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Liquid Crystal Stepwise Electropolymerization An Approach to Create Insect 

Photonic Structure  

 

A stepwise polymerization enables production of triple-layer films consisting of 

[cholesteric LC order]-[nematic LC order]-[cholesteric LC order] films similar to 

exoskeleton of insect photonic structure.  

 

Abstract 

Production of optically active or inactive laminate structures with particular 

morphology can provide new functional optical materials. In this study, a stepwise 

polymerization enables production of triple-layer films consisting of [cholesteric LC 

order]-[nematic LC order]-[cholesteric LC order]. This method realizes preparation of 

laminate structure from one kind polymer with differing molecular orientations in each 

layer. The optical properties of the multi-layer thin films were examined with optical 

absorption spectroscopy, circular dichroism, and optical rotatory dispersion 

measurements. The polymer shows electrochemically driven change in optical activity. 
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Thin polymer films consisting of the three layers (cholesteric-nematic-cholesteric 

orders) show turquoise blue as a structural color. The color can be tuned by 

electrochemical redox process based on an electrochemical doping mechanism for 

-conjugated polymers. This result demonstrates that the multi-layer organic 

semi-conducting polymer with liquid crystal order shows structural color with 

multi-layer interference mechanism.  

 

Introduction 

-Conjugated polymers have been paid attention as promising organic electronic 

materials. Recently, new synthesis methods for production of functional conjugated 

polymers, carbon nanotube/polyaniline composite films,
1
 single-wall carbon 

nanotubes–polythiophene hybrids,
2
 copolymers as a n-type materials,

3
 template 

polymerization with a block copolymer,
4
 nanocoatings,

5
 and polyaniline on stainless 

steel,
6
 have been developed. 

   Multi-layered -conjugated polymer films have been developed for high- 

performance actuators,
7
 polyelectrolyte multi-layers,

8
 multi-layer film electrodes,

9
 

laminate devices,
10 

nanometric multi-layered films,
11

 multi-layer polymer stacking,
12

 

and layer-by-layer electrodeposition.
13

 The fabrication of multi-layered structure further 

expands useful possibilities by providing new functionality for polymer materials. 

However, preparation of multi-layer structure from one kind of material with differing 

molecular orientations in each layer has yet to be synthesized. 

 Certain types of living organisms, such as bees, Morpho butterflies,
14

 and birds,
15 

show 

rainbow colors in reflected light. For example, the mountain butterfly (Papilio ulysses) 

with brilliant blue color derived from photonic structure. External skeletons of golden 

beetles have laminated structure, constructed from multiple layers with liquid crystal 

(LC) ordering.
16

 Specifically, such photonic insects employ cholesteric LC order to 

form laminated structures in the cuticle. The laminated structure may be grown by using 

a temperature-induced phase transition of liquid crystal in the growth process of the 

exoskeleton. For example, the proteins of exoskeleton are produced at night in the LC 

temperature range to yield a cuticle layer with LC order, while the exoskeleton grown 

under sunlight consists of a cuticle layer that does not possess LC order in the isotropic 

temperature range.
17

 This repeated daytime/nighttime process may provide multi-layers 

consisting of repeated [cholesteric LC order][non LC order] structures.   

Generally, LC materials consist of rigid rod-like molecules. These molecules form 

mesophase (LC phase) with the order due to the rod-like structure and the disorder due 

to the flexible chain in the mesogenic structure. LCs can be considered as crystals with 
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fluidity. However, the order of liquid crystals is not completely rigid as in true crystals. 

External force can deform LCs easily. However the LC order is restored after release of 

the external force. In other words, LCs can be tolerant to temporary external force with 

the capacity to restore previous order. Liquid crystals display certain optical textures 

under observation of polarized optical microscopy (POM). The specific optical structure 

depends on LC phase (eg., nematic LC shows Schlieren texture and thread-like texture; 

cholesteric LC exhibits fingerprint texture and Grandjean texture) without regard to 

molecular version. LC phases can be maintained even after addition of small amounts of 

non-LC molecules as contaminations. This property allows application of LCs as 

chemical reaction solvents.   

   In previous studies, we have developed an electrochemical method based on 

cholesteric LC to prepare optically active polymer films from non-optically active 

monomers.
18

 This method allows preparation of chiroptically active thin films with 

cholesteric LC order. In the present study, electrochemical polymerization in LC is 

performed for the preparation of semiconducting polymer films with the lamellar 

structure of LC order.  

Nematic is an achiral LC phase. The directors (local direction of LC molecules) of 

nematic LC orient along one direction. Cholesteric LC is a chiral LC phase in which the 

director (temporal and spatial average of the long molecular axis) is continuously 

twisted about a helical axis oriented perpendicular to the long axis of the molecule. 

