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Pooling Experiments for Consecutive Positives
Song Luo and Mingchao Zhang

Abstract—In this paper, we study the pooling experiments for screening clone maps. Clones are overlapped and placed
in a linear order, and hence the clones containing a particular DNA sequence of our interest form a consecutive set (or
several consecutive subsets) under the linear order. Those clones are called consecutive positives. Pooling experiments are
used to identify as many positives as possible by screening as few pools as possible. Stochastic models are introduced to
explain the usefulness of the overlap structure for more efficient pooling experiments even when experimental errors exist. We
describe an efficient positive detecting algorithm, called modified Markov chain pool result decoder (MMCPD), for consecutive
positives. We also introduce an efficient algorithm, called random pooling designer (RPD), for estimating the minimal number
of randomly generated pools required for achieving the complete identifiability of pooling experiments when consecutive
positives and experimental errors exist. To our best knowledge, MMCPD is the first probabilistic group testing algorithm for
detecting consecutive positives when experimental errors exist. Interestingly, RPD shows some happy coincidences between our
theoretical computation results and previously known simulation results. Some simulation results are also reported in hoping of
demonstrating that MMCPD and RPD may be promising for real settings.

Index Terms—pooling experiment, group testing, DNA library screening, clone map, consecutive positive, random k-set design,
information-theoretic lower bound.

✦

1 INTRODUCTION

GROUP testing was proposed by Robert Dorfman
[15] during World War II in order to efficiently

test a large number of blood samples for a rare
disease. Since then, various applications of group
testing have been found in many fields such as mul-
tiple communication, coding theory, information se-
curity, sparse signal recovery and others. Particularly,
biology-motivated group testing has been developed
into one of the most important tools in the study
of gene functions. For example, in Human Genome
Project, well-designed group testing schemes have
been proved to be useful in both saving materials and
accelerating the process of reconstructing high-quality
DNA libraries. These high-quality libraries have been
frequently and repeatedly used for extensive studies.

A DNA library is a collection of cloned DNA seg-
ments taken from a specific organism. Those DNA
segments are called clones. Determining whether a
clone contains a particular DNA sequence of interest
can be accomplished by screening it with a probe.
The clone is called a positive for the probe if it
contains the particular DNA sequence, and a negative
otherwise. Due to the large size of a DNA library and
the cost of materials, instead of screening each clone
individually, combinations of the clones are screened
to identify and isolate the positives. The combinations
of the clones are called pools. Each pool is screened
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with the probe to learn whether any of the clones in
the pool contain the DNA sequence. Screening pools
in this way is called a pooling experiment. Pooling
experiments are used to identify as many positives
as possible by screening as few pools as possible. The
efficiency of pooling experiments has been studied by
Barillot et al. [2], Berger et al. [3], Bruno et al. [5] and
Sham et al. [38]. Here we refer to the books [12] and
[13] by Du and Hwang for an overview.

1.1 Classification of Group Testing
Any group testing consists of a pooling procedure and
a positive detecting procedure. A pooling procedure is
a procedure of constructing a collection of pools called
pooling design, determining which clones are put
into which pools. A positive detecting procedure is a
procedure of determining which clones are positives
from the outcomes of group tests.

Group testing can be classified as either adaptive or
nonadaptive, based on how a pooling design is con-
structed in the pooling procedure. In adaptive group
testing, a pooling design is constructed in multiple-
stage. In each stage, the outcomes of the group tests
from previous stages are learned to construct the
pools in the next stage. In nonadaptive group testing,
a pooling design is constructed in one-stage, before
any outcome of the group test is known. In practice,
it is preferable to screen pools in parallel or with few
stages for minimizing time consumption.

Group testing can also be classified as either combi-
natorial or probabilistic.To implement a combinatorial
group testing, we have to construct a pooling design
with desirable combinatorial properties such that all
positives can be distinguished from negatives under



2

the assumption on the maximum number of positives
and that of experimental errors. Related studies can be
found in Du and Hwang [12], [13], [14], Dyachkov et
al. [16] , Macula [29], and Ngo and Du [33]. To imple-
ment a probabilistic group testing, we need not only
stochastic models for positives and for pooling results
but also an efficient positive detecting algorithm to
infer positives from erroneous pooling results based
on a stochastic inference model. Probabilistic group
testing is developed by Bruno et al. [5], Knill et al. [27],
Mezard and Toninelli [30] and Uehara and Jimbo [37].
Bruno et al. [5] and Knill et al. [27] proposed a positive
detecting algorithm called MCPD by using Markov
chain Monte Carlo simulation method. Uehara and
Jimbo [37] proposed another efficient algorithm called
BNPD by using Bayesian network inference. As far as
we know, MCPD and BNPD are the only known effi-
cient positive detecting algorithms when experimental
errors exist.

