 19 

and gas-liquid) are T-, Y- or cross-junctions (see Section 3.1) [231-233]. They have the ability to 20 

generate high specific interfacial area (interface-area-to-volume ratio [m
2
 m

-3
]) and consequently 21 

high interfacial forces [176]. Typical types of parallel multiphase flows in a MC are shown in 22 

Fig. 3.5.2. Aota et al. [5] reviewed separated (or parallel) multiphase microflows with focus on 23 

fundamental physics, methods for stabilization of the interface, and applications for liquid–liquid 24 

extraction. An advantage of parallel flow over segmented flow is that it permits counter-current 25 

flow of the phases which is of interest in non-equilibrium mass-transfer applications. An 26 

essential requirement for parallel multiphase microflows is to stabilize the interface under 27 

varying flow rates. Parallel multiphase flows with integrated microfluidic systems are powerful 28 

tools for high-throughput analysis and synthesis of novel compounds. These novel microfluidic 29 

systems were developed by integrating microfluidic unit operations and are available for 30 
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continuous flow chemical and biochemical processing [5] (Fig. 3.5.3). Viscous forces and 1 

interfacial tension dominates over gravity in parallel multiphase microflows, hence stabilization 2 

of their interface is important in microfluidic chemical and biochemical synthesis. 3 

 4 

3.5.2 Selective surface modifications 5 

Detailed information regarding the fabrication of microfluidic devices have been presented in 6 

Section 2.3. As mentioned before, PDMS has got popularity as the material of choice for 7 

microfluidic devices due to its low cost, easeness of fabrication, oxygen permeability and optical 8 

transparency [81]. There are some drawbacks in this material as PDMS’s hydrophobicity and fast 9 

hydrophobic recovery after surface hydrophilization, attributed to its low glass transition 10 

temperature of less than 120°C, negatively impacts on the performance of PDMS-based 11 

microfluidic devices [234].  12 

Utilizing these various techniques Kitamori and coworkers have developed microfluidic 13 

unit operations for various purposes, such as mixing and reactions, phase confluence and 14 

separation, solvent extraction, reaction on surfaces, heating, cell culture, and ultrasensitive 15 

detection based upon thermal lens microscope [5]. Recently Kim et al. [235] developed a neuro-16 

optical microfluidic device for studying injury and subsequent regeneration of individual 17 

mammalian axons that was not possible with conventional cell culture platform and tools.  18 

 19 

4. Applications of lab-on-a-chip devices for materials processing 20 

 21 

4.1.1 Fabrication of microparticles and nanoparticles 22 

Numerous chemical and physicochemical processes have been used to microengineer particles 23 

including ionotropic gelation [68], cold-set gelation [236], polymerisation [20], self-assembly 24 

[175] and nanoprecipitation. These processes can be triggered by rapid mixing (Figure 4.1.1a), 25 

solvent evaporation (Figure 4.1.1b), UV irradiation (Figure 4.1.1d, e, and f), and temperature 26 

gradient (Figure 4.1.1h). Non-spherical particles (discoid, cylindrical, rod-like, and square 27 

prisms) can be generated using microfluidic channels with confined geometries (Figure 4.1.1c), 28 

photolithography (Figure 4.1.1d), and micromolding (Figure 4.1.1e). Typical biocompatible 29 

particles synthesised in lab-on-a-chip devices are microgels, biodegradable polymeric particles, 30 

solid lipid particles, and vesicles. Liposomes have been the most successful candidates for drug 31 
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carriers in clinical applications [237]. Liposome-encapsulated anti-cancer drugs (liposomal 1 

anthracyclines e.g., doxorubicin for breast, ovarian and other solid tumors) has been studied 2 

extensively and has shown to exhibit improved efficacies over non-encapsulated conventional 3 

drugs [237-239]. Furthermore, “stealth” liposomes have been developed by the addition of 4 

poly(ethylene glycol) (PEG) to the exterior surface as a flexible hydrophilic polymer to serve as 5 

a shield [240]. Biodegradable polymers and block copolymers, such as poly (lactic acid) (PLA), 6 

poly(glycol acid) (PGA) and poly (lactide-co-glycolide) (PLGA) acid are widely used as carriers 7 

in drug delivery systems because of their biodegradability, biocompatibility and ease of 8 

processing [241]. Microgels derived from biodegradable polymers such as alginate [242], gelatin 9 

[243], chitosan [244], pectin [245], agarose [246], -carrageenan [247] and 10 

carboxymethylcellulose [247] have been extensively used in drug delivery [243], biosensing 11 

[248] and tissue engineering [249-251]. Solid lipid particles [252], as well as gelatin [243] and 12 

agarose [246] beads were produced in microfluidic channels by temperature-controlled 13 

emulsification followed by cooling below the phase transition temperature, T0 (T0 is the melting 14 

point or helix-to-coil transition temperature), as shown in Figure 4.1.1h. The lab-on-a-chip 15 

strategies used to fabricate microgels by in-situ ionotropic gelation were external gelation [247], 16 

internal gelation [253, 254], droplet merging [193] and rapid mixing [255]. The examples of 17 

drugs encapsulated within micro-engineered microgels are 5-fluorouracil [256], vitamin C [243], 18 

lidocaine [257] and bupivacaine [257]. Emulsification/solvent evaporation is a common 19 

microfluidic strategy for production of synthetic biodegradable polymeric particles [103], 3D 20 

colloidal assemblies [104] and giant vesicles (d > 1 m) [175, 177]. 21 

 22 

4.1.2 Loading of droplets with discrete objects or macromolecules 23 

Droplets generated in microfluidic channels can be loaded with cells or enzymes for the purpose 24 

of high-throughput screening (Figure 4.1.1i): typically, encapsulation efficiencies of 100% can 25 

be achieved, whereas, by contrast, bulk methods often achieve less than 50% of the actives 26 

encapsulated. Although drop formation in microfluidic channels is highly controlled and periodic, 27 

the process of loading discrete objects, such as cells or particles, into droplets is normally 28 

random, and the distribution is dictated by Poisson statistics. The probability of a drop containing 29 

k cells is: k
 exp(−k)/(k!), where  is the average number of cells per drop. This means that only 30 

15.6% of all droplets will contain one cell if no more than one in ten of the occupied droplets can 31 
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be allowed to hold two or more cells. This intrinsic inefficiency led to the development of new 1 

cell and particle manipulation methods prior to droplet loading that provide more efficient single 2 

cell/particle encapsulation, such as laser guidance of particles [105], inertial self-ordering of 3 

particles as they travel within a high aspect-ratio MC [263], ordering of deformable particles into 4 

closely packed arrays [264], and cell-triggered jet breakup in a flow focusing geometry [265]. 5 

Microfluidic methods have also been developed for separation of cell-loaded droplets from 6 

empty droplets based on externally induced forces such as dielectric, magnetic, acoustic and 7 

optical [266] or passive hydrodynamic effects [267]. The encapsulation of biomolecules into 8 

drops is achieved exclusively using limiting dilution because molecules are too small to 9 

passively organize with inertial or packing methods and to trigger the breakup of a jet [268].  10 

Formulated nanoparticles and droplets from these devices were used to delivery small 11 

drugs [29, 269, 270], plasmid DNA [271] and peptides and proteins [272, 273]. 12 

 13 

4.1.3 Parallel-flow based microfluidic devices 14 

The laminar property of microflows is useful for structuring streams and the combination of 15 

microgeometries and fluid injections allows for manipulating complex sequences of events. 16 

Continuous-flow-based methods for micro-manipulating droplets include geometrically induced 17 

breakup at T-junctions [190, 274, 275] and breakup with focusing sections [276, 277].  For drug 18 

discovery, they can be used for testing multiple drugs doses simultaneously or for lead 19 

optimization [278]. Cells can be stimulated in order to study the effects of drug concentration on 20 

chemotaxis [279] and gradients can be applied to cell behavioral studies on stem cell 21 

differentiation [280, 281]. 22 

 23 

Nano-sized lipid vesicles (d < 200 nm) can be fabricated by mixing of miscible liquids 24 

under laminar flow [261], as shown in Figure 4.1.1g. This method uses hydrodynamic focusing 25 

to squeeze an isopropanol-lipid mixture into a very narrow central stream between two aqueous 26 

streams. The narrow width of the focused stream and laminar flow in the channel enables rapid 27 

mixing through molecular diffusion at the liquid-liquid interface where the lipids self-assemble 28 

into vesicles. A similar microfluidic strategy of single-step nanoprecipitation was used to 29 

fabricate poloxamer 407 micelles for co-delivery of dexamethasone and ascorbyl-palmitate [282], 30 

lipid nanoparticles for in vivo delivery of siRNA [283], poly(lactic-co-glycolic acid)-b-31 
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poly(ethylene glycol) micelles [284], doxorubicin-loaded PLGA nanoparticles [285], and 1 

chitosan nanoparticles [286]. Hood et al. [287] developed a microfluidic hydrodynamic flow 2 

focusing technique for the continuous-flow synthesis of PEG-modified and PEG-folate-3 

functionalized liposomes for targeted drug delivery. The hydrophilic nature of chitosan makes it 4 

appropriate for carrying hydrophilic drugs [288], but most anticancer drugs are hydrophobic in 5 

nature [288]. Hydrophobically-modified chitosan polymers are being used in an increasing 6 

number of biological applications. Majedi et al. [289] fabricated chitosan based nanoparticles to 7 

encapsulate hydrophobic anticancer drugs and achieve a sustained controlled release of the drugs. 8 