Directors of cholesteric LC form helical structure. Cholesteric LC has chirality derived 

from three-dimensional helical structure. Nematic phase (non-chiral LC) is transformed 

into cholesteric LC with addition of a small amount of chiral compounds (referred to as 

chiral dopants or chiral inducers). Therefore, there are two methods for the preparation 

of cholesteric LC: 1) synthesis of chiral LC; and 2) the addition of a chiral inducer to 

nematic LC.  

In this research, cholesterol pelargonate (Ch*-PEL, Table 1) is employed as a chiral 

inducer to n-hexyl-cyanobiphenyl (6CB, nematic LC solution), and the resultant 

cholesteric LC solution and the nematic LC solution (6CB) are used for the 

polymerization solution.  

Electrochemical polymerization is a convenient method for preparation of 

-conjugated polymers. Generally, electrochemical polymerization is carried out in 

electrolyte solution containing monomer with application of voltage. The resultant 

polymer adheres to the electrode. The polymer thus obtained with the electrochemical 

method shows electrochromism (color change with redox cycle in electrolyte solution). 

Stepwise polymerizations in LC, developed in this study, are carried out to obtain 
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laminated structure of a -conjugated polymer showing structural color. 

  Cholesteric LC has been employed for coating materials showing rainbow color. It 

shows selective reflection of light in the Grandjean orientation (planar orientation with 

the helical axis perpendicular to the substrate). In the case of cholesteric LC with 

Grandjean texture, the film shows selective reflection of light. But homeotropic 

orientation (the helical axis parallel to substrate) affords diffraction derived from 

periodic fingerprint patterns. In other words, cholesteric LC with fingerprint texture and 

Grandjean texture function as diffraction gratings and selective reflectors. 

The selective reflection and diffraction from cholesteric LC show interference 

rainbow color upon irradiation by white light. The Morpho butterfly combines both 

selective reflection and diffraction functions. Many insects use multi-layer systems, 

although an insect employing gratings to show iridescence has been reported.
16(a)

 So far, 

a combination of grating and multilayer systems showing structural color with LC order 

has not been found to date.  

   The effort in this research is directed to preparation of a new type of photonic film 

having both grating and selective reflection of light functions with a three-layer LC 

ordered polymer to approach realization of artificial morho-butterflies having both 

multilayer reflection and grating functions. 

 

Table 1. Molecular structures of compounds in liquid crystal electrolyte solutions. 
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Experiment 

General procedure of electrochemical polymerization in liquid crystals 

Electrochemical polymerization is an effective method of preparing -conjugated 

polymers. The electroactive polymers have been studied for application in 

electrochromic devices with transparent electrodes.
19-21 

 

Electrochemical polymerization in the LC electrolyte solution creates a polymer 

with LC order, with a characteristic Schlieren texture and fingerprint structure, very 

similar to that of liquid crystals.
22

 In this study, electrochemical polymerization of the 

monomers in LC electrolyte solution was sequentially carried out for obtaining a 

multi-layer structure.  

The present electrochemical polymerization was carried out with the sandwitch-cell 

LC polymerization method that the author has developed. Prior to electrochemical 

polymerization, the LC electrolyte solution was heated in a vial under argon atmosphere 

in order to completely dissolve the contents of the electrolyte solution, such as the 

supporting electrolyte, the monomer, and the chiral inducer (in the case of preparation 

of cholesteric LC), in 4-n-hexyl-4’-cyanobiphenyl (6CB). The LC electrolyte was 

injected by using the capillary technique between two sandwiched indium-tin-oxide 

(ITO) coated glass electrodes with a Teflon sheet (thickness = 0.2 mm) used as a spacer. 

The reaction cell was initially heated under argon atmosphere to ca. 60 °C, and then 

gradually cooled to room temperature. Then, a constant 4.0 V was applied across the 

cell. After the polymerization, an insoluble and infusible polymeric thin film was 

obtained at the anode side of the ITO electrode. The film on the ITO was then washed 

with acetone and tetrahydrofuran (THF) in that order. Subsequently, another 

polymerization on the film was carried out using the same procedure for the preparation 

of a multi-layer polymer film. Fig. 1 shows differential scanning calorimetry (DSC) 

results for the LC electrolyte solution containing monomers. Transition temperatures of 

the nematic LC solution containing monomer and supporting electrolyte and cholesteric 

LC electrolyte solution containing monomer, supporting electrolyte, and the chiral 

inducer are Cr13.5(4.1)N23(21)Iso and Cr*11(5<)Ch*19(18)Iso*, respectively 

(Cr = crystal, N = nematic, Iso = isotropic, * indicates chiral).  

