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Abstract of dissertation

The choroid is an internal layer of the eye with several basilic functions including the blood sup-
ply to the retina pigment epithelium (RPE) and the inner retina. Imaging the choroidal is critical
to diagnose several ocular diseases associated with blood circulation. However, the choroid de-
fies most of high resolution biomedical imaging methods because of it is anatomically deep from
the optical visible surface of human body. Optical coherence tomography (OCT) has been a rev-
olutionized imaging method in ophthalmology for its non-invasive feature, high resolution, and
cross-sectional/three-dimensional imaging ability. While a large number of state-of-the-art imag-
ing processing methods have been developed to process retinal OCT, algorithms for choroidal
OCT are not as well developed because of penetration issue in conventional OCT systems at
800-nm wavelength.

OCT system with wavelength band of 1060 nm provides enhanced penetration to the choroid.
Valuable biomedical information can be obtain by analysing the choroidal OCT data. In this
dissertation, two procedures have been developed to investigate the choroidal properties in high-
penetration OCT data.

The choroidal thickness is an parameter drawing much interest in ophthalmology. It is mainly
measured by manual segmentation method, which is time-consuming and lack of histological ev-
idence to validate the real chorio-scleral interface. Polarization-sensitive (PS-) OCT with 1-pm
probe is suitable to segment the choroid since there is significant difference between birefrin-
gence properties in the choroid and sclera. The real chorio-scleral interface can be visualized
in phase retardation tomographies provided by PS-OCT. A full automatic choroidal thickness
measurement algorithm has been developed based on intensity and phase retardation contrast
obtained.

Alternation of the choroidal vasculature is considered to be related to several ocular diseases
such as aged-related macular degeneration and glaucoma. Visualization and quantitative analysis
of the choroidal vessel may play an important roll in investigation of those circulation-related
diseases. A choroidal vessel characterization framework is developed to analyse the volumetric
choroidal OCT data. The choroidal vessel is segmented by a customized multi-scale adaptive
thresholding method, and then the its diameter is estimated using morphological analysis. The
entire thickness of the choroidal vasculature is also measured in the reconstructed choroidal
vasculature volume.






Chapter 1

Introduction

1.1 Background

Optical coherence tomography (OCT) provides high-resolution depth-resolved images of biolog-
ical tissues noninvasively [1], hence, it is very suitable for applications in ophthalmology. OCT
has been a common clinical imaging method to examine the retina and choroid [2-5], which are
anatomically deep from the body surface and challenge most of other high resolution biomedical
imaging methods. The OCT technique has dramatically improved in terms of imaging speed,
sensitivity, and resolution in the past two decade since its invention [6—10]. All of those tech-
nical promotion have significantly contributed to the utility of OCT in ophthalmic investigation
and clinical application.

As popularization of OCT application, the amount of imaging data available to ophthalmolo-
gists also is dramatically increasing. To release tense manual work requirement, a variety of suc-
cessful algorithms for computer-aided diagnosis by means of OCT image analysis are presented
accompanying with system development and promotion [11]. Especially, automated analysis of
OCT data effectively ease or improve clinical decision. Image processing is one of the major
parts of computer-aided analysis in OCT application. It enhances structural or functional OCT
images or segments some specific objects from them, providing essential information for further
visualization or analysis of OCT data. Hence, OCT image processing is critical for recognition
regions or tissues of interest or delineation features with clinical values. Currently, most of the
image processing algorithms for ophthalmic OCT are specialized for retina imaging. The cus-
tomized algorithms have achieved image enhancement, sub-layer segmentation, as well as some
other functions with amazing performance reported literatures. Those excellent algorithms are
essential factor that contributes to the booming of retina research in recent several years.

The choroid is an internal layer of the eye lying between the retina and sclera. It accounts
for most of the ocular blood flow, providing metabolic support to the retinal pigment epithelium
(RPE) as well as the inner retina. It is considered that the morphological variation indicates
circulation abnormality related to several common ocular diseases such as aged-related macular
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degeneration (AMD) and glaucoma. Imaging and quantitatively evaluation of the choroid is of
significant interest in ophthalmology. However, the choroid defies several conventional optical
imaging methods, including OCT with a 800-nm wavelength band, because of the strong light
scattering and absorption characteristics of the RPE.

1 pm wavelength band light, located in a local minimum of water absorption, has also been
utilized by OCT to image the posterior segment of the eye [12—14]. Utility of 1-um probe offers
an enhanced penetration to the choroid. Volumetric data can be obtained in the deep layers in
the posterior segment of the eye including the entire choroid and some part of the sclera. All
of referred data was acquired by OCT systems with 1-um wavelength probe unless otherwise
specified.

1.2 Aims of thesis

The general aim of the works described in this dissertation was to develop several algorithms
for automatic and effective analysis of choroidal OCT data. There were two specific topics con-
tributing to the general aim: the first topic described a automated algorithm to measure the entire
thickness of the choroid by PS-OCT; the second topic proposed a framework to characterization
and enhanced visualization of the choroidal vessel in structural OCT volume. This two topic-
s focused on either the macroscopical or microscopical information of the choroid, providing
detailed parameters representing broad description of its status in vivo.

1.3 Thesis overview
This thesis is divided into 4 chapters. An overview of each of the remaining chapters is as follow:

e Chapter 2 presents an automated choroidal thickness measurement method by PS-OCT in de-
tail. The anterior and posterior boundaries of the choroid are segmented based on intensity
and phase retardation contrasts provided by PS-OCT simultaneous. The performance of
this algorithm is evaluated in PS-OCT images acquired from in vivo macular region.

e Chapter 3 proposes a framework to analyse the choroidal vessel information. A customized
multi-scale adaptive thresholding method is developed to segment the choroidal vessel in
en-face slices extracted from a OCT volume. Then, the choroidal vessel thickness and the
entire choroidal vasculature thickness are measured by a morphological operation based
analysis and a deformable surface model. The reconstructed 3D choroidal vasculature
and depth-resolved vessel projection offer both enhanced visualization and quantitative
characterization of the choroid.

e Chapter 4 provides some concluding remarks of this dissertation.
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In addition, appendix ?? describes an EOM calibration method for EOM based PS-OCT, and
appendix B introduces a Monte-Carlo-based phase retardation estimator for systematic error
cancellation in phase retardation measurement by PS-OCT.






Chapter 2

Choroidal thickness measurement by
PS-OCT

Abstract

In this chapter, an automated choroidal thickness measurement algorithm is presented based on
polarization sensitive optical coherence tomography (PS-OCT). The superficial and inner bound-
aries are automatically detected in intensity tomography and phase retardation tomography, re-
spectively. The superficial boundary, RPE/choroid interface, is segmented by searching the local
maximum derivative of the intensity in region just beneath the RPE. A phase retardation oriented
chorio-scleral interface (CSI) segmentation approach is also developed to determine the posterior
interface of the choroid. This approach employs a two-step scheme based on the phase retarda-
tion variation detected by PS-OCT. In the first step, a rough CSI segmentation is implemented
to distinguish the choroid and sclera by using depth-oriented second derivative of the phase re-
tardation. Second, the CSI is further finely defined as the intersection of lines fitted to the phase
retardation in the choroid and sclera. This algorithm challenges the current approaches in which
the CSI is determined by back-scattering contrast, which do not represent the real CSI based on
anatomical and morphological evidence. The proposed algorithm provides a rational segmenta-
tion method for the morphological investigation of the choroid. Applications of this algorithm
are demonstrated on in vivo posterior images acquired by a PS-OCT system with 1-pm probe.



2.1 Introduction

The choroid is an internal layer of the eye with several basilic functions. It accounts for most
of the ocular blood flow [15], providing metabolic support to the retinal pigment epithelium
(RPE) and the inner retina [16]. The choroid also plays a roll in the absorption of excess light
penetrating the retina and the RPE and stabilizing the temperature of the macula [17]. Its thick-
ness is related to several ocular pathological parameters, e.g., the intraocular pressure, perfusion
pressure [18], and endogenous nitric oxide production [19]. The morphological investigation of
the choroid is of significant interest in the diagnosis and study of ocular diseases such as glauco-
ma [20] and age-related macular degeneration [21]. However, the choroid defies the conventional
optical imaging methods because of the strong light scattering and absorption characteristics of
the RPE. Indocyanine green angiography (ICGA) [22-24], which relies on near-infrared wave-
length, allows visualization of choroidal vessels, but it does not provide depth-resolved informa-
tion. Ultrasonography is another approach used for choroidal examination [25], but its resolution
is limited by a trade-off between detection depth and resolution.

OCT has been a common imaging method in ophthalmology [2,26,27]. The OCT technique
has been dramatically improved in terms of imaging speed and resolution in the past two decades
since its invention [28,29]. The branch of Fourier-domain OCT (FD-OCT), including spectral-
domain OCT and swept-source OCT, provides up to 20MHz scanning speed [28, 30], as well
as enhanced sensitivity and signal to noise ratio (SNR) [6,7,31]. The increased acquisition
speed to time domain OCT (TD-OCT) allows repeated 2D imaging of the retina, providing the
possibility of speckle reduction and SNR improvement by averaging OCT images. Recently,
the enhanced depth imaging (EDI) OCT technique has been developed and utilized to study the
cross-sectional structure and measure the thickness of the choroid [32,33]. Another approach to
obtaining a choroid image using OCT, the application of a 1-pum wavelength probe, is rapidly
being developed for its high penetration ability in the posterior segment of the eye [13,34-37].

Most retinal segmentation algorithms are achieved by using back-scattering intensity infor-
mation obtained by conventional OCT [11]. This intensity based segmentation relies on image
contrast properties of each retinal layer, which have been widely investigated by comparing OCT
images and histological studies. Various methods have been developed for the robust and ful-
ly automated segmentation of retinal OCT images. Hee et al. proposed the first segmentation
method in TD-OCT based on intensity variation [38]. Since then, various methods have been
developed for the segmentation of OCT images. Recently reported automated segmentation can
provide robust segmentation of several sub-layers in the retina with superior precision to manual
segmentation [39,40]. However, when it comes to the choroid, there is a lack of morpholog-
ic knowledge. Its thickness would become significantly reduced when cut off from its blood
supply. This makes it difficult to acquire knowledge of the chorio-scleral interface (CSI) in mor-
phology in vitro, and hence it has been impossible to define the CSI in an OCT image based
on histological knowledge. Most of the current OCT studies about choroidal morphology are
based on manual segmentation. Ophthalmologists manually and empirically identify CSI. How-
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Table 2.1: Properties of several ocular layers in PS-OCT images

Intensity properties Phase retardation properties
RPE Hyper-reflective Scrambling or preserving
Choroid Randomly distributed Preserving
Sclera Homogeneous Increasing as penetration depth

ever, to the best of our knowledge, no clear morphological or anatomical evidence supports the
empirical manual segmentation of CSI. Recently, Kaji¢ et al. reported an automated choroidal
segmentation approach using a statistical model [41], but the training data for the construction
of this model was still obtained by manual segmentation of intensity OCT images.

Polarization sensitive OCT (PS-OCT) is a functional extension of OCT providing intensi-
ty tomography and birefringence tomography simultaneously [42—45]. Tissues consisting of
organized microstructure or collagen alter the polarization status of light, reflected as a phase
retardation change or other birefringent parameters. Several studies have reported retinal imag-
ing using PS-OCT. The phase retardation and birefringence of the retinal nerve fiber layer has
been well investigated [46,47]. Gétzinger et al. reported a functional segmentation of RPE using
depolarization information obtained by PS-OCT [48].

Birefringent properties of the choroid and sclera have a clear difference [46]. The sclera
represents a strong birefringence because of its high concentration of of collagen, and hence the
phase retardation should increase along the penetration. Meanwhile, despite of a small amount
of collagenic components in the choroid, the choroidal birefringence is so low that it is negligible
for the PS-OCT system with a typical birefringence sensitivity. And hence the phase retardation
can be reasonably considered as constant in the choroid [49]. This has been validated by high
penetration PS-OCT using a 1-pm probe reported by Yamanari, et al. [50]. The depth-resolved
birefringence properties measured by PS-OCT can be utilized as a contrast source for the seg-
mentation of these tissues.

