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1 Introduction

The problem of variable selection in a multiple linear regression model is impor-

tant in practice, and a number of model selection criteria have been proposed to

evaluate the goodness-of-fit of candidate models. For example, Akaike’s informa-

tion criterion (AIC, Akaike, 1973) is widely used as a model selection criterion in

terms of prediction: AIC is derived from the Kullback-Leibler divergence between

unknown true density fY (y) and the parametric model g(y|θ); AIC is designed

to be an approximately unbiased estimator of expected log-likelihood. Sugiura

(1978) suggested a finite bias-correction version of AIC (AICC) for a normal linear

regression model: AICC is derived as an exact unbiased estimator of expected log-

likelihood and asymptotically equivalent to AIC; Moreover, in small sample cases,

AICC outperforms AIC (see Hurvich and Tsai, 1989). However, model selection

based on AIC or AICC implicitly assumes that true density (or model) must be

nested within the candidate model, i.e., fY (y) ∈ {g(y|θ);θ ∈ Θ} (see Hurvich and

Tsai, 1991, p.500).

In Bayesian perspective, Schwarz (1978) proposed Bayesian information cri-

terion (BIC). BIC selects a model Mr from the set of candidate models M ≡

{M1,M2, . . . ,MR} based on the posterior probability Pr(Mr|Data): BIC is de-

rived as an asymptotic approximation of the marginal likelihood and covers only

models estimated by the maximum likelihood estimation. Unlike AIC and AICC

derived from the Kullback-Leibler divergence, BIC does not require an assumption

that candidate models contain the true model. Moreover, in cases true model ex-

ists in the set of candidate models, it is well-known that BIC is consistent, i.e., the

posterior probability of choosing a true model converges to one when the number
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of observed data goes to infinity (Nishii, 1984; Kubokawa and Srivastava, 2010).

However it is known that BIC, though consistent for large samples, is not neces-

sarily excellent in the sense of selecting variables in small sample sizes. Kubokawa

and Srivastava (2010) suspected that one of the plausible reasons may be that BIC

is far from the exact marginal distribution in small sample sizes. It is also known

that BIC is asymptotically equivalent to a model selection based on Bayes factors

(Kass and Raftery, 1995).

Bayes factor is defined as a ratio of marginal likelihoods for two different models

evaluated at the observed data. Bayes factor enables us to introduce the prior

information on the parameters. If the prior distribution is improper, however, it is

well known that the Bayes factor does not work for model selection. To resolve this

issue, many researchers (e.g., Aitkin, 1991; Gelfand and Dey, 1994; O’Hagan, 1995;

Berger and Pericchi, 1996; Santis and Spezzaferri, 2001) proposed modifications of

Bayes factor.

Bayes factors are possible criteria for the linear regression case. For example,

variable selection via Bayes factors related to the Zellner (1986)’s g-prior is also

consistent as seen in Fernández et al. (2001) and Liang et al. (2008). However,

using a diffuse prior on the parameters in an effort to make it noninformative

will lead to quite unexpected consequences. As was noted in Liang et al. (2008),

“large spread of the prior induced by the noninformative choice of g has the un-

intended consequence of forcing the Bayes factor to favor the null model, the

smallest model, regardless of the information in the data.” and such phenomenon

is called “Bartlett’s paradox.” Also, Bayes factors are known to be rather sensitive

to the choice of the prior distributions on the parameters within each model. Even

asymptotically, the influence of prior distributions does not vanish (see Kass and
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Raftery, 1995; Fernández et al., 2001).

In hierarchical Bayesian perspective, deviance information criterion (DIC, Spiegel-

halter et al., 2002) is widely used: DIC is easily computable and rather universally

applicable Bayesian criterion for posterior predictive model comparison. Spiegel-

halter et al. (2002) proposed a Bayesian measure of model complexity (i.e., effective

number of parameters pD ) with respect to the hierarchical Bayesian model. This

model complexity is obtained from the difference between the posterior mean of

deviance and the deviance at the posterior mean of parameters. When the num-

ber of data is sufficiently large, DIC is given by adding pD to the posterior mean

of deviance. However, Ando (2007) shows that bias estimate of DIC tends to

underestimate the true bias 1.

DIC can also be applied to the variable selection for non-hierarchical Bayesian

linear regression models as well (van der Linde, 2005). However, as with AIC

as pointed in Nishii (1984), even if the number of observed data increases, DIC

will not consistently select the true model from a set of candidate models (see

Spiegelhalter et al., 2002, p.613). Also, in small sample cases, DIC will need a

bias corrected version comparable to AICC vis-a-vis AIC since Spiegelhalter et al.

(2002) only gave an asymptotic justification of DIC.

