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Chapter 1

Introduction

Suppose that we have a DTD D and XML documents valid against D, and let us consider writing

an XPath query to the documents. Unfortunately, a user often does not understand the entire

structure of D exactly, especially in the case where D is a very large and/or complex DTD or D has

been updated but the user misses the update. In such cases, the user tends to write an incorrect

XPath query q in the sense that q does not conform to D or the answer of q is disappointing due

to his/her structural misunderstanding of D. However, it is difficult for the user to correct q by

hand due to his/her lack of exact knowledge about the entire structure of D. On the other hand, a

query q written by a user is at least an important “hint” in order to find a correct query, even if q

is incorrect.

Therefore, in this paper we propose an algorithm that finds, for an (possibly incorrect) XPath

query q, a DTD D, and a positive integer K, top-K XPath queries “similar”(syntactically close) to

q among the XPath queries conforming to D, in order that a user may select a desirable query from

the top-K queries.

As a brief example of our algorithm, let us consider the following simple DTD D.

<!ELEMENT site (people)>

<!ELEMENT people (person)*>

<!ELEMENT person (name, emailaddress, phone?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT emailaddress (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ATTLIST person id ID #REQUIRED>

Suppose that a user wants name element in the person whose id is “11517” and that he/she tries to use

an XPath query q = /person[@id = "11517"]/naem, which does not conform to D. Our algorithm

finds XPath queries similar to q based on the edit distance between XPath queries, introduced in this

paper. In this example, our algorithm lists the following top-K XPath queries similar to q (assuming

that K = 3). Each XPath query q′ is followed by the edit distance between q and q′, assuming that

the cost of relabeling l with l′ is the normalized string edit distance between l and l′ [14].
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1. //person[@id = "11517"]/name (0.75)

2. //people/person[@id = "11517"]/name (1.75)

3. /site/people/person[@id = "11517"]/name (2.25)

As above, by our algorithm the user can obtain top-K correct XPath queries similar to q without

modifying q by hand even if he/she does not know the exact structure of D. Although the above

DTD D is very small, DTDs used in practice are larger and more complex [4]. In such a situation,

a user tends not to understand the entire structure of a DTD exactly, and thus our algorithm is

helpful to write correct XPath queries on such DTDs.

In this paper, we focus on an XPath fragment using child, descendant-or-self, following-sibling,

preceding-sibling, and attribute axes. Although our XPath fragment supports no upward axes, this

gives usually no problem since the majority of XPath queries uses only downward axes[9]. Thus, we

believe that our algorithm is useful to correct a large number of XPath queries.

There have been a number of eminent studies related to this paper. Ref. [5] proposes an algorithm

that finds valid tree pattern queries most similar to an input query. Their algorithm and ours are

incomparable due to the underlying data models; in their data model a tree is unordered and a

schema is represented by a DAG supporting multiple type for element name (as in XML Schema),

while we use DTD (recursion is supported) and a tree is ordered. Note that Choi investigated 60

DTDs and 35 of the DTDs are recursive [4], which suggests that it is meaningful to support recursive

schemas. Besides query correction, several related but different approaches have been studied for

XML; query expansion, inexact queries, interaction, keyword search, etc. Ref. [17] proposes the

node insertion operation that is also proposed in this paper. Ref. [16] takes a query expansion

approach instead of correcting queries. Refs. [2, 3, 8, 7] deal with a top-K query evaluation for

XML documents to derive inexact answers, i.e., evaluating a “relaxed” version of the input query,

if it is unsatisfiable. Inexact querying is also studied in Refs. [11, 12], in which a user can write

an XQuery query without specifying exact connections between elements. Ref. [15] proposes an

interactive system for generating XQuery queries. There has been a number of studies on XML

keyword search (e.g., [20, 10, 19]), which are especially suitable for users that are not familiar with

XML query languages. Moreover, several XML editors (e.g., XMLSpy [1]) support autocomplete for

XPath query editing, but they do not support listing K correct XPath queries.

The rest of this paper is organized as follows. Chapter 2 gives some preliminary definitions.

Chapter 3 defines four edit operations to XPath queries. Chapter 4 illustrates the DTD graph and

the xd-graph that are used in our algorithm. Chapter 5 shows an algorithm for finding K correct

XPath queries most similar to input XPath query, and then shows an extension to the algorithm so

that the algorithm handle XPath predicates. Chapter 6 shows some experimental results. Chapter 7

summarizes the paper.
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Chapter 2

Preliminaries

Let Σe be a set of labels (element names) and Σa be a set of attribute names with Σe ∩ Σa = ∅.
A DTD is a triple D = (d, α, s), where d is a mapping from Σe to the set of regular expressions

over Σe, α is a mapping from Σe to 2Σa , and s ∈ Σe is the start label. For example, the DTD

in Chapter 1 is a triple (d, α, site), where d(site) = people, d(people) = person∗, d(person) =

(name, emailaddress,phone?), d(name) = ϵ, α(name) = {id}, and α(e) = ∅ for any element e ̸=
name.

