
Faculty of Library, Information and Media Science, University of Tsukuba

Technical Report

I/O-Optimal Node Ordering Schemes for

Set-Based Navigations in Trees

Keishi Tajima*, Atsuyuki Morishima**, Masateru Tadaishi***

*Graduate School of Informatics, Kyoto University

**Faculty of Library, Information and Media Science, University of Tsukuba

***Graduate School of Library, Information and Media Studies, University of Tsukuba

SLIS-TR-2014-002

Abstract— There are many applications in which users in-
teractively access large tree data by repeating set-based nav-
igations, i.e., by repeatedly selecting one (or several) node,
retrieving a set of nodes connected to it, and again selecting
one (or several) node among them. In this paper, we focus on
the eight most fundamental operations in set-based navigation,
which include neighbor/reachable, label-specific/wildcard, and
forward/backward navigations. For efficient processing of these
operations for large data stored on a disk, we need a storage
scheme that clusters nodes that are accessed together by those
operations. In this paper, (1) we show no storage scheme can be
I/O-optimal for all these operations, (2) we show several node
ordering schemes, each of which is I/O-optimal for some subset
of them, (3) we show that one of the schemes can process all the
forward operations with sequential access to a constant-bounded
number of regions on the disk without accessing irrelevant nodes,
and (4) backward operations can be efficiently processed on
that scheme by using a standard cache technique. We also
show that our storage scheme is compatible with several known
techniques, such as, those for updates, that are important in
practical applications. Finally, we give experimental results with
synthesized and real data that confirm our theoretical results.

I. INTRODUCTION

Edge-labeled trees are commonly used to organize large
volume of data, both in many traditional applications, such as
file directories, and in many recent applications, such as parsed
corpus (e.g., tree banks), bioinformatics data (e.g., PDML
data, Gene Ontology, and many other data with deeply nested
structure [31], [6]), and XML serializations of various data.
Many graph data in real applications are also sparse, tree-like
graphs [37].

This paper focuses on the problem of I/O-efficient storage
schemes for navigation on such data. Queries and navigation
are the two fundamental ways for exploring huge data. While
there has been much research on I/O-efficient storage schemes
for queries, there has not been much research on that for
navigation. Interactive navigation on huge data is, however,
important in some applications. For example, in bioinformatics
databases, interactive exploration is important because text
annotations by other researchers require interpretation by
the experts [33]. Astronomical/medical image databases also
require interpretation by the experts.

Since simple node-at-a-time navigations are not sufficient
for the efficient exploration of such huge data, many applica-
tions support set-based navigations (see, e.g., [9]). In set-based
navigation, a user specifies a starting node and a condition on
the edges to traverse. Then the system retrieves all the nodes
reachable from that node through edges satisfying the given
condition.

In an interactive browse-and-traverse style of access, users
rarely specify complex conditions, and usually use only simple
ones. In this paper, we focus on a symmetric set of the follow-
ing eight most fundamental navigations, consisting of neigh-
bor/reachable, label-specific/wildcard, and forward/backward
navigations:

a→X , a
∗→X , X→a, X

∗→a,
a

l→X , a
l∗→X , X

l→a, X
l∗→a.

�3 �4 �5 �7 �8 �9 �11 �12

�2 �6 �10

�1

��� ���

�� �� �� �� ��

sequential read of disk blocks�
1 2 3 4 5 6 7 8 9 10 11 12� � �

Fig. 1. Child retrieval on depth-first order storage

a→X is an operation that retrieves all nodes that are des-
tinations of edges outgoing from a given node a. a

∗→X
retrieves all nodes reachable from a through paths of any
length. X→a and X

∗→a do the same, but with the direction
of edges reversed. When the data is a tree, they retrieve the
children, descendants, parents, and ancestors of a, respectively.
The following four operations traverse only edges with a given
label l. For example, a l∗→X retrieves the nodes reachable from
a via traversing only l edges.

To allow users to interactively explore huge data, we need
to process these operations efficiently. This is easy when the
data is stored on the main memory. We can construct a tree
or graph structure on the memory by using pointers. When
the data is huge and stored on the disk, however, I/O cost is
critical, and we need a storage scheme that clusters nodes that
are accessed together by these operations.

Such a scheme is, however, not trivial. Suppose we store the
nodes of a tree on a disk in depth-first order, as shown in Fig. 1.
Here, we assume each disk block can store three nodes. This
scheme is I/O-optimal for a ∗→X , because the descendants of
some a are always perfectly clustered. We can read them out
by one sequential access to a contiguous disk region without
reading irrelevant nodes (except for those in the blocks at the
both ends of the region).

On the other hand, this scheme is not efficient for a→X ,
because children of a are interleaved by their subsequent
descendants, and are not clustered. For example, for retrieving
three children (nodes 2, 6, 10) of node 1 in Fig. 1, we have
to read three blocks including irrelevant nodes 1, 3, 4, 5, 11,
12. In addition, we have to access two incontiguous regions,
or if we use a single sequential access, we have to read an
irrelevant block storing nodes 7, 8, 9 along the way.

Notice that the breadth-first order has a counter problem:
children are clustered, but descendants are not. In fact, if
we consider complex path queries, including multi-step paths,
twig patterns, or value predicates, no storage scheme can
cluster answers to all the possible queries.
Contribution. The main contribution of this paper is to answer
an interesting question: Is there an ordering scheme that can
cluster the answers quite well for the most fundamental set of
set-based navigations? Our answer is that there exists a non-
trivial ordering scheme to meet the property. We also show the
ordering scheme is compatible with several existing techniques
that are important in practical applications. It is worth noting
that such a scheme is advantageous even in applications that
support general path queries, if most queries actually issued
by users are shoot-and-pull queries, i.e., queries that select a
small number of nodes that satisfy the given conditions, and

then pull the nodes connected to these nodes.
Outline of the Paper. In Section III, we show that there is no
node order that is I/O-optimal for all the operations explained
above, and introduce three schemes, each of which is I/O-
optimal only for some subset of them. We also show that
one of these schemes can process all the forward operations
with access to a constant-bounded number of disk regions,
without accessing irrelevant nodes. Finally, we show that
combination of that scheme and a standard cache technique
can efficiently process backward operations. Section IV shows
that our scheme is compatible with several existing techniques
that are important in practical applications, e.g., that for
updates. Section V gives experimental results with synthesized
and real data to confirm our theoretical results.

II. RELATED WORK

Tree partitioning [28], [34], [26], [5] or graph partitioning
[36], [35], [11] is a problem to divide a tree/graph into disjoint
connected subgraphs, called clusters, so that it minimizes total
weights of inter-cluster edges while keeping total node weights
in each cluster smaller than a given limit. They can be used
to asign nodes of hierarchical data [28], [34], object-oriented
data [36], or XML data [26], [5] to disk blocks.

In these studies, edge weights represent navigation work-
load, but such workload data may not be available. On the
other hand, our storage schemes are always I/O-optimal for
some of the basic operations above. In addition, tree/graph
partitioning only consider whether nodes are in the same disk
block or not. On the other hand, in our node ordering approach,
related nodes are stored in consecutive blocks even when
they do not fit in one block. Such consecutive blocks can be
efficiently accessed by a sequential access.

[3] has proposed a clustering scheme for CAD/CAM data
that is equivalent to <t, the simplest scheme discussed in
this paper. [32] also proposed a node numbering scheme for
XML data that is similar to <t (although they store data in
RDBMS, and do not discuss in what order they store data on
the disks). However, as shown later, <t is I/O-optimal only for
a→X and a

∗→X . In this paper, we show new node ordering
schemes that support a wider range of operations, including
label-specific navigations. In addition, we show not only the
ordering schemes, but also the detailed storage schemes and
efficient scan-based algorithms for navigation operations on
those storage schemes. We also discuss backward navigation,
navigations from multiple nodes, and updates.

[4] proposed a storage scheme for tree data on disks.
Their scheme is also similar to <t, but instead of linearly
ordering nodes, it arrange nodes in two-dimensional disk space
consisting of tracks and blocks, and it requires the modification
to the disk access interface in the operating system layer.

[24], [27], [1], [23], [24] have shown storage schemes which
store graph nodes on the disk in appropriate order so that
we can efficiently compute transitive closures by a sequential
scan. However, there is no research discussing node ordering
schemes that can cluster both neighbors and transitive closures,
and both label-specific and wildcard ones.

