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Abstract 

We have investigated the electrokinetic responses of two different kinds of clay particles, kaolinite and 

montmorillonite. The dielectric permittivity of kaolinite suspensions is linearly proportional to volume 

fraction up to volume fractions of 20%, whereas that of montmorillonite is deviating from a linear 

relationship, for volume fractions below 0.5%. This indicates that the montmorillonite particles 

experience a particle-particle interaction at these low volume fractions. The complex dipole coefficients 

of both clays estimated by experimental data are however within experimental error in good 

approximation independent on volume fraction and agree with the theoretical predictions. The 

relaxation frequency in clay-water system at low ionic strength is almost determined by the relaxation of 

the double layer for both kaolinite and montmorillonite. For volume fractions larger than 0.5% for 

montmorillonite we find that the zeta potential measured by electroacoustic methods starts to depend 

strongly on volume fraction. It is expected that for these high volume fractions the dipole coefficients 

will also become volume-fraction dependent. 
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1. Introduction 

The permittivity and conductivity of clay suspensions have been investigated by numerous authors 

[1–14]. In a previous article [15], we have investigated both the electrophoretic mobility and dielectric 

spectroscopy response of dilute montmorillonite particle suspensions of montmorillonite (0.1% volume 

fraction). We have found values comparable to what other authors find for this system, using the same 

techniques. However, we also noted a deviation from our results compared to those of Rasmusson et al. 

[5], who similarly studied dielectric spectroscopy and electrophoretic mobility responses. These authors 

used a volume fraction of 0.4 or 0.8 % for the size and mobility measurements where they used a 

AcoustoSizer from Matec Applied Sciences. On the other hand, for the complex conductivity 

measurements (corresponding to our dielectric spectroscopy measurements), they used 2 or 4 % volume 

fraction [5]. The authors found that the electroacoustic signal (ESA) used to assess the dynamic 

mobility of the particles was independent of the stirrer speed, implying that the particles were randomly 

oriented in this experiment. For the lower volume fractions we used in the dynamic mobility 

experiments (0.025%, 0.05% and 0.1 %), there were similarly no changes in electrokinetic response. 

The question remains however how particles behave during a dielectric spectroscopy (complex 

conductivity) experiment, where the suspension is not stirred, and the volume fraction 10 times higher. 

In this article, we would like to investigate into more detail the dependence of the complex 

conductivity response as a function of volume fraction. We do this for two types of clays: kaolinite and 

montmorillonite. In order to get the best information about particle interaction, we favored to study a 

system with as low ionic strength as possible. The Debye length κ-1 around the charged particles is then 

very large, and particle-particle interactions are more likely to occur.  

We are going to compare the results we obtain with the results obtained by Rasmusson et al. and other 

authors that work at different volume fractions. 

 

2. Experimental 

2.1 Sample preparation 

The kaolinite (China clay) was obtained from VE-KA Industry Keramische Grondstoffen Ltd., The 
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Netherlands. The average size of the primary particle was found to be around 10 μm [16]. This clay 

sample was prepared by dispersing the powder as received in millipore water. The suspension was 

ultrasonic shaken for 5 minutes prior use.  

 Montmorillonite were obtained from commercially available Kunipia- F (Kunimine Industry Co. Ltd.). 

Coarse components, mainly silica sands, contained in the purchased material were removed by 

sedimentation. To replace the surface cations by sodium ions, we dispersed the clay particles into the 

2.0 M NaCl solution for weeks and occasionally replaced the clear supernatant by a new 2.0 M NaCl 

solution until the substitution was completed. Salt free stock dispersions were prepared by repeatedly 

dialyzing the suspension against distilled water until the electric conductivity became less than 1.5 

μS/cm. After these treatments, this suspension was stocked after freeze-drying. Dielectric spectroscopy 

measurements were performed with the suspensions made from the stock freeze-dried montmorillonite 

diluted with an aqueous solution of sodium chloride of known concentration. The value of pH in the 

suspension was not purposely controlled, but was measured to be between 5.5 and 6.5 throughout all the 

experiments. As an equivalent diameter, we measured 382 nm by dynamic light scattering 

measurements. 

