

Analysis of Programming Behavior

筑波大学

図書館情報メディア研究科

2013 年 3 月

胡 君珊

1

Table of Contents

Chapter 1 Introduction ... 2

1.1. Background ... 2

1.2. Purpose .. 4

1.3. Paper Structure ... 4

Chapter 2 Related Work .. 5

2.1. Solo vs. Pair programming ... 5

2.2. Behavior analysis ... 7

2.3. Cooperative work in different domains ... 9

Chapter 3 Data Collection .. 11

Chapter 4 Analysis .. 15

4.1. Data Processing .. 15

4.2. Parameter ... 17

4.2.1. Utterance data ... 17

4.2.2. Operation data ... 18

4.2.3. Operation after Driver and Navigator’s dialogue data 19

Chapter 5 Results .. 23

5.1. Result of Utterance data .. 23

5.1.1. Utterance ratio ... 26

5.1.2. Utterance frequency ... 27

5.1.3. Average utterance length ... 28

5.2. Result of operation data ... 29

5.2.1. Operation ratio ... 32

5.2.2. Operation frequency ... 33

5.2.3. Average operation length ... 34

5.3. Result of operation after Driver and Navigator’s dialogue 35

5.3.1 Ratio of operation after Driver and Navigator’s dialogue 38

5.3.2 Frequency of operation after Driver and Navigator’s dialogue 39

Chapter 6 Discussion .. 40

Chapter 7 Conclusion .. 42

Reference: .. 43

2

Chapter 1

Introduction

1.1. Background

Computer programming has been considered as a difficult task for decades. It is not

only for the process of developing code of programmer, but also it is more like a process

of innovation. During this process, a program would be designed, the code would be

written, tested, debugged, and then maintained. When a programmer is developing a

program, he should begin to write code as soon as even a trace of fragmented ideas

appeared in his mind. After finishing the code, the programmer might suddenly found it

could not work. The only way for the programmer at that moment is to abandon the

written code and restart a new idea to develop the program. From the idea coming up to

the code abandonment, it usually costs a lot of time and leads the programmer to a

“blind end”. To improve the effectiveness and efficiency of programming, collaborative

programming came into being. This definition was first mentioned by Larry

Constantine [1] in 1995, that pairs of programmers produced code and developed

program faster and freer of bugs.

As one major form of collaborative programming, pair programming was originated in

industry as a key component of the eXtreme Programming (XP) development

methodology [2], which was created by Kent Beck to improve software quality and

responsiveness to change customer requirements. As the name suggests, pair

programming is conducted by 2 persons who work on one machine with one set of

computer equipments, including one display, one keyboard and one mouse. The

3

programmer who does the keyboard controlling and mouse handling is considered as

“Driver”; while another one, who is responsible for observing the code input, giving

suggestions, contributing to the programming verbally, is called “Navigator”. As the XP

software development methodology had been universally adopted and practiced, pair

programming starts to be accepted in more and more fields because of the higher code

quality created and less time spent compared with solo programming [3][4][5][6].

Furthermore, it could improve programmers’ programming experience and their

cooperative consciousness [6][7]. The programmers’ behavior plays a key role in the

performance of pair programming [8][9][10][11], the cooperative work between the pair

has an immediate influence on the programming result and experience [12][13][14].

However, with a better cooperative work, even the pair programmers would

outperform, problem would still be encountered. The problem-solving not going

smoothly might lead to the programmers’ motivation decreased in the commercial

industry, or would result in the students’ negative emotions to study.

4

1.2. Purpose

In this study, we focused on the programming behavior and conducted pair

programming in an introductory programming course. We kept an eye on the behavior

and assumed one hypothesis behavior pattern in pair programming, and compared

them between the Success and Failure cases.

We are aiming at analyzing the behavior and the behavior patterns in pair

programming, which might be the factors that affect the programmers’ performance and

the programming result. The further goal of our study is to learn symptoms to indicate

the pair programming status from the analysis. The results and findings are expected to

be available to expand the collaborative programming study in Computer Supported

Collaborative Learning (CSCL). It is expected that this study could help to sense the

learning status of the pair and intervene in the pair programming learning.

1.3. Paper Structure

In this thesis, including the Introduction Chapter, there are 8 chapters in total.

Chapter 2 is about the previous related researches. In Chapter 3, we described that

what kind of programming behavior data we need and how we collected the data for the

analysis. In Chapter 4 the data we collected was classified and listed as tables, and the

methodology we would use for analysis was illustrated. And the analysis results were

expounded in Chapter 5. In Chapter 6 we discussed the results we got from the analysis,

and surmised the reason. In Chapter 7 future plan of our study was directed. In the last

chapter, Chapter 8, we made the conclusion of the thesis and our study.

5

Chapter 2

Related Work

In this chapter, we presented some previous researches related to programming.

2.1. Solo vs. Pair programming

In the previous researches which focused on introductory programming courses, it

has been proved that pair programming is more outperformed than solo programming.

Nosek recorded the programming process, and according to the comparison he found

that pair teams usually developed the program and software with higher quality [3].

Additionally, he found that collaboration improved the problem-solving process, and

that might be why pair teams performed better.