Hence, it is desirable to search for a consistent Bayesian criterion in place of

Bayes factor and DIC in the sense of selecting true variables for large samples and

still performs well for small samples.

In this paper, we instead propose a generalized BIC (henceforth GBIC, Konishi

1As pointed by Robert and Titterington (2002) and Ando (2007), observed data is used twice
in the construction of pD: Indeed, observed data is used the first time to produce the posterior
distribution from which the posterior mean of parameters is calculated; They are then used again
to produce the posterior mean of deviance. This repeated use of observed data would appear to
be a potential factor for overfitting (Robert and Titterington, 2002, p.621).
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et al., 2004; Kawano and Konishi, 2009; Hirose et al., 2011; Matsui et al., 2013)

based variable selection criterion with respect to the Bayesian linear regression

model with natural conjugate priors. GBIC is derived as an approximation of

marginal likelihood such as BIC, but, since GBIC includes terms discarded for

the definition of BIC, such terms should improve the effectiveness of BIC in small

sample cases (Neath and Cavanaugh, 1997).

We prove consistency of our proposed criterion under the standard assumptions

and illustrate the proposed criterion is consistent in large sample cases. We then

carry out performance comparisons of our proposed criterion relative to other

prediction-base criteria such as AIC and DIC as well as the more traditional BIC

in small sample cases to make our point clear.

The rest of this paper is organized as follows: Next section briefly describes

the GBIC for Bayesian linear regression model with natural conjugate prior. In

Section 3, we also prove the proposed criterion is consistent. Section 4 provides

results of simulation study to illustrate the consistency of our proposed criterion

and then shows the effectiveness for small sample cases via simulation. Finally,

Section 5 discusses issues surrounding our proposed criterion.

2 Generalized Bayesian Information Criterion

With a finite set of R candidate models M ≡ {M1,M2, . . . ,MR}, posterior prob-

ability of choosing a model Mk ∈ M given the likelihood function gk(y|θk) =
∏N

i=1 gk(yi|θk) and the prior distribution πk(θk|ψk) is obtained as

Pr (Mk|y,ψk) =
Pr(Mk)

∫
gk(y|θk)πk(θk|ψk)dθk∑R

r=1 Pr(Mr)
∫
gr(y|θr)πr(θr|ψr)dθr

(2.1)
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where θk is a dk × 1 parameter vector and ψk is a qk × 1 hyper-parameter vector.

To show a heuristic derivation of GBIC, we assume that the prior probability

of choosing a model Mk, Pr(Mk) = 1/R (k = 1, 2, . . . , R). Then GBIC selects a

model among a finite set of candidate models M with maximizing the marginal

likelihood:

p(y|ψk,Mk) =

∫
gk(y|θk)πk(θk|ψk)dθk. (2.2)

To derive GBIC, we first rewrite the marginal likelihood in (2.2) as

∫
gk(y|θk)πk(θk|ψk)dθk =

∫
exp [Q(θk;y,ψk)] dθk (2.3)

where Q(θk;y,ψk) = log{gk(y|θk)πk(θk|ψk)}. From the second-order Taylor ex-

pansion of Q(θk;y,ψk) in (2.3), we can approximate it around the posterior mode

θ̂k = argmax Q(θk;y,ψk) as follows:

Q(θk;y,ψk) ≈ Q(θ̂k;y,ψk) + (θk − θ̂k)
′ ∂Q(θk;y,ψk)

∂θk

∣∣∣∣
θk=θ̂k

+
1

2
(θk − θ̂k)

′ ∂
2Q(θk;y,ψk)

∂θk∂θ
′
k

∣∣∣∣
θk=θ̂k

(θk − θ̂k)

= Q(θ̂k;y,ψk) +
1

2
(θk − θ̂k)

′ ∂
2Q(θk;y,ψk)

∂θk∂θ
′
k

∣∣∣∣
θk=θ̂k

(θk − θ̂k).

(2.4)

From (2.3) and (2.4), exp [Q(θk;y,ψk)] can be approximated as

exp [Q(θk;y,ψk)] ≈ gk(y|θ̂k)πk(θ̂k|ψk) exp

[
−1

2
(θk − θ̂k)

′(NJ(θ̂k))(θk − θ̂k)

]

(2.5)
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where

J(θ̂k) = − 1

N

∂2 log{gk(y|θk)πk(θk|ψk)}
∂θk∂θ

′
k

∣∣∣∣
θk=θ̂k

. (2.6)

From (2.5), the marginal likelihood in (2.2) is approximately

p(y|ψk,Mk) ≈ gk(y|θ̂k)πk(θ̂k|ψk)

∫
exp

[
−1

2
(θk − θ̂k)

′(NJ(θ̂k))(θk − θ̂k)

]
dθk.