Note that polymers thus obtained show clear fingerprint texture. The optical structure 

is very similar to that of the LC electrolyte solution used for the electrochemical 

polymerization. Molecular structures of the compounds employed in this study are 

summarized in Table 1.  
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Figure 1. Differential scanning calorimetry (DSC) results for nematic liquid crystal 

(LC) electrolyte solution (a) and cholesteric LC electrolyte solution. Scan rate = 

10 °C/min. These LC electrolyte solutions contain monomer solution (b), supporting 

electrolyte (salt), chiral inducer (in cases with cholesteric LC). N = nematic, Iso = 

isotropic, Cr = crystal, Iso* = isotropic (chiral), Ch* = cholesteric, Cr* = crystal 

(chiral). 
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Stepwise electrochemical polymerization 

A stepwise LC electrochemical polymerization was carried out to obtain a 

cholesteric-nematic-cholesteric ordered film (Scheme 1). Firstly, polymerization of 

bithiophene (BT) in cholesteric LC was performed in the sandwich cell. After 30 min, 

the polymerization cell was disassembled. The film with cholesteric order deposited on 

the anode side of the ITO was washed with THF and acetone.  

After drying the cell, the sandwich cell was re-assembled. Then nematic electrolyte 

solution containing BT as a monomer was injected into the cell by the capillary method. 

The polymerization cell was heated to ca. 60 C and then gradually cooled to 20 C to 

obtain the Schlieren texture of the nematic phase. Subsequently, constant voltage (4 V) 

was applied across the cell. After 30 min, the polymerization cell was disassembled, and 

the resultant film was washed with THF and acetone and THF.  

Next, the sandwich cell was reassembled (the cholesteric-nematic film on the ITO as 

the anode side). The cell containing the cholesteric LC electrolyte solution with BT was 

heated and gradually cooled to obtain the fingerprint texture. Then, 4 V was applied 

across the cell. After 30 min, the cell was disassembled, and the polymer film was 

washed with THF and acetone to yield a cholesteric-nematic-cholesteric ordered 

polybithiophene film abbreviated as PBT(Ch*-N-Ch*). Liquid crystallinity of the LC 

electrolyte solutions after the polymerization was confirmed by visual inspection with 

polarizing optical microscope (POM). This result indicates that the polymerizations 

were carried out in the LC. The polymerization progresses with phase separation from 

the matrix LC during the electrochemical reaction. IR measurements for the polymer 

thus obtained in the LC indicate no CN and C=O absorption bands, while an absorption 

band of C=C stretching of the thiophene ring was observed at 1326 cm
1

. These results 

suggest that the polymer contains no 6CB and no chiral inducer except the electrolyte 

(TBAP, 1033 cm
1

) (Fig. 2). The electrolyte has strong interaction with the -conjugated 

main chain because of the doping of the polymer (charge transfer-type interaction). 

Thus, the purification process by washing after polymerization can not remove the 

TBAP (in the form of ions) from the polymer. 
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Scheme 1. Stepwise electrochemical polymerization in cholesteric LC, nematic LC, and 

cholesteric LC to obtain three layers consisting of homo-polymer with different 

morphology (LC = liquid crystal).  
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Figure 2. IR absorption spectrum of the triple-layered (Ch*-N*-Ch*) polybithiophene.  
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Results and discussion 

Optical structure 

POM images of the top layer (cholesteric order), middle layer (nematic order), and 

bottom layer are shown in Fig. 3(a). The top layer shows a fingerprint texture consisting 

of a wire-screen-like structure, as shown in Fig. 3(a, left). The middle layer displays 

Schlieren texture (Fig. 3(a) middle), and the bottom layer fingerprint texture (Fig. 3(a) 

left). Fig. 3(b) shows the POM image of the entire region (an edge part of the sample on 

the ITO) of PBT(Ch*-N-Ch*). This sample was prepared by sliding the Teflon spacer 

slightly at each step of the polymerization to afford the visible three layers. Fig. 3(c) 

shows an illustration of the side view of the three-step structure possessing the 

cholesteric-nematic-cholesteric order. Fig. 4 shows a surface image of the polymer 

prepared in cholesteric LC electrolyte solution at 30-350 ºC. The fingerprint texture of 

the polymer was not changed due to the heat treatment, but the surface color of the 

polymer was gradually changed to bright with increase of temperature, confirmed by 

visual inspection. This result indicates that the polymer shows thermochromism in the 

film state, and the fingerprint structure is derived from intrinsic surface structure of the 

polymer, which was transcribed from the cholesteric LC electrolyte solution in the 

polymerization reaction.   
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Figure 3. (a) Polarized optical microscopy (POM) image of triple-layer structure of 

polybithiophene prepared in [cholesteric LC][nematic LC][cholesteric LC] 

(PBT(Ch*-N-Ch*)) (reduced state, dedoped). Left (top layer), middle (middle layer), 

right (bottom layer). (b) POM image of entire region (an edge part of the sample on the 

ITO) of PBT(Ch*-N-Ch*). (c) Illustration of side view of stacking layers. 
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Figure 4. Surface images of polymer prepared in cholesteric liquid crystal electrolyte 

solution at 30-350 ºC. 