[21], [22] have proposed disk block prefetching strategies
for object-oriented databases, which can be applied to other
tree or graph data. In our ordering approach, we can improve
disk access performance by a simple strategy that prefetches
the following blocks of the requested block. Such a prefetch
may be done by disk controllers or operating systems. Also
notice that the cost of prefetching the following blocks is far
smaller than that of prefetching blocks at somewhere else.

There have also been studies on storage schemes for XML
databases. However, they focus on complex multi-step path
queries either starting at the “root” node or starting at “any”
node, while we focus on single-step navigations starting at
a given single node. This difference makes efficient storage
schemes for complex path queries and those for our set-based
navigations completely different. For example, in the scheme
proposed in [39], the answers to a query of the form p or
p//l, where p is a simple (i.e., no branch) path query starting
from the root node and l is a label, are always clustered in one
contiguous disk region, but the answers to queries not starting
from the root node are not clustered. In addition, no existing
scheme can process a

l∗→X efficiently.
There have also been much research on path-based storage

schemes for XML data [29], [17], [12], [41], [10], [38], [7],
[8]. They index, sort, or cluster nodes based on their paths
from the root (or their suffixes, or the reversed path). As a
result, these schemes are not necessarily I/O-optimal for our
one-step navigations starting from an arbitrary given node.

A storage scheme proposed in [43] uses pre-order. There-
fore, children of a node are interleaved by many descendants.
They use information on the depth of nodes in order to skip
those descendants. However, even if we skip them, because
siblings are not clustered, if there are n child nodes, we have
to read n disk blocks in the worst case.

There are also many path query processing schemes that
scan nodes in pre-order [42], [2], [20]. These schemes avoid
scanning some irrelevant nodes in order to reduce computation
cost. Pre-order is, however, not I/O-optimal for retrieving
children, as explained above. To solve this problem, [19]
proposed an indexing scheme that uses two B-tree indices
so that we can scan a tree in both depth-first and breadth-
first order. Our scheme achieves the same benefit without
maintaining two B-trees. Moreover, even if we can identify
the answer nodes by using indices, if they are not clustered,
we have to read many disk blocks, as explained above.

There has also been research on succinct data structure for
trees that efficiently support navigation (e.g., [25], [16]), and
research on the efficient implementation of DOM trees for
XML [13], [14]. Those studies, however, consider only node-
at-a-time navigations. There are some studies on succinct data
structure for trees that support queries retrieving node sets,
such as [15], [40], but they assume that the data fits in the
memory, and do not discuss I/O-complexity.

III. PROPOSED NODE ORDERING

In this section, we first show a node ordering scheme that
is optimal for both child and descendant navigations. Then

� � �

� � � �

� � �

�

�� ��

		

 		

		

(a)

II

III V

IV VI

I

�7 �8 �11

�5 �6 �9 �10

�2 �3 �4

�1

�� ��

		

 		

		

(b)
Fig. 2. Clustering of children and descendants

we show that there is no such an optimal scheme when we
introduce two more operations that specify edge labels. We
propose two schemes that are optimal for only some subset of
them, and then show that in one of the proposed schemes, the
number of disk regions we need to access for those operations
is bounded by a small constant. Finally, we also show that
there is no good ordering scheme for ancestor navigations, and
we devise a caching strategy that achieves efficient processing
only with a small size of memory.

A. Child and Descendant: a→X and a
∗→X

We start with a node order that is I/O-optimal for a→X
and a

∗→X . The requirement is to cluster both children and
descendants of every node. The boxes in Fig. 2(a) show the
node sets to cluster in the tree. Note that these boxes either
include, are included by, or are disjoint with each other, i.e.,
they never partially overlap. Therefore, there exists a node
order that clusters all these node sets. In fact, the node order
<t defined on a tree t as below achieves the requirement.
I/O-Optimal Ordering for a→X and a

∗→X: <t

For any nodes n1, n2 in a tree t, (1) if n1 (or n2) is the root
node, n1 <t n2 (or n2 <t n1), (2) if n1 and n2 are siblings,
n1 <t n2 iff n1 precedes n2 in the sibling order in t, and (3)
otherwise, n1 <t n2 iff the parent of n1 precedes the parent
of n2 in the depth-first order in t. �

That is, we group siblings, we sort the sibling groups in the
depth-first order in t, and within each group we sort nodes in
the sibling order. For example, in Fig. 2(b), the roman numbers
I to VI designate the depth-first order of sibling groups, and
the numbers 1 to 11 designate the order given by <t. Then
the following theorem holds for <t:

Theorem 1: For any tree t and for any node a in it, its
children and descendants (excluding a itself) have consecutive
positions in the ordering defined by <t. �

For example, children and descendants of the node 2 have
consecutive numbers 5, 6, and 5, 6, 7, 8, respectively.

In the following, we call those numbers addresses of nodes,
and write addr (n) to denote the address of the node n. We
store nodes on a disk in the order of <t, and for each node n,
we store the address of its parent, denoted by parent(n), and
the address of its first child, denoted by firstChild(n). Fig. 3
shows how we store the tree in Fig. 2(b). If nodes have some
data, they may be stored in each entry. Then we can process
a→X and a

∗→X by the procedures below:

Algorithm for a→X:
1. scan the node entries starting at firstChild(a),
2. stop the scan at a node n s.t. parent(n) �= addr (a). �

Algorithm for a
∗→X:

1. retrieve the children of a by the procedure above, and
2. continue to read the following nodes, until we reach a

node n s.t. parent(n) < firstChild(a). �

For example, in Fig. 2(b), we can retrieve descendants of
node 2 by first retrieving its children, 5 and 6, and then
retrieving the following nodes 7 and 8. In the following, N
denotes a node set to retrieve, let B be the size of the disk
blocks, and let I/O-complexity be the number of disk blocks
to read in the worst case. Then the following holds.

Theorem 2: The procedure for a→X and a
∗→X above

correctly retrieves the children and the descendants of a, and
their I/O-complexities are �|N |/B�+1, which are optimal. �

The procedures above retrieve children and descendants by
scanning a single consecutive disk region without reading
irrelevant nodes, except for the last node at which we stop
the scan. Because the unit of real disk access is a disk block,
we do not read an irrelevant block unless the node at which we
stop happens to be the first node of some block. If necessary,
we can prevent even such unnecessary access by storing in
each block (1) a one-bit flag showing whether the last node
in that block is a last sibling, and (2) a counter which shows
how many ancestors of the last node in the block have that
last node as the last descendant.

B. Edge Labels: a l→X and a
l∗→X

Next, we introduce a
l→X and a

l∗→X . Then the following
theorem holds for a l∗→X .

Theorem 3: No node order can cluster answers to both
a

l∗→X and a→X without interleaving nodes. �

Theorem 4: No node order can cluster answers to both
a

l∗→X and a
∗→X without interleaving nodes. �

Fig. 4(a) illustrates the conflict between a
l∗→X and a→X .

In this tree, 1→X , 1
λ∗→X , 1

μ∗→X , 1
ω∗→X retrieve nodes

{2, 3, 4}, {2, 5}, {3, 6}, and {4, 7}, respectively. The boxes
in Fig. 4 represent these node sets, and obviously we cannot
serialize the nodes without decomposing any of these boxes.