Probabilistic group testing has three noticeable mer-
its in practice. First, from the perspective of detecting
procedure, probabilistic group testing is expected to
perform stably even when a relatively larger number
of positives or/and experimental errors occur than
expected. Second, probabilistic group testing reduces
information loss by interpreting a measurement of a
test into a multilevel state. Third, from the perspec-
tive of pooling procedure, implementing probabilistic
group testing requires few restriction on the com-
binatorial structure of pooling designs. Particularly,
random pooling designs are allowed. In fact, random
pooling designs are often preferred in a real setting.
This is because (i) a well-designed random pooling
design can have a satisfying efficiency with desirable
error-tolerant ability, (ii) it is unrealistic to expect to
be able to find an appropriate combinatorial pooling
design for every new pooling experiment, and (iii)
random pooling designs facilitate robot automation
and hence are very easy to construct.

1.2 Linear DNA library and Consecutive Positives
Motivated from applications to DNA library screen-
ing, Balding and Torney [4] considered the problem
of pooling experiments for screening unique-sequence
on a 1530-clone map of Aspergillus nidulans. The
clone map has the properties that the clones are,
with possibly a few exceptions, linearly ordered and
no more than two of them cover any point on the
genome. The goal of screening clone maps is to iden-
tify where a particular DNA segment occurs on a
clone map.

In this problem, the clones are overlapped, and
hence it may happen that one segment of interest
occurs in a relatively large number of clones, but
typically the number is predictable as it is related to
the clone coverage. Colbourn [9] introduced the d-
consecutive property to capture the overlap structure

with efficient combinatorial group testing algorithms.
Following his work, related studies can be found,
for example, in Müller and Jimbo [31] and[32], Juan
and Chang [24] and Ge et al. [18]. Bruno et al. [6]
used heterogeneous priors and discussed optimiza-
tion issues of nonadaptive random pooling designs on
the assumption that an effective detecting procedure
exists and experimental errors do not exist.

However, to our best knowledge, when experimen-
tal errors exist, probabilistic group testing for consecu-
tive positives has not yet been discussed. In this paper,
we study this problem to fill the gap.

2 STOCHASTIC MODELS

This section introduces a prior probability distribu-
tion for consecutive positives with overlap structure,
and extends Knill et al [27]’s method for consecutive
positives.

2.1 Prior Knowledge of Consecutive Positives
The following notation will be consistently used
throughout. Let C = {c1, c2, ..., cn} be a set of clones.
C is called a DNA library. Each clone ci has an
associated state σi ∈ {0, 1}. ci is a positive if σi = 1,
otherwise a negative. Let P = {ci : σi = 1} and
XP = (σ1, . . . ,σn) be the set of positives and its
vector form corresponding to P , respectively. For con-
venience, P and XP are used interchangeably, referred
to the positive set. Denote by xi the random variable
of σi such that

xi =





0, if σi = 0,

1, if σi = 1,

and by X = (x1, . . . , xn) the random vector of the
associated states of C.

When a DNA library is constructed by uniformly
and randomly cloning of DNA segments, the expected

number of positives E
� n�
i=1

xi

�
= d is used as the prior

knowledge, for some positive number d. This prior
knowledge appeared in Knill [26], Knill et al. [27] and
Uehara and Jimbo [37]. The overlap information can
analogously be collected and expressed in a similar
form. The basic idea is to extend the d-consecutive
positives property proposed by Colbourn [9] into a
probabilistic version with broader sense.
C is said to be linear if it is associated with an linear

order ci ≺ ci+1, for 1 ≤ i < n. The positive set of linear
C is said to have the multi-d-consecutive property if
any subset of P that forms a consecutive set (under
the ordering ≺) contains at most d positives. A subset
of positives P � is said to be a maximum consecutive
subset, if P � is a consecutive set but P � ∪ {c} is not
a consecutive set for any c ∈ P \ P �. Notice that
P corresponds to a unique partition with maximum
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consecutive subsets. The positive set with the multi-
d-consecutive property is allowed to have more than
one maximum consecutive subsets, each of which
contains at most d consecutive positives.