 

2.2 Dielectric Spectroscopy 

 The details of this measurement technique, and the theory can be found in [15]. The electrokinetic 

response of the clay suspensions were measured in the range 104 Hz – 1.5×107 Hz using a homemade 

concentric cylindrical measurement cell [17]. The impedance Z measured by the dielectric spectroscopy 

device can be seen as the impedance of an equivalent circuit formed by a resistance R and conductance 

C in parallel. Therefore: 

 1
𝑍

= 1
𝑅

+ 𝑖𝐶𝜔   (1) 

From the measured R and C, the conductivity and permittivity are calculated according to the following 

formula [18]; 

K = 1
2𝜋𝐿

𝑅𝑒 �1
𝑍
�   (2)
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L represents the height of liquid in the cell. This cell was filled at start with 45 mL suspension. 

Measurements for one sample repeated four times by removing 10 mL from the suspension. The 

conductivity and permittivity were estimated from the slope of the variation of 1/Z as function of the 

variation of liquid level. “Blank” solutions i.e. electrolyte solutions of same conductivity as the 

suspensions were also measured. The conductivity and permittivity of the particles were calculated by 

subtracting the blank solution response from the conductivity and permittivity responses of the 

suspensions. Doing so, the effect of electrode polarization was minimized [18]. All measurements were 

performed at 25℃.  

Eq.(1) of Ref.[15]:  

K� = 𝐾1�(1 + 3∅𝛽)  (3) 

where K
〜

 = K + iωε0ε, where K is the conductivity, ω is the frequency (rad/s), i is the square root of -1, 

ε is the relative dielectric permittivity and ε0 is the dielectric permittivity of vacuum. K1, φ and β indicate 

the conductivity of electrolyte, volume fraction and dipole coefficient, respectively. This equation was 

derived under the assumption that there is no particle-particle interaction. From this equation, we obtain:  

∆ε ≡ 𝜀−𝜀1
∅

= 3 �𝑅𝑒(𝛽) + 𝐾1
𝐼𝑚(𝛽)
𝜔𝜀0

�
 
   (4) 

∆K ≡ 𝐾−𝐾1
∅

= 3[𝐾1𝑅𝑒(𝛽) − 𝜀0𝜀1𝐼𝑚(𝛽)]  

where ε1 indicates the dielectric permittivity of the electrolyte. The dipole coefficient is then found from 

the measured conductivity and permittivity by inverting these equations. 

 β is dependent on two contributions, βn  and βp which represents the dipole coefficient in the direction 

perpendicular to the electric field or along it, respectively. In case that (as assumed here) the electric 

field is weak enough, we have [15]: 

          β = 1
3
𝛽𝑝 + 2

3
𝛽𝑛 (5) 

2.3 Electrophoresis 

 The electrophoretic mobilities Us were measured at low frequency by Doppler velocimetry using a 
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Malvern Zetasizer Zeta-Nano. The electrophoretic mobility is plotted for convenience of units using the 

Smoluchowski formula 

U𝑠 = 𝜀0𝜀𝑟𝜁
𝜂

    (6)
 

 

which gives a linear relationship between mobility and zeta potential ζ, given the dielectric permittivity 

and the viscosity. We use: εr = 78.55 and η = 0.89 mPa s.  

 At high frequency the suspension’s electroacoustic response was measured at 3.3 MHz using the 

Dispersion Technology device DT-300. The zeta potential obtained from the electroacoustic device was 

given by the manufacturer [19]. 