 

Electrochemical properties 

Cyclic voltammetry measurements of the triple-layer film in the 0.1 M 

TBAP/acetonitrile solution vs. the Ag/Ag
+
 reference electrode shows clear redox 

behavior at various scan rates (1050 mV/s), as shown in Fig. 5. The PBT(Ch*-N-Ch*) 

was electroactive and adhered well to the ITO electrode. Fig. 6(a) shows changes in 

optical absorption at 500 nm (an absorption band of the * transition of the main 

chain) with applied voltage between 0 1 V. The measurement cell included a platinum 

wire as the counter electrode, an Ag/Ag
+ reference electrode, and the PBT(Ch*-N-Ch*) 

deposited on ITO. The polymer shows optical switching as a function of applied voltage. 

As seen in Fig. 6(b), the natural color appearance in the International Commission on 

Illumination (CIE) color space chromaticity diagram, as calculated from the optical 

absorption spectra of the polymer, indicates that the color of the polymer at each applied 

voltage shifts toward blue with progressive electrochemical doping.  

The change in visible to near-infrared (visNIR) optical absorption upon 

electrochemical reduction (dedoping) at 0 V vs. Ag/Ag
+
 reveals a broad absorption 

maximum at 500 nm corresponding to the * transition of the main chain. The 

intensity of this peak decreases with increasing voltage, accompanied by the emergence 

of a new absorption maximum at around 719 nm and an absorption band in the 

red-to-NIR region at around 1050 nm attributable to the generation of polarons (radical 

cations) and bipolarons (dications) on the -conjugated main chains, respectively (Fig. 

7(a)).
23

 Inset of Fig. 7(a) shows absorption spectra of the polymer at long wavelengths. 

The chemical structures of polarons and bipolarons are shown in Scheme 2.  
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Figure 5. Cyclic voltammogram (CV) of PBT(Ch*-N-Ch*) in a monomer-free 0.1 M 

TBAP/acetonitrile solution at various scan rates. 

 

 

Figure 6. (a) Changes in optical absorption of PBT(Ch*-N-Ch*) film at 500 nm 

between 0 V and 0.9 V (vs. Ag/Ag
+
 reference electrode) in monomer-free 0.1 M 

TBAP/acetonitrile solution. (b) CIE color space chromaticity diagram of 

PBT(Ch*-N-Ch*) film taken as a function of level of electrochemical oxidation (0 V to 

0.9 V vs. Ag/Ag
+
).  

 



Liquid Crystal Stepwise Electropolymerization - An Approach to Create Insect Photonic Structure  

by Hiromasa Goto 

RSC Advances, 3, 6347-6355 (2013) 

13 

 

 

 

 

 

         

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. (a) Optical absorption of monomer-free triple-layer PBT(Ch*-N-Ch*) film at 

various potentials vs. Ag/Ag
+
 reference electrode. Inset shows the absorption spectra 

(0.9 V) at the long wavelengths. (b) Optical rotatory dispersion (ORD), (c) circular 

dichroism (CD).  
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Scheme 2. Chemical structure of polarons and bipolarons for polythiophene. 

 

Redox-driven change in chiroptical activities 

Optical rotatory dispersion (ORD) of the polymer as a function of applied voltage vs. 

an Ag/Ag
+
 reference electrode in 0.1 M TBAP/acetonitrile solution is shown in Fig. 

7(b). Upon doping (increase in the applied voltage), the optical rotation at 605 nm 

decreased. The optical rotation at 480 nm first increased and then decreased with 

increase of the applied voltage. Absorption at long wavelengths assignable to a polaron 

band increased with applied voltage. Fig. 8 shows optical rotation at 605 nm and 756 

nm vs. applied voltage. This result indicates that the polymer is electro-chiroptically 

active and that the optical rotation can be tuned via the electrochemical doping process. 

The optical rotation of the polymer during voltage scanning from 0 V to +0.9 V 

undergoes repeatable changes at 605 nm. This change in optical rotation demonstrates 

repeatability of electro-chiroptical chromism.  