Without loss of generality and for the sake of sim-
plicity, we analyze the overlap structure of the clone
map of Aspergillus. When the clone map is screened,
if the positive set is believed to approximately have
the multi-2-consecutive positive property, then the
following prior knowledge of the positives can be
collected:

Info 1: the portion of positives among all clones is
relatively small;

Info 2: although the positives are sparse, some of the
positives tend to be consecutive;

Info 3: although some of the positives tend to be
consecutive, maximum consecutive subsets
tend to not get close to each other;

Info 4: no more than two of the positives tend to
form a maximum consecutive subset.

Therefore, based on Info 1 through Info 4, we can
express the prior knowledge of consecutive positives
as follows:






E
� n�
i=1

xi

�
= d1

E
� n−1�
i=1

xixi+1

�
= d2

E
� n−2�
i=1

xixi+2

�
= d3

E
� n−2�
i=1

xixi+1xi+2

�
= d4

(I)

for some positive numbers d1, d2, d3 and d4. However,
how to assign proper values to d1 through d4 is not
within our present concern. Formally, we introduce
the following assumption.

Assumption 1. Appropriate values of d1 through d4 have
been given as parameters.

Generally, we denote by D a family of polynomials
of σ1, . . . ,σn, where

D =

� t�

i=1

�

cj∈Ci

σj : ∃t ∈ N and ∃ t distinctive sets

C1, . . . , Ct ∈ 2C \ {∅} such that C ⊆
t�

i=1

Ci
�
.

Each polynomial of D is called an overlap polyno-
mial of C. We can collect and explicitly express prior
knowledge of consecutive positives by using overlap
polynomials in accordance with overlap information.
If s overlap polynomials D�

j have been chosen from D,
P is said to have positive pattern ddd if (ddd)j= D�

j(XP ),
for j = 1, . . . , s. In addition, we denote by |ddd| the
number of positives in positive pattern ddd.

2.2 Prior Probability Distribution of Consecutive
Positives
This part seeks a prior probability distribution that, in
some sense of optimality, approximately incorporates
the prior knowledge of consecutive positives (I).

2.2.1 The Principle of Maximum Entropy
Since Shannon’s theorem [39] established the unique-
ness of entropy as an information measure of uncer-
tainty, the principle of maximum entropy has been
wildly used to derive prior probability distributions.
Intuitively speaking, more information means less un-
certainty. Any probability distribution satisfying the
constraints that has less uncertainty will contain more
information, and thus implies something stronger
than what the prior knowledge means. The princi-
ple of maximum entropy, as a method of statistical
inference, is due to Jaynes [21], [22] and [23].

Based on the principle of maximum entropy, to
derive the prior probability distribution P(X) which
incorporates (I) but is free from any other knowledge,
is to solve the following problem,

maximize
P(X)

−
�

X∈{0,1}n

P(X) logP(X)

subject to






EP
�
D1(X)

�
= d1

EP
�
D2(X)

�
= d2

EP
�
D3(X)

�
= d3

EP
�
D4(X)

�
= d4�

X∈{0,1}n P(X) = 1.

(II)

As is well-known, Lagrange multiplier method leads
to the solution

Pθ(X) =
1

Z(θ)
exp

�
−

4�

j=1

θjDj(X)

�
, (III)

for some constant vector θ = (θ1, θ2, θ3, θ4) and con-
stant Z(θ). In literature, (III) is called a Gibbs measure.
The normalization constant

Z(θ) =
�

X∈{0,1}n

exp

�
−

4�

j=1

θjDj(X)

�

is called the partition function. It connects θ with the
constants di by simultaneous equations

∂ − logZ(θ)

∂θi
= di, (IV)

for i = 1, . . . , 4. Before discussing how to derive θ
from (IV), we first point out three useful properties of
(III).