On the other hand, a l∗→X and a
∗→X never conflict when

they start from the same node, because the answer to the
former is the subset of the latter. When they start from different
nodes, however, they may conflict. For example, in Fig. 4(b),
1
λ∗→X retrieves nodes 2 to 7, and 2

∗→X , 3
∗→X , 4

∗→X
retrieve {5, 8}, {6, 9}, {7, 10}, respectively. The boxes in
Fig. 4(b) represent these node sets, and obviously, there is
no node ordering that agrees with all these boxes. �

Therefore we have two choices: sacrificing a→X and
a

∗→X , or sacrificing a
l∗→X . If we sacrifice a

l∗→X , a node
order <l

t defined on a tree t, as below, gives an optimal scheme
for the other three operations, i.e., a→X , a ∗→X , and a

l→X:
I/O-Optimal Ordering for a→X , a ∗→X , a l→X: <l

t

Given a tree t, let t′ be the tree created from t by stable sorting

addr(n):
- 2 1 5 1 - 1 9 2 7 2 - 5 - 5 - 4 - 4 11 10 -

1 2 3 4 5 6 7 8 9 10 11

Fig. 3. Disk image of the tree data in the scheme based on <t

�5 �6 �7

�2 �3 �4

�1
�� ��
λ μ ω

λ μ ω

(a) conflict with a→X

�8 �9 �10

�5 �6 �7

�2 �3 �4

�1
�� ��
λ

λ
λ

λ λ λ

μ μ μ

(b) conflict with a
∗→X

Fig. 4. Conflicts caused by a
l∗→X

�v7 �v8 �v9 �v10

�v4 �v5 �v6

�v1 �v2 �v3

�v0

�� ��

��

�� �� �� ��

λ μ λ

λ λ μ

μ λ μ λ

(a) the original tree

�v8 �v7 �v10 �v9

�v4 �v6 �v5

�v1 �v3 �v2

�v0

�� ��

��

�� �� �� ��

λ
λ

μ

λ μ λ

λ μ λ μ

1

2 3 4

5 8 9

6 7 10 11

(b) the order by <l
t

�
�
�
���

�
�
�
��

�
�
��

�
�
��

�v8 �v7 �v10 �v9

�v4 �v6 �v5

�v1 �v3 �v2

�v0

�� ��

��

�� �� �� ��

λ
λ

μ

λ μ λ

λ μ λ μ

1

2 3 8

4 7
9

5
6 10

11

(c) the order by <l∗
t

�
�
��

�
�
��

�v8 �v7 �v10 �v9

�v4 �v6 �v5

�v1 �v3 �v2

�v0

�� ��

 �� ��

��

λ
λ

μ

λ μ λ

λ μ λ μ

1

2 3 8

4 7 9

5 6 10 11

(d) the order by <l∗′
t

Fig. 5. Ordering for edge-labeled trees

of siblings by the labels of their incoming edges. Then for any
nodes n1, n2 in t, n1 <l

t n2 iff n1 <t′ n2. �

The only difference between <l
t and the previous <t is that

we sort the children of each node primarily by their labels. For
example, given a tree shown in Fig. 5(a), Fig. 5(b) shows a
tree after the sorting of sibling nodes, and the numbers beside
the nodes represent the final node ordering given by <l

t.
We also modify the storage scheme. In each node entry, we

store a pointer firstChild(a, l) for each label l, which points to
the first child reachable via that label. Child pointers in each
entry are stored in the dictionary order of the labels. Fig. 6
shows the disk image in this scheme. In Fig 6, a pointer to
a node n is represented by addr (n) for simplicity, but in the
real implementation, we use the byte offset in the binary file
because each node entry in this scheme has a variable length
and we cannot use addr (n) as pointers. When the given data is
very homogeneous, i.e., when every node has almost the same
set of outgoing edge labels, fixed length tuples including null
pointers may be more efficient.

On this data representation, a→X and a
∗→X are processed

by the same procedure as before, except that each entry may
have many child pointers, and we follow the first one among
these. a l→X can be processed by the procedure below:
Algorithm for a

l→X:
1) scan the node entries starting at firstChild(a, l),
2) stop the scan when we reach an entry of n s.t. either

• addr (n) = firstChild(a, l′) where l′ is the label of
the next child pointer in a, or

• parent(n) �= addr (a). �

We again have the theorem below (the proof is omitted):
Theorem 5: The procedures above for a→X , a

∗→X ,
a

l→X are correct, and their I/O-complexities are �|N |/B�+1,
which are optimal. �

On the other hand, this representation is very inefficient for
a

l∗→X , as shown by the theorem below:
Theorem 6: On this storage scheme, the I/O-complexity of

a
l∗→X is |N |, where N is the set of the answer nodes. �

Proof Outline: In the worst case, each relevant node may
appear alone in the middle of a different sibling group. �

Another choice is to choose a
l∗→X , sacrificing a→X and

a
∗→X . Before defining a node order that is optimal for them,

we define a couple of concepts. First, we define the maximal
unilabeled connected subgraphs of a tree t as the maximal
connected subgraphs of t that include only one kind of edge
label. Notice that they always form trees. Next, we define
unilabeled clusters in t as subgraphs created from the maximal
unilabeled connected subgraphs, by removing their root nodes.
We call a removed node the original root of the corresponding
unilabeled cluster. Notice that each unilabeled cluster forms a
forest whose roots are siblings in the original tree t. We also
regard the root node of t always forms a unilabeled cluster
including only itself. The unilabeled clusters of a tree then
disjointly classify all the nodes in it.

Now we define a node order <l∗
t on a tree t, which is

optimal for a l→X and a
l∗→X , as follows:

I/O-Optimal Ordering for a
l→X , a l∗→X: <l∗

t

Let t′ be the tree created from t by sorting siblings as in <l
t.

For any nodes n1, n2 in t, let c1, c2 be the unilabeled clusters
including n1, n2, and let m1,m2 be the first nodes in c1, c2
in the depth-first order in t′, respectively. Then (1) if c1 = c2,
n1 <l∗

t n2 iff n1 <t′ n2, (2) if c1 �= c2, n1 <l∗
t n2 iff m1

precedes m2 in the depth-first order in t. �

In other words, we sort the unilabeled clusters in t′ in the
depth-first order of their first nodes, and within each unilabeled
cluster, we sort nodes in the order of <t′ .

Fig. 5(c) illustrates <l∗
t defined on the tree in Fig. 5(a).

The seven boxes in the figure represent unilabeled clusters.
For example, v1, v3, v4, v8 form a unilabeled cluster, whose
original root is v0 and whose first node is v1. We sort these
seven clusters in the depth-first order of their first nodes, and
within each cluster, nodes are sorted by <t. The numbers
beside the nodes represent the node order given by <l∗

t . In
this ordering, for any tree t and its node a, the answer nodes
of a l→X or a l∗→X have consecutive positions.

We also modify the storage scheme. We change the node
order to <l∗

t , and in each entry of the node n, we store its
label, which we denote by label(n). Although it is possible
to process a

l∗→X without label(n) as explained later, here
we show an algorithm that uses it because that algorithm
is simpler, and we need to store label(n) anyway when we
introduce backward navigations later. Now we show how to
process a

l→X and a
l∗→X on the data representation above.

addr(n):
- λ→2, μ →4 1 λ→5 1 μ→8 1 λ→9 2 λ→6, μ →7 5 - 5 - 3 - 4 λ→10, μ →11 · · ·

1 2 3 4 5 6 7 8 9

Fig. 6. Disk image in the scheme based on <l
t

Algorithm for a
l→X: The same procedure as before. �

Algorithm for a
l∗→X:

1) scan the node entries starting at firstChild(a, l), and
2) stop the scan at a node n s.t. either

• parent(n) �= addr (a)∧parent(n) < firstChild(a, l) or
• label (n) �= l. �

Then, the following theorem holds for these algorithms.
Theorem 7: The procedures above for a

l→X and a
l∗→X

are correct, and their I/O-complexities are �|N |/B�+1, which
are optimal. �

Proof Outline: Let l′ be the label of a, and let c be the
unilabeled cluster including firstChild(a, l). In either a

l→X

or a l∗→X , all the nodes to retrieve are within a single cluster c,
and are given consecutive positions starting at firstChild(a, l)
because nodes within a unilabeled clusters are sorted by <t.

In a
l→X , the node n that immediately follows the last l-

child of a is either (1) some node in c which is not a child of a,
(2) the first node in the next unilabeled cluster whose original
root is not a, or (3) the first node in the next unilabeled cluster
whose original root is a. In Case (1) or (2), parent(n) �=
addr (a), and in Case (3), n is the node pointed by the next
child pointer of a.

In a
l∗→X , the node n that immediately follows the last

l-descendant of a is either (1) some node in c which is
not a descendant of a, (2) the first node in the next cluster
whose original root is not a l-descendant of a, or (3) the
first node in the next cluster whose original root is a l-
descendant of a. In Case (1) or (2), parent(n) �= a ∧
parent(n) < firstChild(a, l), and in Case (3), label(n) �= l
because otherwise n should be in c, which is a contradiction.
�

For example, suppose we process v0
λ∗→X in Fig. 5(c). We

start the scan at firstChild(v0, λ), i.e., v1, and proceed to v3,
v4, and v5. When we reach v6, label(v6) = μ �= λ (Case (3)).
On the other hand, when we process v4

μ∗→X , we start the scan
at v7, and when we reach v6, parent(v6) = 3 �= addr (v4) =
4 ∧ parent(v6) = 3 < firstChild(v4, μ) = 6 (Case (2)).

