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Abstract. This short note was prompted by a presentation at a regular seminar of
team PhilOpt )))) graduate students in December 2013. The problem originates in a
linear discriminant problem, for which the maximum likelihood estimation ends up with
a complicated likelihood function. In this note we propose to apply the support vector
machine to the problem and provide some basic results.

1. Introduction

This paper is concerned with a multi-class classification problem of n objects, each of
which is endowed with an m-dimensional attribute vector xi = (xi

1, x
i
2, . . . , x

i
m)! ∈ Rm

and a label !i. The underlying statistical model assumes that object i receives label k,
i.e., !i = k, when the latent variable yi determined by

yi = w!xi + εi =
m∑

j=1

wjx
i
j + εi

falls between two thresholds pk and pk+1, where εi represents a random noise whose prob-
abilistic property is not known. Namely, attribute vectors of objects are loosely separated
by hyperplanes H(w, pk) = {x ∈ Rm | (w)!x = pk } for k = 1, 2, . . . , l which share a
common normal vector w, then each object is given a label according to the layer it is
located in. Note that neither yi’s, wj ’s nor pk’s are observable. Our problem is to find
the vector w ∈ Rm as well as the thresholds p1, p2, . . . , pl that best fit the input data
{ (xi, !i) | i ∈ N }.

This problem is a variation of the multi-class classification problem, for which several
learning algorithms of the support vector machine (SVM for short) have been proposed
such as one-versus-the-rest approach, one-versus-one approach, decision tree approach, and
the all-together approach. We refer the reader to Chapters 4.1.2 and 7.1.3 of Bishop [1],
Chapter 10.10 of Vapnik [6] and Tatsumi et al. [5] and references therein. What distin-
guishes the problem from other multi-class classification problems is that the identical
normal vector should be shared by all the separating hyperplanes.

2. Definitions and notation

Throughout the paper N = {1, 2, . . . , i, . . . , n} denotes the set of n objects and xi =
(xi

1, x
i
2, . . . , x

i
m)! ∈ Rm denotes the attribute vector of object i. The predetermined set

of labels is L = {0, 1, . . . , k, . . . , l} and the label assigned to object i is denoted by !i.
Let N(k) = { i ∈ N | !i = k } be the set of objects with label k ∈ L, and for notational
convenience we write n(k) = |N(k)| for k ∈ L, and N(k..k′) = N(k)∪N(k+1)∪· · ·∪N(k′)
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for k, k′ ∈ L such that k < k′. We can assume that i < j holds when !i < !j for
i, j ∈ N , by rearranging the objects if necessary, hence N(0) = {1, 2, . . . , n(0)}, N(1) =
{n(0) + 1, . . . , n(0) + n(1)}, and so forth. For succinct notation we define

X =



 · · · xi · · ·





i∈N

∈ Rm×n (2.1)

the matrix of columns xi, and

K = X!X =




(xi)!xj





i,j∈N

∈ Rn×n, (2.2)

and denote the k-dimensional zero vector by 0k and the k-dimensional vector of 1’s by 1k.

3. Maximization of Minimum Margin for Separable Case

Henceforth we assume that N(k) #= ∅ for all k ∈ L for the sake of simplicity, and
adopt the notational convention that p0 = −∞ and pl+1 = +∞. We say that an instance
{ (xi, !i) | i ∈ N } is separable if there exist w ∈ Rm and p = (p1, p2, . . . , pl)! ∈ Rl such
that

pk < w!xi < pk+1 for i ∈ N(k) and k ∈ L.
Clearly an instance is separable if and only if there are w and p such that

pk + 1 ≤ w!xi ≤ pk+1 − 1 for i ∈ N(k) and k ∈ L.

For each k ∈ L \ {0} we see that

max
i∈N(k−1)

(w)!xi ≤ pk − 1 < pk < pk + 1 ≤ min
j∈N(k)

(w)!xj ,

hence

min
j∈N(k)

w!

‖w‖xj − max
i∈N(k−1)

w!

‖w‖xi ≥ 2
‖w‖ .