Property 1 (Consistency Property). If E
� n�
i=1

xi

�
= d

(d > 0) is the only prior knowledge of positives, then the
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prior probability distribution determined by the principle
of maximum entropy is

P(X) =

�
d

n

� n�
i=1

xi
�
1− d

n

�n−
n�

i=1
xi

.

The proof can be found in Jaynes [23]. From this
property, we see that, provided proper prior knowl-
edge of positives, the principle of maximum entropy
can be used to obtain the prior probability used in
Bruno et al [5], Knill [27], Knill et al [26] and Uehara
[37], where the DNA library is considered to have
been constructed by uniformly and randomly cloning
of DNA segments. Hence, maximum-entropy distri-
butions may be reasonable extensions for describing
the overlap structure of clone maps.

Denote by Nj the set of neighbors of j. Define N1 �
{2, 3}, N2 � {1, 3, 4}, Nn−1 � {n − 3, n − 2, n}, Nn �
{n − 2, n − 1} and Ni � {i − 2, i − 1, i + 1, i + 2}, for
3 ≤ i ≤ n−2. For any configuration of xi by assigning
xi = σi for each i ∈ [n] according to Pθ(X), (III) has
the following Markov-type property.

Property 2 (Local Markov Property). For any j ∈ [n],

Pθ(xj |σi, i ∈ [n] \ {j}) = Pθ(xj |σi, i ∈ Nj).

We show a sketch of the proof. A more general one
can be found in Kindermann and Snell [25] and Pearl
[34]. To see this, we rewrite the Gibbs measure into
the product form:

Pθ(X) =
1

Z(θ)

n�

i=1

exp{−θ1xi}
n−1�

i=1

exp{−θ2xixi+1}

n−2�

i=1

exp{−θ3xixi+2}
n−2�

i=1

exp{−θ4xixi+1xi+2}.

For σj = 0, 1, the condition probability on the left
side is,

Pθ(xj = σj |σi, i ∈ [n] \ {j})

=
Pθ(σ1, . . . ,σj−1, xj = σj ,σj+1, . . . ,σn)
1�

σj=0
Pθ(σ1, . . . ,σj−1, xj = σj ,σj+1, . . . ,σn)

.

Thus, after canceling out the normalization constant,
terms of Pθ(σ1, . . . ,σn) that do not contain σj cancel
from both the numerator and denominator of the
condition probability and therefore this probability
depends only on the random value of xj and those
of its neighbors. This property serves a probabilistic
interpretation of multi-2-consecutive property, saying
that the state of a clone is only influenced by the states
of its previous two and also next two neighbors, if the
clone has such neighbors.

Property 3 (Heterogenous Property). Given X1, X2 ∈
{0, 1}n, if they have the same positive pattern, then
Pθ(X1) = Pθ(X2).

The proof is obvious. Notice that, for any fixed
positive pattern ddd, Pθ is the heterogenous prior with
the greatest uncertainty.

2.2.2 Estimation of Lagrange Multiplier
The constants θj are called Lagrange multipliers. As
the same values of dj ’s may come from different in-
formation sources, different estimation methods may
be needed to derive θ from (IV). Here we discuss two
cases. In the first case, the values of dj ’s represent the
degrees of belief. The belief is needless to be relevant
with the outcomes of any random experiment. While
in the second case, the values are obtained from the
observation of the data Y = {Y1, . . . , YN}.

In the former case, we define

f(θ) = −
4�

j=1

djθj − logZ(θ).

From (IV), we see that θ can be any stationary point
of f(θ). Therefore, to obtain θ is to solve a gradient-
square-minimization problem.

minimize
θ∈R4

�∇f(θ)�2. (V)

However, in the latter case, we may fit a model
chosen from {Pθ : θ ∈ R4} to the given data.
Assuming that Y1, . . . , YN are i.i.d (independent and
identically distributed) random samples drawn from
Pθ with unknown parameter θ, we estimate θ by ap-
plying maximum likelihood estimation method. The
log-likelihood is defined by

log
N�

i=1

P(Yi|θ) =
N�

i=1

�
−

4�

j=1

Nj(Yi)θj − logZ(θ)

�
.