(2.7)

We can regard the integral in (2.7) as the multivariate normal distribution of θk

without normalizing constant and thus

∫
(2π)−dk/2|NJ(θ̂k)|1/2 exp

[
−1

2
(θk − θ̂k)

′(NJ(θ̂k))(θk − θ̂k)

]
dθk = 1

where | · | denotes the determinant of a matrix. Hence (2.6) can be rewritten as

p(y|ψk,Mk) ≈ gk(y|θ̂k)πk(θ̂k|ψk)
[
(2π)dk/2|NJ(θ̂k)|−1/2

]

= gk(y|θ̂k)πk(θ̂k|ψk)
[
(2π)dk/2N−dk/2|J(θ̂k)|−1/2

]
. (2.8)

Taking logarithm on the both sides of (2.8) and then multiplying by −2, we have

the generalized version of BIC 2 , presented by Konishi et al. (2004) such as

GBIC(y, θ̂k,ψk) = −2 log{gk(y|θ̂k)πk(θ̂k|ψk)}+ dk log(N)

+ log{|J(θ̂k)|} − dk log(2π). (2.9)

2Suppose that the number of observed dataN is large enough and prior distribution πk(θk|ψk)
is effectively uniform, we can treat πk(θk|ψk) as a constant (Burnham and Anderson, 2002) and
the last two terms on the right-hand side of (2.9) can be ignored. Moreover, since πk(θk|ψk) is

effectively flat, posterior mode θ̂k can be replaced with the MLE θ̂
mle

k and we arrive at the BIC
as

BIC(y, θ̂
mle

k ) = −2 log{gk(y|θ̂
mle

k )}+ dk log(N).
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In the fully Bayesian perspective, prior information on the parameter vector θk

plays an important role. As seen (2.9), the choice of the prior distribution πk(θ̂k|ψk)

has an influence on model comparison.

2.1 GBIC for Bayesian Linear Regression Model with Nat-

ural Conjugate Priors

We consider the linear regression model as follows

y = Xβ + ε, ε ∼ N
(
0N , σ

2IN

)
(2.10)

where y is a N×1 vector of the response variable and X is a N×K non-stochastic

matrix of explanatory variables. We assume that X has full column rank K. The

parameter vector β is a K × 1 vector and error term ε follows a N -dimensional

multivariate normal distribution N (0N , σ2IN) where 0N is a N × 1 vector whose

elements are zero and IN is a N × N identity matrix. We assume that prior

distribution of β is a K-dimensional multivariate normal distribution and that of

σ−2 is a gamma distribution:

β|σ−2 ∼ N
(
b0, σ

2B0

)
(2.11)

σ−2 ∼ G
(
ν0
2
,
λ0

2

)
. (2.12)

In particular, if the hyper-parameter B0 in (2.11) is specified as B0 = (κ0X
′X)−1

where κ0 (> 0) is unknown scalar hyper-parameter, then the prior distribution is

well-known Zellner (1986)’s g-prior.
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The posterior distributions of parameters β and σ−2 are expressed as

β|σ−2,y,X ∼ N
(
b1, σ

2B1

)
(2.13)

σ−2|y,X ∼ G
(
ν1
2
,
λ1

2

)
(2.14)

where b1 = B1

(
X ′y +B−1

0 b0
)
, B1 =

(
X ′X +B−1

0

)−1
, ν1 = ν0 + N , λ1 =

λ0 + (y − Xβ̂
mle

)′(y − Xβ̂
mle

) + (b0 − β̂
mle

)′[(X ′X)−1 + B0]−1(b0 − β̂
mle

) and

β̂
mle

= (X ′X)−1X ′y.

Applying the GBIC in (2.9) to the Bayesian linear regression model in (2.10)

with natural conjugate priors in (2.11) and (2.12), we can obtain the (K + 1) ×

(K + 1) matrix J(θ̂) in (2.6) as follows:

J(θ̂) = − 1

N




−
(

ν1−1
λ1

)
B−1

1 0K

0′
K −

(
K
2 + ν1

2 − 1
) (

ν1−1
λ1

)−2



 . (2.15)

The derivation of (2.15) is provided in Appendix A.