In Williams, Kessler, Cunningham, and Jeffries’ paper, experiment was conducted in

a course: students were divided into solo programmers and pair programmers, then

their programming process were recorded [4]. According to the comparison of solo and

pair programming, it was reported that through pair programming, software and

programs can be produced in less time, with code quality rather better.

McDowell, Werner, Bullock and Fernald’s findings reported in his paper were part of a

larger study funded by a foundation to assess the effectiveness of pair programming on

the performance [5]. They examined the data and suggested that programmers who

worked in pairs produced better programs. Furthermore, they performed significantly

better on the final exam, compared to students required to program individually.

Nagappan, Williams, et al., they observed and codified many paired and solo lab

sections and found that student pair programmers were more self-sufficient, generally

perform better on projects and exams [7].

6

These researches above have shown the efficiency of pair programming, without

mentioning anything about the process and the results of pair programming. Does the

pair meet any problems while programming? If so, whether the problem-solving go

smoothly or not? The programming process and behavior were not analyzed in these

researches. In our study, pair programming is the point we focused because the behavior

and cooperative work in it are worth more than that in solo programming. The behavior

is analyzed, and the comparison of successful and failed cases is done in this study.

7

2.2. Behavior analysis

Behavior in pair programming has been paid increasing attention in more researches,

most of which keeps an eye on the communication; some conveniently observed other

behavior as keyboarding using, gestures, etc.

Sfetsos, Stamelos, Angelis and Deligiannis conducted controlled experiments to

investigate the behavior in pair programming [8]. According to the observation of the

programming process and the questionnaires answered by the students, the results in

their research showed that productivity for pairs is positively correlated with

communication transactions.

After observing the record of pair programming, Bryant and Romeo, Boulay got the

results that the expertise distribution would influence the pair communication

interaction [9]. They also noticed that the operation behavior was assisting intra-pair

verbal communication. And some other behavior or factors, such as gestures, writing a

list, would more or less affect the pair programming.

According to the ethnographic observation, in Chong and Hurlbutt’s research about

behavior in pair programming, they presented that distribution of expertise among a

pair had a strong influence on the tenor of pair programming, and keyboard control had

a consistent secondary effect on decision making with the pair [10].

Hirai and Inoue’s research of conversation in pair programming is the senior research

of our study here [11]. They compared the utterance in Success and Failure cases, and

the insights, that successful case had longer speech length, more numbers of repeating

explanations and more numbers of continuous speeches, would be available to identify

the collaborative work and the programming status in pair programming.

These works analyzed the behavior, especially the communication, in pair

8

programming. Some also presented their findings about other behaviors as keyboard

control, gestures, but concluded just according to the observation. In our study, we

analyzed the behavior all based on data analysis. With the objective data, we analyzed

the utterance and operation in pair programming, and compared those in Success and

Failure cases. We also paid attention to the cooperative pattern in pair programming.

9

2.3. Cooperative work in different domains

Cooperative work is always regarded as the key component in group work. Many

previous works researched on it in many domains, including the software development

field.

In the educational programming field, Lory and Mike analyzed students’ cooperative

work in a program course, when they were doing the mystery program readings,

program solution sharing and analyzing, and some other activities [12]. From the

questionnaires finished by students, it was presented that students gave positive

feedback to a set of cooperative group activities. The cooperative activities made

students work in high efficiency.

And Edward, Katherine, Keith, John also observed the cooperative work in a course

[13]. The cooperative work in the course, like exercises as think-pair-share, group work

activities as discuss and observe, learning activities as group question and role play,

could increase retention and boost the performance of at-risk students.

Duo Wei conducted the survey for students and used the cooperative learning method

in pair programming, required students to work together to finish the given task [14].

According to his finding, cooperative learning method was perceived to be effective in

teaching programming classes.

In the domain of work, Gary and Cheryl, Severin recorded the communication of

working partners and analyzed the cooperation among them [15]. The cooperative

patterns found in this research provided insight into what aspects of groupware were

perceived as helpful to users’ cooperative work. And Dacid, Mark, Ian also concerned

about the cooperative patterns in working environment [16], and according to their

observation, cooperative patterns was found to be helpful in framing the understanding

10

of phenomena in a new setting, generate design concepts and issues, and envisaging the

potential design solutions.

Cooperation of Game-Play is researched by Anastasiia, Peter, et al. [17]. Players’

patterns in remote game play were analyzed comparatively. They suggested that with

communication, remote players have higher level of collaboration and enjoyment.

In health care field, Claus, Lotte, and Flemming researched the cooperative work of

medical secretaries [18]. They focused on four professions: physicians, nurses,

physiotherapists, and medical secretaries. After combining the interviews, observation

and survey, they suggested that medical secretaries’ work was not mere routine, but

requiring skill and applying knowledge. With the mandatory knowledge, medical

secretaries cooperated with other professions, acting as intermediaries of relatives,

patients, and staff.

As we know from the previous researches, cooperation is an important factor affecting

the efficiency of the group work. In this study, we assumed one hypothesis concerning

with behavior pattern in pair programming, which was expected to be available for

identifying the programmers’ cooperation.