(∗)

Let lY (θ) = 1
N logP({Y1, . . . , YN}|θ) and dj =

1
N

N�
i=1

Dj(Yi), for j = 1, . . . , 4. To obtain a maximum

likelihood estimate of θ is to maximize (∗). Equiva-
lently, we solve

maximize
θ∈R4

lY (θ) = −
4�

j=1

djθj − logZ(θ). (VI)

Both problems are very difficult to solve, because
the partition function Z(θ) involves exponentially
many computations and usually cannot be known
thus. Without calculating the partition function, Geyer
and Thompson [20] developed a method to numeri-
cally solve (VI) by using importance sampling and
Monte Carlo simulation. Descombes et al [11] fur-
ther demonstrated an efficient conjugate gradient al-
gorithm. Motived by their work, we employ their
methods to solve (V). Here we sketch that (V) is also
solvable (see [20] and [11] for detailed discussions).



5

The key idea is to estimate, for any fixed θ,
�∇f(θ)�2 and its gradient by using importance sam-
pling. By employing

Pψ(X) =
1

Z(ψ)
exp

�
−

4�

j=1

ψjDj(X)

�
,

we reformulate f(θ) as follows:

f(θ) = −
4�

j=1

djθj − log
Z(θ)

Z(ψ)
− logZ(ψ).

It follows that

Z(θ) =
�

X

exp

�
−

4�

j=1

(θi − ψi)Dj(X))

�

· exp
�
−

4�

i=j

ψjDj(X)

�

= Eψ

�
exp

�
−

4�

j=1

(θi − ψi)Dj(X)

�
Z(ψ)

�
,

where Eψ refers to the expectation with respect to Pψ .
Then, we obtain

Z(θ)

Z(ψ)
= Eψ

�
exp

�
−

4�

j=1

(θj − ψj)Dj(X)

��
. (2.1)

The significance of (2.1) lies in that although Z(θ)
is unknown, Z(θ)

Z(ψ) can be estimated by a sampling of
the known probability distribution Pψ . Furthermore,
we can rewrite 1

Z(ψ)
∂Z(θ)
∂θj

into

Eψ

�
−Dj(X) exp

�
−

4�

j=1

(θi − ψi)Dj(X)

��
, (2.2)

and similarly 1
Z(ψ)

∂2Z(θ)
∂θj∂θk

into

Eψ

�
Dj(X)Dk(X) exp

�
−

4�

j=1

(θi − ψi)Dj(X)

��
.

(2.3)

Next, with (2.1), (2.2) and (2.3) we can obtain,

∂

∂θk
�∇f(θ)�2

=2
4�

j=1

�
dj +

Z(ψ)

Z(θ)

1

Z(ψ)

∂Z(θ)

∂θj

��
−
�
Z(ψ)

Z(θ)

�2� 1

Z(ψ)

∂Z(θ)

∂θk

��
1

Z(ψ)

∂Z(θ)

∂θj

�
+

Z(ψ)

Z(θ)

�
1

Z(ψ)

∂2Z(θ)

∂θj∂θk

��
.

(2.4)

Using the Gibbs sampler (Geman and Geman [19]),
for any fixed θ, by Pψ we can theoretically estimate

(2.1), (2.2), (2.3) and even higher-order partial deriva-
tives of Z(θ) up to constant 1

Z(ψ) . This allows us
to learn local variation of �∇f(θ)�2 at any fixed θ.
Those estimations will be helpful to numerically sovle
(V). Particularly, the local markov property of Pψ

makes the sampling procedure efficient. We refer to
Descombes et al [11] for other algorithmic details.

In fact, (VI) is stronger than (V) in the sense that
any optimal of (VI) is also an optimal of (V), but not
the reverse. Therefore, we may also formulate the first
case in the stronger sense,

maximize
θ∈R4

f(θ) = −
4�

j=1

djθj − logZ(θ). (VII)

From this formulation, we can see that both cases
may be numerically solvable, but the first case is
more general than the second one. By estimating a
numerical solution of (V) within a given tolerance, the
model can be approximately determined, and it can
be served as the desired prior probability distribution
that approximately incorporates our prior knowledge
derived from the available information.

Assumption 2. Given the values of d1 through d4 under
Assumption 1, �θ is an approximate optimal of (VII). P�θ(X)
is the desired prior probability distribution.