In this chapter, An automated segmentation algorithm is introduced to measure the thickness
of the choroid based on intensity tomography and phase retardation tomography simultaneously
obtained by PS-OCT. The boundary between the RPE and the choroid is segmented based on
the high intensity gradient in intensity images. The CSI segmentation approach consists of two
steps: Firstly, a rough segmentation is achieved by model analysis and a dynamic programming
algorithm in the phase retardation image to initialize further respective phase retardation anal-
ysis in choroid and sclera. Next, linear regressions are applied to both layers near the rough
segmentation results, and the CSI is determined by the intersection of the two fitted lines. Fi-
nally, a back-scattering based error detection and correction algorithm is performed to avoid the
segmentation error caused by large vessels. Several results of this algorithm are presented to
verify it efficiency in automatical choroidal thickness measurement.
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2.2 Image acquisition and enhancement

In this study, a full-range Jones matrix PS-OCT system with a 1-pum probe beam has been em-
ployed for the polarization sensitive measurement [S0]. The principle and setup of the Jones
matrix PS-OCT has been reported in detail elsewhere [50-52]. In this system, the Jones matrix
detection is achieved by modulating the incident light using an electro-optic modulator (EOM). It
creates modulation-multiplexed two orthogonal polarization states. This polarization modulation
results in two multiplexed OCT spectra with different carrier frequencies, i.e., a null-frequency
and the same frequency with the polarization modulation. Both of the multiplexed spectra are
then detected by polarization diversity detectors consisting of horizontal and vertical detectors.
The OCT signals corresponding to the two carrier frequencies are numerically demultiplexed
after detection. Since the OCT signals are multiplexed both by the carrier frequency and the
polarization diversity detection, I finally obtain 4 OCT signals simultaneously. And then the
cumulative Jones matrices of a sample are obtained by assigning the 4 OCT signals to each el-
ement of the Jones matrices. High-penetration Jones matrix tomography can be obtained from
the posterior segment of eye by this PS-OCT system, and successive signal processing provides
the corresponding phase retardation tomography.

Image quality is critical for biomedical image segmentation, especially for computer-assisted
segmentation tasks. Speckle noise and a limited SNR are two of the main issues resulting in
difficulty with segmentation. As reported in recent research, the signal to noise issue introduces
both systematic and random errors in phase retardation measurement in the Jones matrix PS-
OCT [53]. Usually, the SNR of an optical signal back-scattered from the CSI is low. It results
in randomness and a low contrast in phase retardation tomography. This prevents an accurate
quantitative analysis of phase retardation, leading to the failure of phase retardation information
based CSI segmentation. To improve the quality of the phase retardation images, I measured
several B-scans repeatedly in a same position of the eye, and performed the Jones matrices
averaging described in [54].

Figure 2.1 shows intensity and phase retardation images resolved from a single Jones matrix
B-scan and averaged Jones matrix B-scan. Figure 2.1(c) reveals that the averaging strongly
reduced the speckle noise in intensity image and improves the SNR. It is also shown in Fig.
2.1(d) that an enhanced phase retardation contrast appears around the CSI.

2.3 RPE/choroidal interface segmentation based on intensity con-
trast

The RPE is known as the most inner layer in the hyper-reflective complex in a OCT image
acquired in the posterior segment of the eye. It appears as a high intensity image strip above the
choroid, while the choroid has a lower intensity signal than the RPE complex. Hence, the local
maximum gradient represents the interface between the RPE and the choroid in an intensity OCT
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Figure 2.1: The efficiency of the Jones matrix averaging of 16 B-scans. (a) and (b) are the inten-
sity image and phase retardation image extracted from single B-scan in PS-OCT, respectively.
(c) and (d) are the intensity image and phase retardation image extracted from the average of 16
Jones matrix B-scans, respectively.

Figure 2.2: Segmentation of the RPE/choroid interface.

image. Segmentation of this layer has achieved by different methods such as pixel clustering
[40], dynamic programming [39,55], and active contour [56,57].

Here the algorithm firstly adopts a similar method as 58 for RPE estimation. This estima-
tion detects the RPE by searching the pixels with the maximum intensity value in each A-lines.
Because the shadow signal of the retinal vessel or non-edge region can degrade the segmenta-
tion result, a Savitzy-Golay filter is performed to smooth the segmentation result. A smooth line
denotes the RPE position is detected after an additional median filter. Then, the interface of the
choroid and RPE is assigned to the pixels with minimum negative gradients beneath the RPE es-
timation in the intensity OCT image blurred by using a Gaussian filter with a standard deviation
of 3 x 3 pixels. The yellow line in figure 2.2 indicates the RPE/choroid boundary segmented
using this method.
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2.4 Two-step CSI segmentation based on phase retardation contrast

Since the sclera is a collagenous tissue and the choroid is not, the birefringence properties in
choroid and sclera are quite different. In this work, the CSI is determined as the boundary
between areas with different phase retardation properties. The gradient of phase retardation is
used to represent the birefringence. The segmentation approach consists of two steps. A rough
segmentation is implemented in advance for the initialization of subsequent phase retardation
analysis. Then, depth-oriented linear regressions are applied to the phase retardations in both the
roughly segmented choroid and the sclera for an exact segmentation.

2.4.1 Rough segmentation

The second step of our algorithm is based on the depth-oriented slope fitting of the phase retar-
dation which is applied to the choroid and sclera separately. Therefore, the interface of these
layers should be roughly identified in advance. The purpose of the rough segmentation from the
first step is to determine the ranges of linear regressions for the second-step of our algorithm.

Since the amount of birefringence is low in the retina and choroid, I model the phase retar-
dation in the choroid as a small constant value, i.e., a linear line with a slope of zero in depth. On
the other hand, sclera has a strong birefringence, and hence I model the scleral birefringence as a
linear line with a positive slope in depth. In this model, the CSI is detected as a local maximum
of the second derivative of the phase retardation in depth. In our implementation the second
derivative is obtained by a discrete operator of [-1 00002 00 0 0 -1], which is equivalent to a
wide kernel first derivative operator of [ -1-1-1-1-111 11 1] and the successive standard first
derivative operator of [-1 1]. The wide kernel operator is used to enhance the derivative value and
improve the SNR of the second derivative. This second derivative possesses a local maximum
at the CSI, while minor fluctuations of the phase retardation are filtered out. The location of the
local maximum is utilized as the first estimation of the CSI in the next procedure.

In this implementation, The speckle noise is firstly reduced using a rectangular averaging
filter (size: 30 x 10 pix = 100 pm (lateral) X 79 pm (axial)) in the phase retardation images.
This moving average significantly reduces the speckle in a phase retardation image as shown in
Fig. 2.3(a). Then, the second derivative of the despeckled phase retardation was obtained along
penetration in each A-line using the protocol described above. The distribution of the second
derivative is shown in Fig. 2.3(b). A local maximum band can be observed around the expected
CSL

However, in Fig. 2.3(b), the CSI is not the only layer detected as local maximum. The
strongest signal appears around the inner limiting membrane. Region of interest, the choroidal
and scleral areas, are selected based on the RPE/choroid interface segmentation achieved by
the method described in Sec. 2.3. Then, this boundary is shifted 5 pixels (40 pum) towards
the choroidal side to exclude the RPE from the region of interest. All of the pixels anterior to
the choroid/RPE interface as well as other pixels with a negative second derivative value or an
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Figure 2.3: Illustration of rough segmentation flow. (a) Speckle reduced phase retardation image.
(b) Distribution of second derivative in the B-scan image. (c) The node cost distribution of
potential CSI are masked on the intensity OCT image. The yellow line shows the segmented
RPE/choroid interface. (d) Rough segmentation result is shown in red.

intensity lower than twice of noise floor are set to 0. Then, the second derivative information is
normalized in each A-line. Here d(i, j) are used to denote the normalized second derivative of the
j-th pixel in the i-th A-line. Figure 2.2 shows an example of RPE/choroid interface segmentation
result.

To obtain a continuous curve as the CSI estimation, a graph searching method are applied
using dynamic programming based on the second derivative information. The dynamic program-
ming method has been used in several automated segmentations of retinal layers in intensity OCT
images, providing a robust solution to shortest path or minimum cost problems without an ini-
tialization of start and end points [39, 55, 59]. To apply the graph searching method, All pixels
are firstly classified into either a potential CSI or a false CSI. The pixels meeting the condition of
d(i, j) > 0.5 are classified as potential CSI and the others are classified as false CSI. Furthermore,
the node costs of these two types of pixels are assigned as

(2.1)

i) = { 2 ford(i,j) < 0.5

1—d(i,j) ford(i,j)>05

The node cost of potential CSI slope is shown in Fig. 2.3(c) with a rainbow color-map
superimposed on an intensity image, where transparent is assigned to the node cost of 2. In this
definition, the node cost at a potential CSI ranges from O to 1, lower than half of the node cost in a
false slope position. This setting can effectively limit the segmented CSI within the potential CSI
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Figure 2.4: Illustration of the slope fitting model in phase retardation. The black curve shows
the phase retardation A-line signal marked with a white dashed line in Fig. 2.3(a) The blue and
red dashed lines are the linear regression lines of phase retardation in the choroid and sclera,
respectively. The CSI is determined by the intersection of these two lines.

band, isolating it from the fake patches of local maximum in the second derivative distribution.

The minimum cost from the first A-line to node (i, j) in this dynamic programming algorithm
is represented as

(i, j) i=0,0<j<M
cost(i, ) = j_é%gjﬂcost(i—l,n)—i— In—jl+1c(i,j) 0<i<N,0<j<M,
00 other cases

(2.2)
where M and N are the number of pixels in an A-line and the number of A-lines in a B-scan,
respectively. /|n — j| 4+ 1 in the second case is a distance parameter that reflects the distance
penalty in the graphic solution.

The optimal solution is defined by searching the path with minimum cost from the leftmost
A-line to the rightmost A-line. A 50-pixel (3.3% of the transversal range) median filter is also
applied to reject minor segmentation error. This solution is shown with a red line in Fig. 2.3(d).

2.4.2 Slope fitting in phase retardation

The gradient of phase retardation reveals birefringence properties in the tissue. Phase retardation
increases rapidly with penetration in the sclera due to the presence of birefringent components,
while remaining almost a constant in the choroid. The boundary of these two layers should
appear as an inflection in the phase retardation model. The exact segmentation to the CSI is
achieved by slopes fitting to cumulative phase retardation in the choroid and sclera as described
in following paragraphs.
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Figure 2.5: The CSI obtained by fitting the phase retardation model shown in Fig. 2.4(a). The red
curve shows the intersections of the linear regression lines in each A-scan, (b) The CSI smoothed
by a median filter.

The phase retardation model in the choroid and sclera is illustrated in Fig. 2.4. Constant
phase retardation in the choroid is assumed in this model. An average of the phase retardation
is obtained between the RPE/choroid boundary and the initial estimation of the CSI for each A-
line, where the RPE/choroid boundary was segmented by using the intensity image as described
before, and the initial estimation of the CSI was obtained by the method described in 2.4.1.
This averaging is equivalent to a linear regression to the phase retardation in the choroid by
a regression line with zero. Linear regressions are applied to the 7-pixel (55-pm) regions in
the sclera close to the initial estimation of the CSI. Since the initial segmentation might lack
accuracy, I do 11 trials with the start point of this linear regression from -5 pixels to +5 pixels
(-40 pm to +40 pm) to the initially estimated CSI, and select the regression with the maximum
gradient as the phase retardation slope in the sclera. This operation is for excluding the choroidal
and scleral regions with aliasing of the phase retardation from the linear regression since these
two regions have low phase retardation that minimize the gradient. The CSI of each A-line is
defined as the intersection of these two lines as shown in Fig. 2.4(a). Finally, the CSI is acquired
by smoothing the intersections in the B-scan direction by a 50-pixel median filter.

2.4.3 Error correction

A large blood vessel in the choroid or sclera can disturb this phase retardation information based
CSI detection. The anterior boundary of a blood vessel is sometimes detected as the CSI by
this algorithm. One reason might be the unreliable measurement of the phase retardation in
the blood vessels. The back scattering signal from blood is very weak, so the SNR inside of a
blood vessel is relevantly low. As it was revealed in Ref. 53, measured phase retardation would
approach around 2/3 7 as the effective SNR decreases. This erroneous high phase retardation
would mimic the phase retardation in the sclera. The collagen in the vessel wall can also be a
factor that misleads our phase retardation oriented CSI segmentation.

To eliminate the segmentation error around a large vein, an additional optimization algorithm
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Figure 2.6: An example of intensity based segmentation error correction. The red and yellow
lines denote the phase retardation based segmentation of the CSI and the intensity based correc-
tion result.

based on an intensity image is applied. Identification of blood vessel’s position around the CSI is
required in error correction. This is achieved by the analysis of intensity information beneath the
CSI obtained in the two-step segmentation process described in Section 2.4. The intensity inside
the blood is rather weak due to the low back scattering from blood. A moderate intensity can be
observed in the sclera near the CSI, and the intensity constantly decreases along penetration in
the intensity images acquired by PS-OCT. Note that this feature is only warranted in polarization-
independent intensity OCT images, which are free from the birefringence artifact that exists in
standard OCT images [13,60]. We distinguish the segmentation error by evaluating the distance
between the segmented CSI and the pixel with maximum intensity beneath it in each A-line. If
this distance is higher than a threshold, e.g. 5 pixels, the CSI would be corrected to the maximum
intensity position, which indicates the posterior boundary of a blood vessel. In the end, a median
filter with the width of 25 A-lines is utilized to reject the false correction that can happen in a
single A-line.