   In situ circular dichroism (CD) spectra of the PBT(Ch*-N-Ch*) films were obtained 

at 0.1 - 0.9 V. As shown in Fig. 7(c), PBT(Ch*-N-Ch*) exhibits the Cotton effect. In the 

oxidized state, the CD spectra of the PBT(Ch*-N-Ch*) film display the decrease in 

intensity of a positive Cotton effect at 377 nm and a negative Cotton effect at 620 nm. 

The long wavelength signal of PBT(Ch*-N-Ch*) is shifted by ca. 20 nm to long 

wavelengths as compared with that of a mono-layer film of PBT (Ch*).
25

 The CD 

signals cannot be attributed to the chiral inducer employed in the polymerization 

because the weak Cotton effect of the chiral inducer (Ch*-PEL) is only observed at 

short wavelengths (240–340 nm). This result indicates that the circular dichroism of 

PBT(Ch*-N-Ch*) can be changed by adjusting the conditions of the electrochemical 

redox process. The CD spectra show positive signal at high voltage. The dopant ion 

(ClO4

) intrudes between the main chains and releases inter-main chain helical 
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aggregation to decrease the helicity in the doped state. Furthermore, generation of 

polarons and bipolarons by doping through application of voltage forms relatively 

planar structures in the main chains, which depresses formation of intra-main chain 

helical structure.  

Exoskeleton of beetles with cholesteric-nematic-cholesteric order reflects 

circular polarized light by using multilayer structure. As for the multilayer polymer film 

thus prepared in this study is comparable to reflection functionality of the photonic 

insects. If the multilayer film light reflection function in the manner of natural photonic 

insects having multilayered LC order, the top layer of the film with cholesteric order 

reflects right-handed circular polarized light (R-CPL), and left-handed circular polarized 

light (L-CPL) passes through the top layer upon incidence of light (R-CPL + L-CPL). 

Subsequently, the middle layer with nematic order converts L-CPL into R-CPL. Finally, 

bottom cholesteric ordered layer reflects R-CPL at visible range. Therefore, the CD 

shows negative signals (right-handed polarized direction), as a result of gain loss due to 

reflection of R-CPL light at visible range at low voltage (dedoped state). The gain loss 

due to reflection and absorption appears to be the CD signals. In the doped state, 

helicity of the cholesteric ordered layer is changed, and R-CPL was reflected from the 

polymer. This may not be perfect for the PBT(Ch*-N-Ch*) with fingerprint pattern 

(homogeneous structure, helical axis is parallel to the layer) because this process is 

effective for Grandjean cholesteric LC order (planar structure, helical axis is 

perpendicular direction to the layer). The triple-layer polymer thus prepared in this 

study can reflect R-CPL, and L-CPL passes through the film. Simultaneously, optical 

absorption occurs. Optical rotation of the triple-layer polymer occurs only left direction 

(positive values in the ORD), as shown in Figure 7(c). The reflections of R-CPL at low 

voltage and L-CPL at high voltage are based on Ch*-N-Ch* order, which can be 

dominant factor for the CD and the ORD. However, the incompleteness of the light 

reflection functionality of the triple layer polymer may pass L-CPL as an output. The 

trough of the CD corresponds to peak top of the ORD signal, although a maximum in 

the ORD corresponds to inflection point in the CD in general. The CD and ORD signals 

do not always correspond to the optical absorption in the triple-layer polymer in the 

present case. Optical absorption of the polymer removes a certain wavelength range of 

reflection light. 

The functional reflection derives from the layered structure containing helical 

structure of the polymer and optical absorption of the -conjugated main chain. In 

addition, the polymer has no chiral center. The chiroptical activity comes from 

one-handed helical structure of main chain and helical -stacking aggregation structure 
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between the main chains.  

Refractive index (n) of the triple-layer polymer (as prepared form) shows a 

maximum at 537 nm. This wavelength corresponds to inflection points of the CD and 

the ORD of the polymer. 
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Figure 8. Optical rotation of triple-layer PBT(Ch*-N-Ch*) film at 605 nm and 765 nm 

as a function of application potentials vs. Ag/Ag
+
 reference electrode. 

 

Structural color 

The multi-layer structure of a polymer can produce selective reflection of light. The 

multi-layer polymer in this study has such an alternation order. However, thin layers are 

required for transparency in the multi-layer polymer for obtaining clear selective light 

reflection.
 