Then the margin between {xi | i ∈ N(k − 1) } and {xj | j ∈ N(k) } is at least 2/‖w‖.
Hence the maximization of the minimum margin is formulated as the quadratic program-
ming

∣∣∣∣∣∣

minimize
1
2
‖w‖2

subject to pk + 1 ≤ (xi)!w ≤ pk+1 − 1 for i ∈ N(k) and for k ∈ L

more explicitly with the notation introduced in Section 2

(H)

∣∣∣∣∣∣∣∣

minimize
1
2
‖w‖2

subject to 1 − (xi)!w + p!i ≤ 0 for i ∈ N(1..l)
1 + (xi)!w − p!i+1 ≤ 0 for i ∈ N(0..l − 1).

The constraints therein are called hard margin constraints, and we name this problem
(H). The leading coefficient 1/2 of the objective function is for the sake of notational
simplicity in further discussion.
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Among the learning algorithms for multi-class SVM are one-versus-one approach, one-
versus-the-rest approach and all-together approach by Weston and Watkins [7]. See, for
example, Bishop [1] and Vapnik [6]. When the one-versus-the-rest approach is applied to
our problem, one would solve

∣∣∣∣∣∣∣∣

minimize
1
2
‖wk‖2

subject to (xi)!wk − pk − 1 ≥ (xj)!wk − pk + 1 for i ∈ N(k)
and j ∈ N \ N(k)

for finding the normal vector wk of a hyperplane that hopefully separates the objects of
class k from the rest. Besides the widely recognized imbalance between the size of N(k)
and the rest N \ N(k) (see, for example, Fung and Mangasarian [3]), this problem would
almost certainly suffer infeasibility when a middle class k is considered, i.e., 1 ≤ k ≤ l− 1.
In the all-together approach one would solve

∣∣∣∣∣∣∣∣

minimize
1
2

∑

k∈L

‖wk‖2

subject to (xi)!wk − pk − 1 ≥ (xi)!wk′ − pk′ + 1 for k′ ∈ L \ {k}, i ∈ N(k)
and k ∈ L,

and assign the label
argmax{ (wk)!x̄ − pk | k ∈ L }

to an object with an attribute vector x̄. If one requires all wk be identical, this formulation
would become meaningless because of the cancellation of (xi)!wk and (xi)!wk′ .

The one-versus-one approach would solve
∣∣∣∣∣∣∣∣

minimize
1
2
‖w(k,k′)‖2

subject to (xi)!w(k,k′) − p(k,k′) − 1 ≥ (xj)!w(k,k′) − p(k,k′) + 1 for i ∈ N(k)
and j ∈ N(k′)

for every possible pair (k, k′) of classes. This approach would require significantly heavy
computation burden when there are many classes, and many of the above problems would
be rather trivial and provide no useful information. Our formulation (H) could be obtained
by adding the constraint that w(k,k′) be identical and deleting constraints for a pair of
non-adjacent classes.

4. Dual of Hard Margin Problem

The Lagrangian function for the hard margin problem (H) introduced in the previous
section is

L(w, p, α, β) =
1
2
‖w‖2 +

∑

i∈N(1..l)

αi(1− (xi)!w + p!i) +
∑

i∈N(0..l−1)

βi(1 + (xi)!w − p!i+1),

where αi and βi are nonnegative Lagrangian multipliers. Denoting

α = (α1, . . . ,αi, . . .αn)! ∈ Rn and β = (β1, . . . ,βi, . . . ,βn)! ∈ Rn

with the convention that

αi = 0 for all i ∈ N(0) and βi = 0 for all i ∈ N(l),
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the Lagrangian function is compactly written as

L(w, p, α, β) =
1
2
w!w − (X(α − β))!w + (Aα − Bβ)!p + α!1n + β!1n, (4.1)

where the matrix X is defined in (2.1), and

A =





0!
n(0) 1!

n(1)

1!
n(2)

. . .
1!

n(l)




∈ Rl×n, (4.2)

B =





1!
n(0)

1!
n(1)

. . .
1!

n(l−1) 0!
n(l)




∈ Rl×n. (4.3)

Let
ω(α, β) = min{L(w, p,α, β) | (w, p) ∈ Rm+l },

then the Lagrangian dual of the hard margin problem is

(dH)

∣∣∣∣∣
maximize ω(α, β)

subject to (α,β) ≥ 02n.