 

3. Results of Dielectric Spectroscopy 

3.1 Kaolinite suspensions 
3.1.1 conductivity and dielectric increment 

 The conductivity and dielectric permittivity of the studied kaolinite suspensions is shown in Fig.1a and 

1b as function of volume fraction, for several applied field frequencies. We observe that the 

conductivity is linear with volume fractions above 9.2%. The dash line in Fig.1a is meant as a guide for 

the eye. Under 9.2% volume fraction the conductivity is almost constant and roughly equal to 0.024 S/m. 

This conductivity value corresponds to ionic strength of 1.4 mM of KCl, which is quite large, 

considering the fact that no salt has been added to the suspension. This conductivity derives from the 

fact that the kaolinite has not been properly cleaned before use, so some ions release from the clay to 

form a background electrolyte concentration. The linearity between both conductivity and permittivity 

upon volume fraction indicates that particle-particle interaction can be neglected for kaolinite in the 

volume fraction range [0% - 20%]. 

 Raythatha et al. [6] studied the high-frequency dielectric response of kaolinite (in the MHz regime). 

They report that the kaolinite sample they study give 𝜀 − 𝜀1 = 0 for the whole frequency range, below 

a volume fraction of 9.6%. At 9.6% volume fraction, they find that 𝜀 − 𝜀1 = 25 at 0.5 MHz. This is 

also in line with our results at 0.5 MHz, as, we find 𝜀 − 𝜀1 = 29 for 14% volume fraction. For lower 

volume fractions we find 𝜀 − 𝜀1  = 9 (4%), 𝜀 − 𝜀1  = 11 (7%) and 𝜀 − 𝜀1  = 16 (9%). For any 
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frequency the dielectric permittivity is almost linear with volume fraction (see Fig.1b), indicating that 

there is no particle-particle interaction for the low volume fractions. 

In order to better study the relation between surface properties of kaolinite and its dielectric response, 

we will analyze the data in terms of dipole coefficients. These (complex) dipole coefficients are 

obtained from eq.(4). Note that the dipole coefficient β is in principle independent on volume fraction 

when 𝜀 − 𝜀1 is linearly dependent on volume fraction. 

 

3.1.2 dipole coefficient 

 In Fig.2, we plotted the real and imaginary parts of the dipole coefficient as a function of the frequency 

for 5 volume fractions. The dipole coefficient for 20.8, 14.4 and 4.6 % volume fraction are similar, 

whereas the dipole coefficients at volume fraction 9.2 % and 7.4 % are slightly lower. These 

discrepancies were already visible in the conductivity measurements results. They probably arise from 

experimental errors. As can be verified from eqs.(4), at low frequency, we have: 

  (6) 

 

For all measurements, the imaginary part of β is almost zero at low frequencies. This is expected, since, 

as can be seen from eq.(6), ∆ε is a finite number, Im (β) has to be very small at low frequency. A 

remarkable feature of Im(β) is that all curves cross at about 0.1 MHz for any volume fraction. This 

feature was also found in the plot of the permittivity of suspensions as function of frequency but for a 

slightly higher frequency.   

 Ishida et al. investigated the dielectric relaxation of kaolinite particles of size < 2 μm in aqueous media 

in the frequency range 103 Hz to 1010 Hz [9]. The volume fraction of kaolinite suspensions they used 

was 50.6%, much higher than what we used. From their absorption curves, we could deduce that the 

suspensions had a conductivity of about 10-4 S/m, which is much lower than our conductivity, as their 

suspensions were thoroughly purified. The pH of the suspension was 9. From the analysis of their 

curves, they discovered three relaxation frequencies. The highest relaxation frequency (at 20 GHz) 

corresponds to the relaxation of bulk water molecules. The relaxation frequency near 50 MHz is found 
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to be due to the relaxation of water molecules bound to the clay surface. The last relaxation frequency 

around 3×105 Hz is due to the polarization of the system composed by the clay particle and its ionic 

double layer. In our measurements, only this last frequency is assessable, since we studied the system 

between 104 and 1.5×107 Hz. We found (see Fig.2) that the relaxation frequency of kaolinite is around 

5 MHz regardless of volume fraction. The fact that our relaxation frequency is larger than the one 

observed by Ishida et al. is most probably due to the background electrolyte concentration, since the 

relaxation frequency is known to shift to higher frequencies for larger ionic strengths [15]. 