Taking determinant of (2.15) :

|J(θ̂)| =
∣∣∣∣
1

N

(
ν1 − 1

λ1

)
B−1

1

∣∣∣∣×
(

1

N

)(
K

2
+

ν1
2

− 1

)(
ν1 − 1

λ1

)−2

=

(
ν1 − 1

λ1

)K−2 ∣∣∣∣
1

N
B−1

1

∣∣∣∣×
(

1

N

)(
K

2
+

ν1
2

− 1

)
, (2.16)

we can compute the GBIC in (2.9) for the Bayesian linear regression model in

(2.10) such as

GBIC(y,X, θ̂,ψ) = −2 log{g(y|X, θ̂)π(θ̂|ψ)}+K log(N)
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+ (K − 2) log

(
ν1 − 1

λ1

)
+ log

∣∣∣∣
1

N
X ′X +

1

N
B−1

0

∣∣∣∣

+ log

(
K

2
+

ν1
2

− 1

)
− (K + 1) log(2π) (2.17)

where θ̂ is a vector of posterior modes of parameter β and σ−2 in (2.10), and ψ

is a vector of hyper-parameters in (2.11) and (2.12). Substituting the posterior

modes b1 and (ν1− 1)/λ1 into the parameters β and σ−2, we have a log-likelihood

log{g(y|X, θ̂)} and a logarithmic prior distribution log{π(θ̂|ψ)} as follows:

log{g(y|X, θ̂)}

= −N

2
log(2π) +

N

2
log

(
ν1 − 1

λ1

)
− ν1 − 1

2λ1
(y −Xb1)

′(y −Xb1), (2.18)

log{π(θ̂|ψ)}

= −K

2
log(2π) +

K

2
log

(
ν1 − 1

λ1

)
− 1

2
log |B0| −

ν1 − 1

2λ1
(b1 − b0)

′B−1
0 (b1 − b0)

+
ν0
2
log

(
λ0

2

)
− log Γ

(ν0
2

)
+
(ν0
2

− 1
)
log

(
ν1 − 1

λ1

)
− λ0

2

(
ν1 − 1

λ1

)
(2.19)

where Γ(·) is a gamma function.

3 Consistency of GBIC in (2.17)

Suppose that true model MT exists within the finite set of candidate models (i.e.,

MT ∈ M), we denote the true model MT as

MT : y = XTβT + ε (3.1)
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where XT is a N × KT matrix of true set of explanatory variables and βT is a

KT × 1 parameter vector. The error term ε is a N × 1 normal random vector with

mean zero and covariance matrix σ2IN with the scalar σ2 unknown.

We assume that the candidate model Mr ∈ M is specified in its stead as

Mr : y = Xrβr + ε (3.2)

where Xr is a N×Kr matrix of explanatory variables and βr is a Kr×1 parameter

vector. Also, let us denote θ̂
mle

j (j = r or T ) as a vector of the MLEs of unknown

parameters βj and σ−2 in (3.1) and (3.2), respectively.

Given the GBICs for the candidate model Mr in (3.2) and the true model MT

in (3.1), we show:

Theorem 3.1.

Pr
{
GBIC(y,XT , θ̂T ,ψT ) < GBIC(y,Xr, θ̂r,ψr)

}
→ 1 (3.3)

as N → ∞, where Mr *= MT with quoted two lemmas in Fernández et al. (2001)

in the appendix and th following assumptions

Assumption 3.1. The elements of Xj (j = r or T ) in (3.1) and (3.2) are bounded

and X ′
jXj/N = O(1) as N → ∞.

Assumption 3.2. The vector of hyper-parameters ψj (j = r or T ) is bounded,

i.e., ψj = O(1) as N → ∞.

Assumption 3.3. The logarithmic natural conjugate prior is bounded in proba-

bility, i.e., log{π(θj|ψj)} = Op(1) (j = r or T ) as N → ∞.
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Proof. Using the fact that in large samples the posterior mode θ̂j (j = r or T ) of

parameters βj and σ−2 (i.e., b1j and (ν1j−1)/λ1j) is close to the MLE θ̂
mle

j , we here

suppose that the number of data N is large enough so that the posterior mode θ̂j

can be replaced with the MLE θ̂
mle

j . Then from (2.17), −2 log{g(y|Xj, θ̂j)π(θ̂j|ψj)}

can be approximated by −2 log{g(y|Xj, θ̂
mle

j )π(θ̂
mle

j |ψj)}. Hence if N is large

enough, GBIC(y,Xj, θ̂j,ψj) in (2.17) is equivalent to

GBIC(y,Xj, θ̂j,ψj) = N log(2π)−N log

(
N

RSSj

)
+N

− 2 log{π(θ̂
mle

j |ψj)}+Kj log(N)

+ (Kj − 2) log

(
ν1j − 1

λ1j

)
+ log

∣∣∣∣
1

N
X ′

jXj +
1

N
B−1

0j

∣∣∣∣

+ log

(
Kj

2
+

ν1j
2

− 1

)
− (Kj + 1) log(2π) (3.4)

where −2 log{g(y|Xj, θ̂
mle

j )} = N log(2π)−N log (N/RSSj) +N .