Since L is a convex function with respect to (w, p), a point (w∗,p∗) attains the minimum
ω(α, β) for a given (α,β) if and only if the partial derivatives of L with respect to (w, p)
vanish at (w∗, p∗), i.e.,

∂L

∂(w, p)
(w∗, p∗, α, β) = 0n+l.

This condition reduces to

w∗ − X(α − β) = 0n (4.4)

and

Aα − Bβ = 0l. (4.5)

Plugging these equalities into L, we obtain

ω(α, β) = −
{

1
2
(α − β)!K(α − β) − 1!

n (α + β)
}

,

where K = X!X as defined in (2.2). Note that the variable p disappears due to the
equality condition (4.5). Deleting the leading negative coefficient −1, the Lagrangian dual
of the hard margin problem is given as

(dH)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1
2
(α − β)!K(α − β) − 1!

n (α + β)

subject to Aα − Bβ = 0l

αN(0) = 0n(0)

βN(l) = 0n(l)

α ≥ 0n

β ≥ 0n,
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where αN(0) is a vector of αi’s for i ∈ N(0) and βN(l) is a vector of βi’s for i ∈ N(l).
This is a convex quadratic minimization problem since K is nonnegative definite. Let
(α∗, β∗) denote an optimum solution of (dH). Then an optimum normal vector w∗ and
an optimum threshold vector p∗ of the primal problem are given by

w∗ = X(α∗ − β∗) (4.6)

p∗k =
1
2

(
max

i∈N(k−1)
(w∗)!xi + min

i∈N(k)
(w∗)!xi

)
for k ∈ L \ {0}. (4.7)

5. Kernel Technique for Hard Margin Problem

The matrix K of the Lagrangian dual of the hard margin problem (dH) is composed
of the inner products (xi)!xj for i, j ∈ N , which enables us to apply the kernel technique
simply by replacing them by κ(xi, xj) for some appropriate kernel function κ.

Let φ : Rm → Rν be a function, possibly unknown, such that

κ(x, y) = φ(x)!φ(y)

holds for x, y ∈ Rm, where Rν is some higher dimensional space, so-called feature space.
In the sequel we denote x̃ = φ(x). The kernel technique considers the vectors x̃i ∈ Rν

instead of xi ∈ Rm, and finds the ν-dimensional normal vector w̃ ∈ Rν and thresholds
p1, . . . , pl. Therefore the matrices X and K should be replaced by X̃ consisting of vectors
x̃i and K̃ = X̃!X̃, respectively. Note that the latter matrix is given as

K̃ =



κ(xi, xj)





i,j∈N

∈ Rn×n

by the kernel function κ. Solving the dual hard margin problem (dH) with K replaced by
K̃ to find (α∗, β∗), the optimal normal vector w̃∗ ∈ Rν of the primal problem would be
given as

w̃∗ = X̃(α∗ − β∗),

which is in general not available due to the absence of an explicit representation of X̃.
However the value of (w̃∗)!x̃j necessary to compute the thresholds p∗k according to (4.7)
is obtained as the inner product of α∗ − β∗ and the jth column of K̃. In fact

(w̃∗)!x̃j = (X̃(α∗ − β∗))!x̃j = (α∗ − β∗)!X̃!x̃j

= (α∗ − β∗)!




...
(x̃i)!x̃j

...




= (α∗ − β∗)!





...
κ(xi, xj)

...




. (5.1)

Suppose we are given a new object with attribute vector x ∈ Rn to assign a label. In
the same way as above we have

(w̃∗)!x̃ = (α∗ − β∗)!




...
κ(xi, x)

...