11

Chapter 3

Data Collection

For the analysis of the behavior in pair programming, the data was collected in the

previous research of our lab, from one introductory programming course in University of

Tsukuba, named “Programming I”, in which C language was taken as the major

teaching content. This course is held for the freshmen in School of Informatics,

University of Tsukuba. It aimed at letting the students understand what C language is,

how to write code in C language, and know the basic knowledge of compiling a program

and developing software. In this study, the data we used was collected by the senior.

In the previous research done by Hirai, et al. [11], the pair programming practice

experiment was conducted in “Programming I” course at University of Tsukuba. They

collected the pair programming data in the course of 2010 and 2011, and used some of

2010 pair programming data for analysis in the previous work. Here in this study we

used the pair programming data of 2011 “Programming I” course.

The data of pair programming practice experiment used in this study was taken from

2011 “Programming I” course by Hirai et al. Each lecture of the course lasts for 75

minutes, and pair programming practice session is regarded as a part of the lecture.

Totally 8 pair programming practice sessions were conducted, and in each session, 4

pairs of programmers’ programming procedures were recorded by cameras; excluding

the first session, which was taken as a trial session, only 3 pair programming practices

were recorded in it. The total amount of pair programming practices recorded is 31.

Before recording the pair programming practice, some preparations were done by the

12

experimenter such as the pair combination, the role deciding in each pair (who is the

navigator and who is the driver), the cameras setting up, etc. As soon as the pair

combination was decided, the roles of driver and navigator could not be exchanged. Here

3 cameras were set up for each pair of programmers to collect as many aspects in pair

programming as possible.

Figure 1. Setup of the cameras for data collection

Figure 1 is a screenshot of the practice session in the “Programming I” course. We can

see that three cameras were set up in one session; they recorded the pair programming

from 3 different angles, for Driver & Navigator (front), for Driver, Navigator & Desk

(desk), and for Display (display).

The three cameras are used for collecting pair programming data , the front one is for

recording the pair’s communication, the desk one is for recording the pair’s behavior

and activities during pair programming such as typing, using mouse, pointing at the

display, referring to the textbook, and some other behaviors; and the other is for

recording display. Figure 2 shows a scene from the practice session from the 3 angles

13

taken by the cameras. To protect the students’ privacy, we covered their faces with

Mosaic.

Figure 2. Scene from the practice session

While programming together, the pairs are required to follow the instructions:

 The time limit for the assignment is 30 minutes. Code should be submitted

even it is failed or unfinished within the 30 minutes.

 Driver is the only one who can operate the keyboard and mouse. The navigator

could only observe and support the work of the driver without touching the mouse

or keyboard.

 The assignment should be finished as soon as possible. It ends when the

program is executed and a correct answer to the assignment is obtained.

 Driver and navigator could search in the textbook but not be allowed to use the

Internet.

 The teacher or the teaching assistants are only available for equipment

consulting. They do not accept any questions concerning the assignment while pair

programming practice.

14

 The pair could add pertinent comment to make the program easy to

understand as they like.

15

Chapter 4

Analysis

In this chapter, data we collected and how the data be analyzed was presented.

4.1. Data Processing

During the pair programming, most pairs would encounter different programming

problems and then solve them successfully, or not. We consider each problem

encountered as one case, in one pair’s practice, they would have none, one or more cases.

Every case gets successful or failed result at last. In this case, we have exact definition

for these successful and failed cases.

A “Case” should be the problem solving process, beginning from a problem

encountered and end with it being solved or time up. And a problem is a compilation

error that occurs when learners compile their program, or a runtime error that occurs

including whose result does not meet the students’ expectation. “Success” is that

problem being solved by the pair within the given limited 30 minutes. “Failure” is that

problem not being solved in the end. Both “Success” and “Failure” cases are just the

results of cases in the practice session.

As mentioned above, totally 31 pairs of pair programming practice were recorded in

the “Programming I” course. Three pairs among them encountered no problems at all;

the programming went smoothly till the end without any case. As to the other 28 pairs,

each included at least one case inside, several included 2 or 3 cases. Among the 28 pairs’

programming data, there were 36 cases, and according to our definition of “Success” and

“Failure” cases, 23 were “Success” and 13 were “Failure”.

We recorded each pair from different angles by using three cameras, so actually we

16

have three videos for one pair: front video, desk video and display video. In this study

we use ELAN (EDUICO Linguistic Annotator) [19][20], a tool for the creation of

annotations on video and audio resources, to synchronize the three videos into one

integrated video, and then to tag and annotate the behaviors in the integrated one.

Figure 3 is the screenshot of the video tagging and annotation with ELAN. The videos

are shown on the top of the ELAN interface, and at the bottom the tiers and annotations

could be added. The tier and annotation information of each pair programming practice

are then output for further analysis.

Figure 3. Screenshot of ELAN annotation interface

17

4.2. Parameter

The Parameter we used for data analysis would be described here.

4.2.1. Utterance data

In this study, we analyzed the utterance behavior in pair programming from three

views, “Utterance ratio”, “Utterance frequency”, and “Average utterance length”.