The algorithm above uses label (n), but as mentioned before,
we can compute a

l∗→X even if we do not store label (n). In
that case, in order to detect Case (3) in a

l∗→X , while scanning
the l-descendants of a, we examine the child pointers in those
entries for any l′ s.t. l′ �= l, and record the smallest address
among them. Then, if the scan reaches the recorded address,
it means we get out of the cluster, and we should stop.
<l∗

t has one significant advantage. Although <l∗
t is not

“optimal” for the other operations, a→X and a
∗→X , we can

process them quite efficiently by the following procedures:
Algorithm for a→X:
Repeat a l→X for all l s.t. a has a l-child. �

Algorithm for a
∗→X:

1) Let l be label (a), and let minAdd be MAXINT.
2) If a has child pointers for some l′(�= l), let l′ be the

first one among them in the dictionary order, and let
minAdd be firstChild(a, l′).

3) Scan the node entries starting at firstChild(a, l).
4) When scanning n, if firstChild(n, l′) < minAdd for

some l′(�= l), let minAdd be firstChild(n, l′).
5) Stop the scan when we reach a node n s.t. either

• parent(n) �= addr (a)∧parent(n) < firstChild(a, l) or
• label(n) �= l.

6) Scan the node entries starting at minAdd.
7) Stop the scan at n s.t.

parent(n) �= addr (a)∧parent(n) < firstChild(a, l). �
Theorem 8: The procedures above for a→X and a

∗→X
are correct, and their I/O-complexities are �|N |/B�+2L− 1
and �|N |/B�+ 3, respectively. �

Proof Outline: Let l be the label of a, and let c be the
unilabeled cluster including a. a→X is trivial. In a

∗→X , the
node set to retrieve is the union of the following four sets:
S1: l-descendants of a. They appear within the cluster c.
S2: Further descendants of nodes in S1. They appear in other

clusters, whose original roots are nodes in S1.
S3: l′-descendants of a for some l′(�= l). For each l′, they

appear in another cluster, whose original root is a.
S4: Further descendants of nodes in S3. They are in yet

other clusters, whose original roots are nodes in S3.
S1 is a subset of c. Each of the other clusters is either

entirely included in the answer, or not included at all. In
addition, clusters including nodes in S2, S3, S4 are all given
consecutive positions in the disk because clusters are sorted
by the depth-first order of their first nodes. Therefore, we can
process a

∗→X , in essence, by the following two scans:
(i) scan a subregion of c that stores nodes in S1, and

(ii) scan all the clusters that are subsets of S2, S3, or S4,
which are stored in consecutive positions.

In the latter scan, we should start the scan at:
1) if a has child pointers for some l′(�= l), the earliest

cluster among those pointed by them, and
2) if a has no child pointer for l′(�= l), the earliest cluster

whose original root is some l-descendant of a. �

For example, on the tree in Fig. 5(c), we process v4
∗→X

by (i) retrieving its λ-descendants that appear at consecutive
positions in one cluster (only v8 in this case), and (ii) scanning
a sequence of the clusters that store the other descendants of
v4 (only the cluster including v7 in this case). In this case, we
start the second scan at v7 which is pointed by the next child
pointer of v4. This corresponds to Case (1) above. On the other
hand, we process v1

∗→X by (i) retrieving its λ-descendants
that are stored in consecutive positions in one cluster (v4

and v8), and (ii) retrieving their further descendants in other
clusters by scanning nodes starting at v7. This corresponds to
the Case (2) above, and we start the scan at the node pointed
by firstChild(v4, μ).

In this way, in this storage scheme, the number of disk
regions required to access for processing a→X is bounded
by the number of labels, which is a small constant in most
practical cases, and that for processing a

∗→X is at most 2,
which is not “optimal,” but near-optimal.

In this paper, we focus on the set-based navigations, and do
not consider path queries including more than one steps. In
fact, our ordering scheme based on <l∗

t is efficient for the set-
based navigations, but not optimal for longer path queries. For
example, if we process a path query v0

λ∗→· μ∗→X on the tree in
Fig.5(c), its answers, i.e., v6 and v7, are in separate clusters
in our scheme, and there may be many nodes between them
if there is a large subtree rooted by v7.

To see the tradeoff between efficiency for one-step naviga-
tions and that for longer path queries, we show a variation of
the previous scheme, which is a mixture of our idea of <l∗

t and
DataGuide [17]. In this scheme, we recursively apply vertex
contraction starting from the root node. Here we only show
its informal definition for the sake of space limitation.
Another Ordering for a

l→X , a l∗→X: <l∗′
t

Given a tree t, we sort the siblings as before and obtain t′.
Then, for each label l, we merge all the l-descendants of the
root node into one node, and create a contracted tree. Then we
recursively apply the same vertex contraction to each subtree
rooted by the children of the root. The nodes that are merged
into one node are stored in consecutive positions as a cluster.
Those clusters are stored in the depth-first order, and the nodes
in each cluster are sorted by <t. However, when nodes in
a cluster form a forest whose roots do not share the same
parent in the original tree, we sort the nodes in that cluster by
assuming these roots are the children of some virtual node,
and their sibling order is the depth-first order of the parents
of these root nodes in the original tree. �

Fig. 5(d) shows an example of this scheme. First we merge
v1, v3, v4, v9 that are reachable through λ-edges from the
root, into a contraction node. We recursively apply the same
procedure to the subtrees, and merge v6 and v7 that are
reachable through μ-edges from that contraction node. Notice
that v6 and v7, which are the answers to the query v0

λ∗→· μ∗→X ,
are in the same cluster in this scheme. Because the nodes in
that cluster form a forest whose roots, i.e, v6 and v7, do not
share the same parent, we assume that they are children of a
virtual node when sorting the nodes in this cluster. The final
node ordering is shown by the numbers beside the nodes.

As shown by the example of v0
λ∗→· μ∗→X above, and also

shown in the experiments in Section V, this scheme is efficient
for path queries consisting of more than one steps in many
cases, especially when they start from the root node. This
scheme, however, does not guarantee a constant bound on the
number of disk regions to access for a ∗→X or a l∗→X , except
when the query starts from the root.

TABLE I
NUMBER OF DISK REGIONS TO ACCESS

a→X a
∗→X a

l→X a
l∗→X

<t 1 1 |N | |N |
<l

t 1 1 1 |N |
<l∗

t L 2 1 1

�5 �6 �7

�2 �3 �4

�1
�� ��

Fig. 7. Conflicts in ancestor clustering

Discussion: The numbers of regions we need to access for
each operation in ordering scheme <t, <l

t, and <l∗
t are

summarized in Table I, where N is the set of the answer nodes,
and L is the number of distinct label names occurring under a
node. Although <l

t is optimal for the three operations, it can be
quite inefficient for a l∗→X . On the other hand, <l∗

t is optimal
only for a l→X and a

l∗→X , but it guarantees that the nodes to
retrieve in a→X and a

∗→X are clustered in a small number of
disk regions (as long as the number of distinct labels is a small
constant). Therefore, <l∗

t is preferable in most cases. There is
a trade-off between efficiency of single-step navigations and
that of longer path queries, and if long path queries starting
from the root are the main concern, the last scheme based on
<l∗′

t may be more efficient.

C. Parent and Ancestor Navigations

Next, we discuss the remaining four backward navigations.
Unfortunately, the following theorem holds.

Theorem 9: No node order can cluster ancestors of every
node at the same time. �

That is, there is no good clustering scheme for ancestors.
Proof. Fig. 7 illustrates the problem. The three boxes in this
figure show the ancestors of the node 5, 6, 7, which are {1, 2},
{1, 3}, and {1, 4}. Obviously, it is impossible to serialize the
nodes without decomposing any of these boxes. �

However, there is an algorithm that allows us to retrieve
ancestors in a constant number of disk accesses if we can use
a small amount of cache memory and additional disk spaces.
It takes a commonly used approach: First, we store in the
cache the nodes that are frequently included in the answers to
ancestor retrieval. Second, when retrieving ancestors of a, we
access p disk blocks preceding the block including a, where
p is a predefined small constant. Then, we can extract all the
ancestors from these preceding blocks and the cache.