 In Fig.3 we attempt to fit the theoretical dipole coefficient according to the procedure described in 

Ref.[15]. We used the same zeta potential (-75 mV) and almost the same Stern layer conductance 

(0.0205 S/m instead of 0.0180 S/m) as we did in the fit of similar kaolinite suspensions [20]. The 

relaxation frequency can be estimated roughly from Dκ2 (where D is the diffusion coefficient of ions) 

which is of order of 4 MHz. The same relaxation frequency was found in [20], where the kaolinite was 

dispersed in an 1.5 mM of KCl electrolyte solution. This agrees well with the fact that the background 

electrolyte concentration in the present study is around 1.4 mM of added monovalent salt. 

 The dipole coefficient for 9.2 % and 7.4% suspensions are more in line with the predicted value for βn. 

It would be tempting to say that particles at these volume fractions are aligned with their n-axis in the 

direction of the electric field. However, the difference between 𝛽𝑛 and 𝛽 is within the experimental 

error, and since the value for the 4.6% suspension is almost identical to the 20.8% suspension this 

support the fact that the dipole coefficient do not depend on volume fraction in the volume fraction 

range investigated. 

 We observe that it is impossible to fit the low-frequency amplitude of the dielectric response without a 

Stern layer. The same conclusion was drawn by Rowlands and O’Brien [3] who also studied the 

dielectric response of kaolinite, but at high frequency (1 – 40 MHz). They use a volume fraction of 

1.6% volume fraction, at pH = 7-8 and several added salt concentration, from approx. 1 mM to 10 mM. 

The curves they obtained as function of frequency for different ionic strength also cross, as our do, but 

at different frequencies (10, 20 and 30 MHz). The theoretical curves for Im(β) without Stern layer 

conductance do never cross at any measured frequency when the ionic strength is varied. When a Stern 
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layer conductance is used (the same for all ionic strengths), the curves all cross at the same frequency, 

in line with what happens for our experimental Im(β) for different volume fractions. Rowlands and 

O’Brien had to use different Stern layer conductances to fit their data which might be the reason that 

their measured cross-over frequencies are different, as the value of the theoretical cross-over frequency 

depends on the value of the Stern layer conductance. A more detailed study (varying systematically both 

ionic strength and volume fraction) would be required in order to investigate the relation between Stern 

layer conductance and relaxation frequency. 

 
3.2 Montmorillonite suspensions 
3.2.1 conductivity and dielectric increment 

The conductivity and dielectric permittivity of montmorillonite suspensions are shown in Fig. 4a and b. 

The conductivity is linear with volume fraction The electrophoretic mobility of both ions and 

montmorillonite particles is therefore not significantly hindered by the presence of montmorillonite 

particles. Extrapolating the conductivity at low volume fractions we find a ionic conductivity (no 

particles) of K1 = 2×10-4 S/m which is corresponding to 0.015mM of added NaCl. This value is very low, 

and even though we do not know the type of ions present in the electrolyte, we believe that a large part 

could be Na+ and Cl-, since the montmorillonite has been saturated by NaCl. Raythatha et al [6] did not 

find a linear dependence for the conductivity of their suspension of Na-montmorillonite in distilled 

water. They assumed this was due to the fact that their sample (3% volume fraction) was a thick paste 

and ions mobility was hindered.  