By L(d(a)) we mean the language of d(a). For labels b, c, if there is a string str ∈ L(d(a)) such

that str[i] = c and str[j] = b with i < j (i > j), then we say that b can be right (resp., left) to c in

d(a), where str[i] denotes the ith character of str. For example, e can be right to c in d(a) = c(f |e)∗.
For a DTD D = (d, α, s) and labels a, b ∈ Σe, b is reachable from a in D if (i) a = b or b appears

in d(a), or (ii) for some label a′, a′ is reachable from a and b appears in d(a′). In the following, we

assume that any label in a DTD is reachable from the start label of the DTD.

The XPath fragment used in this paper, denoted XP, is a set of location paths using child (↓),
descendant-or-self (↓∗), following-sibling (→+), preceding-sibling (←+), and attribute (@) axes.

Table 2.1 Syntax of XP

XP ::= “/” RelativePath | “/” RelativePath “@” Attribute

RelativePath ::= LocationStep | LocationStep “/” RelativePath

LocationStep ::= Axis “::” Nodetest | Axis “::” Nodetest Predicate

Axis ::= “↓” | “↓∗” | “→+” | “←+”

Nodetest ::= Label | “∗”
Label ::= (any label in Σe)

Attribute ::= (any label in Σa)

Predicate ::= “[” Exp “]”

Exp ::= PredPath | PredPath Op Value

PredPath ::= RelativePath | “@” Attribute | RelativePath “@” Attribute

Op ::= “=” | “<” | “>” | “=<”| “=>”

Value ::= ‘”’ (any string other than ‘”’) ‘”’
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Formally, XP is defined in Table 2.1. Thus an XPath query (query for short) q in XP can be denoted

/ax[1] :: l[1][exp[1]]/ · · · /ax[m] :: l[m][exp[m]], (2.1)

where ax[i] ∈ Axis and l[i] ∈ Σe for 1 ≤ i ≤ m− 1, exp[i] ∈ Exp for 1 ≤ i ≤ m, ax[m] ∈ Axis∪ {@},
and l[m] ∈ Σa if ax[m] = @, l[m] ∈ Σe otherwise. If the ith location step has no predicate, then we

write exp[i] = ϵ.

Let q be a query in (2.1) containing no ‘∗’ as node test. For indexes i, j such that ax[i] ∈ {↓, ↓∗}
and that ax[i+ 1], · · · , ax[j] ∈ {→+,←+}, we say that l is the parent label of l[j] in q if (i) ax[i] =↓
and l = l[i− 1], or (ii) ax[i] =↓∗, l is reachable from l[i − 1], and l[i] appears in d(l). For example,

if q = /↓:: a/↓:: b/→+:: c/←+:: d, then a is the parent label of b, c, d in q.

Let D = (d, α, s) be a DTD. Then q conforms to D if the following conditions hold.

• ax[1] = ↓ and l[1] = s, or, ax[1] = ↓∗ and l[1] ∈ Σe

• The following condition holds for every 2 ≤ i ≤ m

– ax[i] = ↓ and l[i] appears in d(l[i− 1]),

– ax[i] = ↓∗ and l[i] is reachable from l[i− 1] in D,

– ax[i] = →+ and l[i] can be right to l[i− 1] in d(l), where l is the parent label of l[i] (the

case where ax[i] = ←+ is defined similarly), or

– ax[i] = @, i = m, and l[i] ∈ α(l[i− 1]).

• For every 1 ≤ i ≤ m with exp[i] ̸= ϵ, query /↓:: l[i]/exp[i] conforms to DTD (d, α, l[i]).

Let q be a query in (2.1) containing ‘∗’s as node tests. Then q conforms to D if for some l1 ∈
L(l[1]), · · · , lm ∈ L(l[m]), /ax[1] :: l1[exp[1]]/ · · · /ax[m] :: lm[exp[m]] conforms to D.*1 By |q| we
mean the number of location steps in q, e.g., if q = / ↓:: a/ ↓:: ∗[←+:: d], then |q| = 3. If a query q

has neither predicate nor attribute axis, then we say that q is simple.

*1 L(l[i]) = {l[i]} if l[i] is a label, L(l[i]) = Σe if l[i] = ‘∗’.
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Chapter 3

Edit Operations to XPath Query

In this chapter, we define edit operations to queries. We use the following four kinds of edit

operations.

• Axis substitution: substitutes axis ax with ax′, denoted ax→ ax′. For example, by applying

↓→↓∗ to /↓:: a we obtain /↓∗:: a.
• Label substitution: substitutes label (possibly ‘∗’) l with l′, denoted l → l′. For example, by

applying a→ b to /↓:: a we obtain /↓:: b.
• Location step insertion: inserts location step ax :: l, denoted ϵ → ax :: l. For example, by

applying ϵ→↓:: b to the tail of /↓:: a we obtain /↓:: a/↓:: b.
• Location step deletion: deletes location step ax :: l, denoted ax :: l → ϵ. For example, by

applying ↓:: a→ ϵ to the first location step of /↓:: a/↓:: b we obtain /↓:: b.