The nanoparticles were synthesized in a flow focusing microfluidic device via self-assembly at 9 

physiological pH.  10 

 11 

4.2 Continuous microflow in microreaction technology 12 

Parallel-flow-based microfluidic devices are considered as the base of microreaction technology. 13 

There are two ways to perform synthesis in parallel microflow based devices either by using 14 

microflow reactors in parallel or sequential modes. For synthesis of compounds in parallel mode, 15 

the number of reaction MCs needed is the same as the number of final products. For a library of 16 

n compounds when coupled with a library of m compounds, n  m reaction MCs are prepared by 17 

connecting n + m with branched pipes (Fig. 4.2.1). The sequential mode of material synthesis is 18 

preferred over the parallel reaction mode [290]. In the sequential mode, reagent segments are 19 

sequentially injected into a single reaction MC. When flow segments of reagents in the starting 20 

material libraries are sequentially introduced to a MC in all possible combinations, segments of 21 

the combinatorial products library can be obtained [290, 291]. 22 

 23 

Benefits of this technology pose a vital influence on chemical industry, biotechnology, 24 

the pharmaceutical industry and medicine, life science, clinical and environmental diagnostic 25 

[292]. These devices perform sampling, sample preparation, detection and data processing in 26 

integrated model [292]. Cell sorting [293], cell lysis [294], single cell analysis [295] and non-27 

destructive single cell experiments were also performed with real time microscopic image 28 

processing [296]. High throughput screenings combine chemistry, genetics and protein analysis 29 

together with the help of microchip/microdevices with the capillary electrophoresis [292]. They 30 

could be used for fast DNA replication [32], microbial suspensions [297], biological agents and 31 
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diseases diagnostics including infectious diseases like the human immunodeficiency virus (HIV) 1 

[298], the human papillomavirus (HPV) [299], the hepatitis virus and other [32]. To increase the 2 

high throughput capacity different evolving technologies like microlithography, MEMS 3 

technology, microfluidics and nanotechnology are being developed in parallel [32]. In drug 4 

discovery, vitamin D3 was recently obtained by using a photo-micro reactor in a highly efficient, 5 

two-stage, flow synthesis from provitamin D3 [300]. By adopting the similar strategy, NicOX has 6 

developed Naproxcinod in 2009, which is the first compound in the cyclooxygenase-inhibiting 7 

nitric oxide-donating (CINOD) class of anti-inflammatory agents to treat patients with 8 

osteoarthritis [301]. Several microfluidic platforms have been developed for the rapid 9 

determination of enzymatic activity. Recently, immobilized microfluidic enzyme reactors 10 

(IMERs) are getting more importance, as the enzyme is typically immobilized on a solid 11 

substrate and supplied with a continuous flow of reagents. The major function of IMERs 12 

includes enzyme immobilization, molecular weight quantification and determining enzyme 13 

kinetics in heterogeneous protein samples [302, 303]. Kundu et al. [304] developed a 14 

microreactor for solid supported enzyme-catalyzed polymerization in continuous flow conditions. 15 

They polymerized ε-caprolactone by using immobilized Candida Antarctica Lipase B (CALB) in 16 

the form of commercial Novozyme 435 (N435) beads (diameter 400 ± 50 μm) packed within a 17 

microfluidic channel [304, 305]. 18 

4.3 Micromixing in microfluidic devices  19 

Mixing is the most commonly practiced unit operation in chemical and biochemical industrial 20 

processes and is also important for different analytical processes [306, 307]. Micromixers can be 21 

integrated in a microfluidic system or work as stand-alone devices [308]. Furthermore, the 22 

investigation of micromixers is fundamental for understanding transport phenomena on the 23 

microscale [308]. These micromixers are used for micro-encapsulation for drug delivery [309], 24 

organic synthesis with unstable intermediates [310], high-throughput kinetic screening of chiral 25 

homogeneous catalysts in multi-phases [310], powder production [311], and analytical 26 

techniques such as time-resolved NMR and time-resolved Fourier transform infrared 27 

spectroscopy (FTIR) [306]. The fabrication of micromixers was based on technologies of MEMS 28 

like silicon, PDMS or glass. Depending on the mixing principle, micromixers are categorized 29 

into active and passive [312]. In drug formulation systems passive micromixers plays important 30 
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role and can be further classified into parallel lamination, serial lamination, injection, chaotic 1 

advection and droplet. The flow behavior in these micromixers is either electrohydrodynamic, 2 

dielectrophoretic, electrokinetic, magnetohydrodynamics or acoustic [308]. 3 

 4 

4.4 Continuous microfluidics in Point-of-Care devices 5 

Point-of-care (POC) diagnostic devices have useful applications in quick screening and disease 6 

testing in sport science, military tactics and space applications [314]. Polymer- and paper-based 7 

microfluidic systems with lateral microflow are used for production of POC devices. Despite of 8 

popularity the commercialization of these devices is still a challenging job because of operational 9 

complexity [315]. POC devices are used for pregnancy testing [316], the diagnosis of infectious 10 

diseases (such as Streptococcus, influenza, and HIV) [317], screening for drug abuse [315], and 11 

blood glucose biosensing [318]. Recent advances in the development of microfluidic systems 12 

includes PDMS−glass platform for rapid measurement of blood plasma proteins. The chip 13 

separated plasma from whole blood, and the plasma flowed across channels patterned with a 14 

barcode-like array of DNA-linked antibodies to detect multiple proteins [319]. 15 

 16 

4.5 Multiphase parallel microflow devices for cell biology and single cell analysis 17 

Specific applications of microfluidic systems in cell biology [320] and single-cell analysis [295] 18 

have been reviewed previously. PDMS is the primary microfluidic device material used for cell 19 

culture [321, 322] but other materials like Cyclic-olefin Copolymer (COC), poly(ethylene 20 

terephthalate glycol) and combination of these are also used [321]. Microfabricated and 21 

microfluidic devices have demonstrated their suitability for single-cell manipulation and analysis 22 

of thousands of cells at automatic conditions [1, 323, 324]. Furthermore, these experimental 23 

designed devices present a high level of integration for massive parallelization [325], and as well 24 

as implementation of complex processes [326]. An efficient integrated microdevice for the 25 

analysis of gene expression in single cells was developed by Toriello et al. [327]. The system 26 

captures a single cell, transcribes and amplifies the mRNA, and quantitatively analyzes the 27 

products of interest. The key components of this microdevice include integrated nanoliter 28 

metering pumps and affinity capture matrix for the purification and concentration of products 29 

that is coupled to a microfabricated capillary electrophoresis separation channel for product 30 

analysis [327]. Van den Brink et al. [328] reported a cell entrapment microfluidic device called 31 
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PaSCAl (Fig. 4.5a).  In this platform cells are trapped individually in an array of 16–32 lateral 1 

pockets using a simple, reproducible, efficient and automated protocol for single cell analysis. 2 

The multiphase parallel microfluidic devices are also employed to study the brain functions and 3 

functionality of neurons in the body [329]. Recently, Dinh et al. [330] studied the mechanism 4 

behind Alzheimer and Parkinson diseases by using Compartmentalized Neuron Arraying (CNA) 5 

microfluidic circuits for the preparation of neuronal networks using minimal cellular inputs (10–6 

100-fold less than existing systems). The approach combines the benefits of microfluidics for 7 

precision single cell handling with biomaterial patterning for the long term maintenance of 8 

neuronal arrangements [330]. The same group also utilized the same microfluidic technique for 9 

rapid, reproducible and sensitive neurotoxicity testing platform that combines the benefits of 10 

neurite outgrowth analysis with cell patterning [331]. Kim et al. [332] logarithmically scaled 11 

continuous perfusion culture of 3T3 fibroblasts for 3 days on microfluidic device by modifying 12 

the flow rates through four separate cell-culture chambers using syringe-driven flow and a 13 

network of fluidic resistances. Genomic applications often require nanoliters of sample to 14 

process and to get high quality results. Marcy et al. [333] developed a two-layer valve-based 15 

microfluidic chip for genomic amplification of single cells and used this device to sequence the 16 

genomes of uncultivated bacteria found in the human oral cavity (Figure 4.5b). They showed that 17 

multiple displacement amplification benefits from the 60-nl reaction chambers, which both 18 

increase the effective concentration of genetic material from a single bacterial cell, and reduces 19 

amplification bias [334]. 20 

 21 

4.6 Continuous microfluidics in nucleic acid assays 22 

PDMS, glass and COC are the primary material for integration nucleic acid assays [335, 336]. 23 

Synthetic Microfluidic systems for DNA synthesis require less reagents for more cost-effective 24 

synthesis and can create more complex genes. Lee et al. [337] parallelized the synthesis of genes 25 

on a chip using a multilayer microfluidic device. They used conventional solid-phase chemistry 26 

to synthesize a gene fragment of Bacillus cereus in a design that encompassed valves, purge lines, 27 

reagent controllers, a herringbone binary tree for proper mixing of reagents and an array of 16 nl 28 

reaction columns (Fig. 4.6a). The multiple reaction chambers allowed to obtain homogeneous 29 

samples, as opposed to the mixtures obtained from common microarray technologies. A 30 