Thickness of the polymer film obtained in cholesteric liquid crystal 

electrolyte solution (polymerization time = 30 min) is 100300 nm. Therefore, the 



Liquid Crystal Stepwise Electropolymerization - An Approach to Create Insect Photonic Structure  

by Hiromasa Goto 

RSC Advances, 3, 6347-6355 (2013) 

17 

 

stepwise electrochemical polymerization of the monomer in LCs was carried out over 

short times to yield thin layers with LC order. The bottom layer (polymerized in 

cholesteric LC) and middle layer (polymerized in nematic LC) were prepared by 

electrochemical polymerization for 2 min with 4 V, and the top layer (polymerized in 

nematic LC) was synthesized for 3 min with 4 V. This procedure produced a 

polybithiophene thin film with [cholesteric]-[nematic]-[cholesteric] orders.  

The surface profile of the triple-layer system was confirmed with a non-contact 

scanning white-light interferometer, indicating that the film consists of three layers 

(each layer thickness ~10 nm). Fig. 9(a) shows the structural color of this polymer 

(reduced state) under obliquely incident white light. The film shows turquoise blue 

reflection color due to selective reflection of light. On the other hand, the natural 

appearance and transmission color (shadow, Fig. 9(a)) is red. This character is 

comparable to that of Morpho butterflies, which show blue structural color and brown 

transmission color. 

 The change in surface structural color of the present polymer during redox cycling 

is displayed in Fig. 9(bg). The natural color of the polymer changes from red to blue 

(Fig. 9(b-d)) with the oxidation process, while the structural color changes from 

turquoise-blue to ocher under oblique white light (Fig. 9(eg)). In this case, the white 

light irradiates the top region of the sample. Therefore, the lower region of the sample in 

Fig. 9(e) shows natural appearance (red). This result suggests that the structural color 

derived from multi-layer interference can be tuned by the redox process based on an 

electrochemical doping-dedoping mechanism. Refraction and reflection indices can be 

changed by the redox process accompanied by change in the electronic structure of the 

polymer with the electrochemical redox cycle. These changes in physical properties 

produce change in total interference reflection color for the multi-layer polymer. This 

result implies that the present study presents an approach for production of tunable 

artificial color similar to Morpho butterflies based on a multi-layer system of organic 

semiconductor with liquid crystal order.  
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Figure 9.  (a) The multi-layer polymer film on ITO under white-light oblique 

incidence. Natural appearance electrochromism (b-d) and reflection electrochromism 

under white-light oblique incidence (the light was incident on the top part of the 

sample) (e-g) of the polymer in 0.1 M TBAP/acetonitrile solution at 0 V, 0.7 V, and 1.2 

V vs. Ag/Ag
+
 reference electrode.  

 

Surface structure of the Morpho butterfly and multi-layer polymer film with LC 

order 

   Scales of Morpho butterflies have characteristic micro-structure, as shown in Fig. 

10(a). The scales have many vertical vanes (ridges) with lamellar structure.
24

 The 

substrate (bottom cuticle) contains pigment for enhancement of blue color. The scales 

reflect light with diffraction by their grooved structure. Interference of light occurs due 

to the multi-layer interference system with a lamellar structure in the horizontal 

direction.
16(c)

 The combination of diffraction, interference, and pigment color beneath 

the iridescent scales allows beautiful blue-colored reflection. The polymer with 

multi-layered structure possesses some analogous points of the scale of the Morpho 

butterfly. Firstly, the multi-layer structure consisting of cholesteric-ordered layer and 

nematic-ordered layer can show interference of light. In this case, oblique incidence is 

required because of small the layer thicknesses. Next, the sequential dielectric structure 

with periodicity of the surface of the polymer, produced by transcription from 
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cholesteric LC, can function as a diffraction grating. Although the individual polymer 

molecules have no directors, cholesteric LC-like periodic structure is produced by the 

polymerization in cholesteric LC and nematic LC. The helical half-pitch of cholesteric 

LC corresponds to the helical half-pitch of the resultant polymer prepared in cholesteric 

LC. Orientation direction of the individual main chain (polymer) is described with 

bi-directional arrow in Fig. 10(b). The periodicity functions as a diffraction grating. The 

two functions (interference, diffraction) display turquoise-blue reflection. Furthermore, 

the controllable color of the polymer based on redox cycling allows tunability of the 

reflection color. The inherent color of the polymer is comparable to the pigment in the 

scales of the butterflies. 