Fig. 2.6 shows an example of an intensity based segmentation error correction. As indicated
by white arrows, the phase retardation based segmentation result is located within blood vessels
in some regions. It is clear that the phase retardation failed in segmentation of the CSI. These er-
rors can be detected and corrected by the intensity based process described above. The corrected
segmentation result shown with a yellow line in Fig. 2.6 provides a more reasonable estimation
of the CSI around the vessel regions.

2.5 Results

2.5.1 Performance of the CSI segmentation by PS-OCT

An 1-pm probe polarization sensitive swept source OCT was utilized to obtain phase retardation
and back-scattering images. The setup and parameters of this system have been described in Ref.
50 in detail. In vivo multiple B-scan imaging has been performed in healthy eyes. The macular
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Figure 2.7: PS-OCT images of the macular region. (a) Intensity image, (b) Phase retardation im-
age. The white line in (b) shows the CSI segmentation by phase retardation based segmentation.

region of the retina is imaged with 1,500 A-lines per frame and 64 frames are repeatedly acquired
in a 5-mm horizontal area centered at the fovea. The probe power on the cornea was 0.81 mW.

The axial motion was detected and canceled by a custom-made correlation based algorithm.
In this algorithm, a B-scan frame is selected as a reference. The cross-correlation functions be-
tween an A-line in the reference frame and the A-lines in the corresponding transversal location
in the other frames are calculated. These correlation functions provide the axial displacement
of each A-line respect to the reference frame. The outliers in the detected displacement within
a frame were eliminated by applying medial filtering with a kernel size of 100 A-lines. The
intra-frame-motion respect to the reference frame was then corrected by using the predicted
displacement for each frame. After this motion correction, the image correlations between the
reference frame and all of the motion corrected frames were calculated, and the most highly
correlated 15 frames were selected. An averaged Jones matrix B-scan was yielded from the 15
frames and the reference frame by using the Jones matrix averaging algorithm [54].

Six subjects without marked posterior disorder were involved in this study. Six eyes of three
subjects were first measured. A high similarity between the two eyes of the same subject was
observed. Hence, only one eye from each remaining subject was scanned. Finally, six eyes of
the six subjects were involved in the following study.

An example of phase retardation based segmentation is shown in Fig. 2.7. This B-scan is
acquired from a myopic eye of an adult subject. In the region indicated with an ellipse in Fig.
2.7(a), the tissue appears as a homogeneous intensity feature. No structrural information indi-
cates the location of the CSI, so it is difficult to determine whether the CSI is smooth or abruptly
convex in this region. In the same region in Fig. 2.7(b), a clear difference in birefringence prop-
erty can be visualized through phase retardation information. The real CSI can be detected as
shown in Fig. 2.7 using the 2-step algorithm described in Section 2.4. The phase retardation
based method provides more reliable CSI segmentation than the intensity based method.

In several previous studies about choroidal thickness, the choroidal thickness was manually
determined at only a few representative locations, and the distribution of choroidal thickness is
evaluated based on the thickness at these locations [61,62]. This method is based on the assump-
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Figure 2.8: A phase retardation based segmentation result is shown in intensity image (a) and
phase retardation image (b). The yellow and black ellipses marked several unsmooth segments
in the CSL.

tion that the CSI is smooth. However, the phase retardation based segmentation results challenge
this assumption. In Fig. 2.6, it is clear that the CSI appears to deviate around the large blood
vessels in the thin choroid. Fig. 2.8 also gives an example of rough CSI. The CSI segments
marked with yellow circles appear as convex patterns, contradicting the assumption of a smooth
CSI. According to the phase retardation image shown in Fig. 2.8(b), the convex distributions of
the phase retardation are also found in these regions, and the phase retardation based segmen-
tation accurately represents them. This unsmooth CSI obtained by the phase retardation based
segmentation was clearly observed in 3 out of 6 subjects.

Abnormal CSI segmentation associated with a low birefringence region beneath the fovea
was sometimes obtained. Fig. 2.9 shows an example. It is clear that there is a region with
abruptly low phase retardation around the CSI near the fovea. This phase retardation distribution
was found in three out of six subjects, either with myopia or hyperopia. Since this CSI segmen-
tation algorithm is based on the phase retardation information, the segmented CSI can be given
as a concave shape. However, a corresponding concave structure cannot be found in the intensity
image (Fig. 2.9(a)). One potential reason for this could be the alteration of the birefringence
property in the sclera at the foveal region. However, neither the phase retardation nor the inten-
sity information can provide indisputable evidence to identify the CSI. Further study including
an in vitro histological study may be required to correctly understand this issue.

In measurements of one subject out of six, the penetration depth is quite limited in the
choroid. The results are shown in Fig. 2.10. Both the intensity and phase retardation images
are poor in the posterior choroidal region. Reasons for this might be a very thick choroid or
strong light absorption. The low quality of phase retardation measurement leads to the failure
of CSI segmentation. Even so, the algorithm still provided a reasonable CSI segmentation at
the left part of the B-scan, i.e., at the nasal region. Further development and optimization of the
PS-OCT hardware will provide higher signal intensity for these cases, and may solve this issue.

The repeatability of this method was also evaluated as follows. I first selected 16 B-scan
frames from the 64 frames in a single dataset by the correlation based algorithm. An averaged
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Figure 2.9: An example of segmentation in an eye with low birefringence in some scleral region.
The red and white lines show the segmentation result in intensity image (a) and phase retardation
image (b), respectively.

o

Figure 2.10: Intensity (a) and phase retardation (b) B-scans acquired from an eye with poor
visualization of the posterior choroidal region. The CSI segmentation results, a red line in (a)
and a white line in (b), cannot represent the real CSL

19



Jones matrix image was created from these 16 frames. The RPE and the CSI were segmented
from this averaged Jones matrix image, and the choroidal thickness distribution was defined as
the distance between the RPE and the CSI. And then, another 16 frames were selected from
the residual 48 frames by the same correlation algorithm, and the same operations including the
averaging, segmentation, and calculation of choroidal thickness were performed. Namely, the
segmentation was performed twice with two independent OCT images corresponding to the same
location of the eye. Finally, the standard deviation of the difference of the choroidal thicknesses
along the transversal direction was obtained. This standard deviation would provide a measure
of repeatability of the segmentation algorithm.

2.5.2 Measurement of the choroidal thickness

I performed this evaluation with 4 datasets obtained from 4 subjects which show reasonable phase
retardation distributions. The standard deviations of the difference of the choroidal thickness
were 14.1 ym, 17.1 pym, 10.8 ym and 8.2 yum. These standard deviations correspond to 1- to
2-pixel depth of our PS-OCT image. And hence, the repeatability of our system is believed to be
reasonable.

2.6 Discussion

In the Jones matrix PS-OCT, both the accuracy and precision of phase retardation measurement
rely on effective SNR [53]. An effective SNR is mainly determined by the lowest SNR channels
in the Jones matrix measurement. In our system, two of the four channels use a phase modulated
probe beam achieved by an electro-optic modulator. The SNR in the modulated channels are
more than 10-dB lower than that in non-modulated channels. Hence, the effective SNR level
is limited to a relatively low range, raising both systematic and random error in the phase re-
tardation measurement. This is one of the main issues that degrade phase retardation analysis
and segmentation. We believe optimization of the PS-OCT system can promote segmentation
accuracy and reduce the failure rate of the segmentation.

In this work, phase retardation image quality is enhanced by averaging several Jones ma-
trix B-scans. Jones matrix averaging is very sensitive to eye motion among B-scans since the
complex Jones matrix elements can counteract each other in the case of a mismatch. Transver-
sal motion compensation is not implemented to save calculation time, only choosing a group
of B-scans with less transversal eye motion from a set of B-scans. So there is a trade-off be-
tween noise reduction and signal preservation related to the number of B-scans in Jones matrix
averaging. Increasing the B-scans number can reduce the noise level, but degrade the accuracy
in phase retardation measurement. The optimal phase retardation image quality is limited by
this trade-off. There are three possible solutions to this issue. An optimized PS-OCT system
can acquire Jones matrix B-scans with high effective SNR, so fewer B-scans are required for
noise reduction. Increasing the scanning speed can restrain the eye motion effect by shortening
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the acquisition time. A timesaving and effective motion compensation algorithm or extra mo-
tion tracking hardware [63, 64], might be able to further increase the averaged phase retardation
image quality.

Although the choroid is a phase retardation preserving layer, a moderate increase in phase
retardation was sometimes observed in the choroid along the depth. This could be because of
a systematic error caused by the decreasing effective SNR. A Monte-Carlo-based phase retar-
dation estimator can restrain systematic error introduced by noise [65]. However, this method
requires an accurate effective SNR value for each pixel. The Jones matrix averaging is a com-
plex averaging process. Although the Jones matrices have a non-correlated global phase to each
other, the global-phase is cancelled before the complex averaging [54], a small amount of resid-
ual global phase results in an out-of-phase summation of the signals and degrades the effective
SNR. Since this signal degradation is not fully predictable, the Monte-Carlo-based phase retar-
dation estimator can not always provide a correct estimation of the phase retardation. Therefore,
I did not apply the Monte-Carlo-Based estimator in this study. Further optimization of PS-OCT
hardware will improve the sensitivity, and will eliminate the necessity of Jones matrix averag-
ing. The Monte-Carlo-Based estimator could be a powerful aid to phase retardation based CSI
segmentation for an improved future version of PS-OCT.

In current status, an image with 1,500 (lateral) x 300 (axial) pixels requires around 12 sec-
onds for the pre-processing and 10 seconds for segmentation with an algorithm implementation
written in LabVIEW (LabVIEW 2011 for 64-bit Windows 7) on Intel CORE i7 CPU Q720
at 1.60 GHz with 8-GB RAM. The pre-processing includes motion cancellation, Jones matrix
averaging, and phase retardation calculation, and the time consumptions are nearly equally dis-
tributed in these three processes. Among the sub-processes in the segmentation process, the
rough segmentation is the most time consuming process, it takes around 7 seconds. I expect
to shorten the pre-processing time by taking the advantage of a graphics processing unit (GPU)
in the future, since the pre-processing can be heavily parallelized according to its mathematical
properties. Although I are currently using a multi-core CPU, the program has not been well
parallelized. The segmentation speed can also be optimized by proper usage of multiple CUP
cores.

2.7 Summary

This chapter has reported an algorithm for automated and functional measurement of the choroidal
thickness based on intensity and phase retardation information obtained by PS-OCT. The inter-
face between the RPE and the choroid is segmented by detection of the maximum gradient just
beneath the RPE complex. The choroid and sclera were modeled by linear incremental phase re-
tardation along the depth. Segmentation was achieved by a two-step algorithm based on a phase
retardation image followed by fine correction based on the corresponding intensity image. The
first step of the two-step algorithm used the second derivative of the phase retardation image and
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a graph-search algorithm, and provided an initial estimate of CSI for the second step. The second
step defined the CSI based on the difference of the phase retardation slopes of the choroid and
sclera. Phase retardation tomography represents the depth-resolved birefringence properties in
the sample, offering functional information above structure to recognize tissues. The phase retar-
dation based CSI segmentation algorithm provides a reliable method for an investigation of CSI
morphology. Associated with the segmentation of RPE/choroid interface, the “’real” choroidal
thickness can be achieved with high accuracy. Currently, the number of subjects examined is
six. Further study with a larger number of subjects and a larger variety of eyes including sev-
eral refraction errors and several diseases would be important to strengthen the reliability of the
algorithm.
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Chapter 3

Enhanced visualization and
characterization of the choroidal vessel
by OCT

abstract

In this chapter, the research has been focused on the choroidal vessel. An automated choroidal
vessel segmentation and evaluation algorithm is developed for advanced visualization and quan-
tification of the choroidal vasculature by high penetration optical coherence tomography. The
choroid is flattened to the retinal pigment epithelium and then choroidal vessel is segmented by
a customized multi-scale adaptive thresholding method in en-face slices at each depth. Succes-
sively, the choroidal vessel thickness is evaluated by a series of morphological operations. Both
structural and vessel thickness information are represented in a reconstructed 3D choroidal vas-
culature volume. Practicability of the proposed method is also validated by analysis of in vivo
choroidal volume data acquired by optical coherence tomography system with 1-um probe.
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3.1 Introduction and background

As referred in Chap. 2, the choroid is a highly vascular layer lying between the retinal pigment
epithelium (RPE) and the sclera in the posterior segment of eye, accounting for oxygen and nour-
ishment supply to the outer layer of the retina [66,67]. Chapter 2 measures the entire thickness
of the choroid, but does not offer methods for investigation of the choroidal vessel. As reported,
morphological alternation of the choroidal vasculature may play an important roll in some ocular
diseases related to circulation abnormalities such glaucoma or aged-related macular degenera-
tion (AMD) [68-70]. Hence, imaging of the choroidal vasculature draws significant interest in
ophthalmology.