PDMS−glass microfluidic device with integrated PCR, enzymatic ssDNA generation, and 31 
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electrochemical detection was developed for determination of genomic DNA from Salmonella. 1 

The system showed improved detection limits over other microchip-based PCR electrochemical 2 

methods [338]. Recently, a compact disk microfluidic device was developed for generating the 3 

reciprocating flow of DNA samples within the MCs for rapid DNA hybridization assay with 4 

nanoliter-volume samples. The system was tested with a Dengue virus gene sequence and 5 

showed better performance than flow-through hybridization under the same conditions [339]. 6 

 7 

4.7 Microfluidics in proteomics and metabolomics  8 

Zhou et al. [341] have reviewed important aspects of proteomics in microfluidic devices. PMMA, 9 

COC and PDMS-glass materials are used for production of proteomics devices. In proteomics 10 

applications, the most important features of microfluidic devices are related to delivery of fluid 11 

reagents, immobilization of proteins, mixing and reactions, and geometric microarrays [342]. In 12 

proteomics microfluidic devices electroosmotic (or electrokinetic) flow and centrifugal pressure 13 

flow are used to move analytes through a chip. The proteomics devices are used for enzymatic 14 

assays, immunoassays and peptide mass fingerprinting [342]. The enzymatic assays in 15 

microfluidics involves the enzyme-protein interaction studies in MCs [342]. This approach was 16 

used for the identification of protein drug targets, or for the evaluation of compound libraries in 17 

drug discovery. Puckett et al. [343] developed a centrifugal microfluidic device in which 18 

homogeneous protein ligand binding assays were performed to detect and characterize the 19 

binding interaction between phenothiazine antidepressants and calmodulin, a calcium-binding 20 

protein known to interact with this class of drugs. 21 

 22 

Metabolomics is the study of metabolite intermediates and byproducts that provides 23 

information regarding cellular functions and health. It can be used in diagnostics to identify 24 

disease states in individuals [319]. Metabolomic analysis utilizes a high resolution separation 25 

technique to aid in the identification or measurement of complex mixtures of metabolites. 26 

Separations on the microfluidic format are typically performed by electrophoretic means, such as 27 

microchip capillary electrophoresis, or through pressure driven flow. Microchip-capillary 28 

electrophoretic (microchip-CE) devices with electrochemical detection have been used in several 29 

targeted metabolic profiling studies. Holcomb et al. [344] introduced a microchip-CE device 30 

with an electrode array detector for monitoring small molecule metabolites and xenobiotics. 31 
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Recently, Shintu et al. [345] made an organ-on-a-chip device that was probed via proton nuclear 1 

magnetic resonance for metabolomic analysis of liver and kidney cell cultures exposed to several 2 

toxic compounds. 3 

4.8 Human on-a-chip microfluidic systems 4 

The concept of integrated microfluidics has gone beyond tissue or organ level 5 

engineering. Investigators are developing integrated ‘human-on-a-chip’ models that consist of 6 

interconnected compartments, each containing a cell type representing a different organ, linked 7 

through a microfluidic circulatory system (Fig. 4.8). Esch et al. [346] developed a 8 

pharmacokinetics models having microfabricated bioreactor that contained 2D cultures of liver 9 

and lung cells in different microchambers interconnected by microfluidic channels. Under 10 

different physiological conditions, this system analyses liquid-to-cell ratios, hydrodynamic shear 11 

stresses and liquid residence times in living whole-organ systems [347]. The present system also 12 

evaluates toxicity levels in the body [347]. This microfluidic system was later modified from 2D 13 

to 3D culture system for adipocytes, cancer cells and bone marrow stem cells. The main aim of 14 

this conversion was to study drug accumulation, distribution, metabolism and toxicity [37].  15 

 16 

5. Scale-up strategies of lab-on-a-chip devices for materials processing  17 

 18 

5.1 Microchannel array devices 19 

Although the frequency of droplet generation in flow focusing devices can reach 1,000 Hz for 20 

oil-in-water droplets and 12,000 Hz for water-in-oil droplets [348], the volume flow rate of 21 

dispersed phase is very low, because there is typically only one droplet generation unit (DGU). 22 

Note that when 10 m diameter droplets are produced at 12,000 Hz frequency, the flow rate of 23 

dispersed phase flow is just 0.02 mL h
-1

. In microchannel (MC) array devices, droplets are 24 

formed simultaneously from hundreds or even hundreds of thousands of parallel MCs, which 25 

enables much higher total droplet throughputs [162]. E.g., when 10 m diameter droplets are 26 

produced at a frequency of 400 Hz using an array of 100,000 MCs, the overall dispersed phase 27 

flow rate is 75 mL h
-1

. Table 2 compares frequencies of droplet generation and dispersed phase 28 

flow rates for microfluidic devices with single DGU and MC array devices. It should be noted 29 
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that the maximum frequency of droplet generation increases with decreasing the dispersed phase 1 

viscosity. The maximum frequency of drop generation in MC array devices is typically around 2 

10 Hz for edible oil-in-water emulsions, but several hundred Hz for tetradecane-in-water 3 

emulsions [349].  4 

Grooved-type MC array devices. The first microfluidic device consisting of grooved-type MC 5 

array was developed by Kikuchi et al. [2] using photolithography and anisotropic wet etching in 6 

(100) single-crystal silicon (Figure 2.1.1a). This device with a trade name MicroChannel array 7 

Flow ANalyzer (MC-FAN) was commercialised by Hitachi Haramachi Electronics Ltd and used 8 

for the measurement of blood flow rate (fluidity). The MC-FAN system was first tested for 9 

droplet generation by Nakajima group at the National Food Research Institute in Tsukuba, but 10 

polydispersed droplets were obtained (Fig. 5.1.1a), due to insufficient channel spacing. In the 11 

subsequent studies, MC arrays purposely designed for drop generation have been used and 12 

droplets with a CV below 5% have been routinely produced (Fig. 5.1.1c). In addition to single 13 

crystal silicon and stainless steel, grooved MC arrays have also been also fabricated by injection 14 

molding in PMMA [57]. PMMA channels are inherently hydrophobic and suitable for generation 15 

of W/O emulsions [57].  16 

 17 

Modules with microgrooves can be either dead-end or cross-flow. In a typical dead-end 18 

module shown in Figure 5.1.2a, MCs are fabricated on a terrace line and there are four terrace 19 

lines arranged on all four sides of a square silicon plate. Each MC is typically 612 m wide, 20 

47 m deep and 25140 m long and the size of MC plate typically ranges from 1515 mm to 21 

4040 mm [43, 351]. During operation, MC plate is tightly sealed with a transparent cover plate. 22 

The dispersed phase is supplied through the central hole and flows out through MCs on all four 23 

sides forming droplets in the surrounding continuous phase. Different designs of grooved MC 24 

arrays have been developed including MCs without terrace [352] (Fig. 5.1.1b) and MCs with 25 

partition walls on the terrace [353, 354] (Fig. 5.1.1d).  26 

 27 

Dead-end modules with grooved MC arrays cannot provide a dispersed phase flow rate 28 

above 0.1 mL h
–1

 for vegetable oils, due to limited number of MCs that can be accommodated on 29 

the plate (1001,500). Cross-flow modules with grooved MC arrays are more convenient for the 30 

higher droplet throughputs, because many parallel cross-flow channels can be incorporated on a 31 
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single MC plate [355]. A simplest cross-flow module shown in Fig. 5.1.2b consists of only one 1 

cross-flow channel and two holes at its both ends for introduction and withdrawal of the 2 

continuous phase. MCs are arranged at both longitudinal sides of the cross-flow channel [161, 3 

356, 357]. The role of cross-flow is to collect droplets from the module and not to control the 4 

droplet size. In the dripping regime, the droplet size is independent on the flow rate of the 5 

dispersed or continuous phase. In contrast, in flow focusing devices and T-junctions, the flow 6 

rate of all fluid streams has a strong effect on the droplet size. Cross-flow modules with multiple 7 

cross-flow channels are available with a maximum size of the MC plate of 6060 mm. This plate, 8 

shown in Figure 5.1.3, consists of 7 cross-flow channels and 11,900 microgrooves arranged in 14 9 

parallel arrays (two arrays per each cross-flow channel) and can provide a dispersed phase flow 10 

rate of 1.5 mL h
–1

, when used in production of soybean oil-in-water emulsions [355].  11 

 12 

Straight-through microchannel array devices. A disadvantage of grooved-type MC modules 13 

is a limited droplet throughput, due to poor utilization of MC plate surface, because MCs are 14 

arranged on the plate surface in longitudinal direction and the feed channels for handling the 15 

dispersed and continuous phase must be provided on the plate surface. A vertical array of 16 

straight-through MCs allows much better utilisation of the plate surface resulting in significantly 17 

higher throughputs. For example, 6060 mm grooved-type plate with 12,000 MCs can 18 

accommodate only 3.3 MCs per 1 mm
2
 and provides a maximum soybean oil flow rate of 1.5 mL 19 

h
–1

. On the other hand, 4040 mm straight-through MC plate has 211,248 MCs, i.e. 132 MCs per 20 

1 mm
2
 and a soybean oil flow rate can exceed 30 mL h

–1
 [350]. 21 

 22 

Straight-through MCs can have either symmetric (Fig. 5.1.4a) or asymmetric (Fig. 23 