 Raythatha et al. [6] have investigated the high-frequency (0.5 MHz – 1.3 GHz) response of 

montmorillonite particles in distilled water as a function of volume fraction. They found, as we did, a 

strong dependence on the permittivity on volume fraction. In their case they found for 0.5 MHz, 𝜀 − 𝜀1 

= 0 (0.004 % volume fraction), 𝜀 − 𝜀1 = 115 (0.5%) and 𝜀 − 𝜀1 = 200 (1%). From our results, we find 

the relation 𝜀 − 𝜀1 = -2 + 433 φ -192 φ2 where φ =100φ whereφis the volume fraction. It can be 

verified that the values found by Raythatha are in good agreement with the ones obtained from this 

relation. 
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 We consider that the dependence of dielectric permittivity on volume fraction is the result of the 

long-range interactions between particles. In previous investigations, Adachi et al. [21] and Tsujimoto et 

al [22] measured the relative viscosity of montmorillonite suspensions under dispersed conditions to 

investigate the electroviscous effect. They found that at especially salt-free conditions, the long-range 

interaction is remarkable. They also showed that even if the distance between particles is larger than the 

Debye length (which is certainly the case for 2 or 2.5 mM of NaCl and the volume fraction used), these 

interactions are significant. Arroyo at a. [23] studied the electrokinetic properties of montmorillonite as 

function of pH, at 0.1 mM of added NaCl and found almost the same dielectric permittivity increment as 

we do for pH = 5 or 7 (the curves superposed for these two pH), for 0.2 % volume fraction. They 

verified that at pH = 9, the dielectric increment was linearly proportional to the volume fraction, 

implying that no particle-particle is present. At lower pH, they found, like we do, a deviation from 

linearity which is related to the interaction between (slightly) positive edges and negatively charged 

faces. 

 

3.2.2 dipole coefficient 

 The dipole coefficients derived from the measurements are displayed in Fig.5. We observe that the 

low-frequency amplitude of Re(β) is 500 ~ 1000 times higher than the amplitude of the kaolinite 

suspensions. This is due to the fact the ionic strength in the system is so low and the particles so small 

(small κa), as compared to the kaolinite samples. 

Ishida et al. investigated the dielectric relaxation of montmorillonite particles in aqueous media in the 

frequency range 103Hz to 1010Hz [9]. The volume fraction of montmorillonite suspensions they used 

was 5%, much higher than what we used; the conductivity was probably close to the one of their 

kaolinite sample, but the absorption curve was not given. The pH of the suspension was 9. Like what 

they found for kaolinite, the same three relaxation frequencies were observed. In particular, they also 

find a relaxation frequency near 100 MHz which they attribute to the relaxation of water molecules 

bound to the clay surface. They find a lower relaxation frequency at about 3.8 MHz which is higher than 
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the relaxation frequency observed in Fig.5, which is probably due to the higher ionic strength of Ishida’s 

samples. 

 As we did in [15] and for kaolinite, we fitted the theoretical prediction to the experimental dipole 

coefficient as shown in Fig.6 . We used a zeta potential of -70 mV and a Stern layer conductance of 

0.044 S/m. The value of the zeta potential however is barely affecting the fit and could be taken in the 

range [ -60mV; -80mV] for it changed the values of only a few percent. In order to correctly estimate 

the relaxation frequency at around 105 Hz when we use 0.032 mM as the value of ionic strength, 

corresponding to K1 =4.9×10-4 S/m. 

 

4. Results of electrophoretic mobility 

 In Fig. 7 we show the obtained zeta potential as function of volume fraction for both kaolinite and 

montmorillonite. Note that is was impossible to measure the kaolinite suspensions with the ZetaNano as 

the suspensions were too turbid at the volume fractions used. 

 
4.1 Kaolinite suspensions 

 The three values obtained for kaolinite do not display a trend. The average zeta potential found by the 

DT-300 is about -30 mV. When a volume fraction of 8% was used, we got a zeta potential of +8 mV. 