4.2.1.1 Utterance ratio

Utterance ratio is about that “what percentage of the entire case is programmer’s

utterance time”. The utterance length divided by data length is the result of pairs’

utterance ratio, since the utterance comes from the two programmers of pair

programming. To get each programmer’s utterance ratio, it should be divided by two.

The result is shown in percentage.

●utterance ratio

With this equation, we analyzed the utterance ratio of each case and listed them in

the Table I. The mean utterance ratio value of Success and Failure cases are calculated

and compared.

4.2.1.2 Utterance frequency

Utterance frequency is the identifier of showing “how many utterance numbers there

are in one minute”. “Minute” is used as the time unit, so the data length in the table is

converted to minute for analysis. Programmers’ utterance frequency is calculated from

utterance numbers divided by data length (min). To calculate each programmer’s

utterance frequency, this result should be divided by two.

●utterance frequency

 /

18

With this equation, we analyzed the utterance frequency of each case and listed them

in the table. The mean utterance frequency value of Success and Failure cases are

calculated and compared

4.2.1.3 Average utterance length

Average utterance length is the identifier of showing that “how much time (in second)

each utterance lasts”. It is calculated from utterance length divided by utterance

numbers.

● average utterance length

We calculated average utterance length of each case and listed them in the table. The

mean value of this of Success and Failure cases are calculated and compared

4.2.2. Operation data

We analyzed the operation behavior in pair programming in the similar way as

utterance analysis, from three views, “Operation ratio”, “Operation frequency”, and

“Average Operation Length”.

4.2.2.1 Operation ratio

Operation ratio is about that “what percentage of the entire case is the Driver’s

operation time”. Operation ratio is calculated from that operation length divided by

data length.

● operation ratio

The operation ratio of each case was calculated and listed in the operation data of

2011 pair programming table. The mean operation ratio of Success and Failure cases

19

are calculated and compared

4.2.2.2 Operation frequency

Operation frequency is the identifier of showing that “how many operation numbers

there are in one minute”. Same as the analysis of utterance frequency, the data length

in the table is converted to minute for analysis. Operation frequency is calculated from

operation numbers divided by data length (min).

● operation frequency

 /

We use this equation to calculate the operation frequency of each case and listed the

result in the table as the Operation frequency column. The mean operation frequency

value of Success and Failure cases are calculated and compared

4.2.2.3 Average operation length

Average operation length is the identifier of showing that “how much time (in second)

each operation lasts”. It is calculated from that operation length divided by operation

numbers.

● average operation length

We calculated average operation length of each case and listed them in the table. The

mean value of average operation length of Success and Failure cases are calculated and

compared

4.2.3. Operation after Driver and Navigator’s dialogue data

Here we assume one hypothesis about the utterance& operation pattern, that

“Success case has higher ratio and frequency of ‘operation after Driver and

20

Navigator’s dialogue’.”

The previous work suggested that the cooperation in pair programming had a

significant impact on the performance, but was not focusing on or analyzing it in detail.

We supposed that there would be cooperation pattern in pair programming, which could

lead to successful problem-solving. As utterance and operation are the basic behavior in

pair programming, we expect there would be correlation between utterance and

operation, and this correlation is supposed to show the cooperation of the pair.

There is no doubt that conversation would appear between the pair, and the

turn-taking utterance might be the opinion exchange between driver and navigator.

With the opinion exchanging, a higher quality decision which was agreed by both driver

and navigator would be made and then executed by driver. However, all these are just

our assumption and needed to be tested.

We define the “operation after Driver and Navigator’s dialogue” exactly. Shown as the

Figure 4, if the last two utterances before Driver’s operation are the turn-taking

utterances spoke by both Driver and navigator, it would be regarded as match with our

definition of “operation after (Driver and Navigator’s) dialogue”. This kind of dialogue

must be at least one pair of turn-taking utterances.

21

Figure 4. Operation after Driver and Navigator’s dialogue

If this hypothesis was true, new clearer symptoms of patterns in pair programming to

indicate the status of the programming could be obtained.

4.2.3.1 Ratio of operation after Driver and Navigator’s dialogue

Ratio of operation after (Driver and Navigator’s) dialogue represents that “what

percentage of the operation numbers is the ‘operation after dialogue’.” It is calculated

from that the number of operation after dialogue divided by total operation numbers.

● ratio of operation after dialogue

The ratio of operation after dialogue of each case was calculated by following the

equation and the results are in percentage, and then listed in the table. The mean ratio

of operation after dialogue of Success and Failure cases are then calculated

4.2.3.2 Frequency of operation after Driver and Navigator’s dialogue

Frequency of operation after dialogue is the identifier of showing that “how many

numbers of operations after (Driver and Navigator’s) dialogue there are in one minute”.

The data length here is also converted to minute for analysis. The frequency of

22

operation after dialogue is calculated from that the number of operation after dialogue

divided by data length (min).

● frequency of operation after dialogue

 /

With this equation, frequency of operation after dialogue in each case was analyzed

and then the result is listed in the table. The mean frequency of operation after dialogue

of Success and Failure cases are calculated and compared.

23

Chapter 5

Results

In this study we used Mann-Whitney U test for assessing if there was significant

difference between Success and Failure cases, because of U test’s applicability for

arbitrary sample sizes.