5.1.4b) structure. Symmetric MCs are of the same size and shape (e.g., circular or rectangular) 24 

over the whole cross section of the plate. Rectangular MCs provide better performance in 25 

microchannel emulsification, compared to circular MCs and a slot aspect ratio of at least 33.5 is 26 

required to ensure production of uniform droplets [66, 358, 359]. Asymmetric MC plate typically 27 

consists of circular channels on the upstream (bottom) side and slots on the downstream (top) 28 

side. This asymmetric geometry is particularly useful for generation of uniform droplets when 29 

the dispersed phase viscosity is less than 1 mPa s, e.g. when the dispersed phase is a volatile (C6-30 

C10) hydrocarbon, such as decane [350]. Asymmetric straight-through MCs have also been used 31 
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successfully for production of W/O emulsions [360], polyunsaturated fatty acids (PUFA)-loaded 1 

O/W emulsions [361] and n-tetradecane emulsions [349, 362]. The size of droplets produced 2 

using asymmetric silicon MCs can range from just several microns [363] to several hundred 3 

microns [66]. The droplet size can reach several millimeters using asymmetric MCs with a 4 

diameter in the range of 300−500 m micromachined in stainless steel plates, [102]. For an 5 

asymmetric MC plate, the maximum theoretical drop generation frequency (in Hz) that can be 6 

achieved in generation of soybean oil-in-water emulsions is given by Kobayashi et al. [364]: 7 

12

max 101.2  MCdf  8 

where dMC is the MC diameter (in m) and dMC < 100 m. For example, for a MC plate 9 

consisting of 211,248 MCs with dMC = 6.6 m [350], the maximum drop generation frequency 10 

per channel is up to 32 Hz and the maximum overall drop generation rate is up to 6,7 million 11 

droplets per second. It should be noted that the maximum drop generation frequency increases 12 

with decreasing the viscosity of the dispersed phase. For example, the maximum drop generation 13 

frequency of n-tetradecane droplets for an asymmetric MC with dMC = 10 m was found to be 14 

over 400 Hz. A maximum throughput of n-tetradecane droplets in an asymmetric MC plate with 15 

a size of 2424 mm was about 270 mL h
-1

 [349]. Kobayashi et al. [23] have achieved a 16 

throughput of n-tetradecane droplets of 1,400 mL h
-1

 using a large 4040 mm asymmetric MC 17 

plate. It was found by CFD simulation that a maximum droplet throughput per unit area of an 18 

asymmetric MC plate is independent of the MC diameter [364]. 19 

 20 

Straight-through micronozzle array includes a plurality of micronozzles having outlets 21 

extending above the plate surface (Figure 5.1.4c). They can be used to increase the velocity of 22 

the continuous phase at the channel outlet, which could be useful if the viscosity of the dispersed 23 

phase is relatively high [68].  24 

 25 

5.2 Scaled-up versions of flow focusing devices and microfluidic junctions 26 

 27 

5.2.1 Scaled-up devices with a common outlet channel 28 

Microfluidic devices with a common outlet channel allow formation of dispersions that contain 29 

droplets or bubbles of two or more distinct fluids (“composite emulsions”) or droplets or bubbles 30 
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of a single fluid with bimodal, trimodal or polymodal distribution [365]. Although each of the 1 

generators forms distinct families of bubbles or droplets, they influence each other, especially if 2 

the dispersed phase is gas [366]. Droplets or bubbles produced from different generators can 3 

self-assemble in a common outlet channel to form a wide variety of highly organised dynamic 4 

lattices, whose morphology can be controlled by fluid flow rates. In a coupled device, every two 5 

adjacent flow focusing droplet generators (FFDGs) share one of the inlets of the continuous 6 

phase (Fig. 5.2.1a). In the device shown in Fig. 5.2.1b, two separate inlets of the continuous 7 

phase are implemented in each droplet generator. Simultaneous generation of droplets with 8 

different sizes was achieved by integrating in a single chip multiple FFDGs with distinct 9 

geometries [19]. Simultaneous generation of droplets with nearly identical sizes but different 10 

compositions was achieved by integrating in a single chip interconnected bifurcated inlet 11 

channels with micromixers and multiple parallel FFDGs [367].  12 

 13 

 14 

5.2.2 High-throughput microfluidic junction and flow focusing devices  15 

A single microfluidic junction or flow focusing orifice can produce up to 1 g h
-1

 of drops, 16 

depending on the drop size and dispersed phase viscosity. The productivity increases with 17 

increasing drop size and decreasing dispersed phase viscosity. In a continuous operation, the 18 

running time is about 8000 hours per year and therefore, the productivity of a continuous 19 

microfluidic device with a single drop generation unit (DGU) is less than 8 kg per year. The 20 

productivity requirements of a typical industrial emulsification process are about 10
3
 tonnes per 21 

year [18] which means that more than 125,000 DGUs are necessary to meet this level of 22 

production.  23 

 24 

Increasing throughput of microfluidic devices merely by using multiple devices with a 25 

single DGU is not feasible, because each device needs a separate set of pumps or pressurized 26 

tanks to supply fluids [25]. 125,000 such devices would require 250,000 pumps and therefore, 27 

the only viable option for increasing production is to integrate many DGUs in a single chip, and 28 

drive the assembly with a single set of pumps. However, a single chip with large number of 29 

DGUs is impractical, because if only one DGU does not work properly, e.g. due to channel 30 

clogging, the whole device would require decommissioning for cleaning or complete 31 
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reconstruction. Secondly, a production plant with a monolithic chip cannot easily meet different 1 

productivity requirements, because the total number of DGUs is fixed. Finally, the fabrication of 2 

chips with smaller number of parallelized DGUs is easier. Therefore, scaling up microfluidic 3 

drop generators to industrial level requires a hierarchical approach with at least two levels of 4 

structural integration of drop makers: (i) integration of multiple parallel DGUs in a single chip 5 

and (ii) integration of multiple chips, each containing hundreds of paralellized DGUs, into a 6 

production plant. In the next section, we will review scale-up strategies used to achieve both 7 

levels of structural integration.  8 

 9 

Simple droplets. Parallelized microfluidic junction devices for producing larger quantities of 10 

simple emulsions have been demonstrated by several groups [20, 368, 369]. The two most 11 

common layouts of microfluidic channels used to distribute fluids from a single manifold into 12 

multiple parallel drop generation units are tree-type and ladder-type (Fig. 5.2.2). The tree-type 13 

network has one inlet for each phase at the zero
th

 branching level and 2
m
 inlet channels for each 14 

phase at the m
th

 branching level. Therefore, the number of inlet channels increases by a factor of 15 

2 between two consecutive branching levels [370]. The ladder-type structure has two main feed 16 

channels (stiles), one for the dispersed phase and one for the continuous phase, and smaller 17 

channels branching off them (the rungs of a ladder). The ladder-type structure offer three 18 

advantages over tree layout: (i) More compact design; a chip with the ladder-type architecture 19 

consisting of 8 droplet generation units occupies around 7 cm
2
, as compared to 84 cm

2
 for the 20 

tree structure; (b) The performance of ladder-type microfluidic network is less affected by small 21 

random variations in the channel size (0.4 m), caused by the limitations of the fabrication 22 

process; (c) In the tree-type network, a defect (e.g. clogging) in one arm will break the symmetry 23 

of the system and affect the whole branch from the very first bifurcation [369]. However, the tree 24 

layout is the more energy efficient means of feeding droplet generation units in parallel. 25 

Tetradis-Meris et al. [369] integrated 180 drop generation units (cross-junctions), each consisting 26 

of 20  20 m channels, to produce W/O emulsions with a droplet diameter of 21 m and the 27 

droplet diameter variations of less than 5%. The cross junctions were arranged in 9 parallel lines, 28 

each line having 20 cross junctions, and connected using the ladder-type architecture. A strategy 29 

used for interconnection of these cross-junctions is shown in Figure 5.2.3. The device was 30 

assembled using three layers of channels fabricated in PMMA and stacked on top of each other. 31 
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The bottom layer was a secondary distribution layer containing long vertical manifolds, the 1 

middle layer was a primary distribution layer with horizontal manifolds and the top layer was a 2 

drop generation layer containing cross junctions and short inlet and outlet channels. Long 3 

vertical channels on the right-hand side of the chip are drainage manifolds; they were open 4 

during startup and cleaning procedures but closed during drop generation.  5 

 6 

Nisisako and Torii [20] integrated 128 cross junctions consisting of 256 drop generation 7 

units (2 per each cross junction) on a 42  42 mm chip to produce droplets of 8 

photopolymerizable acrylate monomer at a throughput of 320 mL h
1

. The chip was composed of 9 

128 inlet holes for the dispersed phase and 64 inlet holes for the continuous phase, all circularly 10 

arranged around a large outlet hole (Fig. 5.2.4a). In this design, both the dispersed and 11 

continuous phase stream was split into two streams before reaching a drop generation unit (Fig. 12 