Our problem, however, is that it is not trivial whether
we can develop an algorithm that chooses nodes to cache
working with our novel ordering scheme. Here we show
there exists such an algorithm: First, for each node n, we
compute overflowsize(n), which is the number of a s.t. X l∗→a
retrieves n, and the p preceding blocks of a do not include
n. Then we store in the memory cache the nodes n having
large values for overflowsize(n). The overflowsize(n) can

Fig. 8. Computing overflowsize(n)

be computed by the function overflowsize(n,laddr,pb)
shown below. Here, for simplicity, we assume that we use the
storage scheme based on <l

t, and the descendants of each
node is stored in one region. When we use the scheme based
on <l∗

t , the descendants of each node is stored in two regions,
and therefore, we repeat the similar computation twice.
1. long overflowSize(n, laddr, pb) {
2. long overflowSizeMax = (laddr - addr(n)) - pb;
3. if (overflowSizeMax > 0) {
4. return min(overflowSizeMax, laddr - firstChild(n));
5. else return 0;
6. }

This function takes as parameters a node reference n, the
address laddr next to the end of the subtree rooted by n (e.g.,
in the tree in Fig. 2(b), if n = 2, then laddr = 9), and pb, the
number of nodes stored in the p preceding blocks.

Fig. 8 illustrates how overflowsize(n) works. Suppose the
first child of n is far from n and the p preceding blocks of
the first child do not include n (Case 1). In this case, the
overflowsize is computed by laddr - firstChild(n).
In Case 1, if the first child is closer to n, the overflowsize
becomes larger. Once the first child is close enough that its
p preceding blocks contain n (Case 2), the overflowsize stops
growing, and the maximum size is computed by Line 2. Then
we take the smaller one of the two values.

If we store all the nodes s.t. overflowsize(n) > 0 in the
cache, we can retrieve ancestors only by accessing p preceding
blocks, i.e., by a constant number of disk access. We write
cachesize(t, pb) to denote the necessary cache size for that.
It is difficult to estimate cachesize(t, pb) for arbitrary tree,
so here we give cachesize(t, pb) for a perfect m-tree. In this
case, the size of a subtree is 1

m of the tree rooted by its parent.
When |t|

mn ≤ pb, the subtrees whose root are level-n nodes are
contained in the p preceding blocks, which means the required
cache size is O(mn). Therefore, cachesize(t, pb) = |t|

pb . If
pb = 500 (i.e., the preceding blocks contain 500 nodes), the
required memory size is 1/500 of the required disk size.

If we do not have enough memory size to cache those
cachesize(t, pb) nodes, we can store them on the disk, which
forms a smaller tree, and recursively apply the same technique
to the tree. Then we only need 1/5002 size of the memory
in exchange for one more disk access to p blocks and an
additional 1/500 disk space. This dramatically reduces the
required memory. For example, we need only 4Mbyte memory
(and additional 2G disk) for 1T byte database.

IV. COMPATIBILITY WITH OTHER TECHNIQUES

One important question is whether our ordering schemes can
work well with some existing techniques that are important
or even necessary in some applications. This section shows

�1

�2 �3

�4 �5

		

 		

=⇒

�1

�2 �3

�4 �5

		

addr(n):
- 2 1 4 1 5 d4 2 - s3 3 -

1 2 3 4 5

Fig. 9. Non-tree edges and the disk image

that popular approaches to the three important problems—
handling sparse graphs, navigations starting at multiple nodes,
and update of sorted data—can work well with our schemes.
We omit the discussion on edge labels, but the result shown
here can be generalized to data with edge labels.

A. Sparse Graphs

As in many studies on sparse graphs, we decompose a
sparse graph into a spanning tree and non-tree edges, i.e.,
the edges that are removed when we construct the spanning
tree. Then we store in the source (destination) nodes of
non-tree edges pointers to the destinations (sources), which
are distinguished from the ordinary pointers to parents and
children. For example, given a tree in Fig. 9, we construct a
spanning tree by regarding the edge from 3 to 4 as a non-tree
edge, and we store additional pointers in the entry of 3 and 4
in the disk image as shown at the bottom of Fig.9.

To process a navigation q from a against a graph with non-
tree edges, we compute a node set A′ s.t. if we evaluate q
starting from each node in A′ on the spanning tree of the
graph, and merge their results, we get the result of q starting
from a on the graph. For example, from X

∗→4, we get A′ =
{4, 3} s.t. the union of the results of X ∗→4 and X

∗→3 is the
result of the original query.

To compute A′, we construct the following table from the
non-tree edges and keep it in the memory.

nt-edge(s, d, d region)

Here s and d are the source and destination addresses of a non-
tree edge, and d region is the range (a pair of addresses) of
the subtree rooted by d. The size of the table is O(|nt-edge|),
which we assume is small as mentioned above.

From each tuple (s, d, d region) in the table, we obtain
two kinds of rules: a forward expansion rule (s→d) and
a backward expansion rule (d region→s). The former says
that, if we start a forward traversal from a node n whose region
includes s, then we eventually jump to another subtree rooted
by d. The latter says that when we start a backward traversal
from a node in the d region, we eventually jump to node s.

Suppose we process a ∗→X for some a. Then let A0 = {a},
and we obtain Ai+1 by applying forward expansion rules to the
nodes in Ai, and we get A′ = An if An = An+1. Similarly,
A′ for X

∗→a is computed by using backward expansion
rules. When we compute the union of the results, duplicate
elimination is done in the way explained in Section IV-B.

B. Multiple Starting Nodes

Here we consider navigations with more than one (but not
too many to fit in the memory) starting nodes. We write A→X
to denote a child navigation with multiple starting nodes,
i.e., a retrieval of

⋃
a∈A a→X . Similarly, we write A

∗→X ,
X→A, and X

∗→A to denote the other types of navigations
with multiple starting nodes. Notice that the answers to those
queries are unions of the answers for all the starting nodes, and
that they are different from the structural joins whose answers
are pairs (a,b) that have the given relationship.

For efficient evaluation of them, we need to consider two
issues: redundant disk access and the cost of duplicate elimi-
nation. A naive approach to avoid them is to keep information
on the nodes that have already been processed, but its space
complexity is linear to the size of the answer, which can be
the entire data in the worst case. Interestingly, our ordering
scheme allows us to reduce the required memory size.

Each type of navigation has its own strategy for avoiding
such redundancies. Here we explain only the algorithms for
A

∗→X and X
∗→A below because A→X and X→A are

much easier than these. In the following explanation, we
assume the data is a tree, but when the data is a graph, we
can apply the same technique as in Section IV-A.
A

∗→X: Here we assume that the size of A is small enough to
fit in the main memory. Then we sort nodes in A in the mem-
ory in the order of the address of their first child. This sorting
maximize the possibility of sequential access. Notice that the
descendants of each starting node are stored in a contiguous
region on the disk, and two regions for two starting nodes are
either distinct or included, but never partially overlaps. Given
this property, and the fact the nodes in A are sorted in the order
of the start addresses of their descendant regions, it is sufficient
to keep only one address pair (start, end) of a region to check
whether the descendants of the later starting nodes are subset
of the former results. Below is the algorithm that evaluates
A

∗→X without redundancy, based on this idea. If the address
of the first child of the next starting node is included in the
current region, then that starting node is skipped (Line 4).
Otherwise, we evaluate it and replace the current region with
the region of the new result (Lines 5-6).
1. CurrentExtent =(null, null)
2. for each a in A {
3. firstaddr= a.firstchildaddr();
4. if (currentextent contains firstaddr) continue;
5. process a and get (firstaddr, lastaddr);
6. CurrentExtent= (firstaddr, lastaddr);
7. }

X
∗→A: X

∗→A follows parent pointers until it reaches the
root node, and repeat it for each a ∈ A. To avoid visiting the
same node later in the traversal from another a, we record
one stop node for each a. Initially, the stop node for each a
is the root node (Line 1 in the algorithm below). Then we
evaluate X

∗→a for each a, and obtain only “new” answers,
i.e., nodes between a and a child of the stop node, excluding
the stop node or its ancestors (Line 3-4). Then we update the
stop node for a remaining starting node aa if it is a descendant
of some of those new answer nodes (Line 7-8). Note that the

current stopNode[aa] can never be equal or a descendant
of the new answer n.