We next define the position of a location step ls, denoted pos(ls). Let q = /ax[1] ::

l[1][exp[1]]/ · · · /ax[m] :: l[m][exp[m]] ∈ XP. We define that pos(ax[i] :: l[i]) = i for 1 ≤ i ≤ m. As

for location steps in predicates, let exp[i] = ax′[1] :: l′[1][exp′[1]]/ · · · /ax′[n] :: l′[n][exp′[n]]. Then

we define that pos(ax′[j] :: l′[j]) = i.j for 1 ≤ j ≤ n. The position of a location step in exp′[j] can

be defined similarly. For example, let q = / ↓:: a/ ↓:: b[↓:: ∗[↓:: g]]/→+:: c. Then pos(↓:: b) = 2,

pos(↓:: ∗) = 2.1, and pos(↓:: g) = 2.1.1. By [op]pos, we mean an edit operation op applied to the

location step at position pos. If op is an edit operation inserting a location step ls, then [op]pos

inserts ls just after the location step at pos.

Let q ∈ XP. An edit script for q is a sequence of edit operations having a position in q. For

an edit script s for q, by s(q) we mean the query obtained by applying s to q. For example, let

s = [ϵ→↓:: b]1 [c→ f ]3 and q = /↓∗:: a/↓:: d/↓:: c. Then we have s(q) = /↓∗:: a/↓:: b/↓:: d/↓:: f .
Throughout this paper, we assume the following. Let U = {↓, ↓∗}, S = {→+,←+}, and A = {@}.

• An axis can be substituted with an axis of “same kind” only, that is, ax ∈ U (resp., S,A) can

be substituted with an axis in U (resp., S,A) only.

• A location step ax :: l can be inserted to a query only if ax ∈ U and l ∈ Σe.
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A cost function assigns a cost to an edit operation. By γ(op) we mean the cost of an edit operation

op, where γ is a cost function. In the following, we assume that γ(op) ≥ 0. A cost function can be

a general function as well as a constant. For example, γ(op) can be a string edit distance between l

and l′ if op = l → l′. For an edit script s = op1op2 · · · opn, by γ(s) we mean the cost of s, that is,

γ(s) =
∑

1≥i≥n γ(opi). For a DTD D, a query q, and a positive integer K, the K optimum edit script

for q under D is a sequence of edit operations s1, · · · , sK if (i) each of s1(q), · · · , sK(q) conforms to

D, (ii) γ(s1) ≤ · · · ≤ γ(sK), and (iii) s1, · · · , sK are optimum, that is, for any edit script s for q such

that s(q) conforms to D, s(q) ∈ {s1(q), · · · , sK(q)} or γ(s) ≥ γ(sK). We say that s1(q), · · · , sK(q)

are top-K queries similar to q under D.
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Chapter 4

Xd-Graph Representing Queries Conforming

to DTD

In this chapter, we introduce a graph called xd-graph, which forms the basis of our algorithm.

Throughout this section, we assume a simple query.

To find top-K queries similar to a query q under a DTD D, we take the following approach.

1. We first construct an xd-graph for q and D. The graph is designed so that each path in the

graph represents a simple query q′ such that (a) q′ is obtained by applying some edit script

to q and that (b) q′ conforms to D.

2. Then we solve the K shortest paths problem on the xd-graph. The result corresponds to

top-K queries similar to q under D. The details of this step are presented in Chapter 5.

4.1 Xd-Graph Examples

To construct an xd-graph, we need a graph representation of DTD. The DTD graph G(D)

of a DTD D = (d, α, s) is a directed graph (V,E), where V = Σe and E = {l → l′ |
l′ is a label appearing in d(l)}. For example, Fig. 4.1 is the DTD graph of D = (d, α, s), where

d(s) = ba∗, d(a) = c|d, d(b) = d, d(c) = ϵ, d(d) = b|ϵ.
Now let us illustrate xd-graph. We first present the following three cases by examples (assuming

that no ‘∗’ can be used), then define xd-graph formally.

Case A) Only child (↓) can be used as an axis.

Case B) Descendant-or-self (↓∗) can be used as well as ↓.
Case C) Sibling axes (→+, ←+) can be used as well as ↓ and ↓∗.
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Figure 4.1 a DTD graph G(D)

Figure 4.2 an xd-graph G(q,G(D))

Case A)

Let us first illustrate the xd-graph constructed from a simple query q = /↓:: a/↓:: d and the DTD

graph G(D) in Fig. 4.1. Since only ↓ axis is allowed, it suffices to consider location step insertion,

location step deletion, and label substitution. Fig. 4.2 shows xd-graph G(q,G(D)). The xd-graph

is constructed from 3 copies of G(D) with their nodes connected by several edges. Here, n0, n1, n2

are newly added nodes, which correspond to the “root node” in the XPath data model. Each node

is subscripted, e.g., the node s in G(D) is denoted s0 on the topmost DTD graph of G(p,G(D)), s1

on the second topmost DTD graph, and so on, as shown in Fig. 4.2.

We have the following three kinds of edges in an xd-graph.

• A “horizontal” edge l→ l′ corresponds to a location step insertion.

• A “slant” edge l 99K l′ corresponds to a label substitution.

• A “vertical” edge l ≻ l′ corresponds to a location step deletion.
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Figure 4.3 Edges representing location step insertion

More concretely, let us first consider horizontal edge n0 → s0 in Fig. 4.2. This edge means “moving

from the root node to child node s, using no location step of q”. In other words, the edge n0 → s0

represents adding a location step ↓:: s, that is, the edge represents an edit operation [ϵ→↓:: s]0. Let
us next consider slant edge s0 99K b1 in Fig. 4.2. This edge means “moving from node s to child

node b using the first location step ↓:: a of q”. Since the target node is b rather than a, we have to

substitute the label of ↓:: a with b, that is, the edge s0 99K b1 represents [a→ b]1. Finally, consider

vertical edge b1 ≻ b2 in Fig. 4.2. This edge means “staying the same node b by ignoring (deleting)

the second location step ↓:: d of q”. Thus the edge b1 99K b2 represents [↓:: d→ ϵ]2.