. (5.2)

Then by locating the threshold interval into which this value falls, we can assign a label
to the new object.
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6. Soft Margin Problem for Non-Separable Case

Similarly to the binary SVM, introducing nonnegative slack variables ξ−i and ξ+i for
i ∈ N relaxes the hard margin constraints to soft margin constraints:

pk + 1 − ξ−i ≤ w!xi ≤ pk+1 − 1 + ξ+i for i ∈ N(k) and for k ∈ L.

Positive values of variables ξ−i and ξ+i mean misclassification, hence they should be as
small as possible. If we penalize positive ξ−i and ξ+i by adding

∑
i∈N (ξ−i + ξ+i) to the

objective function, we have the following primal soft margin problem with 1-norm penalty.

(S1)

∣∣∣∣∣∣∣

minimize
1
2
‖w‖2 + c1!

n (ξ− + ξ+)
subject to pk + 1 − ξ−i ≤ w!xi ≤ pk+1 − 1 + ξ+i for i ∈ N(k) and for k ∈ L

ξ−, ξ+ ≥ 0n,

where ξ− = (ξ−1, . . . , ξ−n), ξ+ = (ξ+1, . . . , ξ+n) and c is a penalty parameter. When 2-
norm penalty is employed, we have

(S2)

∣∣∣∣∣∣∣

minimize
1
2
‖w‖2 +

1
2

c (‖ξ−‖2 + ‖ξ+‖2)
subject to pk + 1 − ξ−i ≤ w!xi ≤ pk+1 − 1 + ξ+i for i ∈ N(k) and for k ∈ L

ξ−, ξ+ ≥ 0n.

Lemma 6.1. The nonnegativity constraints on variables ξ−i and ξ+i of problem (S2) are
redundant.

Proof. Let (w, ξ−, ξ+) be a feasible solution of (S2) with the nonnegativity constraints
removed. If ξ−i < 0 for some i ∈ N , replacing it with zero will reduce the objective
function value. Therefore ξ− and ξ+ are nonnegative at any optimum solution of (S2). !

Thus our problem with 2-norm penalty reduces to

(S2)

∣∣∣∣∣
minimize

1
2
‖w‖2 +

1
2

c (‖ξ−‖2 + ‖ξ+‖2)
subject to pk + 1 − ξ−i ≤ w!xi ≤ pk+1 − 1 + ξ+i for i ∈ N(k) and for k ∈ L.

As proposed in Mangasarian and Musicant [4], the addition of a term ‖p‖2 to the
objective function yields the following two formulations (S12) and (S22).

(S12)

∣∣∣∣∣∣∣

minimize
1
2
‖w‖2 + c1!

n (ξ− + ξ+) +
1
2

d ‖p‖2

subject to pk + 1 − ξ−i ≤ w!xi ≤ pk+1 − 1 + ξ+i for i ∈ N(k) and for k ∈ L
ξ−, ξ+ ≥ 0n,

and

(S22)

∣∣∣∣∣
minimize

1
2
‖w‖2 +

1
2

c (‖ξ−‖2 + ‖ξ+‖2) +
1
2

d ‖p‖2

subject to pk + 1 − ξ−i ≤ w!xi ≤ pk+1 − 1 + ξ+i for i ∈ N(k) and for k ∈ L,

where d is a penalty parameter.
Naturally, we could add to each of the above formulations the constraints

pk′ + 1 − ξ−i ≤ w!xi ≤ pk′′ − 1 + ξ+i for k′, k′′ ∈ L such that k′ ≤ k < k′′
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for i ∈ N(k). It would, however, inflate the problem size and most of those constraints
would be likely redundant. Therefore we will not discuss this formulation.

7. 1-Norm Penalty and Kernel Technique

In this section we will make the Lagrangian dual of the soft margin problem (S1) and
show how the kernel technique applies to the problem.

7.1. Dual of Soft Margin Problem (S1). The Lagrangian function for (S1) is

L(w,p, ξ−, ξ+,α, β, λ,µ) =
1
2
w!w − (X(α − β))!w + (Aα − Bβ)!p

+ α!1n + β!1n + (c1n − α)!ξ− + (c1n − β)!ξ+

− λ!ξ− − µ!ξ+,

(7.1)

and the Lagrangian relaxation problem for a given nonnegative multiplier vector (α, β, λ,µ) ∈
R4n

+ is
∣∣∣∣∣

minimize L(w,p, ξ−, ξ+,α, β, λ,µ)

subject to (w, p, ξ−, ξ+) ∈ Rm+l+2n.