Note that the start and end addresses of a subtree rooted
by n can be obtained by looking at firstChild(n), and also
firstChild(n′), where n′ is n’s following sibling. When n is
the last sibling, we need to look at the following sibling of n’s
parent instead and, if it is also the last sibling, we repeat this to
more distant ancestors, up to the root node in the worst case.
In the algorithm below, however, we only need the regions
of subtrees rooted by some node on the retrieved path P. In
that case, we have already accessed all their ancestors before
that. Therefore, if we keep the necessary information for the
ancestors that are the last sibling, we can compute the region
of some new n without extra disk access.
1. stopNode[1..|A|] = initialized by root(start, end);
2. for each a in A {
3. P = a node sequence from (exclusive) stopNode[a] to a;
4. // update stop nodes for the remaining a’s;
5. for each remaining node aa in A {
6. for each node n on P in the parent-to-child order {
7. if (aa is not within n(s,e)) break;
8. stopNode[aa]=n;
9. }

10. }
11. }

We show the complexity of navigations with multiple start-
ing nodes. Analysis of A→X and A

∗→X is easy. In the
followings, N is the set of nodes to retrieve as defined before.

Theorem 10: The time, space, and I/O complexities for
both A→X and A

∗→X are O(|A|log|A|+ |N |), O(|A|), and
�|N |/B�+ 2|A| − 1, respectively. �

Proof Outline: We need to read the nodes in A and sort them.
The answer for each a exists in a contiguous region on the
disk as explained before, but we have |A| regions, each of
which is for some a, and they may not be contiguous. �

For X
∗→A, here we assume we have enough memory for

the memory cache explained in Section III-C.
Theorem 11: The time, space, and I/O complexities for

both X→A and X
∗→A are O(|A|2 + |A|h + |N |) where

h is the height of the tree, O(|A| + cachesize(t, pb-size) +
pb-size), and |A|, respectively. �

Proof Outline: In X
∗→A, we need to traverse parent pointers

only O(|N |) times because we eliminate duplicates. We also
need to update the stop nodes. In the worst case, all the stop
nodes are updated every time, but update can occur at most
|A|h, which is the total length of paths between the root and a.
In the memory, we need to store the stop nodes, and here we
assume the node cache is larger than cachesize(t, pb-size),
which guarantees only one disk access for each X

∗→a. �

C. Updates

In the schemes proposed in this paper, it is crucial to keep
the order of nodes sorted in the storage. This section shows
that a relatively simple combination of a B-tree like structure
and a lazy update mechanism works sufficiently in our scheme.
Although more sophisticated and efficient approaches are also
applicable, such discussions are beyond the scope of this paper.

The idea of keeping the data in secondary storages sorted
is quite common in relational database systems. The difficulty

in implementing sorted relations is how to insert new tuples
to disk blocks that are already full. We can take an approach
similar to that in [3]: we store nodes in fixed-sized blocks,
where each block is between 50% and 100% full like B-trees.
If the blocks become full, or have less than 50% of the space
full, block merging and splitting occur, in order to keep the
node replacement to a small extent.

The problem here, however, is that we need to maintain
pointers to other nodes in compliance with the node replace-
ment. So we adopt a logical/physical address approach [18]:
we do not update the old physical pointers immediately, but
we keep a mapping table for computing the correct physical
addresses from the old values. The old incorrect pointers will
be updated at some later time when the system is idle.

Note that, in the pointer-update process, we only correct
pointers that still have old values to new values one by one.
Therefore it can be done incrementally: we can update only
one pointer, and defer updating the remaining old pointers
to the next idle time. Therefore, the cost of this pointer-
update process is negligible in practice. The details of the
update mechanism and the experimental results showing its
effectiveness are given in [30].

V. EVALUATIONS

Although the I/O efficiency of the proposed schemes was
theoretically shown in the previous sections, it is important
to experimentally confirm the theoretical results. This section
gives the results of our experiments. First, we conducted
experiments using synthesized data in order to clarify the
characteristics of the proposed schemes. Next, we conducted
experiments using real data in order to see the effectiveness
in the real settings. The experiments were run on Windows
XP SP2 on a PC with a Pentium M 1.73 GHz and 256MB
memory. Programs are written in Java 1.6.0. The size of the
read buffer is 4096 bytes, and the average size of each tree
(or graph) node on the disk is 26 bytes.

A. Analyzing Characteristics

A1. Comparison with the Depth-First Order. First, we
measured the elapsed time for the four wildcard navigations
against a tree stored in two different ordering schemes: depth-
first order and the order <l∗

t . (The comparison among <t, <l
t,

<l∗
t will be given in the next experiment.) On the depth-first

order scheme, we used the stack-tree join [2] and staircase
join [20]. We chose the two approaches based on depth-first
order, because other existing approaches, which are not based
on depth first order, either require workload information, or
focus on queries starting from the root node (or any nodes) as
explained in Section II. Staircase join is known as one of the
most efficient algorithms on depth-first node order.
Settings. We synthesized various sizes of perfect n-trees:
those with nh−1

n−1 nodes where (n, h) = (2, 17), (2, 18),
(2, 19), (4, 9), (4, 10), (4, 11), (8, 6), (8, 7), (8, 8). The largest
one contains about 2,400,000 nodes. We randomly picked up
100 nodes out of the nodes at depth four, and use them as the
starting nodes for navigations.

 1

10

100

1000

10000

100000

 0 500000 1000000 1500000 2000000 2500000

#p
ag

es

|V|

stack tree join
staircase join

ours

 1

10

100

1000

10000

100000

 0 500000 1000000 1500000 2000000 2500000

#p
ag

es

|V|

depth-first
ours

Fig. 11. #Pages accessed in descendant navigations (left) and #Pages that
contain answer nodes in child navigations (right)

TABLE II
THE NUMBER OF REGIONS FOR SINGLE-STEP NAVIGATIONS

operation #nodes in the result <t <l
t <l∗

t <l∗′
t

a
l1→X 5 5 1 1 1

a
l1∗→X 488,281 488,281 97,656 1 1

a→X 10 1 1 2 2

a
∗→X 111,111,111 1 1 2 572

Results and Discussions. In the experiment, the order <l∗
t

showed the similar behavior to that of the depth-first order
with the staircase join, expect for child navigations. For space
limitation, we only show the most interesting results, which
compare the three algorithms in the child and descendant
navigations. (The results not shown here are given in [30]).
Figure 10 shows the average time for each query against the
data whose fanout is 4 or 8. As the result suggests, the depth-
first order is not efficient for child navigations, since children
are interleaved by irrelevant nodes. Staircase joins are efficient
for descendant navigations because they partition the pre/post
plane [20] effectively so that they can access only relevant
nodes for descendant navigations, but stack-tree join have no
such skipping mechanism (Figure 11 shows the numbers of
pages read by each algorithm). Therefore the complexities of
navigations by stack-tree joins are always in O(D) where D
is the data size. On the other hand, <l∗

t is efficient for both
child and descendant navigations because the complexity is in
the order of answer size for all types of navigations.

Even in child navigations on a storage scheme based on
the depth-first oder, if we have appropriate indices, we can
avoid accessing irrelevant blocks. However, in a scheme based
on the depth-first order, even if we have indices, we cannot
avoid reading irrelevant nodes stored in the same blocks as
the relevant nodes, as explained before. To confirm these two,
we counted the number of pages that have at least one answer
node for child navigations in each scheme, i.e., the depth-first
and <l∗

t . The result is shown in Figure 11 (right). This result
shows that for child navigations, the number of pages that
contain answer nodes is far smaller compared with the entire
data, even in the depth-first order. However, the number of
pages including answer nodes in our scheme, is much more
smaller than that in the depth-first order.
A2. Comparison between Our Ordering Schemes. Next, we
compare our ordering schemes. In this comparison, we use a
10-ary perfect tree with the depth 10. Among 10 children of

 0.1

 1.0

 10.0

 100.0

 1000.0

10000.0

 0 200000 400000 600000 800000100000012000001400000

E
la

ps
ed

 ti
m

e
(m

s)

|V|

stack tree join
staircase join

ours

 0.1

 1.0

 10.0

 100.0

 1000.0

10000.0

 0 200000 400000 600000 800000100000012000001400000
E

la
ps

ed
 ti

m
e

(m
s)

|V|

stack tree join
staircase join

ours

 0.1

 1.0

 10.0

 100.0

 1000.0

10000.0

 0 500000 1000000 1500000 2000000 2500000

E
la

ps
ed

 ti
m

e
(m

s)

|V|

stack tree join
staircase join

ours

 0.1

 1.0

 10.0

 100.0

 1000.0

10000.0

 0 500000 1000000 1500000 2000000 2500000

E
la

ps
ed

 ti
m

e
(m

s)

|V|

stack tree join
staircase join

ours

(fanout=4, a→X) (fanout=4, a
∗→X) (fanout=8, a→X) (fanout=8, a

∗→X)