In Fig. 4.2, n0 is called start node and d2 is called accepting node. Each path from the start node to

the accepting node represents a simple query conforming to D obtained by correcting q. For example,

let us consider a path p = n0 → s0 99K a1 99K d2 in Fig. 4.2. Recall that q = /↓:: a/↓:: d. The first

edge n0 → s0 represents a location step insertion [ϵ→↓:: s]0. The second edge s0 99K a1 represents

a label substitution [a → a]1, i.e., the first location step “↓:: a” of q is unchanged. Similarly, the

location step “↓:: d” of q is unchanged. Thus, p represents a query q′ = /↓:: s/↓:: a/↓:: d, which is

obtained by applying [ϵ→↓:: s]0[a→ a]1[d→ d]2 to q. Note that q′ conforms to D.

Case B)

In this case, we can use ↓∗ axes as well as ↓ axes. Let us first consider an edit operation inserting

location step ↓∗:: l to a query. For this insertion, we add edges representing the edit operation to

an xd-graph. Fig. 4.3 shows the xd-graph constructed from the DTD graph in Fig. 4.1 and a query

q = /↓:: d. Each dashed edge in Fig. 4.3 represents a location step insertion. For example, s0 99K d0

means “moving from node s to node d via ↓∗ axis, using no location step of q”, that is, inserting

a location step ↓∗:: d at position 0 of q, i.e., [ϵ →↓∗:: d]0. As stated before, every path from the

start node to the accepting node represents a simple query conforming to D, which is obtained by
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Figure 4.4 Edges representing axis substitution

Figure 4.5 Edges dealing with →+ and ←+ axes

correcting q. For example, n0 → s1 99K d1 represents a simple query / ↓:: s/ ↓∗:: d obtained by

applying [d→ s]1[ϵ→↓∗:: d]1 to q = /↓:: d.
Let us next consider axis substitution between ↓ and ↓∗. Fig. 4.4 shows the xd-graph constructed

from the same DTD graph as above and the same query q = / ↓:: d. In the figure, for simplicity

we omit some of the edges representing location step insertion, location step deletion, and label

substitution. In Fig. 4.4, a dashed edge represents substituting ↓:: a with ↓∗:: l. For example,

n0 99K a1 means “moving from the root node to a with ↓∗ axis”, i.e., substituting ↓:: d with ↓∗:: a.
Here, consider path p = n0 → s0 99K d1 in Fig. 4.4. p represents a query / ↓:: s/ ↓∗:: d, which is

obtained by applying [ϵ→↓:: s]0[↓→↓∗]1 to q = /↓:: d.
Finally, substituting ↓∗ with ↓ can be represented by a slant edge similar to label substitution

(l → l′), and the deletion of a location step using ↓∗ axis can be handled similarly to the location

step deletion in Case A.
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Case C)

Let us consider handling →+ and ←+ axes. Fig. 4.5 shows the xd-graph constructed from the

same DTD graph as above and a query q = /→+:: d. First, let us consider edges connecting the

same labels having distinct subscripts, e.g., s0 → s1 and a0 → a1. Such an edge means that the

position does not change (ignoring →+:: d of q) and →+:: d is deleted from q.

Let us next consider dashed edges connecting “sibling labels”. For example, we have four edges

between a0, b0 and a1, b1 (e.g., a0 99K b1, b0 ≻ a1) since a and b are siblings in d(s) = ba∗. A dashed

edge ≻ represents substituting a sibling axis (→+ or←+) with→+, and another dashed edge 99K
represents substituting a sibling axis with ←+. For example, a0 99K b1 means “moving from node a

to b via ←+ axis”, that is, substituting the location step →+:: d of q with ←+:: b. An xd-graph has

no edge violating a DTD, e.g., Fig. 4.5 does not have edge b0 99K a1 since d(s) = ba∗ and a cannot

be left to b.

Wildcard Node Test)

To handle wild card node test ‘∗’, we duplicate each “slant” edge in Fig. 4.2. For example, between

s0 and a1 we use two edges s0 99K a1 and s0
∗99K a1 instead of a single edge s0 99K a1. The former

of the two represents substituting a label with a as in Case A, and the latter represents substituting

a label with ‘∗’ rather than a. Similarly, each dashed edge in Fig. 4.4 is duplicated.

4.2 Formal Definition of Xd-Graph

Let D = (d, α, s) be a DTD, G(D) = (V,E) be the DTD graph of D, and q = /ax[1] ::

l[1]/ · · · /ax[m] :: l[m] be a simple query. Let Gi(D) = (Vi, Ei) be a graph obtained by adding

a subscript i to each node of G(D), that is, Vi = {li | l ∈ V } and Ei = {li → l′i | l → l′ ∈ E} for

0 ≤ i ≤ m. The xd-graph for q and G(D), denoted G(q,G(D)), is a directed graph (V ′, E′), where

V ′ = {n0, · · · , nm} ∪ V0 ∪ · · · ∪ Vm,

E′ = Einsc ∪ (E′
0 ∪ · · · ∪ E′

m) ∪ (F1 ∪ · · · ∪ Fm). (4.1)

Here, Einsc in (4.1) is the set of edges inserting ↓:: l (correspond to ”ϵ →↓:: l” in Fig. 4.2), that is,

Einsc = {n0 → s0, · · · , nm → sm}∪(E0∪· · ·∪Em), where Ei is the set of edges of Gi(D). E′
i in (4.1)

is the set of edges inserting ↓∗:: l (corresponding to “ϵ→↓∗:: l” in Fig. 4.3) and define as follows.