 Rowlands et al. investigated both the dielectric and electrophoretic response of kaolinite particles [3], 

[4]. They measured the high-frequency electrophoretic and dielectric response of the suspensions for 

several ionic strengths at a volume fraction of 1.6%. Their results for the dipole moment are discussed 

above. As for the electrophoretic mobility, they find a zeta potential of – 58 mV when the mobility is 

converted into zeta potential using Smoluchowski formula, for their lowest ionic strength used (1.3 

mM). Since no clear trend could be obtained from our measurements, it is impossible to comment what 

the expected zeta potential would be at 1.6% volume fraction. 

 
4.2 Montmorillonite suspensions 

 The low volume fraction results for montmorillonite as function of ionic strength were discussed in a 

previous article [15]. We observe that in the present study (where no salt has been added) the 



12 
 

electroacoustic zeta potential of montmorillonite becomes dependent on volume fraction, especially at 

high volume fractions (above 0.5%). At low volume fraction, the zeta potential is around -60 mV and it 

is about -40 mV at higher volume fraction for electroacoustic measurements. The low-frequency zeta 

potentials measured by electrophoresis (ZetaNano) are here plotted according to the formula of 

Smoluchowski. We have found that when fitting this low volume fraction data with both a zeta potential 

and a Stern layer conductance, the fitted zeta potential is closer to -60 mV than it appears now. 

Rasmusson et al. measured the electroacoustic mobility as a function of ionic strength. They found, at 

their lower ionic strength (2.5 mM NaCl), for a volume fraction of 0.8%, a much higher zeta potential 

(-105 mV) than we did at the same ionic strength, but in the range 0.025% - 0.1% as discussed in [15]. 

The authors state that at the lowest AcoustoSizer measurement frequency (0.3 MHz), using the 

Smoluchowski formula, they find zeta potentials between -37 and -40 mV, which are in agreement with 

our findings for 1 % volume fraction at 3.3 MHz. They attribute the discrepancies between their fitted 

zeta potentials (-105 mV for the acoustic mobility and -193 mV for the zeta potential derived from their 

dielectric spectroscopy measurements at 2.5 mM added NaCl) and the Smoluchowski zeta potential at 

low frequencies to the limitation of the theory, which does not account for the size anisotropy of 

montmorillonite. Note that they need to use a Stern layer conductance to fit their data, as we do. 

5. Summary and conclusion 

We investigated the electrokinetic response of both kaolinite and montmorillonite particles. We 

conclude as follows: 

for kaolinite 

- In the range of volume fraction investigated (4.6% - 20.8%) both the conductivity and the dielectric 

increment are linearly proportional to the volume fraction, indicating that there are, in good 

approximation, no particle-particle interactions and that eq.(4) together with the theoretical formulation 

for the dipole coefficient (see text) can be applied to analyze the data. 

- Im(β) curves cross at about 0.1MHz (same bulk conductivity for all volume fractions). Rowlands and 

O’Brien find similarly that their curves cross, but at different frequencies, which is in accordance with 

the theoretical predictions:  
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a) Both the low frequency values of Re(β) and the fact that Im(β) curves as a function of frequency 

cross at different ionic strengths are linked to the presence of a Stern layer conductance. 

b) The frequency at which two Im(β) curves (for two ionic strengths) cross is depending on the value of 

the Stern layer conductance. A more detailed study of the relation between the cross-over frequencies, 

ionic strength and volume fraction would be interesting. 

 We note that the characteristic frequencies associated to the characteristic length scales of the system 

are: D/an
2 = 6.5 Hz, D/ap

2 = 654 Hz and Dκ2 = 4.7×106 Hz. It is clear that in the case of kaolinite, the 

relaxation we observe is associated to Dκ2 and we were able to fit the data with the model, like we did in 

[15] when KCl was added to the system. 