5.1. Result of Utterance data

We analyzed the utterance in pair programming from “Utterance ratio”, “Utterance

frequency”, and “Average utterance length”.

Table I shows the pairs’ utterance data of the 36 cases in 2011 pair programming,

which was output by ELAN. The utterance contains Driver’s talking and Navigator’s

talking.

The “data length” is counted from the happening to the solution of the problem in

“Success” case. In “Failure” case, the ending of the data is the timing that the pair

stopped solving the problem. The Driver and Navigator’s utterance numbers are

counted and listed separately in the table. The utterance length is the sum of Driver’s

utterance length and Navigator’s utterance length. An utterance is the identifier of the

programmer’s speaking something, no matter whether he/she is talking to his/her

partner or to himself/herself. It could be a sentence or just meaningless word as “Ah!”,

“Eh……”, “Mm……”, and some other mood words.

24

Table I. Utterance data of 2011 pair programming

case

data

length

(s)

Driver

utterance

numbers

Navigator

utterance

numbers

Utterance

length (s)

Utterance

ratio (%)

Utterance

frequency

(numbers/min)

Average

utterance

length

(sec/number)

success 1 52 6 4 14.8 14.3 5.8 1.48

success 2 210 11 29 67.5 16.1 5.7 1.69

success 3 72 5 8 34.8 24.2 5.4 2.68

success 4 60 8 11 30.8 25.6 9.5 1.62

success 5 404 50 24 97.9 12.1 5.5 1.32

success 6 61 3 2 4.9 4.0 2.5 0.98

success 7 219 18 25 65.1 14.9 5.9 1.51

success 8 403 45 62 205 25.4 8.0 1.92

success 9 98 12 14 44.5 22.8 8.0 1.71

success 10 207 13 14 39.8 9.6 3.9 1.47

success 11 281 40 9 93.0 16.5 5.2 1.90

success 12 377 32 26 140.8 18.7 4.6 2.43

success 13 109 19 12 40.0 18.3 8.5 1.29

success 14 154 21 16 41.2 13.4 7.2 1.11

success 15 284 44 52 184.9 32.5 10.1 1.92

success 16 301 47 48 171.1 28.4 9.5 1.80

success 17 309 22 21 83.6 13.5 4.2 1.94

success 18 166 8 7 41.3 12.4 2.7 2.75

25

success 19 138 19 15 85.7 31.1 7.4 2.52

success 20 228 15 6 45.2 9.9 2.8 2.15

success 21 158 3 6 22.0 7.0 1.7 2.44

success 22 207 15 16 43.2 10.5 4.5 1.39

success 23 116 3 9 18.9 8.1 3.1 1.57

failure 1 774 37 130 449.2 29.0 6.5 2.69

failure 2 173 10 18 38.0 11.0 4.9 1.36

failure 3 452 27 62 117.5 13.0 5.9 1.32

failure 4 456 83 16 268.3 29.4 6.5 2.71

failure 5 348 24 20 74.1 10.6 3.8 1.68

failure 6 401 16 26 82.9 10.3 3.1 1.97

failure 7 599 30 36 172.8 14.4 3.3 2.62

failure 8 587 33 63 270.1 23.0 4.9 2.81

failure 9 286 36 35 109.8 19.2 7.5 1.55

failure 10 373 33 17 170.5 22.8 4.0 3.41

failure 11 445 18 68 182.9 20.6 5.8 2.13

failure 12 502 17 7 130.6 13.0 1.4 5.44

failure 13 395 9 28 135.0 17.1 2.8 3.65

26

5.1.1. Utterance ratio

The mean utterance ratio of Success cases is 16.9%, and of failure cases it is 18.0%.

Figure 5. Utterance ratio

Figure 5 shows the mean utterance ratio of the two sets. With Mann-Whitney U test,

p > 0.1 (p = 0.29), there is no significant difference between Success and Failure cases.

We cannot say that Success case is with higher utterance ratio; even it has a higher

mean value than Failure case.

27

5.1.2. Utterance frequency

The mean utterance frequency of Success cases is 5.73 numbers in one minute, and of

failure cases it is 4.65 numbers in one minute.

Figure 6. Utterance frequency

Figure 6 shows the mean utterance frequency of Success and Failure. With

Mann-Whitney U test, p > 0.1 (p = 0.29), there is no significant difference between

Success and Failure cases. We cannot say that Success case is with higher utterance

frequency; even it has a higher mean value than Failure case.

28

5.1.3. Average utterance length

For Success cases, each utterance lasts for 1.81 seconds averagely, while for Failure

each utterance lasts for 2.56 seconds. The comparison result was shown in Figure 7.

Figure 7. Average utterance length

With Mann-Whitney U test, p < 0.05 (p = 0.03), the difference between Success and

Failure is marginally significant. Success case has shorter average utterance length

than Failure case. As a result, each utterance lasts for shorter time in Success case. And

this significant result was already obtained by the senior research, which was about the

2010 pair programming analysis.

29

5.2. Result of operation data

We analyzed the operation behavior in pair programming in the similar way as

utterance analysis, from the three views, “Operation ratio”, “Operation frequency”, and

“Average Operation length”.