Fig. 10. Comparison with the depth-first order

TABLE III
THE NUMBER OF REGIONS FOR MULTI-STEP NAVIGATIONS

operation #nodes in the result <l∗
t <l∗′

t

Root
l1→ · l2→ X 25 6 2

Root
l1→ · l2∗→X 2,441,405 6 3

Root
l1∗→ · l2→ X 2,441,405 175,782 3

Root
l1∗→ · l2∗→X 23,803,711 175,782 3

 200000

 400000

 600000

 800000

 1000000

 1200000

 1400000

 1600000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

#a
cc

es
s

#cached nodes (%)

#nt-edges: 1%

freq-based
block-conscious

 200000

 400000

 600000

 800000

 1000000

 1200000

 1400000

 1600000

 1800000

 2000000

 2200000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

#a
cc

es
s

#cached nodes (%)

#nt-edges: 3%

freq-based
block-conscious

Fig. 12. Performance gain by memory cache

each node, 5 have label l1, and 5 have label l2. We store this
tree in three schemes, <t, <l

t, and <l∗
t , and in each scheme,

we counted the numbers of disk regions we need to access for
the four types of navigations starting from a node at the second
level. Table II shows the type of navigations, the number of
nodes contained in their results, and the number of disk regions
storing them. As explained in Section III-B, <l∗

t guarantees
that the number of disk regions is either a small constant or
bounded by the number of labels for these operations.

On the other hand, Table III compares the number of disk
regions accessed by path queries starting at the root node,
and consisting of two steps. As suggested by this table, if we
mostly use path queries that start at the root node, and include
more than one steps, <l∗′

t would be the better choice.
A3. The Effect of Caching Strategy. Next, we evaluate the
effect of our caching strategy for ancestor navigations. One
issue in our approach is we cannot efficiently compute the
overflowsize when the data is not a tree. However, our exper-
iment explained below shows that overflowsize computed for
the spanning tree is sufficient as an approximation.

First, we synthesized perfect binary trees with 219−1 nodes,
and add 1% or 3% non-tree edges by randomly choosing node
pairs. Then we compared the number of disk regions to access
for ancestor navigations in the following settings: (1) The
ideal frequency-based cache, where we compute the accurate

 10

 100

 1000

 10000

 100000

1000000

10000000

Q8Q7Q6Q5Q4Q3Q2Q1
el

ap
se

d
tim

e(
m

s)

queries

staircase join
<_t

<_t^l
<_t^l*

 10

 100

 1000

 10000

 100000

1000000

10000000

100000000

Q8Q7Q6Q5Q4Q3Q2Q1

ac
ce

ss
 p

ag
es

queries

staircase join
<_t

<_t^l
<_t^l*

Fig. 13. Exp. B1 (Tree 1): Elapsed time (left) and #pages accessed (right)

frequency of the appearance of each node in the ancestor sets,
and store the nodes with high-frequency; (2) The normal (1-
level) approach that uses the approximation computed by the
spanning tree, and uses enough memory cache to guarantee
only one disk access; (3) The 2-level approach, where we use
the approximation by the spanning tree, store the 1-level cache
in the disk, and construct the 2nd-level cache against it. The
scheme requires an additional 144KB of disk space. For a fair
comparison, we read the preceding blocks in all the settings.
We count the number of regions for 262,144 queries, each of
which computes X

∗→a for each leaf node a in the graph.
Fig. 12 shows the result. The x-axis is the size of memory

cache compared to the size of the graph data. Two ends
of the line for the block-conscious approach represent the
scheme (2) and (3). As the figure shows, the scheme (1) is
superior to the scheme (2) because the former reflects access
frequencies more accurately. However, when the cache size is
small, the scheme (1) shows rapid degradation in performance.
On the other hand, the 2-level block-conscious approach shows
good results, and it requires only one more disk access, and
additional disk space only about 0.014% of the size of the
graph data, which means 147MB memory for 1TB graph data.

B. Evaluation Using Real Data

B1. Real Data with Edge-labels. Since we found that the
staircase join is superior to the stack-tree join in Experiment
A1, we compared our method to the staircase join in a real data
setting. We compared them in the elapsed time and the number
of pages read for the eight navigations against a tree. Since
staircase joins do not support the closure for edge labels, we
simulated it by multiple label-specific child/parent navigations.
Settings. We used two trees, each constructed from a file
server and the Gene Ontology, respectively. The first tree was
constructed from a file server of our research group. Edges of

 10

 100

 1000

 10000

 100000

1000000

10000000

Q8Q7Q6Q5Q4Q3Q2Q1

el
ap

se
d

tim
e(

m
s)

queries

staircase join
<_t

<_t^l
<_t^l*

 10

 100

 1000

 10000

 100000

1000000

10000000

100000000

Q8Q7Q6Q5Q4Q3Q2Q1

ac
ce

ss
 p

ag
es

queries

staircase join
<_t

<_t^l
<_t^l*

Fig. 14. Exp. B1 (Tree 2): Elapsed time (left) and #pages accessed (right)

the tree has the following two types of labels: (1) “subdir”
for edges reaching directory (intermediate) nodes, and (2)
“contains” for edges reaching file (leaf) nodes. The average
fanout is 26.3, and the maximum depth of the tree is 23. Then,
we executed eight types of navigations (Q1: d

subdir→ X , Q2:
d
subdir∗→ X , Q3: X subdir→ d, Q4: X subdir∗→ d, Q5: a→X , Q6:

a
∗→X , Q7: X→a, Q8: X ∗→a), and measured elapsed time.

Here, d and a represent a directory and any node, respec-
tively. We chose the starting nodes for navigations as follows:
For “downward” (child/descendant) navigations, we randomly
picked up 100 nodes out of the tree nodes at the second
level down from the root, and for “upward” (parent/ancestor)
navigations, we randomly picked up 100 nodes out of the
nodes at the second level up from the maximum depth.

The second tree was constructed from the Gene Ontology;
its DAG structure was expanded to a tree by copying the nodes
with multiple incoming edges. Note that the original structure
can be preserved by adding the “equiv” edges between the
nodes expanded from the same nodes. The average fanout is
5.1, and the maximum depth of the tree is 19. The tree has
“is a” edges between internal nodes and has seven different
labels for the node properties. We executed the eight naviga-
tions in the same setting as the first tree except that the “is a”
label is used instead of the “subdir.”
Results and Discussions. Figures 13 and 14 show the result.
Each graph shows the sum of the elapsed time or the number
of accessed pages over all executions. The results for wildcard
navigations (Q5 to Q8) are compatible with the results of
Experiment A1: The staircase join is not good especially at
processing child navigations Q5. As explained in [20], a node
skipping technique can be applied to the ancestor navigation
by the staircase join, although slightly less effective compared
to that for the descendant navigation. The result for Q8 shows
that effect. Among the results for label-specific navigations
(Q1 to Q4), the staircase join is not efficient for label-specific
descendant navigation, since it has to be implemented by label-
specific child navigation. For Q2, <l∗

t is about twice faster than
<l

t, while for Q5, <l
t is better than <l∗

t .
To summarize, the order <l∗

t allows us to implement an
efficient algorithm that exploits the locality nature of set-based
navigations and showed good results both in the elapsed time
and in the number of accessed pages.
B2. Sparse Graph. Then, we evaluated our method in the
elapsed time for navigations on a graph. Similarly to the
directory tree above, the graph was constructed from a file

TABLE IV
EVALUATION USING REAL DATA (GRAPH)

operation #nodes #region elapsed time (ms) meaning

f
copy∗→ X 9.25 4.17 0.834 copied files

d
subdir→ X 6.82 3.39 0.656 sub-directories

f→X 8.8 9.06 1.344 file properties

X
copy∗→ f 2.00 1.0 21.874 original copies

server of our research group and its operation log. The graph
is a tree-like sparse graph that consists of the directory tree
structure and various relationships among files, such as the
copy relationships and file references (HTML hyperlinks, and
references from tex files to images). In addition, each file
node has various property nodes associated to it, such as file
name and file size nodes. In the graph, the number of nodes is
4,997,898, the number of edges is 5,490,665 (i.e., edges/nodes
ratio is about 1.1), and the number of label names is 11 (subdir,
refersTo, copy, filename, etc.).