5.2.4b), which enabled to reduce the number of inlet holes and the chip size. 13 

Kawai et al. [368] produced gel particles with a variation of particle diameter of 12% in a 14 

microfluidic device consisting of three piled-up glass discs, each having 100 radially arranged Y 15 

junctions (300 in total). They also demonstrated a simultaneous operation of five separate 16 

modules (1500 Y-junctions in total) to produce O/W emulsions with a similar coefficient of 17 

variation of droplet diameters [368]. Li et al. [371] produced 50 g h
1

 of poly(N-18 

isopropylacrylamide) (PNIPAAm) particles with an average diameter of 141 m and a variation 19 

of diameters of less than 5% using a PDMS microfluidic device comprising 8 individual modules, 20 

each consisting of 16 flow focusing DGUs and 16 wavy channels where the droplets are exposed 21 

to UV-irradiation to trigger photo-initiated polymerization of NIPAAm (Fig. 5.2.5). Each 22 

module was fabricated by sealing the planar bottom layer, the intermediate ‘reactor’ layer and a 23 

top ‘adapter’ layer containing a bifurcated manifold for the injection of the dispersed phase. In 24 

Figure 5.2.5, the reactor and adapter layers occupy gray and blue areas, respectively. ‘Crosstalk’ 25 

(coupling) between parallel DGUs within the module was prevented by elongating a 26 

hydrodynamic path of the dispersed phase prior to its entrance to the orifice, thereby increasing 27 

the hydrodynamic resistance between adjacent DGUs. It was done by introducing a 40 mm-long 28 

wavy channel for the dispersed phase upstream of the orifice, as shown in Fig. 5.2.5.  29 

 30 
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Another strategy of increasing droplet throughput in microfluidic devices is to use a 1 

splitting array consisting of a series of channels that divide into two channels several times [182, 2 

190]. In the device shown in Fig. 5.2.6a, droplets produced in the upstream cross junction are 3 

split into 16 equal daughter droplets, each having a diameter 2
4/3

 times smaller than the initial 4 

droplet diameter, and the diameter of droplets decreases by a factor of 2
1/3

 between two 5 

consecutive branching levels. In Fig. 5.2.6b, water droplets with a diameter of 88 m were split 6 

into daughter droplets with a diameter of 35 m at the dispersed phase flow rate of 7 mL h
1

. To 7 

produce 35 m droplets directly, the maximum production rate would be 0.6 mL h
1

, which 8 

means that the splitting device operates more than 10 times faster. For optimal splitting, the flow 9 

velocity should be neither too low nor too high. If too low, droplets may not split and if too high, 10 

satellite droplets may produce. In order to keep a constant flow velocity in all channels, the total 11 

cross-sectional area of the channels was kept constant at all branching levels and thus, the 12 

channel diameter decreased by a factor of 2
1/2

 at each bifurcation. 13 

Compound (multiphase) droplets and bubbles. Microfluidic devices have become 14 

increasingly popular for making droplets and bubbles with complex morphologies, since 15 

appropriate alternative technologies are lacking. Faster microfluidic production of multiple 16 

emulsions was demonstrated by several groups [20, 25, 50, 182]. Abate and Weitz [182] used a 17 

splitting array shown in Figs. 5.2.6c and 5.2.6d to split core/shell droplets three times, into 8 18 

equal daughter droplets. In this way, the throughput was increased by a factor of 5 compared to 19 

that in a direct emulsification.  20 

 21 

Nisisako et al. [50] and Nisisako and Torii [20] used radial array of droplet generation 22 

units to produce compound droplets of different internal structure. The channels shown in Fig. 23 

5.2.7a were manufactured in fused silica glass by dry reactive ion etching. The chip incorporates 24 

32 sets of triple emulsion droplet generators, each consisting of three consecutive  junctions. 25 

To avoid problems associated with partial hydrophobisation of the channels, the chip was used to 26 

produce oil-in-oil-in-oil-in-water (O/O/O/W) droplets (all dispersed phases were organic liquids). 27 

The maximum flow rates of innermost, inner, middle, and continuous phases in this device were 28 

respectively 5.0 mL h
1

, 6.0 mL h
1

, 20.0 mL h
1

, and 90.0 mL h
1

 [50]. Fig. 5.2.7b shows a chip 29 

consisting of 128 sets of droplet generation units for production of bifacial (Janus) droplets. Two 30 

distinct dispersed phases (1 and 2) were introduced from the alternately arranged outer inlets and 31 
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each stream was split into two streams in bifurcated inlet channels to form a combined two-phase 1 

stream that was eventually broken up into Janus droplets.  2 

 3 

Romanowsky et al. [25] developed three-dimensional (3D) arrays of double emulsion 4 

droplet generators, interconnected by a 3D network of distribution and collection channels. Each 5 

droplet generator comprised two consecutive junctions operating in one-step double 6 

emulsification mode shown in Fig. 3.2.1g. By making the distribution channels with much lower 7 

flow resistance than the droplet generator, the input fluids were evenly distributed to all droplet 8 

generators, so all of them produced droplets of the same size. In the first stage of parallelization, 9 

several droplet generators were arranged in a line, and connected to a single set of inlets and 10 

outlets using a primary distribution layer placed above the droplet generation layer (Fig. 5.2.8). 11 

In the second stage of parallelization, several lines of drop generators were arranged in a planar 12 

(xy) array, each line having its own primary distribution layer (Fig. 5.2.9a). The channels in all 13 

primary distribution layers were then connected to yet larger distribution and collection channels 14 

using a secondary distribution layer (Fig. 5.2.9b) placed above the primary ones. In the final 15 

stage of parallelization, a series of planar arrays of drop generators were stacked together, each 16 

planar array having its own primary and secondary distribution layers, and the channels in all 17 

secondary distribution layers were connected with vertical, tertiary distribution channels. The 18 

locations of these vertical channels are shown by arrows in Fig. 5.2.9c. By integrating 15 double 19 

emulsion droplet generators in a planar (3  5) array, core/shell droplets were produced at the 20 

flow rates of the core aqueous phase, shell octanol phase and continuous aqueous phase of 24, 30, 21 

and 215 mL h
−1

, respectively, and both inner and outer diameter variation was below 6% [25]. 22 

By integrating hundreds of double emulsion drop generators, it would be possible to fabricate a 23 

device occupying one litre of space that produces uniform core/shell droplets at more than one 24 

litre per hour, or nearly nine tons per year [25]. 25 

 26 

Kendall et al. [372] developed a radial array of flow focusing droplet generators (FFDGs) 27 

capable of generating dual layer microbubbles for combined ultrasound imaging and drug 28 

delivery. They constructed a 33-mm diameter module assembled from 3 stacked PDMS layers to 29 

generate microbubbles ~ 20 m in diameter with a coefficient variation of about 5% at rates 30 

exceeding 10
5
 Hz. The core gas enters a single inlet on the top PDMS layer and bifurcates into 8 31 
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serpentine channels, serving as resistors, before entering each orifice. Oil and lipid solution are 1 

infused through inlets in bottom layer and bifurcate in the middle and bottom layers respectively, 2 

to reach vertical distribution channels, which connect to the top layer. The top layer consisting of 3 

8 FFDGs is shown in Figure 5.2.10. Given a larger chip area, this design can be expanded into 4 

any 2N number of FFDGs to further increase the throughput. 5 

 6 

5.3 Scaled-up versions of flow-based microreaction devices 7 

Microfluidic reaction devices utilize single-phase flow and/or multi-phase flow in 8 

microchannel(s). Microfluidic reaction devices can be used to generate products in higher yield, 9 

purity and selectivity when compared to batch reactors, while a disadvantage of the microfluidic 10 

reaction technology is the fact that only small quantities of product can be prepared [373]. The 11 

major advantage of microfluidic reaction devices deals with decreasing linear dimensions, which 12 

significantly increases the surface-to-volume ratio in this technology. For the channel diameter 13 

from tens to hundreds of micrometers, the surface-to-volume ratio in the range of 10000 to 14 

50000 m
2
 m

−3
 is achieved [374]. Consequently, significant intensification of mass and heat 15 

transfer can be achieved, resulting in considerable reduction in operation times [375]. 16 

Additionally, microfluidic reaction devices can be operated at high pressures (up to 600 bar in 17 

stainless steel microreactors), therefore opening a path to novel process windows [376] where a 18 

significant intensification of the reaction rate canbe achieved by operating at high pressures and 19 

temperatures [377] or in explosive regimes [378].  20 

 21 

Scale-up of the microfluidic reaction devices is an ongoing challenge, as two approaches 22 

exist: (a) Parallelization, whereby large numbers of identical microchannels are employed and 23 

(b) Internal scale-up, whereby a combination of microstructured reactor design and conventional 24 

dimension scale-up is applied. Parallelization was demonstrated as an efficient method in the 25 

case of single phase or gas-solid reaction systems. An on-chip system has preferably a minimum 26 

number of inlets, one for each reactant and/or fluid catalyst, and one outlet. To achieve 27 

parallelization, flow splitters are required, to split the inlet flows into n number of flows, 28 

where n is the number of parallel reactors. In microchannels small deflections and imperfections 29 

always exist, easily varying the hydraulic resistance over parallel channels in the range of a few 30 

percent, resulting in flow variations. In highly exothermic reactions flow splitter balancing 31 
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becomes very important, due to the relation between temperature, viscosity and flow resistance. 1 

The second important parameter in designing parallel microreactors is avoiding bubbles blocking 2 

channels. At encapsulated bubbles two forces are applied: capillary forces that tend to keep the 3 

bubble in position and pressure drops across the bubbles that try to push the bubble out of 4 

position. Currently, flow splitter reactor chips with 8 parallel reactors are being fabricated by 5 

LioniX BV [379]. Velocys Inc. has been one of the pioneers of microfluidic reactor 6 

parallelization concept for gas-to-liquid (GTL) applications [380]. Internal scale-up is highly 7 

promising but not widely employed approach, with most application reports coming from Lonza 8 