Table II shows the pairs’ operation data of the 36 cases output by ELAN in 2011 pair

programming.

Usually we think that operation should be considered as inputting content like code

or comment by the keyboard. Actually mouse handling should also be regarded as part

of operation. Programmer does the selecting, copying and pasting by using mouse. So in

this study, we define operation as both keyboard controlling and mouse handling, and

driver is the only one that could operate the input devices.

The “data length” definition is the same as that in utterance analysis, counted from

the problem’s happening to the problem’s been solved, or till time up.

30

Table II. Operation data of 2011 pair programming

case

data

length

(s)

operation

numbers

operation

length (s)

Operation

ratio (%)

Operation

frequency

(numbers/min)

Average

operation length

(sec/number)

success 1 52 5 10 19.3 5.8 2

success 2 210 11 61.1 29.1 3.1 5.55

success 3 72 2 11.2 15.6 1.7 5.6

success 4 60 4 17.4 28.9 4.0 4.35

success 5 404 24 134.8 33.4 3.6 5.62

success 6 61 4 30.5 49.8 3.9 7.62

success 7 219 8 124.7 57.0 2.2 15.59

success 8 403 20 180.4 44.8 3.0 9.02

success 9 98 3 26.7 27.4 1.8 8.92

success 10 207 8 34.0 16.4 2.3 4.25

success 11 281 14 50.5 17.9 3.0 3.60

success 12 377 22 93.7 24.8 3.5 4.26

success 13 109 9 25.7 23.6 5.0 2.86

success 14 154 8 73.6 47.9 3.1 9.20

success 15 284 20 109.6 38.6 4.2 5.48

success 16 301 14 77.0 25.6 2.8 5.50

success 17 309 12 147.2 47.6 2.3 12.27

success 18 166 4 35.5 21.4 1.4 8.87

success 19 138 8 63.8 46.2 3.5 7.97

31

success 20 228 8 122.9 54.0 2.1 15.36

success 21 158 5 102.5 65.1 1.9 20.50

success 22 207 9 48.8 23.6 2.6 5.42

success 23 116 5 9.0 7.8 2.6 1.81

failure 1 774 48 161.7 20.9 3.7 3.37

failure 2 173 14 36.9 21.3 4.9 2.63

failure 3 452 31 154.4 34.2 4.1 4.98

failure 4 456 22 142.3 31.2 2.9 6.47

failure 5 348 24 91.1 26.2 4.1 3.80

failure 6 401 11 79.7 19.8 1.6 7.24

failure 7 599 20 132.4 22.1 2.0 6.62

failure 8 587 31 149.1 25.4 3.2 4.81

failure 9 286 6 16.6 5.8 1.3 2.77

failure 10 373 12 66.5 17.8 1.9 5.54

failure 11 445 33 142.7 32.1 4.4 4.33

failure 12 502 32 110.6 22.1 3.8 3.46

failure 13 395 12 26.4 6.7 1.8 2.20

32

5.2.1. Operation ratio

The mean operation ratio of Success cases is 33.3%, while of Failure cases it is 22.0%.

Figure 8. Operation ratio

Figure 8 shows the mean operation ratio of Success and Failure. With U test, p < 0.05

(p = 0.04), the difference between Success and Failure is marginally significant. Success

case had higher operation ratio than Failure case. That is, operation covers more time

in Success case.

33

5.2.2. Operation frequency

The mean operation frequency of Success cases is 3.02 numbers in one minute, and of

Failure cases it is 3.10 numbers in one minute. Simply from the mean values shown in

Figure 9 we can even see the difference between the two samples is not significant.

Figure 9. Operation frequency

And with Mann-Whitney U test, p > 0.1 (p = 0.86), there is no significant difference of

operation frequency between Success and Failure cases. So as the result of the test, we

cannot say that Success case is with lower operation frequency.

34

5.2.3. Average operation length

For Success cases, each operation lasts for 7.46 seconds averagely, while for Failure

each utterance lasts for 4.48 seconds. From our observation and the analysis result

shown in Figure 10, we could say that each operation lasts for a longer time in Success

case. It is still necessary to test the result in statistical way.

Figure 10. Average operation length

Figure 10 shows the analysis result of average operation length. With Mann-Whitney

U test, p < 0.05 (p = 0.03), the difference of average operation length between Success

and Failure is marginally significant. Success case has longer average operation length

than Failure case. As a result, each operation lasts for a longer time in Success case.

35

5.3. Result of operation after Driver and Navigator’s dialogue

As described in the hypothesis, we analyzed the operation after dialogue by analyzing

“Ratio of operation after dialogue”, and “Frequency of operation after dialogue”.

Table III shows the data of operation after Driver and Navigator’s dialogue in 2011

pair programming. The “data length” and “operation numbers” are automatically output

by ELAN. We counted the numbers of operation after Driver and Navigator’s dialogue

in each case and listed the result as the “numbers of operation after dialogue” column.