E′
i = {ni → li | li ∈ Vi} ∪ {li → l′i | l′ is reachable from l in D}.

Fi in (4.1) is the set of edges between Gi−1(D) and Gi(D) defined as follows. We have two cases to

be considered.
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1) The case where ax[i] ∈ {↓, ↓∗}: Fi = Di ∪ Ci ∪ C∗
i ∪Ai ∪A∗

i , where

Di = {ni−1 → ni} ∪ {li−1 → li | l ∈ V }, (4.2)

Ci = {ni−1 → si} ∪ {li−1 → l′i | l→ l′ ∈ E},
C∗

i = {ni−1
∗→ si} ∪ {li−1

∗→ l′i | l→ l′ ∈ E},
Ai = {ni−1 → li | li ∈ Vi} ∪ {li−1 → l′i | l′ is reachable from l in D},
A∗

i = {ni−1
∗→ li | li ∈ Vi} ∪ {li−1

∗→ l′i | l′ is reachable from l in D}.

Here,Di is the set of edges corresponding to “↓:: l→ ϵ” in Fig. 4.2, Ci is the set of edges corresponding

to “l → l′” in Fig. 4.2, and Ai is the set of edges corresponding to “↓:: d →↓∗:: l” in Fig 4.4. C∗
i

(A∗
i ) is the set of “duplicated” edges of Ci (resp., Ai) to handle ‘∗’.

2) The case where ax[i] ∈ {←+,→+} : Fi = Di ∪ Li ∪Ri, where

Li = {li−1 → l′i | l′ can be left to l, l′′ is the parent label of l, l′ in d(l′′)},
Ri = {li−1 → l′i | l′ can be right to l, l′′ is the parent label of l, l′ in d(l′′)},

and Di is the same as the previous case. Li (resp., Ri) is the set of edges corresponding to “→+::

d→ ←+:: l” (resp., “→+:: d→ →+:: l”) in Fig. 4.5.

Finally, we define the cost of an edge in G(q,G(D)) = (V ′, E′). Suppose that γ(l → l′), γ(ax →
ax′), γ(ϵ→ ax :: l), and γ(ax :: l → ϵ) are defined for any l, l′ ∈ Σe and any axes ax, ax′. Then the

cost of an edge e ∈ E′, denoted γ(e), is defined as follows.

• The case where e ∈ Einsc: We can denote e = li → l′i. Since this edge represents inserting a

location step ↓:: l′, γ(e) = γ(ϵ→↓:: l′).
• The case where e ∈ E′

i: We can denote e = li → l′i. Since this edge represents inserting a

location step ↓∗:: l′, γ(e) = γ(ϵ→↓∗:: l′).
• The case where e ∈ Di: We can denote e = li−1 → li. Since this edge represents deleting a

location step ax[i] :: l[i], γ(e) = γ(ax[i] :: l[i]→ ϵ).

• The case where e ∈ Ci: We can denote e = li−1 → l′i. Since this edge represents substituting

ax[i] with ↓ and substituting l[i] with l′, γ(e) =γ(ax[i] →↓) + γ(l[i] → l′). The case where

e ∈ C∗
i can be defined similarly.

• The case where e ∈ Ai: We can denote e = li−1 → l′i. Since this edge represents substituting

ax[i] with ↓∗ and substituting l[i] with l′, γ(e)=γ(ax[i]→↓∗) + γ(l[i] → l′). The case where

e ∈ A∗
i can be defined similarly.

• The case where e ∈ Li: We can denote e = li−1 → l′i. Since this edge represents substituting

ax[i] with ←+ and substituting l[i] with l′, γ(e) = γ(ax[i] →←+) + γ(l[i] → l′). The case

where e ∈ Ri can be defined similarly.

For example, assume that γ(ax→ ax′) = 0 if ax = ax′, γ(l→ l′) = 0 if l = l′, and that γ(op) = 1

for any other edit operation op. Then for the path p = n0 → s0 99K a1 99K d2 in Fig. 4.2, we have

γ(p) = γ(ϵ→↓:: s) + (γ(↓→↓) + γ(a→ a)) + (γ(↓→↓) + γ(d→ d)) = 1 + 0 + 0 = 1.
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Chapter 5

Algorithm for Finding top-K Queries

In this section, we present an algorithm for finding top-K queries similar to an input query under

a DTD. We first consider the case where a query is simple, then present an algorithm for queries in

XP.