ICGA is currently an common method to image the choroidal vasculature in clinic [24].
However, ICGA only provide a en-face projection of dye contrast without depth resolution. Sig-
nal overlapping among different layers can degrade the vessel contrast especially in areas where
the capillaries is dense. Moreover, ICGA requires dye injection, which is uncomfortable and can
results in severe adverse reaction [71,72]. Optical coherence tomography (OCT) has become
a powerful imaging technique in ophthalmology for its cross-sectional or 3D imaging capabil-
ity with high resolution [3,5]. Currently clinical ophthalmic OCT systems employ a scanning
light with 800-nm wavelength range, which can be significantly attenuated by the RPE because
of strong absorption and scattering, providing a limited penetration into the choroid. Enhanced
depth imaging OCT offers clear images in the choroid by adjusting the beam focus depth and
averaging repeated B-scans [32]. This technique has been utilized to measure the choroidal thick-
ness [32,61]. But it is difficult for 3D visualization of the choroidal since the B-scan averaging
limits its imaging speed. An alternative method that can access to the choroidal imaging by OCT
is high penetration (HP-) OCT achieved by application of 1-um probe wavelength [12, 13, 73].
Application of HP-OCT is rapidly developing for its capability of 3D choroidal imaging. It
has been utilized in the choroidal thickness measurement [74, 75], the choroidal vessel network
visualization [14], and non-invasive choroidal vessel angiography [76,77].

The structure of the choroid is generally divided in to four layers: Haller’s layer, Sattler’s
layer, Choriocapillaris, and Bruch’s membrane from the outer to inner layers [67]. Besides the
Bruch’s membrane, the other 3 layers are formed by dense vessel and distinguished by their
vessel diameters. Haller’s layer consists of large diameter blood vessel, lying outmost layer
of the choroid; Sattler’s layer is a layer of medium diameter blood vessel; Choriocapillaris is
immediately adjacent to Bruch’s membrane with capillaries. The entire choroidal thickness has
been regarded as an important parameter since it is highly related to several pathological effect
in clinic or some other parameters [78,79]. However, it does not fully represent the status of
the choroid and can become invalid in diagnosis of some ocular diseases. E.g., it is reported
that glaucoma can result in either thinning or thickening of the choroid in different stages [80].
A hypothesis considered it is caused by different interactions of the vasculature occurring in
different sub-layers in the choroid [81]. 3D visualization and thickness measurement of the
choroidal vessel can reveal detailed morphological variation of the choroid, offering a better
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understanding to the pathological phenomena. Hence, segmentation and parameter measurement
of the choroidal vessel are critical for investigation and diagnosis of circulation-related diseases
in ophthalmology.

Since vessel segmentation in medical image is an essential step of the diagnosis of various
diseases, many state-of-the-art algorithms for vessel segmentation in 2D or 3D data have been
proposed [82,83]. Choroidal vessel segmentation can provide not only a intuitive visualization of
the choroidal vasculature but also an access to morphological information of the choroidal, which
is important to understand pathogenesis of circulation-related ocular diseases. Generally, the
vessel segmentation can be achieved by 2 types of strategies: region tracking from some given or
detected seeds in vessels, or tracking-based methods; and extracting the boundary or ridge of the
vessel using some filters, or window-based methods. Tracking-based methods are usually time-
consuming, while window-based methods often require further refinement. Recently, Li et. al.
developed an automated choroidal vasculature segmentation algorithm by using seeds detection
and region growing approaches, providing 3D visualization and segmentation of the choroidal
vasculature [84]. Kaji¢ et. al. presented a fully automated vessel segmentation algorithm by
employing multi-scale 3D edge filtering and projection of “probability cones” to determine the
vessel “core” [85]. Though performing well in literatures, both segmentation algorithms are
relatively complicate in mathematical model and programming. Adaptive thresholding is one of
the most simplest window-based method of image segmentation. It generate a binary image from
a gray-scale image by local threshold statistically examine by the neighborhood of each pixel.
The backscattering coefficient of blood is much lower than that of other tissues, so the intensity
of the OCT signal at vessel region is relatively lower than background. So adaptive thresholding
method can be an simple candidate approach for choroidal vessel segmentation.

Quantitative analysis of choroidal vasculature plays an important roll in pathogenesis inves-
tigation and clinical diagnosis of several ocular diseases. Sohrab et. al. reported an method
for quantitative analysis the choroidal vasculature in AMD patients using vessel density as a pa-
rameter in spectral OCT volumes, validating the potential of OCT in qualitative and quantitative
choroidal vascularity evaluation [86]. However, the choroidal vessel features were not further
evaluated in their work. The measurement of choroidal vessel thickness is the key of quantitative
evaluation of choroidal vessel and discrimination of the internal layers in the choroid. The vessel
diameter distribution can provide valuable information to understand the ocular blood supply
condition. This task is challenged because the choroidal vessels are densely distributed and their
orientations are highly zigzag.

In this chapter, I present an automated framework to segment and quantitatively characterize
the choroidal vessel in volumetric OCT data obtained by HP-OCT. Firstly, the choroidal vessel
is segmented by a customized multi-scale adaptive thresholding based segmentation algorithm
in en — face slices, which are aligned to the RPE, in each depth; successively, the thickness
of choroidal vessel is measured by a serial of opening operations in morphology. The choroidal
vasculature is shown in both 3D volume or depth-resolved en-face projection. The proposed
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approach can visualize the choroidal vasculature with vessel thickness information, providing a
non-invasive quantitative analysis method for the choroidal vasculature investigation.

3.2 Choroidal volume extracting and flattening

The choroidal vascular pattern can be clearly visualized in the en-face slices extracted at different
depth. A customized procedure is developed to segment the choroidal vasculature in en-face
slices in the choroidal volume. Before the application of the segmentation algorithm, the choroid
and a part of the sclera are segmented from the OCT volume and flattened to the RPE.

To identify the choroidal region and extract the choroid slices at each depth, the Bruch’s
membrane is segmented automatically. I employ a method similar to that utilized in [74] to
segment the pixels with minimum negative gradients beneath the RPE in each B-scan. The
segmentation result is approximately regarded as the Bruch’s membrane, whose thickness is
only several pum, similar with the pixel resolution of OCT system. 370-um range beneath the
Bruch’s membrane is selected and flattened in the volume OCT data. Considering the typical
maximum choroidal thickness around the macular, the selected volume covers all of the choroid
and partial of the sclera in most cases. Local mean filter is performed to reduce speckle noise and
enhance image quality in en-face slices at each depth. Figure 3.1 shows the despeckled slices
extracted at difference depths in the choroid. The choroidal vessel network can be visualized
with an increasing thickness as depth.

Beside the Bruch’s membrane, the other boundary of the hyper-reflective complex, outer
nuclear layer (ONL)/inner segment (IS) of photoreceptor layer, is also segmented by detect the
maximum positive gradient above the RPE. The hyper-reflective complex is extracted from the
volumetric data. The extraction of this layer is useful to recognize the shadow signal of the
retinal vessel described in 3.3.3.

3.3 Multi-scale adaptive thresholding based vessel segmentation

3.3.1 Adaptive thresholding method
Adaptive thresholding method
Instead of local mean or local median approaches, robust automatic threshold selection [87],

which is simple and fast in bi-level thresholding of grey-scale images, is utilized to find the local
threshold in OCT slices since it is less sensitive to the ratio of vessel area in a local window. The
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Figure 3.1: En-face slices extracted at (a) 25um, (b) 100um, (¢) 175um, and (d) 250um under
the RPE in the OCT volume flattened to the Bruch’s membrane.
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local threshold is determined by

> I(i,5) * g(i,7)
r— g <i<z+y
y—5<j<y+7%
> g(i,g)
T—Y<i<z+y
y—5 <j<y+yg

Threshold(z,y) =

; (3.1

where I(i,7) and g(i, j) respectively represent the intensity and edge strength values at (i, j),
which is a pixel locates in a window centered at pixel (z, y) with size of w. The edge strength is
calculated as the root of summation of squared partial derivative of intensity in vertical and hor-
izontal direction. The local threshold is calculated at all of the pixels in each en-face slice. If the
pixel intensity is below the threshold it is set to vessel sign. otherwise it assumes the background
value. In this paper, 1 denotes vessel and ”0” denotes background in binary images.

Busyness filter

Figure 3.2 (b) is a binary image obtained by applying adaptive thresholding to fig. 3.2 (a) with a
fixed moving window size. The main choroidal vessels can be segmented from the background.
However, adaptive thresholding cannot properly distinguish background and vessel pixels if the
local window including only background. It will generate artifact in vessel segmentation. E.g.,
some black pixels appear in the right middle area of fig. 3.2 (a), where is the sclera region without
any vasculature pattern.

Normally, the vessel and background regions are quite distinct from each other in a bina-
rized sub-image containing both vessels and the background. While the pixel intensity alternate
frequently so that it seems that the ’vessel” pixels are more randomly distributed in a binarized
sub-image containing only the background. Reasonably, edge busyness, which represents the jit-
tery appearance of edges, are adopt as parameter to recognize and reject the artifact vessel pixels
in non-vessel region [88].

I defined edge pixel as a pixel with binary value different with at least one of its 8 neighbor
pixels in a binary image. The ratio of edge pixel in a local window is used to evaluate the
busyness. Fig. 3.2 (c) shows the busyness distribution of Fig. 3.2 (b). It is obvious the busyness
value is high in the sclera region/no vessel region. So the segmentation artifact can be recognized
by applying a satisfactory threshold to the busyness image. The gray pixels in fig. 3.2 denote the
removed artifact in adaptive thresholding based vessel segmentation.

3.3.2 Multi-scale adaptive thresholding based choroidal vessel segmentation

The choroidal vessel varies from several ym to hundreds-pm in diameter. Adaptive thresholding
method with a fixed window size can not always provide a satisfactory segmentation results for
vessels with different diameters. A large window can either over-estimate the vessel diameter
or ignore the vessel signal, while a small window is unable to segment a vessel with a higher
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Figure 3.2: (a) OCT en-face slice. (b) Binary image obtained by adaptive local thresholding with
a fixed window size. The white and black represent background and vessel, respectively. (c)
Busyness distribution. (d) Result of artifact removal achieved by busyness filter. The light gray
pixels are vessel artifact that is recognized and removed by busyness filter.
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diameter than the window size in adaptive thresholding. To obtain segmentations to choroidal
vessel with different diameters, I propose a multi-scale adaptive thresholding based choroidal
vessel segmentation method. The final result is achieved by combination of the reliable choroidal
vessel signal obtained by adaptive thresholding based segmentation with different window size.

Selection of reliable segmentation

The determined threshold can best separate the background and vessel when their area is similar
in a local window because the local threshold is statistically determined. If background area is
much larger than vessel area, the threshold would probably be close to the values of backgrounds.
So adaptive thresholding with large window size often overestimate the diameter a thin vessels.
Here I believe it becomes unreliable if the diameter of segmented vessel by adaptive thresholding
method is lower than 1/5 of the window size. Those identified thin vessel should be properly
segmented by a smaller window size.

A morphological process based procedure is customized to select the reliable vessel seg-
mentation in output of adaptive thresholding with specified window size, w. Firstly, I reverse
the binary image (making ”0” to be vessel and ”1” to be background) and remove the particles
with diameter lower than 2 pixels. The purpose of this operation is to fill the small holes in the
large vessels otherwise they can be regard as two adjacent thin vessels in following morpholog-
ical analysis. Then, after reversion of the binary image, an open operation is performed using
a circular structuring element with diameter of 0.2w. The vessels with a diameter lower than
0.2w will be erased while other vessels’ preservation. Further, the vessel particles with Hey-
wood circularity factors lower than 1.5 are remove in the binary image. This process rejects the
vessel particles whose shape are close to round but not vessel pattern. Finally, the reliable vessel
segmentation is preserved in the binary output.

In this procedure, I only consider the segmentation over-segmentation of thin vessel by a
large window size but not insufficient segmentation in the opposite condition. This is because
the insufficiently segmented signal can be fully covered by reliable segmentation using larger
windows.