 Ishida et al. who studied the high-frequency dielectric response of kaolinite found a relaxation 

frequency near 50 MHz. They claim that this is due to the relaxation of water molecules bound to the 

clay surface. Ishida et al. do not give the ionic strength at which they measure their data. From our 

previous study [15] we know that the relaxation frequency associated to Dκ2 is in the range from 105 Hz 

to 108 Hz between 0 - 5 mM of added salt. We could therefore argue that the parameter we call “Stern 

layer conductance” could be linked (at least in some cases) to this bound water molecules relaxation. In 

this case, one part of the Stern layer conductance would be frequency-dependent, with a relaxation 

frequency around 50 MHz. Of course, more work is required to test this hypothesis. 

for montmorillonite 

- In the range of volume fraction investigated (0.01% - 0.5%) the dielectric permittivity is not linearly 

proportional to the volume fraction, indicating that there are particle-particle interactions, even at low 

volume fractions. The interactions are probably due to the long-range interactions between the faces 

(negatively charged) and edges (slightly positively charged) in the pH-range (around 6) where the 

experiments are done. 

- Despite the interactions, the volume fractions used in this study, as well as in the preceding study [15], 

insure that the dipole coefficient extrapolated from the dielectric spectroscopy data is in good 

approximation constant as function of volume fraction. It remains to be investigated if that would be the 

case for higher volume fractions, like the ones used by Rassmusson et al. From our acoustic mobility 
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data we note that around the volume fraction they used in their dielectric spectroscopy measurements (2 

and 4% volume fractions) the acoustic zeta potential is extremely dependent on volume fraction. This 

would suggest that the dielectric spectroscopy data, and the derived dipolar coefficient are likewise 

volume-fraction dependent in this volume fraction range. 

- In the range 10 kHz – 10 MHz that we studied , we found a relaxation frequency around 8×104 Hz. 

The characteristic frequencies associated to the characteristic length scales of the system are: D/an
2 = 

1.45×103 Hz, D/ap
2 = 1.45×107 Hz and Dκ2 = 1.42×104 Hz. As for kaolinite, the experimental 

relaxation frequency is similar to the value of Dκ2 and the experimental dipole coefficients are in good 

agreement with the theoretical predictions.  

Ishida et al. find a relaxation frequency at 100 MHz, and that in their case D/ap
2 = 50 MHz. It would 

therefore appear that in the case of montmorillonite, ap is influencing the relaxation frequency. This is 

also the conclusion of Rasmusson et al. to interpret their dynamic mobility responses. A high-frequency 

electrokinetic study of our samples would confirm the influence of ap on our system.  
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Fig.1The conductivity(a) and  the dielectric permittivity (b) 
against volume fraction for kaolinite suspensions	
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Fig.2 The experimental real and imaginary parts of the dipole 
coefficients of kaolinite particles for various volume fractions  
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Fig.3 the theoretical real and imaginary parts of the dipole 
coefficients of kaolinite particles: line:theory (|ζ| = 75 mV, ionic 
strength = 1.4mM and Kst=0.0205), symbols: experimental data 
for different volume fraction 
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(a)	 (b)	

Fig.4 The conductivity (a) and the dielectric permittivity (b) 
against volume fraction for montmorillonite suspensions 

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Volume fraction (%)

C
on

du
ct

iv
ity

 (S
/m

)

 

 

104 Hz
5*104 Hz
105 Hz
5*105 Hz
106 Hz
5*106 Hz
107 Hz

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

300

350

400

450

500

Volume fraction (%)

ε −
ε 1

 

 

104 Hz
5*104 Hz
105 Hz
5*105 Hz
106 Hz
5*106 Hz
107 Hz



Fig.5 The experimental real and imaginary parts of the dipole 
coefficients of montmorillonite particles for various volume 
fractions 
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Fig.6 the theoretical real and imaginary parts of the dipole 
coefficients of montmorillonite particles: lime: theory (|ζ| = 
70mV, ionic strength = 0.032mM and Kst=0.044), symbols: 
experimental data for different volume farctions 
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Fig.7 the zeta potential (for montmorillonite □: Zeta-Nano, 
■:electro acoustic, and for kaolinite ●：electro acoustic) as a 
function of volume fraction 
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