5.1 Method for Simple Query

Let D be a DTD, Σe be the set of labels in D, q = /ax[1] :: l[1]/ · · · /ax[m] :: l[m] be a simple

query, and G(q,G(D)) = (V ′, E′) be the xd-graph for q and G(D). Moreover, let n0 ∈ V ′ be the

start node and (l[m])m ∈ V ′ be the accepting node of G(q,G(D)). If l[m] /∈ Σe (due to user’s typo),

then the label l ∈ Σe “most similar” to l[m] is selected and lm ∈ V ′ is used as the accepting node.*1

Currently, we select l ∈ Σe such that the edit distance between l and l[m] is the smallest.

By the definition of xd-graph, in order to find top-K queries similar to q under D, it suffices to

solve the K shortest paths problem over the xd-graph G(q,G(D)) between the start node and the

accepting node. The resulting K shortest paths represent the top-K queries similar to q under D.

Thus we have the following.

Theorem 1 Let D be a DTD, q be a simple query, and K be a positive integer. Then the above

method outputs top-K queries similar to q under D. �

Proof(sketch) Let p be a simple XPath query and D be a DTD. It suffices to show that the

xd-graph G(p,G(D)) of p and D is “sound” and “complete”. For the soundness, it is easy to show

that every path p from the start node to the accepting node in G(p,G(D)) is “correct”, that is, the

XPath query represented by p is correct w.r.t. D. Let me next consider the completeness. Consider

inserting an additional edge li → lj such that there is no edge between li and lj in G(p,G(D)). Then

it is easy to verify that li → lj does not correctly represent any edit operation to p. �

*1 G(q,G(D)) can also have multiple accepting nodes by adding a new “accepting” node n and edges from each

node in Vm to n. But since this approach tends to output “too diverse” answers, I currently use a single

accepting node.
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Let us consider the time complexity of this method. First, we consider the size of G(q,G(D)).

For every node n in G(p,G(D)), the number of edges leaving n is in O(|Σe|). Since the number of

nodes in G(q,G(D)) is in O(|q| · |Σe|), the total number of edges in G(q,G(D)) is in O(|q| · |Σe|2).
Let us next consider solving the K shortest paths problem on G(q,G(D)). There are a number of

algorithms for solving this problem (e.g., [13, 6]), and we use the extended Dijkstra’s algorithm. The

time complexity of the Dijkstra’s algorithm is O(K · |E| · log |V |), where E is the set of edges and V

is the set of nodes. Since the number of edges in the xd-graph is in O(|q| · |Σe|2) and that of nodes

is in O(|q| · |Σe|), the time complexity for solving the K shortest paths problem over the xd-graph is

in O(K · |q| · |Σe|2 · log(|q| · |Σe|)). This is the time complexity of the method.

Thus we have the following.

Theorem 2 Let D be a DTD, Σ be the set of labels in D, p be a simple XPath query, and K

be a positive integer. Then K optimum correct edit scripts for p under D can be obtained in

O(K · |p| · |Σ|2 · log(|p| · |Σ|)) time.

5.2 Algorithm for General Query

We present an algorithm that finds, for a query q ∈ XP and a DTD D, top-K queries similar to q

under D. We first give some definitions. Let q = /ax[1] :: l[1][exp[1]]/ · · · /ax[m] :: l[m][exp[m]] ∈ XP.

By sp(q) we mean the selection path of q obtained by dropping every predicate in q and the last

location step of q if ax[m] = @; that is,

sp(q) =

{
/ax[1] :: l[1]/ · · · /ax[m− 1] :: l[m− 1] if ax[m] = @,
/ax[1] :: l[1]/ · · · /ax[m] :: l[m] otherwise.

Suppose that ax[m] = @. By definition the set of edit operations applicable to ax[m] :: l[m] is

S = {ax[m] :: l[m] → ϵ} ∪ {l[m] → l | l ∈ α(l[m − 1])}. We say that op1, · · · , opK are K optimum

edit operations for ax[m] :: l[m] if op1, · · · , opK ∈ S, opi ̸= opj for any i ̸= j, γ(op1) ≤ · · · ≤ γ(opK),

and γ(opK) ≤ op for any op ∈ S \ {op1, · · · , opK} (I assume that op|S|+1 = · · · = opK = nil with

γ(nil) =∞ if |S| < K).

We now present the algorithm. To find top-K queries similar to a query q under a DTD D, we

again construct an xd-graph G(sp(q), G(D)) and solve the K shortest paths problem on the xd-

graph. But since q may not be simple, before solving the K shortest paths problem we modify

G(sp(q), G(D)) as follows.*2

• Suppose exp[i] ̸= ϵ. The cost of deleting location step ax[i] :: l[i][exp[i]] should be γ(ax[i] ::

l[i]→ ϵ)+γ(exp[i]→ ϵ), where “exp[i]→ ϵ” stands for the delete operations that delete every

location step in exp[i] (line (3-a) below).

*2 Since it is fairly difficult to correct the right hand side and the comparison operator of exp[i] exactly, we focus

on correcting the left hand side of exp[i].
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Figure 5.1 Node li and its gadget, where l′i is a new node and e1, · · · , eK are new edges.

We also have to consider correcting exp[i]. To do this, we call the algorithm for query

/l[i]/exp[i] and DTD (d, α, l[i]) recursively. The obtained result is incorporated into

G(sp(q), G(D)) by using the gadget in Fig. 5.1 (node li corresponds to l[m]); the obtained K

optimum edit scripts are assigned to the K edges e1, · · · , eK in the gadget (line (3-b)).