Ltd. [381]. Last, the small sizes of microfluidic reaction devices, excellent safety profile coupled 9 

with their high performance have been touted as one of the future tools of modular chemical 10 

production. To operate the microfluidic devices, microfluidic fuel cells could be the alternative 11 

that can be scaled up in parallel arrays to meet the industrial demands, recently Fuerth and 12 

Bazylak [382] presented a up-scaled microfluidic cell architecture that provides higher available 13 

surface area compared to conventional microfluidic fuel cells, providing the potential for higher 14 

overall power outputs and this newly designed cell has nine times more active electrode surface 15 

area in comparison to previously designed microfluidic cell by Kjeang et al. [223, 383]. 16 

 17 

5.4 Scale-up versions of biochemical and biological microfluidic devices 18 

Highly integrated microfluidic devices show great promise for basic biomedical and 19 

pharmaceutical research, and robust and portable point-of-care devices could be used in clinical 20 

settings and revolutionize the whole world [384]. The concept of microfluidic large scale 21 

integration was firstly developed by Thorsen et al. [385]. They developed high-density integrated 22 

microfluidic chips contain plumbing networks with thousands of micromechanical valves and 23 

hundreds of individually addressable chambers. The system was regarded as fluidic multiplexor, 24 

which exponentially increases the processing power of a network and resembled as random-25 

access memory. The integrated microchip has 2056 microvalves, with 256 subnanoliter reaction 26 

chambers. This device was primarily created to test for the expression of a particular enzyme 27 

(cytochrome c peroxidase) in E.coli [385]. Hong et al. [386] developed microfluidic chips for 28 

automated nucleic acid purification from small numbers of bacterial or mammalian cells in a 29 

single parallel integrated microchip that utilized nanoliter fluid for processing.  They concluded 30 

that parallelization of complex sequential bioprocesses comprising cell isolation, cell lysis, DNA 31 
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affinity purification and the recovery of the purified DNA could be possible from this integrated 1 

chip and this process can be applied to many different biological procedures [386]. 2 

Recently, Gomez-Sjoberg et al. [387] developed a general platform for integrated 3 

microfluidic cell culture. The system contained 96 independent cell culture chambers to which 4 

customized media and reagents could be delivered at pre-set conditions (Fig. 5.4a). Tay et al. 5 

used this platform to monitor NF-B signaling dynamics in single cells responding to TNF- 6 

[388].  With active fluidic control, temporal TNF- stimulation could be delivered to cell 7 

chambers as digital response signals independently. Similarly, whole organism investigation is 8 

becoming a growing trend in microfluidic applications, the typical examples include microfluidic 9 

devices for manipulating, sorting, and screening Caenorhabditi elegans [389-392]. Crane et al. 10 

scale up these devices to screen up to 40, 000 animals and identify novel phenotypic variants, 11 

previously undetected by manual classification [28, 393]. Microfluidic systems level integration 12 

has also got popularity in single cell genome sequencing studies. Recently an amplified version 13 

of the single cell isolation and genomic amplification device developed by Marcy et al. have 14 

been used in a variety of single human cell sequencing applications. Similar modified version of 15 

Marcy et al. developed by  Fan et al. [394] sorted individual human metaphase cells to perform 16 

whole genome personal haplotyping. Wang et al. [395] used a similar device to isolate the 17 

genetic material from single human sperm cells for whole-genome sequencing in order to 18 

measure genomic variation caused by recombination and de novo mutation during 19 

gametogenesis (Fig. 5.4b). 20 

Cellular microarrays are useful for screening large-scale libraries of materials for drug 21 

discovery and toxicity testing [396-398] at high throughput, while reducing the time and cost 22 

required for the assays and increasing their portability. Applications of high-content screening 23 

are circumscribed by several practical aspects, including low sample throughput and absence of 24 

sorting capability. Moreover, high-resolution two-dimensional (2D) images consume limited 25 

detector bandwidth, introduce a data-acquisition delay that is a barrier for real-time decisions 26 

needed for sorting and introduce noise via inaccuracies in image segmentation. McKenna et al. 27 

[399] developed one dimensional flow cytometer by using parallel microfluidic cytometer 28 

(PMCMC) with 384 parallel flow channels that use a high-speed scanning photomultiplier-based 29 

detector to combine low-pixel-count. This newly device investigate protein localization in a 30 



 

46 

 

yeast model for human protein misfolding diseases. Multiplexed analysis based upon multiphase 1 

parallel flows has been used for the simultaneous quantification of different targets within a 2 

single sample. Adopting this concept Chapin et al. [400] developed a microfluidic system for the 3 

rapid alignment of multifunctional hydrogel microparticles designed to bear one or several 4 

biomolecule probe regions, and graphical code to identify the embedded probes. This system 5 

performs multiple functions such as high particle throughput, ensures proper particle alignment 6 

for decoding and target quantification, and reliably operated continuously without clogging. 7 

Huang et al. [401] developed a 3D microfluidic vascular network that operates on electrostatic 8 

discharge phenomena. This process generates highly branched tree-like microchannel 9 

architectures that bear remarkable similarity to naturally occurring vasculature. This method can 10 

be applied to a variety of polymers, and may help to produce organ-sized tissue scaffolds 11 

containing embedded vasculature. 12 

Protein crystallization by conventional methods often results in low yield of protein 13 

purification. The problem can be solved by using microfluidic devices that uses microgram of 14 

sample and results in higher yield. In an early application of microfluidic large scale integration, 15 

Hansen et al. used a microfluidic platform for high throughput screening of crystallization 16 

reagents [402, 403]. They used two devices; one was a microfluidic formulation device (Figure 17 

5.4c) based on a ring-shaped mixing chamber to purify the protein against combinations of 18 

various precipitants and buffers, while the second device (Figure 5.4d) incorporated a passive 19 

diffusion-based mixing scheme and was used to screen high potential conditions identified in the 20 

formulation device [403]. With less than three microliters of protein this chip could perform 21 

crystal screens on 244 conditions demonstrating a screening efficiency of over 100-fold better 22 

than commercial screens [403].  23 

 24 

6. Conclusions and outlook 25 

Microfluidic technology offers an unprecedented level of control over size, shape, morphology, 26 

and composition of emulsion droplets, enabling production and manipulation (sorting, splitting, 27 

merging, single cell encapsulation, incubation, etc.) of highly uniform single and compound 28 

droplets with a typical variation of droplet diameters of less than 5%.  Microfluidic devices can 29 

only be industrialized if they meet the following two requirements: scalability and versatility. 30 

High throughput analysis is required for optimizing drug delivery systems, and efforts have been 31 
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made to scale-up microfluidic throughput devices capable of analysing and generating particles 1 

or droplets with high productivity [20, 22].  2 

Microfluidic devices that consist of a single unit for droplet generation have very low 3 

throughput (typically < 1 mL h
1

), indicating that their scale-up is essential to perform industrial-4 

scale production. Microfluidic systems can be scaled-up by two-dimensional and three-5 

dimensional integration of numerous drop generation units in a large device and/or by 6 

numbering-up of devices. To date, several research groups have demonstrated the integration of 7 

droplet generation units into planar (orthogonal or radial) or 3D arrays (Weitz’s group [25], 8 

Kumacheva’s group [371], Torii’s group [50], and Unilever’s group [369]]. To date, the 9 

maximum droplet throughput achieved in scaled-up microfluidic systems was above 300 mL h
1

, 10 

which means that the productivity was improved by 24 orders of magnitudes, depending on the 11 

number of drop generation units. Droplet throughput in microfluidic systems can be additionally 12 

improved by splitting each generated droplet multiple times into even number of equal daughter 13 

droplets.  14 

Apart from integration of planar microfluidic drop generation units, large efforts have 15 

been made to increase throughput of microchannel array devices with 3D architecture that 16 

exploit a mechanism of spontaneous droplet generation through Laplace pressure differences. 17 

The maximum throughput of microchannel array devices, on a litre per hour scale, has been 18 

achieved using asymmetric straight-through microchannel plates [23]. Membrane emulsification, 19 

especially in premix mode [155] is another microfluidic process suitable for large scale 20 

production of size controlled emulsion droplets on a scale of hundreds of tonnes per m
2
 of 21 

membrane area, although it should be admitted that a coefficient of variation of droplet diameters 22 

in this method is well above 10 %.  23 

The scale-up of integrated microfluidic devices that utilize continuous and parallel flows 24 

have been received much attention to medical science, as those integrated with optical techniques 25 

(optofluidics) can increase the screening, detection and imaging capacity of microfluidic devices 26 

and as well as increase the scope of their applications like generation of energy. Parallel 27 

combination is preferred to scale up integrated microfluidic devices, as demonstrated by 28 

Erickson’s group [404], Yanik’s group [405], Bhatia’s Group [406] and Burns’ group [407]. A 29 

recent approach that uses a photomultiplier to combine one-dimensional imaging with 30 

microfluidic flow cytometry demonstrated its usefulness in high content and throughput 31 
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screening with a speed of several thousand cells per second [399], providing a good example of 1 

integrated scale-up microfluidics. On-going efforts to scale up microfluidics devices for single 2 

cell analysis (e.g., valve-based microfluidic qPCR system) would provide a low-volume 3 