Note that single conjugated polymer films with LC orders shows diffraction and 

rainbow colors (seven colors) upon irradiation of oblique incident of light.
25

 A 

conjugated polymer having smectic A like layer structure shows blue color.
26

 Multilayer 

textiles showing rainbow color has been developed.
27

 

Advantage of the multi-layer film compared to single conjugated polymer films with 

LC orders in this study is exhibition of mono-color via combination of multi-layer 

interference and diffraction. Stepwise sandwitch cell electrochemical polymerization 

allows preparation of the multi-layer film with LC order showing so-called ''Morpho 

color''. 
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Figure 10. (a) Diffraction and interference behavior of structural color of the scales of 

the Morpho butterfly. d1 is inter-layer distance in the horizontal direction, d2 is the 

intra-layer distance between lamellas in the perpendicular direction.  d1 = 80140 nm, 

d2 = 50 nm. (b) Proposed multi-layer structure of the polymer produced in cholesteric 

liquid crystals and nematic liquid crystals, and light diffraction and interference 

behavior. d1 is the helical pitch of the polymer prepared in cholesteric liquid crystal. d2, 

d2', and d2'' are layer thickness of the polymer. Bi-directional arrows indicate orientation 

direction of polymer molecules. ITO = indium-tin-oxide.  

  

(a) 

(b) 
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Conclusions 

The liquid crystal sandwitch-cell polymerization method allows preparation of optically 

active films with LC order. The method can be further applied for preparation of 

optically active conjugated polymer laminate films. The stepwise polymerization 

produces triple-layer films consisting of [cholesteric LC order]-[nematic LC 

order]-[cholesteric LC order]. This method realized preparation of a multi-layer 

structure from one kind polymer with differing molecular orientations in each layer. 

The multi-layer polymer shows turquoise-blue structural color via interference and 

selective reflection of light in obliquely incident white light. The artificial laminated 

-conjugated polymer film with LC order thus synthesized further shows redox-driven 

change in chiroptical activities and tunable structural color. This method may be 

referred to as structure organizing polymerization. 
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Techniques 

All monomer syntheses were performed under argon atmosphere using Schlenk/vacuum 

line techniques. Optical absorption spectra were obtained using a UV-Vis 

spectrophotometer (Hitachi U-2000 and Jasco V-600). Circular dichroism (CD) and 

optical rotation dispersion (ORD) measurements were performed using a Jasco J-720 

spectrometer with an ORDE-307W ORD unit. Electrochemical measurements of 

polymers were conducted using an electrochemical analyzer (Autolab III, Autolab, the 

Netherlands), and optical textures were observed using a high-resolution polarized 

microscope (Nikon ECLIPS LV 100) with a Nikon LU Plan Fluor and Nikon CFIUW 

lenses without oil immersion. Film thickness of the samples was measured with 

non-contact scanning white-light interferometer, ZYGO New View 5032. Reflective 

index of the polymer was obtained with a Jasco ARAM-735 system. 

Matrix-assisted laser desorption ionization, time-of-flight mass spectroscopy 

(MALDI-TOFF-MS) measurements were carried out with AB SCIEX TOF/TOF5800 

system. 
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Polymerization condition for thin multi-layer laminate film showing 

turquoise-blue structural color 

Constitution of cholesteric liquid crystal electrolyte solution containing monomer: 

n-Hexyl-cyanobiphenyl (6CB) 0.5 g, tetra-n-butyl ammonium perchlorate (TBAP) 2 mg, 

cholesteryl pelargonate (Ch*-PEL) 100 mg, bithiophene (BT) 40 mg. Helical pitch of 

the cholesteric LC-containing monomer is 4.9 m, confirmed by the Cano-wedge 

method.
28

 Here, the formula P = 2atan is employed for obtaining the helical pitch (P). 

The parameters a, and  are length of Cano-line in the cell, degree of the Cano-wedge, 

respectively.
29

 

 

Constitution of nematic liquid crystal electrolyte solution containing monomer:  

6CB 0.5 g, TBAP 2 mg, BT 20 mg. 

 

Polymerization 

Bottom layer (cholesteric order), 4 V, 2 min at 18 ºC. Middle layer (nematic order), 4 V, 

2 min. Top layer (cholesteric order), 4 V, 3 min at 16 ºC for obtaining the thin film. 

MALDI TOFF-MS measurement of the polymer indicates that the m/z signals increase 

with molecular repeat units of bithiophene (= 164.25 g/mol). 
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Figure S1. Appearance of a blue mountain butterfly (Papilio Ulysses). 