Multi-scale vessel segmentation combination

OCT signal in thick choroidal vessels, which mainly distribute in the Haller’s layer, is much
lower than that in medium and thin vessels close to the RPE because of signal attenuation as
penetration depth and low backscattering coefficient of blood. Based on the assumption that
the OCT signal in the medium and thin vessel area is much higher than that in thick choroidal
vessel and sclera areas, I reasonable split the selected choroidal OCT volume into two parts,
the thin and medium choroidal vessel region and the thick choroidal vessel and scleral region,
using the Otsu’s threshold intensity values of all pixels in one volume. The thin and medium
vessel segmentation result is achieved by applying “or” operation to the busyness filtered adap-
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Figure 3.3: Choroidal vessel segmentation results corresponding to OCT en-face slices in Fig.
3.1

tive thresholding results with adaptive thresholding window size of 94 um and 47pm, while the
large vessel segmentation is calculated as “or” of that with window size of 375um, 188um, and
94pum. Finally, the volumetric choroidal vessel segmentation is realized by reconstructing the
vessel pixels in this two regions. Figure 3.3 shows the vessel segmentation results corresponding
to the OCT en-face slices shown in Fig.3.1.

3.3.3 Retinal vessel shadow rejection

The retinal vessels act as a cucoloris that casts a shadow in the choroidal OCT volume. This
shadow signal appears in all of the en-face slices can be detected as choroidal vessel. Hence, this
vessel pixels located in the retinal vessel shadow should be distinguished and rejected before the
following choroidal vessel analysis.

The retinal vessel shadow can be the most clearly visualized in the hyper-reflective complex
includes the RPE, and IS/OS layers. A projection of the hyper-reflective complex, as shown in
fig. 3.4 (a), is obtained by averaging the intensity in the hyper-reflective complex segmented
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Figure 3.4: (a) En-face projection of the hyper-reflective complex obtained by averaging the
intensity values in each A-lines. (b) Vessel structure is enhanced by Frangi filter. (c) Retinal
vessel shadow segmentation.

in 3.2. After a anisotropic diffusion filter, I applied a Frangi filter to further enhance the vessel
pattern from the background [89]. The nonlinear parameters of the Frangi filter are customized to
discriminate the vessel from background by threshold 0.5. A close operation is also performed to
the binary output to ensure a connective vessel network. Figure 3.4 (b) and (c) show the output of
the Frangi filter and retinal vessel segmentation result, respectively. The segmented retinal vessel
is masked to en-face slices so that the retinal vessel pixels are invalided in the choroidal volume.
Note that the retinal vessel shadow segmentation result shown in Fig. 3.4 (c) is actually not an
accurate vessel network but a slightly dilated area. This feature warrants a sufficient removal of
the retinal vessel shadow in choroidal data.

3.4 Choroidal vasculature evaluation

3.4.1 Choroidal vessel diameter estimation

Normally, the vessel thickness can be determined by the distance of two surface in the cross-
section direction. However, the orientation of choroidal vessel is highly randomly distributed
and difficult to track so that its diameter cannot be directly measured in a standard way. Opening
in morphology is the dilation of the erosion of a binary image by a structuring element. As
mentioned in 3.3.2,it removes small objects from the foreground of a binary image. The vessel
pixels are actually classified into two groups: vessel pixels with diameter higher or lower than
the diameter of structuring element in open operation. Based on this idea, I estimate the vessel
diameter by applying a serial of open operations. The diameter of structuring element in i-th
open operation is set to d; =i X dj, where d; is the structuring element diameter in the first
open operation and the maximum value of d; should be higher than the maximum diameter of
choroidal vessel.

In open operation, only a round-shape structuring element can equally estimate the vessel
diameters with different orientation. However, if the structuring element is too small in a digital
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Figure 3.5: Choroidal vessel diameter estimations corresponding to vessel segmentation results
in Fig. 3.3. The black pixel denotes no vessel is detected and the retinal vessel shadow is
removed.

image processing, the round model becomes a polygon. To guarantee a round shape structuring
element with smallest diameter, I perform a 2D interpolation to increase the pixel density of the
en-face slices. Then, a serial of open operations are implemented using structuring elements
with diameter of d; where i varies from 1 to 20. The increasing step of d; is 15 pm. Figure
3.5 shows the diameter estimation results corresponding to the OCT en-face slices shown in 3.1.
The resolution of diameter estimation is determined by the diameter increasing step of structuring
element. The choroidal vessel diameter can be quantitatively visualized in different layers.

3.4.2 Vascularized layer thickness measurement in the Choroid

The thickness of the choroidal vasculature is also measured by applying a active deformable
surface model to the choroidal vessel diameter volume. I construct a 10 x 10 control point array
in the en-face plane as shown in fig. 3.6 (a). A deformable surface, as shown in fig. 3.6 (b),
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(@) (b)

Figure 3.6: Active deformable surface models. (a) 10 x 10 control points. (b) An example of
deformable surface obtained by 2D interpolation to control point array.

is obtained by applying 2D bicubic spline interpolation to the control point array. The control
points are initialized in the choroidal region and move along axial direction. Depth of the n-th
control point from the RPE is determined by

D, (i) + Dy for fu(i) < =T
Du(i+1)={ Du(i)— Dy for fuli) <T (32)

D, (1) for otherwise

where ¢ is current loop iteration number, Dy is the axial pixel resolution of OCT system, 7' is a
constant threshold, and f(n) is the resultant that is defined as

fn(i) = aRy (i) + BPu (i) + vGn (i) , (3.3)

where «, (3, and +y are constant weight factors, and R,, (), P, (7), and G, (i) denote local rigidity,
local pushing force, and gravity of control point, respectively. Local rigidity is quantitatively
determined by the second derivative of the deformable surface. This term can reasonably keep
the deformable flattened. The gravity, which is a constant, pulls the control points down from
the RPE to the sclera, while the background pixels in the deformable surface provide a pushing
force raising them. The posterior interface of the choroidal vasculature is obtained by arguing
a balance solution of the deformable surface model iteratively. Associated with the the Bruch’s
membrane segmentation result, a 2D map of the choroidal vasculature can be finally obtained.

3.5 In vivo application of choroidal vessel characterization algorith-
m

The macular region was imaged in-vivo in healthy subjects by HP-OCT with 1-um probe. The
setup and parameters of this system have been described anywhere else. 6 mm x 6 mm area was
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Figure 3.7: (a) ~ (c) are top, side, and Bird’s-eye views of a volume rendering images of

48 pm

choroidal vasculature. (d) Choroidal vasculature thickness map.

imaged with 2048 A-lines in one frame and 256 frames in one volume. The probe power on the
cornea was around 1.8 mW.

An example of reconstructed three dimensional choroidal vasculature is shown in Fig. 3.7.
The choroidal vessel has been recovered to its original spacial shape in the OCT volume. The
color of voxels in those images denote the diameter of the vessel. The Sattler’s and Haller’s
layer can be visualized as shown in Fig. 3.7 (b). It is clear that the thin vessels distributed just
beneath the RPE while the thick vessels distributed in deeper layer. Figure 3.7 (d) shows the
corresponding thickness map. Obviously, the entire thickness of choroidal vasculature is highly
correlated to distribution of thick choroidal vessel.

Figure 3.8 illustrates distributions of choroidal vessel diameter versus depth from the RPE
in two eyes of two subjects. The results show a obvious increasing tendency in choroidal vessel
diameter distribution. This matches to our anatomical knowledge in the choroid. The mean
diameter can somehow indicate the thickness of sub-layers in the choroid. In both examples,
it appears a high gradient from 50 pm to 100um. This might be the general depth range of
interface of the Sattler’s layer and Haller’s layer. The choroidal vasculature indicated in Fig. 3.8
(c) and (d) is thicker than that in Fig. 3.8 (a) and (b). This difference mainly determined by the
Haller’s layer thickness. The mean diameter appears an abrupt local maximum around 270 pm
in example shown in Fig. 3.8(a) and (b). This because the choroidal vasculature thickness is
uneven distributed so that the vessel pixel number in deep layer is too low to correctly represent
statistical parameters.
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Figure 3.8: Plots of choroidal vessel diameter versus depth from the RPE in two subjects. Box
and whisker plots (a)(c) and standard deviation plot (b)(d) exhibit the distribution of choroidal
vessel diameter at a specified depth from the RPE. The red curves show the mean of choroidal
vessel diameter.
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Figure 3.9: Comparison of ICGA (a), en-face projection of vessel diameter volume (b), and
depth-resolved en-face projection of vessel diameter volume (¢) of 6 mm x 6 mm macular region
obtained from the same subject.

Two dimensional thick choroidal vessel network can be visualized in ICGA image as shown
in Fig. 3.9 (a). However, the boundary of the thick vessel is unclear because of blocking effect
from anterior thin vessels and dye leakage, and the thin choroidal vessel can hardly visualized
because of low signal. ICGA-style projection of choroidal vessel diameter volume is created
by averaging the diameter value in each A-line. Figure 3.9 (b) shows the en-face projection, in
which square root of diameter average is taken to promote visualization. The thick choroidal
vessel pattern is similar to that shown in ICGA image but visualization is significantly promot-
ed. Thin vessel pattern appears in area without thick choroidal vessel. The retinal vessels are
also distinguished and removed from projection image. Further, I also create a depth-resolved
choroidal vessel projection as shown in Fig. 3.9 (c). The brightness of pixel is the same with
Fig.3.9 (b) representing the vessel thickness. The hue value denote the average vessel depth,
which is calculated as > (diameter x depth)/> depth of pixels in each A-line. The pixel color
from red to blue corresponds to the vessel depth from the RPE to sclera. Thickness and depth
information is simultaneously visualized in depth-resolved projection of vessel diameter volume.

The choroidal vasculature thickness maps measured in 8 eyes of 4 healthy volunteers are
shown in Fig 3.10. Maps in the same row indicates the choroidal vasculature thickness distribu-
tion in the oculus dexter and sinister eyes of a same volunteer. A thinner choroidal vasculature
thickness in the nasal area than the temporal area is observed in all of 8 maps. Patterns of the
choroidal vasculature thickness maps are generally symmetric in two eyes of the same subject
except the third subject whose results are shown in the third row, but a clear pattern difference
appears between results in different subjects. Figure ?? shows a B-scan image extracted from
the OCT volume measured in oculus dexter eye. A block without any vessel-like pattern appears
between the sclera and choroidal vasculature as marked as a red dashed ellipse. No vessel-like
structure is observed in this block area. This block has also been observed in OCT images ob-
tained in the same eye and validated to be low in birefringence in Ref. [74], hence it is not a
part of the sclera. Existence of this kind of blocks and their distribution seems to be a reason to
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asymmetric pattern of the choroidal vasculature maps.

Figure 3.12 shows depth-resolved projection of vessel diameter volume corresponding to
choroidal vasculature thickness maps in Fig 3.10. Note that the hue only shows a relative but
not absolute depth of the choroidal vessel. It is clear that the choroidal vasculature thickness
pattern is highly correlated to the thick choroidal vessel distribution pattern. Distribution of the
thick choroidal vessel is different between subjects, and there is no evidence indicate this pattern
is constant as time in one eye in our best knowledge. Variation of the thick choroidal vessel
distribution can be an factor that affects the local choroidal thickness other than thinning or
reduction of the choroidal vessel. Hence, we believe volumetric/depth-resolved visualization and
thickness mapping of the choroidal vasculature can provide a superior analysis to the choroidal
vasculature properties than the thickness measurement performed in B-scan images or A-lines.

3.6 Discussion

ICGA is commonly used to examine choroid vasculature in clinics. It is uncomfortable but
still safe in most cases, but some adverse reactions can limit its application. ICGA are mostly
utilized to visualization abnormalities in the choroid, but defy common quantitative analysis of
the choroidal vasculature because of two dimension imaging feature and low vessel contrast.
Optical coherence angiography, or optical doppler angiography, yield three dimensional vessel
structure invasively. However, its depth resolution is quite limited in the choroid, especially in
Haller’s layer because of low sensitivity and shadow effect of Doppler phase. The proposed
algorithm direct analyses the structure information obtained by HP-OCT, providing 3D volume
rendering visualization of the choroidal vessels as well as vessel diameter and entire vasculature
thickness information. Yet, this structural information based method do not provide functional
information such as leakage. Hence, it is not alternative but complementary method for other
techniques.

As referred in Sec. 3.3.2, the choroidal vessel can be properly segmented only if the vessel
diameter is close to half of the window size in adaptive thresholding. The minimum window
size was 47 pum in multi-scale adaptive thresholding based choroidal vessel segmentation, so the
diameter of the most thin vessel that can be properly segmented is around 24 pm. If the vessel
thinner than this limitation, its diameter can be over-estimated. So the segmentation result in the
choriocapillaris is not as reliable as that in the Sattler’s and Haller’s layer. Further decreasing of
the window size cannot promote the accuracy of the segmentation because of the limitation of the
transversal resolution of the OCT system. Adaptive optics OCT measurement might supplement
some additional information to the choroidal vasculature analysis.