• If ax[m] = @, I have to modify G(sp(q), G(D)) in order to incorporate the K optimum edit

operations for ax[m] :: l[m] (line 4).

FindKPaths(D, q,K)

Input: A DTD D = (d, α, s), a query q = /ax[1] :: l[1][exp[1]]/ · · · /ax[m] :: l[m][exp[m]], and a positive

integer K.

Output: K optimum edit scripts s1, · · · , sK for q under D.

1. Construct the DTD graph G(D) of D.

2. Construct the xd-graph G(sp(q), G(D)) for q and G(D).

3. For each 1 ≤ i ≤ m with exp[i] ̸= ϵ, modify G(sp(q), G(D)) as follows.

（a）For each edge e ∈ Di (defined in Eq. (4.2)), let γ(e)← γ(e) + γ(exp[i]→ ϵ).

（b）For each node li ∈ Vi, do the following (i) – (iii).

i. Replace li with its corresponding gadget (Fig. 5.1).

ii. Call FindKPaths(D′, q′,K), where D′ = (d, α, li) and q′ = /li/exp[i].*
3 Let s′1, · · · , s′K be

the result.

iii. γ(ej)← γ(s′j) for every 1 ≤ j ≤ K.

4. If ax[m] = @, modify G(sp(q), G(D)) as follows.

（a）Replace the accepting node lm−1 of G(sp(q), G(D)) with its corresponding gadget (Fig. 5.1).

（b）Let op1, · · · , opK be the K optimum edit operations for ax[m] :: l[m].

（c）γ(ej)← γ(opj) for every 1 ≤ j ≤ K.

5. Delete the nodes unreachable from the accepting node in G(sp(q), G(D)).

6. Solve the K shortest paths problem on G(sp(q), G(D)) modified as above.

7. Let s1, · · · , sK be the result of line 6. Return s1, · · · , sK .

The above algorithm runs in O(K · |q| · |Σe|2 · log(|q| · |Σe|)) time. I also have the following.

Theorem 3 Let D be a DTD, q ∈ XP a query, and K be a positive integer. Then the algorithm

outputs K optimum edit scripts for q under D. �

*3 Since li is added as the first location step of q′, for each recursive call I assume that γ(n0 → l) = 0 if l = (li)0
and γ(n0 → l) = ∞ otherwise, where n0 is the start node of the constructed xd-graph in the recursive call.
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Pruning Xd-Graph

An xd-graph may contain unnecessary nodes, e.g., in Fig. 4.2 the accepting node d2 is unreachable

from c0, c1, and c2, and thus these three nodes are unnecessary. By pruning such nodes, we can

save space and time. Such a pruning is effective especially if a DTD has a tree-like structure. For

example, suppose that the DTD graph D(G) is a complete k-ary tree and that query q contains

no sibling axis and no predicate. For a leaf node n in D(G), the number of nodes from which n

is reachable is in O(log |Σe|). Thus the size of the xd-graph can be reduced from O(|q| · |Σe|2) to

O(|q| · log2 |Σe|), and the time complexity of the algorithm in this subsection can be reduced to

O(K · |q| · log2 |Σe| · log(|q| · log |Σe|)).
On the other hand, pruning needs a top-down traverse from the start node and a bottom-up

traverse from the accepting node. This can be done in O(|Σe|).
We also make an experiment to evaluate the effect of this pruning. This is shown in Chapter 6.1.
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Chapter 6

Experimental Results

In this chapter, we present two experimental results. The first experiment evaluates the execution

time, and the second experiment evaluates the “quality” of the output of the algorithm. The algo-

rithm is implemented in Ruby, and the experiments are performed on Apple Xserve with Mac OS X

Server 10.6.8, Xeon 2.26GHz CPU, 6GB Memory, and Ruby-1.9.3.

6.1 Running Time of the Algorithm

Since the size of an xd-graph may become very large, pruning of xd-graph is important to obtain

top-K queries efficiently. We evaluate the execution time of the algorithm, as follows.

1. We create a set Q of 10 queries shown in Table 6.1. These queries are generated by XQGen [21],

which is an XPath expression generator, under auction.dtd of XMark [18]. The average size

of the queries in Q is 4.1. Two of the queries contains predicates and the others are simple.

2. For each query obtained above and for each K = 1, · · · , 10, we execute the algorithm and

measure its execution time. In this experiment, we use the following simple cost function.

γ(l→ l′) = the normalized string edit distance between l and l′

γ(ax→ ax′) =

{
0 if ax = ax′

0.5 otherwise

γ(ϵ→ ax :: l) = γ(ax :: l→ ϵ) = 1

Fig. 6.3 plots the average execution times for Q, with/without pruning. With pruning the average

execution time for Q is about 30 to 250 milliseconds, but without pruning the average execution

time is increased by a factor of 4 to 100. Thus, with pruning the algorithm runs efficiently and the

pruning brings a huge reduction of the execution time of the algorithm.
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Table 6.1 Generated queries by XQGen for evaluating execution time

1. //listitem/parlist

2. //closed auctions/closed auction/happiness

3. //text/parlist/listitem/listitem

4. //closed auctions/buyer

5. //categories/description

6. //date/mail

7. //regions/namerica/shipping

8. /site/closed auction/closed auctions/price

8. //africa/item[description/parlist/text]

10. /site/regions/africa/item[mailbox/mail]

Figure 6.1 Execution time with/without pruning of the algorithm

6.2 Quality of the Output of the Algorithm

For a DTD D and an incorrect query q written by a user, there are a number of queries similar

to q under D, and thus our algorithm need to output a result containing the “correct query” that

the user requires. We evaluate the ratio at which the results of the algorithm contain the correct

queries.