 

 

 

 

 

 



Liquid Crystal Stepwise Electropolymerization - An Approach to Create Insect Photonic Structure  

by Hiromasa Goto 

RSC Advances, 3, 6347-6355 (2013) 

26 

 

 

 

 

 

Figure S2. (a) Molecular aggregation structure of nematic phase, and (b)cholesteric 

phase. 
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Figure S3. Photographs are polarized optical microscopy images of LC electrolyte 

solutions. (a) Nematic liquid crystal electrolyte solution, (b) cholesteric liquid crystal 

electrolyte solution. 
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Figure S4. POM image of bottom layer of PBT(Ch*-N-Ch*) in reduced (de-doped) 

state. 500x. 
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Figure S5. POM image of the middle layer of PBT(Ch*-N-Ch*) in reduced (de-doped) 

state showing threaded like texture. 500x. 
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Figure S6. POM image of the top layer of PBT(Ch*-N-Ch*) in reduced (dedoping) 

state. 500x. 
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Figure S7. POM image of the entire area (an edge part of the sample on the ITO) of 

PBT(Ch*-N-Ch*) in reduced (de-doped) state. 500 x.  
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Figure S8. CD spectra of monomer-free triple-layer PBT(Ch*–N–Ch*) film at various 

potentials vs. Ag/Ag+ reference electrode from 300 -800 nm. 
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Figure S9. Refractive index (n) vs. wavelength as prepared PBT(Ch*-N-Ch*). 
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Figure S10. Cano-lines of cholesteric electrolyte solution containing monomer, 

electrolyte, and the chiral inducer in Cano wedge cell. a = 294 m. 
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Figure S11. Matrix assisted laser desorption ionization, time of flight-mass (MALDI 

TOFF-MS) result of the polymer prepared in cholesteric liquid crystal electrolyte 

solution. 
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MOLECULAR WEIGHTS 

Ionization of high molecular weight fractions may not be performed completely in the 

TOFF-MASS. Also, high molecular weight molecules tend to decrease arrival 

probability at the detector of the TOFF-MASS. Therefore, the signal intensity is not 

always proportional to amounts of the molecular weights of each fraction of the 

polymers.  

The molecular weights obtained from the TOFF-MASS measurements may be 

reference indexes. In the present study the MALDI TOFF-MASS results may indicate 

that Mn, Mw, and dispersity are to be 806 g/mol, 913 g/mol, and 1.13, respectively with 

an assumption of the signal intensity was proportional to number of the molecules, 

although only the low molecular weight parts of the polymer can be estimated by the 

present TOFF-MASS spectroscopy measurements. The TOFF-MASS measurements 

exactly indicate sequence of the molecular repeat units of the polymer.  

 

PLAUSIBLE REFLECTION MECHANISM 

Exoskeleton of beetles with cholesteric-nematic-cholesteric order reflects circular 

polarized light by using multilayer structure. The multilayer polymer film thus prepared 

in this study is comparable to reflection functionality of the photonic insects. 

The multilayer polymer may have the same light reflection mechanism as natural 

photonic insects with LC order (Caveney, S, Proc. R. Soc. London, 1971, Ser. B178, 

205–225). Plausible mechanism of the reflection is described as follows.  

Firstly, the top layer of the film with cholesteric order may reflect right-handed 

circular polarized light (R-CPL), and left-handed circular polarized light (L-CPL) 

passes through the top layer with incidence of natural non polarized light (R-CPL + 

L-CPL light). Subsequently, the middle layer with nematic order converts L-CPL into 

R-CPL. Finally, bottom cholesteric ordered layer reflects R-CPL (Figure S11). 

Therefore, the CD shows negative signals (right-handed polarized direction), as a result 

of gain loss of R-CPL due to reflection at low voltage (dedoped state). The gain loss due 

to reflection and absorption result in the CD signals. In the doped state, helicity of the 

cholesteric ordered layer is changed, and R-CPL can be reflected from the polymer. This 

may not be perfect for the PBT(Ch*-N-Ch*) having fingerprint pattern (homogeneous 

structure, helical axis is parallel to the layer) because this process is effective for 

Grandjean cholesteric LC alignment (planar structure, helical axis is perpendicular 

direction to the substrate).  

The multilayer polymer thus prepared in this study can reflect R-CPL, and L-CPL 

passes through the film. Simultaneously, optical absorption is carried out. Optical 
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rotation of the polymer occurs for left direction (positive values in the ORD), as shown 

in Figure 7(c). The reflections are based on Ch*-N-Ch* order. However, the 

incompleteness of the light reflection functionality of the triple layer may pass residual 

light as an output. The trough of the CD corresponds to peak top of the ORD signal in 

this case, although a maximum in the ORD corresponds to inflection point of the CD in 

general. The CD and ORD signals do not always correspond to the optical absorption in 

the multilayer polymer. Furthermore, optical absorption of the polymer decreases a 

certain wavelength range of reflection light. 
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Figure S12. Possible model of light reflection function of the triple-layer polymer 

having cholesteric-nematic-cholesteric order with light passage process from (a) to (d).  
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