Precision of vessel diameter estimation is directly determined by structuring element diame-
ter increasing step between two adjacent open operations. A small increasing step of structuring
element diameter results in a high precision in vessel diameter estimation. However, it requires
more open operations so longer processing time since the maximum diameter is fixed. The

38



48I pm 27:1 pm

Figure 3.10: Choroidal thickness maps obtained in 8 eyes of 4 healthy volunteers. The maps in
a same row were acquired from the two eyes of a single subject. OS/OD: Oculus dexter/sinister;
N: Nasal; T: Temporal; S: Superior; I: inferior. Black dashed line in left image in the third row
denoted the position of B-scan shown in 3.11.
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Figure 3.11: A B-scan image extracted from OCT volume corresponding to left image in the
third row in 3.10.

trade-off between calculation time and vessel diameter estimation should be balanced.

In current status, it takes about 4 second to segment an en-face resized to 256 x 2048 pixels
in program written in LabVIEW (LabVIEW 2011 for 64-bit Windows 7) on Intel CORE 17 CPU
Q720 at 1.6GHz with 8-G RAM. Another 20 second is required to estimate the vessel diameter
using 20 open operation with initial diameter of 5 pixels and diameter increasing step of 5 pixels
in a binary slice resized to 2048 x 2048 pixels. The open operation is substantively achieved by
convoluting the image by structuring element in Fourier domain. The calculation time increases
as the pixel number of structuring element. The calculation time can be significantly shorten if
decreasing the pixel number of input image. However, the structuring element diameter should
also reduce. A digital image with low pixel number cannot provide a structuring element ap-
proaching to round shape, which is necessary for isotropic diameter estimation.

3.7 Summary

This chapter introduces an automated algorithm to segment and evaluate the choroidal vessel
in volumetric data provided by HP-OCT in this chapter. The three-dimensional choroidal ves-
sel network is segmented based on intensity contrast from the background tissue. The following
analysis to the segmented vasculature can provide both the choroidal vessel thickness and the en-
tire choroidal vasculature thickness. Enhanced visualization and characterization of the choroidal
vessel are achieved in volumetric HP-OCT data.

40



OD T N OS N T

Figure 3.12: Depth-resolved projections of vessel diameter volume corresponding to the
choroidal thickness maps in 3.10.
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Chapter 4

Conclusion

This dissertation presented several algorithms for advanced image processing of OCT images
obtained in deep layers of the posterior segment of the eye. All of the researches have been
concentrated on investigation of the choroid, which is an ocular structure accounting for sever-
al essential functions. Two projects have achieved fully automatic measurement of the “real”
thickness of the choroid and fully automatic characterization of choroidal vessel in OCT data
acquired by OCT systems with 1-mum wavelength, respectively. These works have been highly
motivated by methodological development for diagnosis of ophthalmic diseases.

An automated choroidal thickness measurement method by PS-OCT was developed in the
first project. Based on histological properties of the layers around the choroid, the anterior
and posterior boundaries of the choroid are automatically segmented based on intensity and
phase retardation contrasts provided by PS-OCT simultaneous. This work challenged the current
intensity information based choroidal thickness measurement methods, providing an access to
the “real” thickness of the choroid.

The second project proposed a framework to analyse the choroidal vessel information. The
choroidal vessel was segmented by a customized multi-scale adaptive thresholding method in
en-face slices extracted from a OCT volume. Then, the choroidal vessel thickness and the entire
choroidal vasculature thickness are estimated by a morphological operation based analysis and a
deformable surface model, respectively. The reconstructed 3D choroidal vasculature and depth-
resolved vessel projection offer both enhanced visualization and quantitative characterization of
the choroid. The result of this framework demonstrated enhanced visualization of the choroidal
vasculature as well as depth information of the choroidal vessel.

This two projects offered morphology of the choroid in macrocosmic and microcosmic view,
providing comprehensive parameters describing condition of the eye related to this layer. Those
information might be useful to promote pathological understanding and clinical diagnosis of
several circulation-related ocular diseases. Efficiencies of both methods have also been validated
in in vivo OCT data, demonstrating high practicabilities for future clinical application.
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Appendix A

Calibration Protocol for Resonalt
Electro Optic Polarization Modulator

A.1 Introduction and Purpose

Jones matrix PS-OCT utilized in Chap. 2 relays on modulation of phase of a single polarization
component of the source or probe beam by an electro-optic modulator (EOM) [50]. We had used
several types of EOM including bulk EO crystal driven at non-resonant slow frequency (New
Focus), wave-guide EO modulator (EO Space), and a resonant EOM with high-frequency (~ a
few ten mega Hertz) driving. Among these EOMs, the resonant EOM has particular difficulty for
its characterization. This is mainly because the modulation property, which is mainly indicated
by the relationship between applied voltage and the depth of modulation, is becoming a function
of modulation frequency.

This appendix aims at describing step-by-step protocol to characterize the resonant EOM for
polarization modulation of Jones PS-OCT.

More concretely, we will obtain a function f (V') which relates the modulation depth of EOM
(Ap) and the driving voltage of EOM, in practice which is the output amplitude of a sinusoidal
wave generated by a function generator driving the EOM as Ag = f(V'). And then define the
optimal driving amplitude of the EOM which enables the modulation depth of 2.405 radians
which is the optimal modulation depth for our Jones PS-OCT.

A.2 Experimental Setup

For the characterization of a resonant EOM, we use a simple optical setup shown in Fig. A.1.
In this setup, incident light first path through 90-deg polarizer for cleaning-up, passing an EOM
under test. Here the optic axis of this EOM is aligned to 45 degrees. The output from the EOM
passes an analyzer with 0-deg orientation.
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Figure A.1: The optical scheme for the caricaturization of a resonant EOM.

For the data acquisition, the light source utilized is a wavelength sweeping source which is

also utilized for the PS-OCT and the EOM is modulated with a modulation frequency identical

to the PS-OCT. The output optical intensity after this polarization is detected by a high-speed

detector and recorded by a oscilloscope as the wavelength is scanned.

A.3 Theory and Data Processing

We first assume the incident light is a static (non-scanning) 90-deg. polarized light. The Jones

vector of this incident light becomes

Ein =

!

The electric field after this Jones matrix of the above mentioned system becomes

== g o)

where § is the retardation of the EOM. The output optical intensity then becomes

1.,90
Lot (t) = ElutEOUt =1 sin? B

where the superscript of 1 indicates transpose of complex conjugate.
The retardation of the EOM is modeled as follows.

exp(+i6/2) 0
0 exp(+id/2)

0 =@+ Apcos (wnt+6),

(A.1)

(A.2)

(A.3)

(A.4)

where ¢ is the offset phase retardation defined by the EOM device, Ay = f(V) is the phase
modulation depth with a voltage amplitude of driving RF signal applied to the EOM of V' and

f() is an unknown function which relates V" and Ay, and @ is a temporal offset of the driving RF

signal. ¢ is a variable representing time.
By substituting Eq. (A.4) to Eq. (A.3), the I,,,; becomes
1 . 5[+ Agcos(wnt +6)

Tt (t) = 1 sin 5
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Because we are going to use a wavelength-sweeping light source, the incident light power is
not a constant of time but a function of time. We model this time-dependent incident power as
S(t). In addition, the optical intensity measurement can have a constant background by some
reasons. We represent this constant background by §. By using S(t) and 3, the equation of
output intensity Eq. (A.5) is modified to

1 . 5w+ Agcos (wnt+0)

I () = S(t)z sin 5 + 4 (A.6)

As we discussed above, this equation properly models the output from the optical setup of Fig.
A.1. By observing this equation, one can immediately find that this equation contains five un-
known parameters of ¢, Ay, wy,, 0, and 3 and one unknown function of S(t)

In our calibration strategy, we first cancel the effects of the unknown function of S(¢) from
the experimental data, and then apply nonlinear least square fitting (Marquardt-Levenberg algo-
rithm) to identify residual parameters.

The cancellation of S(t) is performed in Fourier domain. To understand this operation in the
Fourier domain, first Eq. (A.6) is rewritten by using a half-angle formula as

1 — cos (¢ + Ag cos(wmt + 6))

Tous(t) = S(1 :

+p (A7)

= %S(t) {1 — cos p cos [Ag cos(wmt + 0)] — sin g sin[Ag cos(wmt + 6)]}

This equation is further expanded to

L) = 550)

1-— Z en(—1)"Jan(Ap) cos ¢ cos(2nwmt + 2nh)

+ Z 2(=1)"Jon+1(Ag) sinpcos ((2n + Lwmt + (2n+1)0) | + 5

where €, = 1 for n = 0 and 2 for others. The following formula were utilized to derive these

equations.
cos(zcos(p)) = Z e(—1)"Jan(z) cos(2np) (A.8)
n=0
sin(zcos(p)) = Z 2Jon+1(2) cos((2n + 1)p) (A.9)

The numerical Fourier transform of the obtained signal can be mathematically modeled by
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the Fourier transform of Eq. (refeqn:Iout4) as
, 1
Low(t) = Bo(w) + 5 F[SE)] +

1— Z en(—1)"Japn(Ao) cos p cos(2nwpt + 2nb)
+ Z )" Jant1(Ap) sin g cos ((2n + Dwmt + (2n + 1)0)

where F[ ], 6( ), and * represent Fourier transform, delta function, and convolution. w is the
Fourier pair of . According to this equation, the important part of this signal, which is appeared
at the second and third lines of this equation, only contains the frequency components of the
integer-multiples of wy,,t. And all harmonics are equally convolved with 1 F[S(t)].

Hence, the following operation to the experimentally obtained data will clean up the effect

of S(t).

Ipu(t) = FFT HFFTIW(E) x I,(t)] x comb(w/wnm)] (A.10)
_ oy x sin? 90+A00052(wmt+9) L3 AL

where FFT | is fast Fourier transform, - is a constant and W (¢) is a window function for FFT
that is typically a Hamming window. By some practical reasons, in our particular implementa-
tion, we rather use the following operation than Eq. A.10.

Iou(t) = FFTHFFTIW(t) x L, (t)] x {comb(w/wm) —d(w)}]  (A.12)
© + Ap cos (Wt + 0)
2

=~ x sin? + 4 (A.13)
One can immediately see that the difference between these two equations are the difference in
the constant offset. Since this constant offset is out of our interest, this difference does not have
significant effect.

A.4 Nonlinear Least Square Fitting

After cleaning the effect of S(t), the experimental data were fit by Eq. A.12 with six unknown
parameters of v, ¢, Ag, wnm, 6 and B’. The fitting was done by Marquardt-Levenberg algorithm
(Nonlinear Curve Fit VI of LabVIEW 2010), and 256 data-points close to the center of the
spectrum was used. The first estimation of the parameters were manually selected to roughly fit
the theoretical curve to the data. This manual selection of first estimation is important to avoid
sub-optimal solution.
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Figure A.2: Experimentally obtained relationship between the modulation depth (Ag) and the
driving amplitude (V).

A.5 Experiment and Results

We applied the above-mentioned method to characterize a bulk EOM for 1-pm range manufac-
tured by New Focus. The experiment was done with a light source of Santec HSL-1000 with a
center wavelength of 1060 nm.

We performed the above mentioned measurements with the voltage amplitude (V') of the
sinusoidal wave generated by a function generator which drives the EOM from 0.1 V to 1.3 V
with 0.1 V spacing. The data was analyzed by the operation described by Eq. (A.12).

The obtained parameter of Ay is then plotted as a function of V" as shown in Fig. A.2. This
plot represents the function Ag = f(V'). Although Fig. A.2 shows highly nonlinear shape, the
curve appeared as linear at the region V' > 1, and this region covers the modulation depth of our
interest of 2.405 radians. Hence, we apply a standard least square fit to the data points of V =
1.1, 1.2 and 1.3 [V] with a linear model, and obtained the following relationship between Ay and
v

Ao = 1.8163V + 0.0596 (A.14)

This equation finally indicates the optimal driving voltage of our EOM of 1.2913 [V] for 2.405-
radian modulation depth.

A.6 Summary

In summary, the optimal modulation depth for a bulk New Focus EOM used in the PS-OCT in
chap. 2 was measured to be 1.2913 V without signal amplification by RF amplifier. For another
EOM in PS-OCT system, the optimal driving voltage can also be determined by the method
proposed above.
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Appendix B

Monte-Carlo-based phase retardation
estimator for PS-OCT

B.1 Background and purpose

As mentioned in 2, PS-OCT is a functional extension of conventional OCT possessing all the
original advantages. It enables both conventional backscattering tomography and birefringence
tomography [42-45]. Tissue birefringence is strongly associated with the structural properties
of biological tissues; hence, PS-OCT has been adopted for imaging skin [90-93], cartilage [94],
teeth [95], and the anterior and posterior segments of the eye [46,47,60,96-99].