(nanoliter) and high-throughput (thousands of PCR reactions per device) [408]. 4 

From an industrial point of view, it is highly desirable that microfluidic systems operate 5 

with a minimum number of pumps (or pressure tanks) and distribution channels. Another key 6 

point for industrial-scale applications of microfluidic technology is to achieve successful 7 

continuous long-term operation and to minimise the crosstalk between parallel droplet generators 8 

sharing supply manifolds. Additional challenges of operating an industrial microfluidic 9 

emulsification plant include the start-up procedure, the filtration of fluids to remove particles that 10 

would clog the channels, and the exchange of deteriorated devices while operating the others. 11 

Finally, it must be bear in mind that consumers will not pay more for a product just because it is 12 

made by microfluidics [18]. The implementation of large scale microfluidic processes will 13 

critically depend on the ability to create a ‘killer application’ - an application of microfluidics to 14 

make an innovative, powerful product with a sustainable need in the market that cannot be made 15 

with any other technology.  16 

 17 
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Table 1. Materials and typical techniques used for fabrication of microfluidic channels 1 

for emulsification. 2 

 3 

Materials Fabrication methods 

Inherent 

surface 

affinity  

Reference 

Surface-oxidized silicon 
Anisotropic wet etching, 

chemical dry etching 
Hydrophilic 

Kawakatsu et al. [43]; 

Kobayashi et al. [44] 

Quartz glass, Hoya SD-2 

glass, Pyrex glass 
Mechanical cutting Hydrophilic 

Nisisako et al. [45]; Plaza 

et al. [46] 

Soda lime glass, Pyrex glass, 

photoetchable glass 
Isotropic wet etching Hydrophilic 

Lin et al. [47]; Okushima 

et al. [48]; Kim and 

Kwon [49]  

Fused silica glass Chemical dry etching Hydrophilic Nisisako et al. [50] 

Silicon nitride 
Chemical dry etching followed 

by anisotropic wet etching 
Hydrophilic Kuiper et al. [51] 

Poly(dimethylsiloxane) 

(PDMS) 
Soft lithography Hydrophobic Whitesides [1] 

cyclic olefin copolymer 

(COP) 

Hot embossing, injection 

molding, nanoimprint 

lithography, laser ablation  

Hydrophobic 
Jena et al. [52]; Nunes et 

al. [53] 

polyurethane Soft lithography Hydrophobic 
Nie et al. [54], Thorsen et 

al. [55] 

poly(methyl methacrylate) 

(PMMA) 

Hot embossing lithography, 

injection molding, mechanical 

cutting, laser ablation, 

stereolithography 

Hydrophobic 

Eusner et al. [56]; Liu et 

al. [57]; Nisisako et al. 

[58]; Yeh et al. [59]; 

Morimoto et al. [60] 

Nickel LIGA process Hydrophobic Kim and Lee [61] 

Stainless steel Mechanical cutting Hydrophilic Tong et al. [62] 

 4 

 5 



 

94 

 

Table 2. Maximum drop generation frequency (per single channel and overall), 1 

maximum dispersed phase flow rate, emulsion type and droplet diameter obtained in 2 

each of the cited publications using various microfluidic devices.  3 

 4 

Device and channel 

size 

Max drop 

generation 

frequency  

Max disp. 

phase flow 

rate  

Emulsion 
Droplet 

diameter  
Reference 

Single T-junction 

6.5  35 m 
80 Hz 0.006 mL h

-1
 W/O 1040 m 

Thorsen et al. 

[55]  

Flow focusing device, 

orifice diameter=47 m  
1.210

4
 Hz 0.096 mL h

-1
 W/O 20140 m 

Yobas et al. 

[348] 

211,248 straight-through 

MCs, 6.6  26.7 m 

3.3 Hz/MC, 

overall (3−5) 

 10
5
 Hz 

2030 mL h
-1

 O/W 32 m 
Kobayashi et 

al. [350]   

12,000 Grooved-type 

MCs, 2  10 m 

43 Hz/MC, 

overall 5.2  

10
5
 Hz 

1.5 mL h
-1

 O/W 1015 m 
Kobayashi et 

al. [22] 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 
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Figures 1 

 2 

Figure 2.1.1. Fabrication of microchannels on single-crystal silicon wafers: (a) Fabrication of 3 

shallow microgrooves by photolithography and anisotropic wet etching adapted from [4]; (b) 4 

Fabrication of straight-through channels by photolithography and Deep Reactive ion Etching 5 

(DRIE) adapted from [44] (for clarity purpose, the thickness of the silicon substrate is 6 

unrealistically small compared to the thickness of deposited layers); (c) Fabrication of 7 

micronozzles by photolithography and two-step DRIE [63, 68].  8 
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 1 

 2 

Figure 2.2.1. Fabrication of channel structures in PDMS by soft lithography: (a) rectangular 3 

channels obtained by conventional replica molding from a master consisted of 4 

photolithographically patterned negative photoresist on a silicon or glass wafer [69]; (b) 5 

circular channels obtained by attaching two semi-circular channels face-to-face. Semi-6 

circular channels are fabricated by combining mechanical micromilling, PVS molding and 7 

photolithography [70]  (c) 3D structure created by embedding a microfiber in a PDMS mold 8 

before curing [74]. 9 
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 1 

 2 

Figure 2.3.1. Fabrication of microfluidic channels in photosensitive glass and thermoplastics: 3 

(a) HF etching of photosensitive glass following UV exposure through chromium mask and 4 

heat treatment [49]; (b) Hot embossing lithography in poly(methyl methacrylate) (PMMA) 5 

[56].  6 
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 1 

Figure 3.1.1. Microfluidic strategies for generation of single emulsions (DP – dispersed 2 

phase, CP – continuous phase, E – emulsion): (a) Standard T-junction [55]; (b) T-junction 3 

with injection of DP through the main channel [95]; (c) T-junction with head-on geometry; 4 

(d) Active T-junction with controllable moving wall structure [120] and integrated 5 

microheater [119]; (e) Cross junction [45]; (f) Y-junction [127]; (g) co-flow [135, 164, 165]; 6 

(h) Standard flow focusing device [141]; (i) Flow focusing device with CP supplied through 7 

the central channel [166]; (j) Flow focusing with counter-current flow [82]; (k) Cross flow 8 
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[150]; (i) Spontaneous droplet generation [133,134]. In all figures, DP does not wet the 1 

channel walls.  2 

 3 

 4 

 5 

Figure 3.2.1. Microfluidic strategies for generation of core/shell droplets (IP – inner phase, 6 

MP – middle phase, OP – outer phase, E – emulsion): (a) Flow focusing in a planar device 7 

with co-flow: OP wets the orifice [54]; (b) Two planar sequential flow focusing drop 8 

generators: MP and OP wet orifices 1 and 2, resp. [166]; (c) Axisymmetric glass capillary 9 

device with combination of co-flow and flow focusing: MP and OP wet capillaries 1 and 2, 10 

resp. [89]; (d) Axisymmetric glass capillary device with two sequential co-flow drop 11 

generators: MP and OP wet capillaries 1 and 2, resp. [167]; (e) Axisymmetric PDMS device 12 
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with combination of co-flow and flow focusing: MP wets the orifice; (f) Two sequential T-1 

junctions: MP and OP wets junctions 1 and 2, resp. [48, 131]; (g) Two sequential cross 2 

junctions with dripping instability present in T-junction 2: MP and OP wet T-junctions 1 and 3 

2, resp. [126]; (h) Two sequential cross junctions with dripping instability present in both 4 

junctions: MP and OP wet T-junctions 1 and 2, resp. [126].  5 

 6 

 7 

 8 

 9 

 10 

Figure 3.2.2. Microfluidic strategies for generation of higher-order multiple emulsions (IP1 – 11 

inner phase 1, IP2 – inner phase 2, MP – middle phase, OP – outer phase, E – emulsion): (a) 12 

Upstream cross junction and downstream T-junction connected in series: MP and OP wet T-13 

junctions 1 and 2, resp. [48]; (b) Glass capillary device with a two-bore injection tube [188]; 14 

(c) Three sequential cross junctions: IP2, MP, and OP wet T-junctions 1, 2, and 3, resp. 15 

[183]; (d) Glass capillary device with two coaxial injection tubes [89]. 16 
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 1 

 2 

Figure 3.3.1. Droplet splitting in microfluidic channels (DP1 – dispersed phase 1, DP2 – 3 

dispersed phase 2, CP – continuous phase): (a) Symmetric droplet splitting in a T-junction. R1 4 

and R2 are sidearm flow resistances [190]; (b) Asymmetric droplet splitting in a T-junction; 5 

(c) Flow of a single stream of droplets past centered obstruction [190]; (d) Flow of a single 6 

stream of droplets past off-centered obstruction [190]; (e) Flow of two parallel streams of 7 

droplets past off-centered obstruction [190]; (f) Droplet splitting in a flow focusing junction 8 

[191].  9 
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 1 

 2 

Figure 3.4.1. Strategies for droplet merging in microfluidic devices (DP1 – dispersed phase 1, 3 

DP2 – dispersed phase 2, CP – continuous phase): (a) Obstacle inserted in the channel [192]; 4 

(b) Circular expansion chamber [192, 193]; (c) T-junction [196]; (d) Tapered chamber with 5 

diverging walls [199, 209]; (e) Trifurcating junction [192, 200, 201]; (f) two sets of tapering 6 

pillars [202]; (g) pneumatically activated membrane valve; (h) expansion chamber with a 7 

heating wire [206, 207]; (i) Bypass line with a heating element [192].  8 
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 1 