Thank to the convexity of the problem, the optimality condition of (w∗, p∗, ξ∗−, ξ∗+) is
simply given as

∂L

∂(w,p)
(w∗,p∗, ξ∗−, ξ∗+, α,β, λ, µ) = 0n+l

∂L

∂(ξ−, ξ+)
(w∗,p∗, ξ∗−, ξ∗+, α,β, λ, µ) = 02n,

each of which reduces to

w∗ = X(α − β) (7.2)
Aα − Bβ = 0l (7.3)
α ≤ c1n (7.4)
β ≤ c1n (7.5)

by virtue of the nonnegativity of λ and µ. The complementarity condition

(c1n − α∗)!ξ∗− = (c1n − β∗)!ξ∗+ = 0 (7.6)

holds for a primal optimal solution (ξ∗−, ξ∗+) and a dual optimal solution (α∗, β∗). Denoting
the optimum objective function value of the above relaxation problem by ω(α, β, λ, µ),
the Lagrangian dual of the soft margin problem is

∣∣∣∣∣
maximize ω(α, β, λ, µ)

subject to (α,β, λ, µ) ≥ 04n

Plugging (7.2), (7.3) and (7.6) into the Lagrangian function, the Lagrangian dual problem
is rewritten as
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(dS1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1
2
(α − β)!K(α − β) − 1!

n (α + β)

subject to Aα − Bβ = 0l

αN(0) = 0n(0)

βN(l) = 0n(l)

0n ≤ α ≤ c1n

0n ≤ β ≤ c1n.

This differs from the dual of the hard margin problem (dH) only in the additional upper
bound constraints (7.4) and (7.5) of α and β.

7.2. Kernel Technique. Kernel technique can apply to the soft margin problem in the
same way as discussed in Section 5. The problem to solve is the dual problem (dS1) in
the previous subsection with K replaced by K̃.

An optimal solution (α∗, β∗) of the kernel version of (dS1) and an optimal solution
(ξ∗−, ξ∗+) of the primal problem meet the complementarity condition

(c1n − α∗)!ξ∗− = (c1n − β∗)!ξ∗+ = 0.

Then we have

α∗
i < 1 implies ξ∗−i = 0, i.e., p∗k + 1 ≤ (w̃∗)!x̃i

β∗
i < 1 implies ξ∗+i = 0, i.e., (w̃∗)!x̃i ≤ p∗k+1 − 1.

Therefore the thresholds should be determined by

p∗k =
1
2

(
max

i∈N(k−1);β∗
i <1

(w̃∗)!x̃i + min
i∈N(k);α∗

i <1
(w̃∗)!x̃i

)
. (7.7)

In the same way as in Section 5 we have

(w̃∗)!x̃ = (α∗ − β∗)!




...
κ(xi, x)

...




. (7.8)

for x ∈ Rn. Thus p∗k’s can be obtained without knowing w̃∗.

8. Dual of Other Formulations

Since the derivation of the optimality condition and the dual problem is technical,
we defer the complete derivation to Appendix. We also omit the application of kernel
technique.

8.1. Dual of Soft Margin Problem (S2). The dual of (S2) is

(dS2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1
2
(α − β)!K(α − β) +

1
2c

(α!α + β!β) − 1!
n (α + β)

subject to Aα − Bβ = 0l

αN(0) = 0n(0)

βN(l) = 0n(l)

α ≥ 0n

β ≥ 0n.
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With the quadratic term (α!α + β!β) added, the objective function becomes strictly
convex, which may lighten the computational burden. Furthermore,

c ξ∗− = α∗ and c ξ∗+ = β∗

hold between a primal and a dual optimum solutions. From (8.1), we have

α∗
i = 0 implies p∗li + 1 ≤ (w∗)!xi

β∗
i = 0 implies (w∗)!xi ≤ p∗li+1 − 1.