We randomly picked up 100 such nodes in the graph,
executed different navigations, and measured elapsed time.
Table IV shows the result. Here, f and d represent a file and
directory node, respectively. Each number in the table is the
average values over the 500 (100× 5 executions) results. Note
that the number of disk regions is kept relatively small when
the graph is sparse. The elapsed time has a strong relationship
with the number of disk regions, except for the last query.
This is because the existence of non-tree edges requires us to
recursively expand an operation before the execution, but the
current naive implementation of nt-edge table is tuned only
for forward expansion rules, and takes O(n) time complexity
for each backward expansion.

VI. CONCLUSION

This paper studies the problem of how we should order
nodes of trees or sparse graphs on the disk for efficient
processing of set-based navigations. We focused on the eight
most common navigation operations, which include neigh-
bor/transitive, label-specific/wildcard, forward/backward nav-
igations, and showed that there does not exist an ordering
scheme which is optimal for all these operations, but we
show a couple of schemes that are optimal for some subset
of them, and most importantly, we showed that in one of
the proposed ordering scheme, i.e., <l∗

t , nodes to retrieve in
any of those navigations are clustered in a small constant-
bounded number of regions on the disk. We also showed that
the proposed ordering schemes are compatible with variations
of well-known solutions for related and important problems.
Future work includes the discussion on the evaluation of other
types of operations, e.g., how we combine our scheme and
existing join-based path query evaluation algorithms in order
to support multi-step queries.

REFERENCES

[1] R. Agrawal and J. Kiernan. An access structure for generalized transitive
closure queries. In Proc. of ICDE, pages 429–438, 1993.

[2] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and
D. Srivastava. Structural joins: A primitive for efficient XML query
pattern matching. In Proc. of ICDE, page 141, 2002.

[3] J. Banerjee, W. Kim, S.-J. Kim, and J. F. Garza. Clustering a DAG for
CAD databases. IEEE TOSE, 14(11):1684–1699, 1988.

[4] M. Bhadkamkar, F. Farfán, V. Hristidis, and R. Rangaswami. Storing
semi-structured data on disk drives. ACM TOS, 5(2), 2009.

[5] R. Bordawekar and O. Shmueli. An algorithm for partitioning trees
augmented with sibling edges. Inf. Process. Lett., 108(3):136–142, 2008.

[6] P. Buneman, S. B. Davidson, K. Hart, G. C. Overton, and L. Wong.
A data transformation system for biological data sources. In Proc. of
VLDB, pages 158–169, 1995.

[7] J. Cheng, G. Yu, G. Wang, and J. X. Yu. PathGuide: An efficient
clustering based indexing method for XML path expressions. In Proc. of
DASFAA, pages 257–264, 2003.

[8] I.-H. Choi, B. Moon, and H.-J. Kim. A clustering method based on path
similarities of xml data. Data Knowl. Eng., 60(2):361–376, 2007.

[9] V. Christophides, D. Plexousakis, M. Scholl, and S. Tourtounis. On
labeling schemes for the semantic web. In Proc. of WWW Conf., pages
544–555, 2003.

[10] C.-W. Chung, J.-K. Min, and K. Shim. Apex: an adaptive path index
for XML data. In Proc. of SIGMOD, pages 121–132, 2002.

[11] E. Demir, C. Aykanat, and B. B. Cambazoglu. A link-based storage
scheme for efficient aggregate query processing on clustered road
networks. Inf. Syst., 35(1):75–93, 2010.

[12] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To. YFilter: Efficient and
scalable filtering of xml documents. In Proc. of ICDE, page 341, 2002.

[13] DTM. http://xml.apache.org/xalan-j/dtm.html.
[14] R. Edwards and S. Hope. Persistent DOM: An architecture for XML

repositories in relational databases. In Proc. of IDEAL, pages 416–421,
2000.

[15] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing
and searching XML data via two zips. In Proc. of WWW Conf., pages
751–760, 2006.

[16] R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with
level-ancestor queries. ACM TALG, 2(4):510–534, 2006.

[17] R. Goldman and J. Widom. DataGuides: Enabling query formulation
and optimization in semistructured databases. In Proc. of VLDB, pages
436–445, 1997.

[18] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.

[19] T. Grust, J. Rittinger, and J. Teubner. Why off-the-shelf RDBMSs are
better at XPath than you might expect. In Proc. of SIGMOD, pages
949–958, 2007.

[20] T. Grust, M. van Keulen, and J. Teubner. Staircase join: Teach a
relational DBMS to watch its (axis) steps. In Proc. of VLDB, pages
524–525, 2003.

[21] W.-S. Han, K.-Y. Whang, and Y.-S. Moon. A formal framework for
prefetching based on the type-level access pattern in object-relational
DBMSs. IEEE TKDE, 17(10):1436–1448, 2005.

[22] Z. He and A. Marquez. Path and cache conscious prefetching (PCCP).
VLDB J., 16(2):235–249, 2007.

[23] K. A. Hua, J. X. W. Su, and C. M. Hua. Efficient evaluation of traversal
recursive queries using connectivity index. In Proc. of ICDE, pages
549–558, 1993.

[24] Y. E. Ioannidis, R. Ramakrishnan, and L. Winger. Transitive closure
algorithms based on graph traversal. ACM TODS, 18(3):512–576, 1993.

[25] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representation
of ordered trees. In Proc. of SODA, pages 575–584, 2007.

[26] C.-C. Kanne and G. Moerkotte. A linear time algorithm for optimal tree
sibling partitioning and approximation algorithms in Natix. In Proc. of
VLDB, pages 91–102, 2006.

[27] P.-A. Larson and V. Deshpande. A file structure supporting traversal
recursion. In Proc. of ACM SIGMOD, pages 243–252, 1989.

[28] J. A. Lukes. Efficient algorithm for the partitioning of trees. IBM Journal
of Research and Development, 18(3):217–224, 1974.

[29] T. Milo and D. Suciu. Index structures for path expressions. In Proc. of
ICDT, pages 277–295, 1999.

[30] A. Morishima, K. Tajima, and M. Tadaishi. Optimal node ordering
schemes for set-based navigations in trees and graphs (full version).
Technical report.

[31] Z. M. Özsoyoğlu, G. Özsoyoglu, and J. Nadeau. Genomic path-
ways database and biological data management. Animal Genetics,
37(Suppl. 1):41–47, Aug. 2006.

[32] S. Prakash, S. S. Bhowmick, and S. K. Madria. SUCXENT: An efficient
path-based approach to store and query XML documents. In Proc. of
DEXA, pages 285–295, 2004.

[33] U. Rost and E. Bornberg-Bauer. TreeWiz: interactive exploration of
huge trees. Bioinformatics, 18(1):109–114, Jan. 2002.

[34] M. Schkolnick. A clustering algorithm for hierarchical structures. ACM
TODS, 2(1):27–44, 1977.

[35] S. Shekhar and D.-R. Liu. CCAM: A connectivity-clustered access
method for networks and network computations. IEEE TKDE, 9(1):102–
119, 1997.

[36] M. M. Tsangaris and J. F. Naughton. On the performance of object
clustering techniques. In Prof. of SIGMOD, pages 144–153, 1992.

[37] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. Dual labeling:
Answering graph reachability queries in constant time. In Proc. of ICDE,
page 75, 2006.

[38] H. Wang, S. Park, W. Fan, and P. S. Yu. Vist: a dynamic index method
for querying XML data by tree structures. In Proc. of SIGMOD, pages
110–121, 2003.

[39] W. Wang, H. Jiang, H. Wang, X. Lin, H. Lu, and J. Li. Efficient
processing of XML path queries using the disk-based F&B index. In
Proc. of VLDB, pages 145–156, 2005.

[40] R. K. Wong, F. Lam, and W. M. Shui. Querying and maintaining a
compact XML storage. In Proc. of WWW Conf., pages 1073–1082,
2007.

[41] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: a
path-based approach to storage and retrieval of XML documents using
relational databases. ACM TOIT, 1(1):110–141, 2001.

[42] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On sup-
porting containment queries in relational database management systems.
In Proc. of SIGMOD, pages 425–436, 2001.

[43] N. Zhang, V. Kacholia, and M. T. Özsu. A succinct physical storage
scheme for efficient evaluation of path queries in xml. In Proc. of ICDE,
pages 54–65, 2004.

	titlepage.pdf
	technical-report