Let us denote ∆N = GBIC(y,Xr, θ̂r,ψr) − GBIC(y,XT , θ̂T ,ψT ) and from

(3.4), we have

∆N = −N log
RSST

RSSr
+ (Kr −KT ) log(N) + hN (3.5)

where

hN = −2 log{π(θ̂
mle

r |ψr)}+ 2 log{π(θ̂
mle

T |ψT )}

+ (Kr − 2) log

(
ν1r − 1

λ1r

)
− (KT − 2) log

(
ν1T − 1

λ1T

)

+ log

∣∣ 1
NX ′

rXr +
1
NB−1

0r

∣∣
∣∣ 1
NX ′

TXT + 1
NB−1

0T

∣∣ + log

(
Kr
2 + ν1r

2 − 1
)

(
KT
2 + ν1T

2 − 1
)

11



− (Kr −KT ) log(2π). (3.6)

Using the fact that posterior mode (ν1j − 1)/λ1j (j = r or T ) is close to the MLE

of σ−2 if N is large enough, we notice that hN in (3.6) is bounded in probability

under the assumptions 3.1, 3.2 and 3.3.

(i) MT *⊂ Mr. In this case, it is sufficient to show that ∆N
p−→ ∞ as N → ∞.

From lemma B.1 (ii), we notice that

RSSr/N

RSST/N
p−→ σ2 + cr

σ2
(> 1). (3.7)

Therefore, we have from (3.5) and (3.6) the following limit

∆N = N

(
log

RSSr

RSST
+ (Kr −KT )

log(N)

N
+

hN

N

)

p−→ ∞ (3.8)

as N → ∞, where limN→∞
log(N)

N = limN→∞
1/N
1 = 0.

(ii) MT ⊂ Mr. Since we always have Kr > KT , from lemma B.2 we notice that

Pr {0 < ∆N} = Pr

{
N log

RSST

RSSr
< (Kr −KT ) log(N) + hN

}

→ Pr
{
χ2
Kr−KT

< ∞
}

= 1. (3.9)
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4 Simulation studies

In our simulation studies, we consider the candidate linear regression models by

using three explanatory variables {x1,x2,x3}, where x1 is a N × 1 vector whose

elements are one and the other N × 1 vectors x2 and x3 are independently gen-

erated from the standard normal distributions. The explanatory variables in the

candidate models are selected from the subsets of {x1,x2,x3} (i.e., {x1}, {x2},

{x3}, {x1,x2}, {x1,x3}, {x2,x3}, {x1,x2,x3}).

To examine the consistency of our proposed criterion based on GBIC in (2.17)

via simulation, we generate the simulation data from true model y = 10x1+20x2+

ε, where ε ∼ N (0N , 5.0IN). We set the hyper-parameters in the natural conjugate

priors in (2.11) and (2.12) such as b0 = 0K , B0 = 0.01IK , ν0 = 0.1, and λ0 = 0.1

and also for reference compare with DIC given by DIC = −2Eθk|y[log{gk(y|θk)}]+

pD, where Eθk|y[·] denotes an expectation with respect to the posterior distribution

and pD is the effective number of parameters. In this simulation study, we generate

100 samples of two criteria, respectively, to examine the frequency of selecting the

true model (see Figure 1). Figure 1 shows that GBIC consistently selects the true

model and clearly outperforms DIC as the number of data N increases.

Next we carry out a simulation study to examine the performance of our pro-

posed criterion in (2.17) for small sample cases (N = 10, 20, 30). In this simula-

tion, we investigate effects of terms which are discarded as being asymptotically

negligible, i.e., log{πk(θ̂k|ψk)} and log{|J(θ̂k)|} in (2.9). We here compare the

performance of our proposed criterion in (2.17) not only with DIC but also with
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Figure 1: Frequency of selecting true model (%) with respect to GBIC and DIC.
The solid line indicates GBIC and the dashed line indicates DIC.

the variants of GBIC in (2.9) such as Neath and Cavanaugh (1997) as follows:

GBIC1(y, θ̂k) = −2 log{gk(y|θ̂k)}+ dk log(N)

GBIC2(y, θ̂k) = −2 log{gk(y|θ̂k)}+ dk log(N) + log{|J(θ̂k)|}

where GBIC1 throws out the effects of both log{πk(θ̂k|ψk)} and log{|J(θ̂k)|} such

as BIC proposed by Schwarz (1978) and GBIC2 only throws out the effect of

log{πk(θ̂k|ψk)}. Notice that Neath and Cavanaugh (1997) evaluates the effects on

BIC of truncation similarly under the maximum likelihood estimation. We also

carry out the variable selection using AIC and BIC, which only deal with the mod-

14



els estimated by the maximum likelihood estimation, to compare the performance

of AIC and BIC with that of GBIC.