The outline of this experiment is as follows. We first prepare a set of pairs (qc, qi), where qc is
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Figure 6.2 An example of a question

a correct query (a query a user should write) and qi is an incorrect query (a query a user actually

writes). Then for each pair (qc, qi), we execute the algorithm to obtain top-K queries similar to qi

and calculate the ratio at which the top-K queries contain qc.

Let me give the details of the experiment. The experiment is achieved by the following five steps.

1. We generate 30 queries shown in Table 6.2 by using XQGen under auction.dtd of XMark. The

average size of these queries is about 5.4. There queries are treated as “correct queries”.

2. XQGen can generate XPath queries containing only ↓ and ↓∗ axes. Thus we choose randomly

about 20% of the XPath queries obtained in 3) (in this case, four XPath queries), and we insert

location steps using sibling axes to the chosen XPath queries. The following is an example.

/s/a/c

↓
/s/a/following-sibling::a/c

3. For each query qc obtained above, We make a “question”, which describes the meaning of qc in

words. Fig. 6.2 shows an example of a simple question for //interval/start. Each question

is carefully described so that it does not permit more than one correct queries. We obtain 30

questions.

4. We request six people to solve the 30 questions obtained in step 2. That is, for each question

they are asked to write a query whose semantics coincides with what the question means. In

this step they can see auction.dtd at any time. We obtain 180 answers (i.e., queries written

by users) in total.

5. We checked the 180 queries by hand and find 17 incorrect ones. Now we obtain 17 pairs (qc, qi)

of correct queries and incorrect queries such that qc and qi share the same question.

6. For each query qi of the 17 incorrect queries and each K = 1, · · · , 10, we execute the algorithm
for qi and check whether the corresponding correct query qc is contained in the output of the

algorithm. We use the same cost function as the previous experiment. Fig. 6.3 illustrates the

result.

As shown in the figure, the algorithm fairly succeeds in generating top-K queries containing correct

queries. The reason why the ratio does not reach 100% is as follows. Auction.dtd contains a cycle and

a correct query traverses the cycle, but a user write an incorrect query that “skips” the intermediate

elements on the cycle and the algorithm cannot predict the correct query since too much elements
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Figure 6.3 The Ratio at which the outputs of the algorithm contains correct answers

are skipped. More concretely, the query written by a user is the following,

//closed_auctions/closed_auction/annotation/description/text

and the corresponding correct query is as follows. The algorithm does not predict it since four

elements are skipped.

//closed_autcions/closed_auction/annotation

/description/parlist/listitem/parlist/listitem/text
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Table 6.2 XPath queries of “right answers”

1. //interval/start

2. //listitem/text/preceding-sibling::text

3. //annotation/description/parlist/listitem/parlist/listitem

4. //closed auction/annotation/description/parlist

5. //category/description/parlist/listitem/parlist/listitem/text/emph

6. /site/open auctions/open auction/annotation/description/text/bold

7. //regions/asia/item/mailbox/mail/from

8. //item/description/parlist/listitem/text/emph/keyword

9. /site/regions/africa/item/following-sibling::item/mailbox/mail/to

10. /site/regions/africa/item/quantity

11. /site/regions/asia/item/mailbox

12. //africa/item/mailbox/mail/following-sibling::mail

13. //open auction/annotation/description/text/emph

14. //closed auctions/closed auction/annotation/description/parlist/listitem/parlist/listitem/text

15. //person/phone

16. //closed auctions/closed auction/annotation/author

17. //regions/africa/item/mailbox

18. //mailbox/mail/date

19. //africa/item/name

20. /site/regions/australia/item/description/parlist

21. //europe/item/payment

22. //watches/watch

23. //regions/australia/item/description/parlist/listitem/parlist/listitem

24. //open auction/bidder/increase

25. //regions/australia/item/shipping

26. //description/parlist

27. /site/regions/australia

28. //samerica/item/description/text/emph

29. //open auctions/open auction/interval/start

30. //bidder/following-sibling::bidder/personref
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Chapter 7

Conclusion

In this paper, we proposed an algorithm that finds, for a query q, a DTD D, and a positive integer

K, top-K queries similar to q under D. Experimental results suggest that the algorithm outputs

“correct” answers efficiently in many cases.

As a future work, we should devise a method for determining reasonable costs of edit operations

automatically, since it may be difficult for users to specify the cost of each edit operation exactly.

Possibly, slack costs cause a localized solution. Therefore they need to be determined carefully.

Another future work is to improve the algorithm completely, and evaluates more essentially. It is

necessary to evaluate from three points of view. Firstly, a control experiment is needed against the

related works. Secondly, the effect of handing following-sibling, preceding-sibling and attribute axes

should be evaluated. Thirdly, “quality” of the output should be evaluated for various costs. It is

suggested that a location step close to the root is more important than a location step far from the

root. Therefore, the quality of the output can probably be improved by inclining costs in the former

side.
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