Therefore the optimal threshold p∗ of the primal problem (S2) is determined by

p∗k =
1
2

(
max

i∈N(k−1);β∗
i =0

(w∗)!xi + min
i∈N(k);α∗

i =0
(w∗)!xi

)
.

8.2. Dual of Soft Margin Problem (S12). The dual of (S12) is

(dS12)

∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1
2
(α − β)!K(α − β) +

1
2d

(α! β!)M
(

α
β

)
− 1!

n (α + β)

subject to αN(0) = 0n(0)

βN(l) = 0n(l)

0n ≤ α ≤ c1n

0n ≤ β ≤ c1n,

and the optimal solution (w∗, p∗) of (S12) is determined by

w∗ = X(α∗ − β∗)

p∗ = −1
d
(Aα∗ − Bβ∗).

8.3. Dual of Soft Margin Problem (S22). The dual of (S22) is

(dS22)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1
2
(α − β)!K(α − β) +

1
2c

(α!α + β!β) +
1
2d

(α!β!)M
(

α
β

)

−1!
n (α + β)

subject to αN(0) = 0n(0)

βN(l) = 0n(l)

α ≥ 0n

β ≥ 0n,

and the optimal solution (w∗, p∗) of (S22) is determined by

w∗ = X(α∗ − β∗)

p∗ = −1
d
(Aα∗ − Bβ∗).
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Appendix A. Dual of Soft Margin Problem (S2)

The Lagrangian function for the problem (S2) is

L(w, p, ξ−, ξ+, α, β) =
1
2
w!w − (X(α − β))!w + (Aα − Bβ)!p

+ α!1n + β!1n + (
1
2
c ξ− − α)!ξ− + (

1
2
c ξ+ − β)!ξ+,

and the Lagrangian relaxation problem for a given (α, β) ∈ R2n
+ is

∣∣∣∣∣
minimize L(w,p, ξ−, ξ+,α, β)

subject to (w, p, ξ−, ξ+) ∈ Rm+l+2n.

Since L is a convex function with respect to (w, p, ξ−, ξ+), the optimality condition of
(w∗, p∗, ξ∗−, ξ∗+) for a given Lagrangian multiplier vector (α, β) is

∂L

∂(w, p, ξ−, ξ+)
(w∗, p∗, ξ∗−, ξ∗+) = 0m+l+2n,

which reduces to

w∗ = X(α − β) (A.1)
Aα − Bβ = 0l (A.2)
c ξ∗− − α = c ξ∗+ − β = 0n. (A.3)

Substituting (A.1), (A.2) and (A.3) for L, we obtain the optimal value ω(α, β) of the
Lagrangian relaxation problem

ω(α, β) = −
{

1
2
(α − β)!K(α − β) − 1!(α + β) +

1
2c

(α!α + β!β)
}

.

Then the Lagrangian dual problem of (S2) forms the following (dS2):

(dS2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1
2
(α − β)!K(α − β) +

1
2c

(α!α + β!β) − 1!
n (α + β)

subject to Aα − Bβ = 0l

αN(0) = 0n(0)

βN(l) = 0n(l)

α ≥ 0n

β ≥ 0n.

From (A.3) we have

α∗
i = 0 implies p∗!i

+ 1 ≤ (w∗)!xi

β∗
i = 0 implies (w∗)!xi ≤ p∗!i+1 − 1.

Therefore the optimal thresholds p∗ of (S2) are determined by

p∗k =
1
2

(
max

i∈N(k−1);β∗
i =0

(w∗)!xi + min
i∈N(k);α∗

i =0
(w∗)!xi

)
.
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Appendix B. Dual of Soft Margin Problem (S12)

The Lagrangian function of (S12) is

L(w, p, ξ−, ξ+, α, β, λ, µ) =
1
2
‖w‖2 + c1!

n (ξ− + ξ+) +
1
2
d ‖p‖2

+
∑

i∈N(1..l)

αi(1 − (xi)!w + pli − ξ−i)

+
∑

i∈N(0..l−1)