In this simulation study, we set the true model y = 1.0x1 + 2.0x2 + ε, where

ε ∼ N (0N , 0.5IN) to examine the performance of variable selection and also set

the hyper-parameters in the natural conjugate priors in (2.11) and (2.12) such

as b0 = 0K , B0 = κ0IK (κ0 = 1 or 100), ν0 = 0.1, and λ0 = 0.1. We here

generate 500 samples of each criteria for the seven candidate models and report

the frequency of selecting each candidate model in Table 1.

In the case of hyper-parameter κ0 = 1, GBIC2 and GBIC correctly select the

true model (i.e., Model 4) as compared with the results of the other criteria. On

the other hand, Table 1 also shows that AIC frequently selects the full model (i.e.,

Model 7) in all small sample cases (N = 10, 20, 30).

In the case of hyper-parameter κ0 = 100, the performance of GBIC is quite

well as compared with those of the other criteria. This result reflects the fact

that BIC, GBIC1 and GBIC2 are far from the exact marginal likelihood relative

to GBIC. Hence the terms discarded in the derivation of BIC should improve

the performance of variable selection. On the other hand, AIC and DIC have a

tendency to select the full model.

5 Conclusion and Discussion

In this paper, we consider variable selection in the Bayesian linear regression model

with natural conjugate priors. In recent Bayesian modeling, prior information is

aggressively applied to estimate the posterior distributions. For example, prior

information from experts, theories, or other datasets plays an important role for

15



Table 1: Frequency of set of variables selected by each criteria in 500 samples for
small sample cases (N = 10, 20, 30) when true set of variables is {x1,x2}.

Model AIC BIC DIC GBIC1 GBIC2 GBIC AIC BIC DIC GBIC1 GBIC2 GBIC

κ0 = 1, N = 10 κ0 = 100, N = 10

1. {x1} 0 0 0 0 0 0 0 0 0 0 0 0
2. {x2} 0 0 0 0 1 3 0 0 0 0 0 2
3. {x3} 0 0 0 0 0 0 0 0 0 0 0 0
4. {x1,x2} 377 392 446 475 477 478 386 398 383 398 442 485
5. {x1,x3} 0 0 0 0 0 0 0 0 0 0 0 0
6. {x2,x3} 0 0 0 0 0 0 0 0 0 0 0 0
7. {x1,x2,x3} 123 108 54 28 22 19 114 102 117 102 58 13

κ0 = 1, N = 20 κ0 = 100, N = 20

1. {x1} 0 0 0 0 0 0 0 0 0 0 0 0
2. {x2} 0 0 0 0 0 0 0 0 0 0 0 0
3. {x3} 0 0 0 0 0 0 0 0 0 0 0 0
4. {x1,x2} 393 442 429 473 484 488 406 440 397 440 471 494
5. {x1,x3} 0 0 0 0 0 0 0 0 0 0 0 0
6. {x2,x3} 0 0 0 0 0 0 0 0 0 0 0 0
7. {x1,x2,x3} 107 58 71 27 16 12 94 60 103 60 29 6

κ0 = 1, N = 30 κ0 = 100, N = 30

1. {x1} 0 0 0 0 0 0 0 0 0 0 0 0
2. {x2} 0 0 0 0 0 0 0 0 0 0 0 0
3. {x3} 0 0 0 0 0 0 0 0 0 0 0 0
4. {x1,x2} 400 450 420 465 482 485 416 459 413 459 485 500
5. {x1,x3} 0 0 0 0 0 0 0 0 0 0 0 0
6. {x2,x3} 0 0 0 0 0 0 0 0 0 0 0 0
7. {x1,x2,x3} 100 50 80 35 18 15 84 41 87 41 15 0
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decision making (e.g., Rossi and Allenby, 2003). Bayesian analysis provides a

unified and coherent way of thinking about decision problems and how to solve

them using data and other information (Geweke, 2005).

In this paper, we first proved and illustrated via simulation that our GBIC-

based criterion is consistent under the standard assumptions (see Figure 1). Figure

1 shows diverging asymptotic properties of GBIC and DIC: GBIC consistently

selects the true model as the number of data increases, while DIC does not as

expected. We then compare performance of the proposed GBIC in small sample

cases (see Table 1) relative not only to more traditional AIC, BIC, and DIC, but

also to the variants GBIC1 and GBIC2 to evaluate the effect of the terms discarded

in the derivation of BIC on variable selection in linear regression setting.

Table 1 again shows that striking model selection performance differences be-

tween the proposed GBIC and DIC: When the prior is informative with κ0 = 1,

neither GBIC nor DIC can escape the influence of strong prior information when

the numbers of sample are so small at N = 10, 20, and 30; however, it should be

noted that the relative rates of misidentification of GBIC is far smaller than the

rates of misidentification of DIC.