Phase retardation is an important birefringent property of tissue, and it is widely employed
to visualize PS-OCT images. It is a cumulative quantity that rotates in phase along the depth
if the sample has birefringence while it remains constant if the sample has no birefringence.
In biological tissues, micro-structural changes such as fibrosis, inflammation, and canceration
can result in the alteration of phase retardation [98—100]; hence, the phase retardation image is
of significant diagnostic importance. However, as reported in several studies, phase retardation
measurements can be drastically affected by detection noise in PS-OCT [53,101]. A standard
mean estimator, i.e., average, cannot provide an appropriate estimation of phase retardation, and
it significantly reduces the utility of PS-OCT for quantitative measurement [53].

Almost all PS-OCT algorithms derive phase retardation from multiple complex OCT signal-
s. In the real and imaginary parts of the raw OCT signal, the noise distribution is reasonably
assumed to be Gaussian centered at a true value. However, in general, the derivation of phase
retardation from the raw OCT signals is complicated and, sometimes, nonlinear. This elaborates
derivation process drastically complicates the analytic investigation of noise distribution in phase
retardation.

As is widely known, Monte-Carlo simulation is a powerful tool for investigating stochastic
processes of elaborate systems, and it has been widely employed for the analysis of the optical
scattering property of biological tissues [102], theirs polarization dependency [103], and imag-
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ing modalities based on optical scattering, including diffusion tomography [104], photoacoustic
tomography [105], and OCT [106]. The Monte-Carlo method has also been employed to inves-
tigate the noise property of phase retardation measurement in PS-OCT [53]. In this study, it was
shown that the noise distribution in phase retardation is neither Gaussian nor symmetric. This
is partially because the measurement range of phase retardation of PS-OCT is typically limited
from O to 7; hence, phase retardation signals less than zero or greater than 7 will be aliased
in the O to 7 range. Because of this asymmetric distribution, both the mean and the mode in-
clude a systematic error, and they cannot provide a correct estimation of true phase retardation.
Currently, this systematic error is minimized by enhancing the signal-to-noise ratio (SNR) of
PS-OCT. However, to have a reasonably small error, a very high SNR, typically more than 20
dB, is required.

The objective of this appendix is to propose a method that reduces the systematic error in
measurement and to relax the harsh SNR requirement for accurate phase retardation detection.

B.2 Monte-Carlo-based phase retardation estimator

The Monte-Carlo-based (MCB) phase retardation estimator proposed in this appendix is specif-
ically designed for Jones matrix PS-OCT. For Jones matrix detection, two incident polarization
states are required. These two spectra were detected by a polarization diversity (PD) detection
unit, in which horizontal and vertical polarization components of the spectral interference signals
are independently detected by two detectors.Then, both polarization components are detected by
both the horizontal and the vertical detectors. The signals with different incident polarization
states were demultiplexed by frequency shift or spacial shift method. The demultiplexed spectra
were processed using a standard SS-OCT algorithm, and four OCT signals were obtained. Here,
the OCT signals are denoted by Iy (2), I1,m(2), Io,v (%), and I v (z), where the subscripts 0
and 1 denote non-modulated and modulated signals and the subscripts /I and V' denote horizon-
tal and vertical polarization states of the PD detector, respectively. Then, the cumulative Jones

matrix at a particular point in the sample .J5(z) is obtained as
Jo(2) = Jo(2)J;,) (B.1)
where J,.(z) and J;,, are the raw Jones matrix measured at the point of interest and the Jones
matrix measured at the surface of the sample, respectively [52]. By using the OCT signals, these

matrixes are defines as

Jo(z) = [ ?’H(z) =) (B.2)

ov(z) Iv(z)

Io a(20) I1,m(20) ]
Jin = ’ ’ , B.3
[ Inv(z0) I1,v(20) ®-3)
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where z and z( are the depth positions of the point of interest and the surface, respectively. In
practice, J;, is a Jones matrix of the input fiber of the interferometer; hence, the effect of fiber
birefringence is canceled by Eq. (B.1).

The round-trip phase retardation, d,/(z), is obtained by matrix diagonalization [53] or by a
trace method [107]. In this paper, we use the trace method represented by Eq. (B.4) rather than
matrix diagonalization because it enables faster calculation.

. trJs(z) + %trﬁ(z)‘

on(z) =2cos™ (B.4)

2 [tr (Jj(z)JS(z)> +2|det Js(z)y} v

where tr, det, and T denote the trace, determinant, and complex conjugate transpose, respective-
ly. In this paper, the raw phase retardation d;;(z) is expressed as the measured phase retardation.
Numerical simulations are performed to investigate the error and noise properties of phase
retardation measurement. In the simulations, the noise is described using the same model as
that used in a previous study [53]. Thus, the raw OCT signals, including J,-(z) and J;,(z), are
modeled as the summation of the true Jones matrix and additive complex noise as
IO7H(Z) ]17H(Z) o SO,H(Z) Sl,H(Z)
lov(z) Iiv(z) |

N(]}H(Z) NI,H(Z)

T Nov(z) Niv(z)

So’v(Z) Sl’v(z)

] ) B.5)

where Ss denote the true values of the OCT signals, and Ns denote complex noise in each
channel. The real and imaginary parts of the noise follow zero-mean Gaussian distributions.
The noises are totally decorrelated with each other, even though all of them are assumed to have
identical standard deviations.

As shown in Egs. (34)-(39) and Fig. 2 of Ref. 53, the noise property is described as a function
of the effective SNR (ESNR; ) rather than the SNR of each detection channel. The ESNR is

defined as . . . . . '
P . B.6
Yy 4 (SNR&O + SNRSJ + SNRT70 + SNRTJ) ( )

SNR; and SN R, ; are defined as the ratio of signal energy (signal intensity) of the i-th in-

cident light and noise energy of the i-th detection channel at the point of interest (denoted by
the subscript s) and surface of the sample (denoted by the subscript r), respectively. Because of
this property, we utilize ESNR rather than the SNR of each detection channel in the following
analysis.

It should be noted that here we follow the definition of SNR of Jones matrix OCT described
in Section 3.1.1 of Ref. 53. In this definition, the signal is the summation of the signal energies
of all detections for a single incident polarization state, while the noise is defined as the noise
level in each single detection. In our Jones matrix PS-OCT, two detectors, i.e. for horizontal and
vertical polarization states, are utilized for polarization diversity detection. When we measure
a void region, the signal energy detected by a single detector is equivalent to the noise energy.
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According to the above mentioned definition, signal is the summation of the signal energies of
the two channels, each of which is equivalent to the noise energy in this case. Hence the ESNR
measured at a void region (noise region) becomes around 3 dB. This pseudo increasing of SNR
is appeared only at a very low signal region.

The phase retardation measurements and numerical simulation were performed for a one-
eighth wave-plate (EWP) and a quarter wave-plate (QWP), whose round-trip phase retardations
are /2 and 7, respectively. For the wave-plates measurement, a tunable neutral density filter was
located in a sample arm to control the incident power and hence SNR. 2'2 A-lines were acquired
for each SNR configuration. The intensity of OCT signal in air was averaged to obtain the noise
floor of each detection channels, and the SNR and ESNR were calculated for the successive

estimation of phase retardation. For each simulation, 2'3

Monte-Carlo trials were performed.
Figure B.1 shows the distribution of the raw measured/simulated phase retardation, §;;, obtained
from numerical simulations (left column) and experiments (right column) using an EWP (first
and second rows) and a QWP (third and fourth rows). The histograms show good agreement
between the simulations and the experiments. These results validate the proposed Monte-Carlo

model.

Figure B.1 also shows that the distributions are asymmetric. This asymmetry is shown more
quantitatively in Fig. B.2, where the skewness of the distributions of the true phase retardations
(07 =0, 7/6, 7/3, w/2, 27/3, 57/6, 7 radians) is plotted against ESNR. The skewness is defined
as the third moment about the mean divided by the third power of standard deviation, and is one
of the statistical measures of asymmetric level of prbability density function. Each distribution
was obtained using a Monte-Carlo simulation with 22! trials. For 07 = 0 and 7, the skewness
is not zero in nearly the entire ESNR range. Since skewness becomes zero for a symmetric
distribution, these non-zero values of the skewness indicate that the distributions of 67 =0 and 7
are not symmetric for any ESNR. For other dr, the skewness is nearly zero, i.e., the distribution
is symmetric for high ESNR. However, the distribution becomes asymmetric for the ESNR less
than around 20 to 25 dB. These asymmetries may be attributed to the aliasing at the perimeters
of the measurement range and to the nonlinear relationship between the Jones matrix and the
phase retardation.

Because of these asymmetries, the mean of the distribution cannot give a reasonable estima-
tion of the true phase retardation 7. The mean of the simulated d,; corresponding to several
o7 values are plotted against ESNR, as shown by the red curves in Figure B.3. The curves are
obtained by averaging 26 trials of §,; obtained by the Monte-Carlo simulation. The mean of §,;
deviates from the true value (dashed lines) and approaches around 2.15 rad as ESNR decreases.

Conventionally, mean and maximum likelihood estimators have been utilized for quantitative
estimation of polarization [47]. However, the asymmetric distribution presented above implies
that these standard estimators do not provide appropriate estimations. This is because these
estimators assume symmetric distribution of measured values. To overcome this problem, we
propose an MCB estimator that involves a two-step estimation algorithm consisting of a non-
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Figure B.1: Comparison of the measured phase retardation distribution with different ESNR
in the simulation and experiment. The sample is an eighth-waveplate in (a)-(d) and a quarter-
waveplate in (e)-(h). (a),(c),(e), and (g) show the results of numerical simulation and (b),(d),(f),
and (h) are the experimental results. The marked £.SN R values denote the mean ESNR in
each experiment or simulation.
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Figure B.2: Skewness of the distribution of phase retardation (d5;) obtained by Monte-Carlo
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Figure B.3: Estimations of several set true phase retardations using 2! trials of the measured
phase retardation. The red and green solidlines denote the estimation results using mean and 4th
order MCB estimators, respectively. The black dashed lines denote the true values.
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linear distribution transform and a conventional mean estimation.

The first step of our MCB estimator is the distribution transform. We assume a transfor-
m function f(dps) that transforms measured raw phase retardation d,; into transformed phase
retardation, 0, for further estimation. The ensemble average of 0 approaches the true phase
retardation d7 as the number of samples increases;

o7 =~ (0p) = (f (6m)) (B.7)

where () denotes ensemble average. Note that f(d,/) is not only a function of d,/, but also a
function of ESNR ~ and 7 because the distribution of §; varies with them.

In practical phase retardation estimation, ér cannot be utilized as prior information, while
ESNR can be obtained prior to the estimation directly from the measured OCT signals. Hence,
we define a set of the suboptimal but practical transform function f/(d,/), which is a polynomial
function of §;; and ESNR ~, but not a function of 7, as

£ (6a37) Zb )84, (B.8)

where b;(7y) is i-th order polynomial coefficient of the transform function at an ESNR of ~.
In the design process of the transform function, b;(~y) is defined to be

op ~ (6p) = <Zb > (B.9)

To determine b;(~y) for a particular -y, dpss were obtained by Monte-Carlo simulations for
several s from 7 = 0 to 7 in steps of 7/60. If b;(y) is properly defined, the simulation results
would follow the following 61 equations.

0
/60

2
S
[«

2

F01() Garo) e () (8 )
+bl(’Y)<5M,w/60> o ba(9) 5?47r/60>

IR
[l
o
2

: (B.10)

T b)) e e () (8

where the left-hand-sides are the set true phase retardations o, das,5,. is a raw phase retarda-
tion obtained by Monte-Carlo simulation with a set true phase retardation of d7, and n is the
maximum polynomial order of f/(d,;y). Here, each ensemble averaged value is obtained via
Monte-Carlo simulation with 22! trials; hence, they are known values. Equation (B.10) can also
be written in a vector form as

Dt ~Dy - B (B.11)
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where D = [0,7/60,--- , 07, -+, 7], B = [bo(7), -~ ,bu(7)]" and
<5?v[0> <511\40> <67]\l4,0> ]
Dm = < ]V[(ST> <5}45T> e <5nM,5T> ‘ (B.12)

() (o) o ()

And then, the polynomial coefficients b;(~y) are defined as

B=Dy' Dy (B.13)

where Dy is the pseudo-inverse of Dy, obtained by singular value decomposition.
Equation (B.13) is equivalent to obtaining optimal b;(-y) by a least squares method. Thus,
bi(7) is defined to minimize a squared-sum error defined as
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k=0

where 075, = k7 /60 is the true phase retardation of the k-th configuration of the Monte-Carlo
simulation and 07, is the corresponding simulated value of the measured phase retardation.