βi(1 + (xi)!w − pli+1 − ξ+i) − λ!ξ− − µ!ξ+

=
1
2
w!w +

1
2
d p!p − (X(α − β))!w + (Aα − Bβ)!p

+ 1!
n (α + β) + (c1n − α − λ)!ξ− + (c1n − β − µ)!ξ+.

where α, β, λ and µ are nonnegative Lagrange multiplier vectors corresponding to the
inequality constraints and the nonnegativity of ξ− and ξ+, respectively. For a given
multiplier vector (α, β,λ, µ) ∈ R4n

+ , the Lagrangian relaxation problem is given as
∣∣∣∣∣

minimize L(w,p, ξ−, ξ+,α, β, λ,µ)

subject to (w, p, ξ−, ξ+) ∈ Rm+l+2n.

In the same way as the previous discussion, the optimality condition of (w∗, p∗, ξ∗−, ξ∗+) is

∂L

∂(w, p, ξ−, ξ+)
(w∗, p∗, ξ∗−, ξ∗+) = 0m+l+2n,

which reduces to

w∗ = X(α − β) (B.1)
d p∗ = −(Aα − Bβ) (B.2)
c1n − α − λ = c1n − β − µ = 0n. (B.3)

Then the optimal value ω(α, β, λ, µ) of the Lagrangian relaxation problem is given as

ω(α, β, λ, µ) = −
{

1
2
(α − β)!K(α − β) +

1
2d

(Aα − Bβ)!(Aα − Bβ) − 1!
n (α + β)

}

= −
{

1
2
(α − β)!K(α − β) +

1
2d

(α! β!)M
(

α
β

)
− 1!

n (α + β)
}

,

where

M =
[

A!A −A!B
−B!A B!B

]
∈ R2n×2n.

Then the Lagrangian dual of (S12) is

(dS12)

∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1
2
(α − β)!K(α − β) +

1
2d

(α! β!)M
(

α
β

)
− 1!

n (α + β)

subject to αN(0) = 0n(0)

βN(l) = 0n(l)

0n ≤ α ≤ c1n

0n ≤ β ≤ c1n.
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The optimal solution (w∗,p∗) of (S12) is determined by

w∗ = X(α∗ − β∗)

p∗ = −1
d
(Aα∗ − Bβ∗)

from the optimality condition.

Appendix C. Dual of Soft Margin Problem (S22)

The Lagrangian function of (S22) is

L(w, p, ξ−, ξ+, α, β) =
1
2
‖w‖2 +

1
2
c(‖ξ−‖2 + ‖ξ+‖2) +

1
2
d‖p‖2

+
∑

i∈N(1..l)

αi(1 − (xi)!w + pli − ξ−i)

+
∑

i∈N(0..l−1)

βi(1 + (xi)!w − pli+1 − ξ+i),

=
1
2
w!w +

1
2
d(p!p) − (X(α − β))!w + (Aα − Bβ)!p

+ 1!
n (α + β) + (

1
2
c ξ− − α)!ξ− + (

1
2
c ξ+ − β)!ξ+.

The optimality condition of (w∗, p∗, ξ∗−, ξ∗+) is

w∗ = X(α − β)
d p∗ = −(Aα − Bβ)
c ξ∗− = α

c ξ∗+ = β.

Plugging these equalities into L, ω(α, β) is given as

ω(α, β) = −
{

1
2
(α − β)!K(α − β) +

1
2c

(α!α + β!β)

+
1
2d

(Aα − Bβ)!(Aα − Bβ) − 1!
n (α + β)

}
.

Therefore we obtain the Lagrangian dual of (S22):

(dS22)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
1
2
(α − β)!K(α − β) +

1
2c

(α!α + β!β) +
1
2d

(α!β!)M
(

α
β

)

−1!
n (α + β)

subject to αN(0) = 0n(0)

βN(l) = 0n(l)

α ≥ 0n

β ≥ 0n.

The optimal solution (w∗,p∗) of (S22) is determined by

w∗ = X(α∗ − β∗)

p∗ = −1
d
(Aα∗ − Bβ∗).
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