On the other hand, when the prior is noninformative with κ0 = 100, GBIC’s

rates of misidentification are far smaller than the DIC regardless of the number

of samples and the GBIC’s misidentification rates rapidly decrease as the num-

ber of samples increases. Although GBIC has a very slight chance of choosing

underspecified model {x2} for N = 10 whether the prior is informative or non-

informative, the overall small sample performance comparison clearly shows that

GBIC is superior to DIC at least in this linear regression setting.

Table 1 also shows that our proposed criterion outperforms GBIC1 and GBIC2

17



in small sample cases as expected. Therefore in small sample cases where it is

crucial to identify the true model under small sample, GBIC and not its truncated

versions, GBIC1 and GBIC2, ought to be used. Overall our GBIC-based criterion

is a useful Bayesian variable selection procedure in both large and small sample

cases.

As an important direction for the future research, we would like to extend our

proposed criterion to Bayesian econometric demand system models (e.g., Kabe

and Kanazawa, 2013). Although such models are extensively used in empirical

economic studies and policy decision making, their estimation is always constrained

by the limited number - at most monthly, but quite often quarterly or semiannually

- of data points and thus model performance comparisons must be carried out in

small sample situations.
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A Derivation of Eq. (2.15)

Using a fact that p(θ|y,ψ) ∝ g(y|θ)π(θ|ψ), we can rewrite the negative Hessian

matrix in (2.6) as

J(θ̂) = − 1

N

∂2 log{g(y|θ)π(θ|ψ)}
∂θ∂θ′

∣∣∣∣
θ=θ̂

= − 1

N

∂2 log{p(θ|y,ψ)}
∂θ∂θ′

∣∣∣∣
θ=θ̂

. (A.1)

The logarithmic posterior distribution log{p(θ|y,ψ)} in (A.1) for the Bayesian

linear regression model in (2.10) is given from (2.13) and (2.14) as

log{p(θ|y,ψ)} =
K

2
log σ−2 − σ−2

2
(β − b1)

′B−1
1 (β − b1)

+
(ν1
2

− 1
)
log σ−2 − λ1

2
σ−2 + {constant term}. (A.2)

where parameter vector θ has the parameters β and σ−2.

The first derivative of (A.2) with respect to β is given by

∂ log{p(θ|y,ψ)}
∂β

=
∂

∂β

{
−σ−2

2
(β − b1)

′B−1
1 (β − b1)

}

= −σ−2

2

∂

∂β

{
β′B−1

1 β − β′B−1
1 b1 − b′1B

−1
1 β + b′1B

−1
1 b1

}

= −σ−2

2

{
2B−1

1 β − 2B−1
1 b1 + 0

}

= −σ−2B−1
1 (β − b1) (A.3)

where matrix B−1
1 is symmetric.
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Next we take a first derivative of (A.2) with respect to σ−2 as follows:

∂ log{p(θ|y,ψ)}
∂σ−2

=
∂

∂σ−2

{
K

2
log σ−2 − σ−2

2
(β − b1)

′B−1
1 (β − b1) +

(ν1
2

− 1
)
log σ−2 − λ1

2
σ−2

}

=
K

2

1

σ−2
− 1

2
(β − b1)

′B−1
1 (β − b1) +

(ν1
2

− 1
) 1

σ−2
− λ1

2

=

(
K

2
+

ν1
2

− 1

)
(σ−2)−1 − 1

2
(β − b1)

′B−1
1 (β − b1)−

λ1

2
. (A.4)

From (A.3), the second derivative of (A.2) with respect to β is obtained as

∂2 log{p(θ|y,ψ)}
∂β∂β′ =

∂

∂β

{
−σ−2 (β − b1)

′ B−1
1

}

= −σ−2B−1
1 (A.5)

and with respect to σ−2 is also given by

∂2 log{p(θ|y,ψ)}
∂β∂σ−2

=
∂

∂σ−2

{
−σ−2B−1

1 (β − b1)
}

= −B−1
1 (β − b1) . (A.6)

Similarly, from (A.4), we take a second derivative of (A.2) with respect to σ−2

as follows

∂2 log{p(θ|y,ψ)}
∂σ−2∂σ−2

=
∂

∂σ−2

{(
K

2
+

ν1
2

− 1

)
(σ−2)−1 − 1

2
(β − b1)

′B−1
1 (β − b1)−

λ1

2

}

=
∂

∂σ−2

{(
K

2
+

ν1
2

− 1

)
(σ−2)−1

}

= −
(
K

2
+

ν1
2

− 1

)(
σ−2

)−2
(A.7)
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and with respect to β′ is given by

∂2 log{p(θ|y,ψ)}
∂σ−2∂β′ =

∂

∂β′

{(
K

2
+

ν1
2

− 1

)
(σ−2)−1 − 1

2
(β − b1)

′B−1
1 (β − b1)−

λ1

2

}

=
∂

∂β′

{
−1

2
(β − b1)

′B−1
1 (β − b1)

}

= −(β − b1)
′B−1

1 (A.8)

Substituting the posterior modes b1 and (ν1− 1)/λ1 into parameters β and σ−2 in

(A.5), (A.6), (A.7) and (A.8), we have the negative Hessian matrix J(θ̂) expressed

by

J(θ̂) = − 1

N




−
(

ν1−1
λ1

)
B−1

1 0K

0′
K −

(
K
2 + ν1

2 − 1
) (

ν1−1
λ1

)−2



 , (A.9)

where 0K is a K × 1 vector whose elements are zero.