A transform function f/(d,/;y) is now defined for particular ~y. For practical applications of
phase retardation measurement, f'(d7;y) is defined for v of 0 dB to 50 dB in steps of 1 dB.

This transform function can be utilized to correct the contrast of phase retardation tomogra-
phy images. Further, to obtain a qualitative phase retardation value, one of standard estimators
can be applied after this distribution transform. According to the assumption made in the design
of the transform function, a mean estimator would be reasonable. In this paper, we denote this
combination of the distribution transform and mean estimator as an MCB estimator.

B.3 Performance evaluation

The detailed performance of the MCB estimator was evaluated via Monte-Carlo simulations.
Figure B.3 shows the estimated phase retardation at several ESNR and true phase retardations,
where 216 trials of Monte-Carlo simulation were performed for each configuration. The green
curves were obtained using the MCB estimator with the 4th order transform function, and the
red curves were obtained using a mean estimator, as discussed above. As shown in this figure,
the MCB estimator gives reasonable estimation even with a low ESNR of around 5 dB, while a
standard mean estimator suffers from a significant error, even at an ESNR of 20 dB.

For further understanding of this error property, the estimation error is plotted as a function
of the true phase retardation and ESNR, as shown in Fig. B.4. Figures B.4(a) and (b) show
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Figure B.4: Contour plots of systematic error in mean estimator (a) and 4th order MCB estimator
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Figure B.5: Simulated precision of mean and MCB estimator for 26 trials. The red, green, and

blue curves represent the mean error energy corresponding to a mean estimator, 4th order MCB
estimator, and 6th order MCB estimator, respectively.

the estimation error of mean estimator and 4th order MCB estimator, respectively. In these
estimations, 216 trials of §,; or 05 were averaged. Fig. B.4(a) clearly shows that the mean
estimator includes a significant error if the true value is not close to 2.15 rad, and the error
becomes larger as the true value approaches the perimeter of the measurement range of phase
retardation, i.e. [0, 7]. In contrast, the error is well controlled by the MCB estimator, as shown
in Fig. B.4(b). When the ESNR is higher than 5 dB, the error is less than 7/50 for most of the
part of the plot. The maximum error is less than 7/20 rad, which appears at 7 = 0 and 7.

In order to evaluate the performance of the MCB estimator in a more qualitative manner, we
defined a mean error energy, €2, as
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Figure B.6: Contour plots of RMSE in mean (a), 4th order MCB (b), and 6th order MCB esti-
mator (c).

6
e = | (0 — Oayma))’| /7, (B.15)
i=0

where d7; = i /6 is true phase retardation and <(5 M/ E2> is the ensemble mean of §; or 6 g when
the true value is 7. Figure B.5 shows the square-root of €2 as a function of ESN R, where
¢ was obtained via Monte-Carlo simulation with 216 trials, followed by a mean estimator (red
curve), 4th order MCB estimator (green curve), and 6th order MCB estimator (blue curve). For
very high ESNR, e.g., higher than 25 dB, all the estimators provide a reasonably small amount
of error. However, if the ESNR becomes lower than 25 dB, the error of the mean estimator
increases rapidly, while the errors of the MCB estimators remain reasonably small until around
8 dB.

Thus far, we discussed the estimation error obtained with a sufficiently large number of trials.
However, in practice, the number of trials/measurements we can perform at a single location is
limited. Similarly, the kernel size of a local averaging filter that may be applied to a phase
retardation image should be small. If the distribution of the transformed phase retardation is
broad, i.e., randomeness is high, a large number of measurements are required to restrain the
randomness of the result. Hence, the randomness of estimation is also of particular interest.

For qualitative evaluation, we define randomness as the root mean square error (RMSE) of
the estimation as

o= /{(or — g)?). (B.16)

In Fig. B.6, o is plotted as a function of ESNR and 7. We consider ¢ as a performance
criterion of precision in estimation. Figures B.6 (a)-(c) show ¢ against 7 and ESNR, where o
was obtained with mean, 4th order MCB, and 6th order MCB estimation, respectively. o of all of
these three methods increase as ESNR decreases. The 4th and 6th order MCB estimators possess
a similar level of randomness if the ESNR is higher than 15 dB. However, the randomness in the
6th order MCB becomes significantly higher than that in the 4th order MCB if the ESNR is less
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Figure B.7: Estimation result in simulation and experiment. The true values are denoted by
black dashed lines, and the mean and MCB estimation results are denoted by red and green lines,
respectively. The solid lines denote the mean of a 65536-trial estimation, and the squares, circles,
and crosses denote 64-measurement estimations of a quarter wave-plate, one eighth wave-plate,
and glass in the experiment.

than 10 dB. Therefore, we have used the 4th order transform function rather than a higher order
transform function. In summary, the randomness in estimation increases as ESNR decreases,
and the mean and higher order MCB generate the lowest and highest random error.

The experimental performance of the MCB estimator is quantitatively evaluated by measur-
ing the phase retardations of a glass plate, a one-eighth wave-plate, and a quarter wave-plate,
whose round trip phase retardations are 0, 7/2, and 7, respectively.

For this measurement, PS-SS-OCT with a 1.3 ym probe was employed. The details of the
principle of this system are described in Ref. 52, and the details of the hardware configuration
are described in Ref. 108. In short, this system has a depth resolution of 8.3 ym in air and a
measurement speed of 30,000 A-lines/s. The measurements are performed with several ESNR
configurations, which are controlled by a neutral density filter placed in front of the sample. For
each ESNR configuration, 64 A-lines were successively obtained and utilized for the estimation.

The estimations are shown in Fig. B.7, where the red dots and green dots represent the
estimations obtained by a mean estimator and MCB estimator, respectively. The red and green
curves denote the corresponding estimations obtained by the Monte-Carlo simulations, and they
are identical to those in Fig. B.3. The experiment is in good agreement with the Monte-Carlo
simulation, and the MCB estimator enables better estimation than the mean estimator.

The estimation was not performed for ESNR less than 8 dB because of the difficulty in the
experimental determination of ESNR, which arises from the non-uniform SNR of each detection
channel of the PS-SS-OCT. Because the modulation efficiency of the source polarization of the
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system is not perfect, the SNR of the modulated channels are 8 to 10 dB lower than those of
the non-modulated channels. The ESNR (), which is a significant parameter for the estimation,
becomes unreliable in this low ESNR range; hence, ép also becomes unreliable.

The MCB estimator was applied to an in vitro chicken breast muscle, which is common-
ly utilized as a standard sample of PS-OCT evaluation. A 10-mm region on the sample was
scanned to obtain a B-scan that consists of 512 A-lines. The B-scan measurements were suc-
cessively performed 128 times at the same location on the sample; hence, 128 measurements
were performed at a single point of an OCT image. Before applying the estimator, data points
whose ESNR is lower than 8 dB were discarded because of their unreliability. The remaining
data points were substituted by the mean and 4th order MCB estimators to form estimated-phase
retardation images.

Figure B.8 shows the intensity image (a), ESNR image (b), a raw (non-avaraged) phase
retardation image (c) and estimated phase retardation images formed by the mean estimator (d)
and MCB estimator (e). Although the mean estimator significantly reduces the noise as shown in
Figs. B.8(c) and (d), the contrast of the fringe shown in Fig. B.8(d) is still erroneously decreases
in a deeper region. This is because, with low ESNR, the mean estimator underestimates the phase
retardation when the true phase retardation is close to 7, and overestimates the phase retardation
when the true phase retardation is close to zero, as discussed above. On the other hand, the MCB
estimator provides higher contrast of the fringe, as shown in Fig. B.8(e). It should be noted
that with the MCB estimator, the fringe contrast decreases in a very deep region. This may be
attributed to OCT signal crosstalk due to multiple scattering and the limitations of MCB.

The red dots in Figs. B.9(a)-(c) respectively show examples of depth resolved phase retarda-
tion signals extracted from a raw phase retardation image (a) and from phase retardation images
obtained by the mean estimator (b) and the MCB estimator (c). The transversal locations of
these signals are indicated by dashed lines in Figs. B.8(c)-(e). The dashed curves present cor-
responding depth-resolved ESNR signals in a logarithmic scale. The ESNR of Fig. B.9(a) is a
non-averaged ESNR signal, while the ESNR of Figs. B.9(b)-(c) are averaged ESNR of A-lines
which have been taken at the same location on the sample and been utilized for the estimation.
It should be noted that the ESNR in the air is not 0 dB but around 3 dB because of the special
calculation method.

The phase retardation is cumulative along depth; hence, a clear fringe pattern is observed
in the estimated phase retardation by both methods. A clear decay was observed in the contrast
of phase retardation fringe in the mean estimator image, caused by ESNR decreasing along the
penetration depth; however, this did not happen in estimation using the MCB method.

As discussed above, the MCB estimator involves two steps, the distribution transform and
ensemble mean operation. The distribution transform is a point-to-point function, i.e., the inputs
of the distribution transform function are ESNR and d,; of a single pixel, and the output is a
single value of dz that is also associated with the single pixel. On the other hand, the mean
operation requires multiple sampled values.
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(a) (b)

Figure B.8: B-scan images of in vitro chicken breast muscle. (a) is an intensity image, and (b)
is a log-scaled SN R image. (c) is a single raw phase retardation image. (d) and (e) are phase
retardation images obtained from mean and MCB estimators based on 128 B-scans. The white
dashed lines denote the positions of the depth signal shown in Fig. B.9
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Figure B.9: Plots of A-line signals versus penetration depth. The red dots represent phase retar-
dation values of raw phase retardation (a), obtained by mean estimator (b), and obtained by 4th
order MCB estimator (c). Dashed curves represents corresponding ESNR values. The ESNR of
(a) is a raw and non-averaged ESNR signal, while the ESNR of (b) and (c) are averaged ESNR
of A-lines which have been taken at the same location on the sample and been utilized for the
estimation.

Because of this property, the mean operation requires multiple phase retardation images mea-
sured at exactly the same location on the sample, while the distribution transform function re-
quires only one image. This is an undesirable requirement for in vivo measurement.

This limitation can be overcome by three strategies. The first strategy is to apply only the
transform function. This strategy is useful for qualitative observation; however, is not sufficient
for quantitative assessment.

The second strategy is the use of the local mean as an alternative to the ensemble mean, in
which the phase retardation values within a predefined special extent, known as a kernel, are
averaged.

The third strategy is the use of slope fitting. Depth-oriented slope fitting of phase retardation
has been widely utilized for the quantification of birefringence. [90, 101, 109] The slope fitting,
i.e., least square linear fitting, is a maximum likelihood estimation with an assumption of sym-
metric distribution of noise, and the mean is a special case of linear fitting in which the slope is
predefined as zero. Both the slope fitting and the mean are maximum likelihood estimations with
the assumption of symmetric noise distribution; hence, the slope fitting would be applicable as an
alternative to the mean operation. In the proposed scheme, the slope fitting of phase retardation
is applied along the depth after the distribution transform. This would provide better estimation
of birefringence of a biological specimen than the standard slope fitting without a distribution
transform.

It is known that a similar systematic error exists in other PS-OCT algorithms including the
widely utilized Hee’s algorithm [43,101]. Although the MCB estimator presented in this paper
cannot be directly applied to other PS-OCT algorithms, it may be possible to design a tailored
MCB estimator for the other algorithms by using Egs. (B.11)-(B.13). In this designing process,
the noise model of the PS-OCT should be properly customized for the PS-OCT algorithm of
interest. Then, Dy of Eq. (B.13) is determined by a Monte-Carlo simulation, and D is defined
by the simulation parameters.
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In our Jones matrix PS-OCT, the SNR of each detection channel does not independently af-
fect the error property; however, the ESNR ~ dominates this property. Thus, B was determined
for each -y value. However, this ESNR dependency is not warranted in other PS-OCT algorithm-
s. The independent factors of the error property should be carefully considered in the design
process.

B.4 Summary

In summary, this appendix proposed a nonlinear method to estimate a correct phase retardation
value from raw phase retardation values measured via PS-OCT. This estimator involves of two
operations, distribution transform and mean operation. The distribution transform function was
designed to eliminate the asymmetric distribution of phase retardation, which causes a system-
atic error in the mean estimation of phase retardation. The transform function was designed on
the basis of Monte-Carlo analysis of the error property of PS-OCT. The superior performance
of the MCB estimator, as compared to that of a standard mean estimator, has been demonstrated
by numerical simulations and experiments. The MCB estimator was also applied to an in vit-
ro chicken breast muscle, and it showed higher contrast of the phase retardation fringe than a
standard mean estimator. The distribution transform was applied to an in vivo human posterior
eye, and a reasonable phase retardation image was obtained. MCB can potentially improve the
phase retardation image quality of PS-OCT; moreover, it can further will enhance the ability of
quantitative phase retardation measurement of PS-OCT.
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