36

Table III. Operation after driver & navigator’s dialogue data of 2011 pair programming

case
data

length (s)

operation

numbers

number of

operation after

dialogue

Ratio of

operation after

dialogue (%)

Frequency of

operation after

dialogue (num/min)

success 1 52 5 3 60 3.5

success 2 210 11 6 54.5 1.7

success 3 72 2 1 50 0.8

success 4 60 4 4 100 4.0

success 5 404 24 10 41.7 1.5

success 6 61 4 2 50 2.0

success 7 219 8 5 62.5 1.4

success 8 403 20 16 80 2.4

success 9 98 3 2 66.7 1.2

success 10 207 8 3 37.5 0.9

success 11 281 14 2 14.3 0.4

success 12 377 22 12 54.5 1.9

success 13 109 9 5 55.6 2.8

success 14 154 8 4 50 1.6

success 15 284 20 12 60 2.5

success 16 301 14 8 57.1 1.6

success 17 309 12 8 66.7 1.6

success 18 166 4 4 100 1.4

success 19 138 8 5 62.5 2.2

37

success 20 228 8 4 50 1.1

success 21 158 5 3 60 1.1

success 22 207 9 6 66.7 1.7

success 23 116 5 2 40 1.0

failure 1 774 48 9 18.8 0.7

failure 2 173 14 2 14.3 0.7

failure 3 452 31 6 19.4 0.8

failure 4 456 22 6 27.3 0.8

failure 5 348 24 3 12.5 0.5

failure 6 401 11 3 27.3 0.4

failure 7 599 20 4 20 0.4

failure 8 587 31 7 22.6 0.7

failure 9 286 6 2 33.3 0.4

failure 10 373 12 1 8.3 0.2

failure 11 445 33 7 21.2 0.9

failure 12 502 32 2 6.3 0.2

failure 13 395 12 2 16.7 0.3

38

5.3.1 Ratio of operation after Driver and Navigator’s dialogue

The mean ratio of operation after (Driver and Navigator’s) dialogue of Success cases is

58.3%, while of Failure cases it is 19.1%. From the value shown in Figure 11 we can see

obvious difference between the two samples, but we still should assess that whether

there is significant difference with a statistically test.

Figure 11. Ratio of operation after Driver and Navigator’s dialogue

With Mann-Whitney U test, p < 0.001 (p = 4.01002e-06), the difference between

Success and Failure is highly significant. We can get the result that Success case had

higher ratio of operation after dialogue than Failure case. That is, operation after

dialogue covers more percentage among the total operation numbers in Success case.

39

5.3.2 Frequency of operation after Driver and Navigator’s dialogue

The mean frequency of operation after (Driver and Navigator’s) dialogue of Success

cases is 1.75 numbers in one minute, and of Failure cases it is 0.55 numbers in one

minute. From the value shown in Figure 12 we can see there is obvious difference

between the two samples, with Mann-Whitney U test we can assess whether there is

significant difference statistically.

Figure 12. Frequency of operation after Driver and Navigator’s dialogue

With U test, p < 0.001 (p = 5.0799e-06), the difference of frequency of operation after

dialogue between Success and Failure is highly significant. As the result shown,

Success case had higher frequency of operation after dialogue than Failure case. That

is, there are more numbers of operation after Driver and Navigator’s dialogue in one

minute in Success case.

40

Chapter 6

Discussion

The Utterance analysis results shown in Chapter 5 presented that Success case has

shorter average utterance length than Failure case. In Success case, students’ each

utterance lasted for shorter time. As to the utterance ratio and utterance frequency, no

significant differences were found between Success and Failure cases.

From the observation and analysis, as the result shown, in Success case, the

operation ratio was higher, and the average operation length was longer. In another

word, operation covered more time and each operation lasted for a longer time in

Success case. It is not surprise to get the result that Success had more operation time

and average length than Failure. According to the observation of the data, students

failed in problem-solving usually had more other behavior such as searching in the

textbook or writing on the paper because they need ideas and solutions to the problem.

And students in Success case, they solved the problem smoothly with the knowledge

they have acquired, so the time to search for solutions had been solved, they typed the

code fluently, which resulted in more operation time and longer average operation

length in Success.

As it was expected in the hypothesis of operation after Driver and Navigator’s

dialogue, it was proved that Success case had higher ratio and frequency of “operation

after Driver and Navigator’s dialogue”. Success case had higher ratio and frequency of

operation after dialogue than Failure case. From the observation of the data, this

dialogue was mainly the opinion exchange between driver and navigator, which should

41

be one kind of cooperative work between the pair. As mentioned in previous researches,

cooperation was found as one factor what would influence the efficiency in many

domains, including the programming field. Students in programming course performed

in high efficiency because of the cooperative activities, their retention and performance

were increased and boosted. In this study, one cooperation-related behavior pattern was

assumed. It was found that operation after dialogue covered more percentage among

the total operation numbers, and there were more number of operations after Driver

and Navigator’s dialogue in one minute in Success case. Dialogue between the pair

showed the knowledge and opinion exchange and cooperation in pair programming.

With this, decision in higher quality which agreed by both was supposed to be made and

then operated by the driver. This kind of operation is effective at the result of a case. As

Chong said, their pair programming partner could give suggestions, but fundamentally,

the driver, that is, the developer at the keyboard decided which suggestion to follow

[10]. So if the driver did not agree with the suggestion, he would not type the code, and

then what the partner said became meaningless. For future direction of this study, we

plan to conduct the control experiment of pair programming to see whether the

cooperative work would really affect the programming result and are considering what

element should be controlled now.