B Fernández et al. (2001)’s lemmas

Lemma B.1.

(i) If the true model MT is nested within or is equal to the candidate model Mr

(i.e., MT ⊆ Mr),

(y −Xrβ̂
mle

r )′(y −Xrβ̂
mle

r )

N
p−→ σ2. (B.1)

(ii) Assuming
β′

TX
′
T (IN − P r)XTβT

N
p−→ cr ∈ (0,∞) (B.2)
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that for any model Mr that does not nest MT (i.e., MT *⊂ Mr), where P r =

Xr(X
′
rXr)−1X ′

r, we obtain

(y −Xrβ̂
mle

r )′(y −Xrβ̂
mle

r )

N
p−→ σ2 + cr. (B.3)

Proof. Let us denote P r = Xr(X
′
rXr)−1X ′

r, where Xr is a N×Kr design matrix

of the candidate model Mr ∈ M and P r and (IN − P r) are known to be N ×N

symmetric and idempotent matrices. The residual sum of squares for candidate

model Mr is given by

(y −Xrβ̂
mle

r )′(y −Xrβ̂
mle

r )

= y′ (IN − P r)y

= (XTβT + ε)′ (IN − P r) (XTβT + ε)

= ε′ (IN − P r) ε+ 2β′
TX

′
T (IN − P r) ε+ β′

TX
′
T (IN − P r)XTβT . (B.4)

(i) MT ⊆ Mr. We assume that Xr is partitioned as Xr = [XT Zr] where Zr is

a N ×Sr matrix of additional explanatory variables. When the true variables XT

is regressed on Xr, we have

(X ′
rXr)

−1X ′
rXT =




IKT

0Sr×KT



 . (B.5)

where 0Sr×KT is a Sr ×KT matrix whose elements are zero. Then we notice that

(IN − P r)XT =
{
IN −Xr (X

′
rXr)

−1X ′
r

}
XT

= XT −Xr (X
′
rXr)

−1X ′
rXT
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= XT − [XT Zr]




IKT

0Sr×KT





= 0N×KT . (B.6)

From (B.6), the residual sum of squares for candidate model Mr in (B.4) can be

rewritten as

(y −Xrβ̂
mle

r )′(y −Xrβ̂
mle

r )

= ε′ (IN − P r) ε+ 2β′
TX

′
T (IN − P r) ε+ β′

TX
′
T (IN − P r)XTβT

= ε′ (IN − P r) ε. (B.7)

Since the expectation of (B.7) is given by

E
[
(y −Xrβ̂

mle

r )′(y −Xrβ̂
mle

r )
]
= E [ε′ (IN − P r) ε]

= σ2tr {IN − P r}

= (N −KT − Sr)σ
2, (B.8)

we have as N → ∞, N −Kr − Sr ≈ N and

(y −Xrβ̂
mle

r )′(y −Xrβ̂
mle

r )

N
p−→ σ2. (B.9)

(ii) MT *⊂ Mr. We suppose that

β′
TX

′
T (IN − P r)XTβT

N
p−→ cr ∈ (0,∞) (B.10)
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and expectation of (B.4) is given by

E
[
(y −Xrβ̂

mle

r )′(y −Xrβ̂
mle

r )
]
= E [ε′ (IN − P r) ε] + β′

TX
′
T (IN − P r)XTβT

= (N −Kr)σ
2 + β′

TX
′
T (IN − P r)XTβT .

(B.11)

From (B.10) and (B.11), we have as N → ∞, N −Kr ≈ N and

(y −Xrβ̂
mle

r )′(y −Xrβ̂
mle

r )

N
p−→ σ2 + cr. (B.12)

Lemma B.2. If the candidate model Mr nests the true model MT (i.e., MT ⊂ Mr),

N log
RSST

RSSr

d−→ χ2
Kr−KT

, (B.13)

where RSSj is a residual sum of squares obtained by RSSj = (y − Xjβ̂
mle

j )′(y −

Xjβ̂
mle

j ) and χ2
Kr−KT

is a chi-square distribution with degree of freedom Kr −KT .

Proof. Please refer to likelihood ratio test literature (e.g., Amemiya, 1985).
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