 2 

Figure 3.5.1. Types of driving forces that flow fluid in a microchannel. (a) electro-osmotic 3 

flow (b) pressure-driven flow and (c) capillary-driven flow  4 
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Figure 3.5.2. Typical types of parallel multiphase flows in a microchannel   3 
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Figure 3.5.3. Typical combination of different reactions in continuous flow chemical 3 

processing involving multiphase parallel microflows. With permission [5]. 4 
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 1 

 2 

Figure 4.1.1 Microengineering methods for particle synthesis and high-throughput screening: 3 

(a) Rapid mixing of polymer and crosslinking solutions in T-junction [255]; (b) 4 

Emulsification/solvent evaporation [104]; (c) Emulsification in confined geometries [258]; 5 

(d) Photolithography [259]; (e) Micromolding [260]; (f) UV-induced polymerization [258]; 6 

(g) Nanoprecipitation as a result of mixing of two miscible solvents in laminar flow [261]; (h) 7 

Temperature-controlled emulsification/cooling below the phase transition temperature (T0 – 8 

phase transition temperature) [258]; (i) Screening of cells by mixing a suspension of cells 9 

with a second aqueous stream containing a fluorogenic substrate in a flow focusing channel 10 

[262].  11 
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 1 

 2 

 3 

Figure 4.2. Parallel reaction system using microchemical chips for combinatorial synthesis 4 

adopted from  [290]. 5 
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                                        1 

 2 

Figure 4.3. Operating ranges reported in the literature in active and passive micromixers in 3 

terms of (a) Reynolds and (b) Peclet numbers [313]. 4 
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Figure 4.5. (a) Microfluidic platform for parallel single-cell analysis called PaSCAl that can 3 

easily be scale-up for analysis of thousands of cell in single embedded design (with 4 

permission from Van den Brink et al. [328]. (c) two-layered microfluidic device for trapping, 5 

lysing, and amplifying the genetic material of single cells (with permission [334]). 6 
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Figure 4.6. (a) Parallelized synthesis of oligonucleotides on a chip. (a) Schematic illustration 3 

of a 16-column microfluidic DNA synthesizer. The control lines (red), fluidic lines (blue), a 4 

herringbone mixer (yellow) and a square profiled binary tree and the reactor columns (green); 5 

(b) Schematic illustration of column array with valves for a controlled fluid inlet, fluid flow 6 

and washing of beads (with permission [337, 340]). 7 
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Figure 4.8. The human-on-a-chip concept. Biomimetic microsystems representing different 3 

organs can be integrated into a single microdevice and linked by a microfluidic circulatory 4 

system in a physiologically relevant manner to model a complex, dynamic process of drug 5 

absorption, distribution, metabolism and excretion, and to more reliably evaluate drug 6 

efficacy and toxicity. In this figure, an integrated system of microengineered organ mimics 7 

(lung, heart, gut, liver, kidney and bone) can be used to study the absorption of inhaled 8 

aerosol drugs (red) from the lung to microcirculation, as well as to measure their 9 

cardiotoxicity (e.g. changes in heart contractility or conduction), transport and clearance in 10 

the kidney, metabolism in the liver, and immune-cell contributions to these responses. Drug 11 

substances (blue) also can be introduced into the gut compartment to investigate interplay 12 

between orally administered drugs and molecular transporters and metabolizing enzymes 13 

expressed in the various organs. With permission  [37] 14 

 15 

 16 

 17 

 18 

 19 

 20 



 

112 

 

 1 

 2 

Figure 5.1.1. Different designs of grooved-type microchannel arrays for droplet generation.  3 
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Figure 5.1.2. Grooved-type microchannel (MC) plates: (a) Dead-end plate with stagnant 

continuous phase [64]. (b) Cross-flow plate with recirculating continuous phase [356, 357]. 
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Figure 5.1.3. A large cross-flow single-crystal silicon plate (6060 mm) with 14 parallel 4 

grooved-type MC arrays, each consisting of 850 MCs; not all MCs are shown in the figure 5 

for simplicity [22].  6 
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Figure 5.1.4. Straight-through MC array plates: (a) symmetric plate with microslots on both 3 

sides [44]; (b) Asymmetric plate with circular channels on the upstream side and slots on the 4 

downstream side [350]; (c) Symmetric plate with micronozzles (MNs) [68].  5 
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Figure 5.2.1. Integration of flow focusing droplet generators (FFDGs) on a single chip using 4 

a common outlet channel: (a) Two coupled FFDGs in which the inlets of continuous phase of 5 

the two adjacent generators are fused into one channel [366]; (b) Two parallel FFDGs 6 

supplied with two separate inlets of continuous phase [365]. The abbreviations CP, DP and E 7 

denote the inlets of continuous and dispersed phase and the outlet of emulsion droplets 8 

generated in a system, respectively. Two different inlets are provided for both the dispersed 9 

phase and continuous phase, which allows formation of droplets or bubbles of two distinct 10 

fluids and independent control of droplet size and drop generation rate in each generator. 11 
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Figure 5.2.2. Common layouts of microfluidic channels for distribution of fluids from a 4 

single manifold into multiple parallel drop generation units. In each the device consists of 8 5 

drop generation units (cross junctions). The abbreviations CP, DP and E denote the inlets of 6 

continuous and dispersed phase fluid and the outlet of emulsion product, respectively. 7 

(Adopted from [369]). 8 
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Figure 5.2.3. Integration of cross junctions in a single chip using ladder-type channel 5 

network. The chip is assembled from three microfluidic layers stacked on top of each other. 6 

The bottom layer comprises long vertical manifolds, the middle layer comprises horizontal 7 

long manifolds and the top layer comprises drop generation units with short inlet and outlet 8 

channels. The abbreviations CP, DP and E denote the inlets of continuous and dispersed 9 

phase fluid and the outlet of emulsion product, respectively [369]. 10 
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Figure 5.2.4. (a) Schematic of a glass 42  42 mm chip with 128 cross junctions radially 3 

arranged around an outlet hole with a diameter of 26 mm [20]; (b) Production of single 4 

emulsion in a magnified region on the chip surface shown by the dashed rectangle.  5 
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Figure 5.2.5. A schematic of a microfluidic system for synthesis of polymeric particles 3 

comprising eight modules with overall 128 flow focusing drop generation units (FFDGUs). 4 

Each module consists of 16 FFDGUs followed by 16 wavy channels for UV initiated droplet 5 

polymerisation. Manifolds for the injection of the dispersed phase (DP) are shown in red 6 

[371].   7 
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Figure 5.2.6. (a) A splitting array with 4 branching levels for production of single emulsions; 3 

(b) Production of W/O emulsion with a droplet diameter of 35 m by splitting the primary 4 

droplets into 16 equal portions. The diameter of the original parent droplets was 88 m [182]; 5 

(c) A splitting array with 3 branching levels for production of double emulsions; (d) 6 

Production of core/shell droplets by splitting original core/shell droplets into 8 equal portions 7 

[182]. The channel diameter at the m
th

 branching level is: m

ccm dd 2/0 , where dc0 is the 8 

channel diameter at the 0
th

 level. The droplet diameter at the m
th

 branching level is: 9 

3

0 2/ n

m dd  , where d0 is the droplet diameter at the 0
th

 level. 10 
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Figure 5.2.7. (a) Production of triple emulsions using 32 radially arranged droplet generators 3 

with 3 consecutive junctions. The inlets of the four liquid phases are placed on four 4 

concentric circles shown by the dashed lines [50]; (b) Production of bifacial (Janus) droplets 5 

using 128 radially arranged droplet generators. The dispersed phases were delivered from the 6 

outer inlets and the continuous phase was supplied through the inner inlets (dashed arrows). 7 

Labels 1 and 2 denote the inlets for each of the two distinct dispersed phases (black and white) 8 

[20]. 9 
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Figure 5.2.8. Formation of a microfluidic device consisting of 3 double emulsion drop 4 

generators. The primary distribution layer is placed above the drop generation layer. 5 

Channels marked light blue carry the core fluid, red the shell fluid, dark blue the continuous 6 

phase fluid, and green the double emulsion product [25].   7 
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Figure 5.2.9. Formation of a microfluidic device comprising 15 double emulsion drop 5 

generators arranged in 5 lines, each line containing 3 drop generators [25].   6 
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Figure 5.2.10. Schematic of a 33 mm PDMS module with 8 radial flow focusing drop 4 

generators for scaled-up production of dual layer microbubbles [372] 5 
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Figure 5.4. (a) Parallelization in cell culture chip, with permission [387]; (b) Microfluidic 2 

device for single chromosome sequencing. Red and blue lines represent the flow channels 3 

and green are the control. Single cells are trapped in the cross-junction, lysed in the following 4 

chamber and then chromosomes are separated into the sequential channels, with permission 5 

[394]; (c) A microfluidic formulation device for high throughput solubility screening of 6 

proteins. The primary element is a mixing ring. Peristaltic pumps (in red) inject protein and 7 

precipitant into ring and yellow pumps mix the contents of the ring. Reprinted with 8 

permission from [402]; (d) A free interface diffusion based mixing array for protein crystal 9 

screening, with permission [403]. 10 
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