42

Chapter 7

Conclusion

Programming is the process of designing and writing the code to make the computer

solve a problem. In order to enable the computer to understand the human’s intent, the

ideas, methods, and the means of solving the problem should be organized then input to

the computer, and then it could accomplish a specific task step by step, by following the

given instruction. As the programming requirement increasing, pair programming was

originated in industry as a key component of the eXtreme Programming (XP)

development methodology. It improves software quality and responsiveness to change

customer requirements, and reduces the cost of software development.

In this study, we observed the pair programming practice sessions from a course

named “Programming I”, and obtained the problem-solving periods as cases then

analyzed them. We reconfirmed that Success case had shorter average utterance length,

which has also already obtained by Hirai’s analysis of 2010 pair programming data;

then we found that Success case had higher operation ratio, and longer average

operation length than Failure case. We also presented that Success case had higher

ratio and frequency of operation after dialogue than Failure case. We would like to learn

more about the symptoms which could make pair programming learning and

cooperative work more effective and plan to conduct one control experiment to see the

cooperative pattern’s impact on pair programming in the future.

43

Reference:

[1] L. L. Constantine, Constantine on Peopleware. Englewood Cliffs, NJ: Yourdon Press,

1995.

[2] Beck, K. (1999). Extreme Programming Explained: Embrace Change, Reading, PA:

Addison-Wesley.

[3] Nosek, J. T. (1998) The Case for Collaborative Programming. Communications of the

ACM, 41 (3), 105-108.

[4] Williams, L., Kessler, R., Cunningham, W., Jeffries, R. (2000). Strengthening the

Case for Pair programming. IEEE software, 17 (4), 19-25.

[5] McDowell, C., Werner, L., Bullock, H., Fernald J. (2002). The Effects of Pair

programming on Performance in an Introductory Programming Course, Proc. ACM

SIGCSE, ACM Press, 38-42.

[6] Muller, M. M. (2003). Are Reviews an Alternatvie to Pair Programming? Seventh

International Conference on Empirical Assessment in Software Engineering, UK.

[7] Nagappan, N., Williams, L., Ferzli, M., Wieve, E., Yang, K., Miller, C., and Balik, S.

(2003). Improving the CS1 Experience with Pair programming, Proc. ACM SIGCSE,

ACM Press, 359-362.

44

[8] Sfetsos, P., Stamelos, I., Angelis, L., Deligiannis, I. S. (2006). Investigating the

Impact of Personality Types on Communication and Collaboration-Viability in Pair

Programming, in XP/Agile 7, 43-52.

[9] Bryant, S., Romeo, P., Boulay, B. (2006). Pair Programming and the e-appropriation

of Individual Tools for Collaborative Software Development, Proc. ACM SIGGROUP,

55-70.

[10] Chong, J., and Hurlbutt, T. (2007). The Social Dynamics of Pair programming, Proc.

International Conference on Software Engineering (ICSE), IEEE Press, 354-363.

[11] Hirai, Y., Inoue, T. (2012). Collaboration Estimation in Pair Programming

Learning: Conversation Differences between Success and Failure in Problem Solving,

Infomration Processing Society of Japan Journal, Vol 53, 72-80.

[12] Lori, P., Mike, J. (2001). Making Parallel Programming Accessible to Inexperienced

Programmers through Cooperative Learning. SIGCSE 2001, 224-228.

[13] Edward, F. G., Katherine, D., Keith, J. W., John, H. (2006). Panel: Cooperative

Learning – Beyond Pair Programming and Team Projects. SIGCSE 2006, 458-459.

[14] Duo, Wei. (2012). An Evaluation of a Cooperative Learning Method in

Programming and Problem Solving I. Consortium for Computing Science in Colleges,

69-77.

45

[15] Gary, J. C., Cheryl, L. D., Severin, V. G. (1991). Information Exchange Patterns in a

Computer-Supported Cooperative Work Environment. SIGCHI 1991, 57-58.

[16] Dacid, M., Mark, R., Ian, S. (2002). Applying Patterns of Cooperative Interaction to

Work (Re)Design: E-Government and Planning. CHI 2002, 235-242.

[17] Anastasiia, B., Peter, Q., Karin, C., Wim, L. (2012). The Influence of Cooperative

Game Design Patterns for Remote Play on Player Experience. APCHI’12, 11-19.

[18] Claus, B., Lotte, G. J., Flemming, W. (2012). Medical Secretaries’ Care of Records:

The Cooperative Work of a Non-clinical Group. CSCW’12, 921-930.

[19] Wittenburg, P., Brugman, H., Russel, A., Klassmann, A., Sloetjes, H. (2006). ELAN:

a Professional Framework for Multimodality Research. Proceedings of LREC 2006,

Fifth International Conference on Language Resources and Evaluation.

[20] ELAN (EUDICO Linguistic Annotator), Available

from http://tla.mpi.nl/tools/tla-tools/elan/

	胡
	s1121749-2013021215383536370