2.3 Stochastic Model of Pooling Results
The following notation concerning pooling experi-
ments will be consistently used. Let A = {p1, . . . , pm}
be a pooling design. Each pool pi is a subset of C
corresponding to the clones in the pool. The pooling
design A constructed by determining each of n clones
is put into which of m pools, can be represented by
an m × n binary matrix A = (aij). Each entry aij is
defined as follows:

aij =

�
1, if cj ∈ pi,

0, if cj �∈ pi.

Then, A is called the incidence matrix of pooling
design A and m the size of A. For convenience, A and
A are interchangeably referred to a pooling design.

The pooling result of screening pool pi is denoted
by r(pi). An actual observation of r(pi) is often given
in multilevel measurement, taking any value from a
set of test outcomes V , such as ”negative”, ”weak
positive”, ”medium positive” or ”strong positive”.
Unfortunately, the pooling results are typically cor-
rupted due to the inclusion of additional clones in a
pool or to the failure of screening test. Therefore, we
need infer P from erroneous pooling results.

To begin with, we introduce the stochastic model of
pooling results given in Knill et al. [27]. The following
assumptions will be used.
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Assumption 3 (Knill et al. [27]). The distribution of
r(pi) depends only on the number of positives, |pi ∩ P |,
in pi.

Assumption 4 (Knill et al. [27]). Since the PCR was used
for screening, we assume that Pr(r(pi)||pi ∩ P |) depends
only on |pi ∩ P | = 0 or |pi ∩ P | ≥ 1.

For any integer b, we define

b =

�
0 if b = 0,

1 if b ≥ 1.

Notice that, for each i, the number of positives in
pool pi can be represented by the ith coordinate of
AXP , that is, |pi ∩ P | = (AXP )i. Let Ri be a random
variable of pooling result r(pi),

Ri =






0 if r(pi) is negative,
1 if r(pi) is weak positive,
2 if r(pi) is medium positive,
3 if r(pi) is strong positive.

Rewrite Pr(Ri = ri|(AXP )i) into f(ri, (AXP )i) for
short, and denote by PrA(R = r|XP ) the likelihood
for the pooling results r(∈ {0, 1, 2, 3}m) obtained from
pooling design A with m pools. By using Assump-
tions 3 and 4 and the chain rule, it can be expressed
as a product:

PrA(R = r|XP ) =
m�

i=1

f(ri, (AXP )i). (VIII)

Let f = {f(j, i) : j = 0, . . . , 3, and i = 0, 1}. In real
applications, f can be appropriately estimated (see
Knill. et al [27]). In this application, we assume that
f have been estimated and provided as parameters.

Assumption 5. The values of f(j, i) are known a priori,
but f(j, i) �= 0, for j = 0, . . . , 3, and i = 0, 1.

Particularly, notice that f(1, 0) + f(2, 0) + f(3, 0)
is the likelihood of a false positive, whereas f(0, 1)
is that of a false negative. Moreover, due to As-
sumption 3 and Assumption 4, the model does not
require any restriction on the structure of positives,
and thus is compatible with the overlap structure of
consecutive positives.

2.4 Bayes Inference Model
To infer the consecutive positives, Bayes inference
model is used to decode the erroneous pooling results.
Denoting by PrA(XP |r) the posterior probability that
XP is the positive set given the pooling results r under
the pooling design A, by Bayes’ rule we have

PrA(XP |r) ∝ PrA(XP )PrA(r|XP ),

where PrA(XP ) denotes the probability that XP is
the positive set given pooling design A is chosen

to use. Prior knowledge of positives will affect the
construction of pooling design A. However, the re-
verse does not reasonably hold, because knowing
the construction of pooling design A will not add
any information to the prior knowledge of positives.
Therefore, we introduce the following assumption.

Assumption 6. Given any A ∈ A, PrA(X) = P�θ(X),
for all X ∈ {0, 1}n.

From Assumption 2, Assumption 5, Assumption 6
and (VIII) , it follows that the posterior probability is
computable up to a multiplicative constant, and can
be written as,

PrA(XP |r) ∝ P�θ(XP )
m�

i=1

f(ri, (AXP )i).

If we are interest in PrA(c ∈ P |r) for each clone c,
this probability can be written as the marginal

PrA(xj = 1|r) ∝
�

P⊆C:
cj∈P

P�θ(XP )
m�

i=1

f(ri, (AXP )i). (IX)

Notice that, if we substitute Binomial distribution
for P�θ, the inference model turns out to be the one
used in Knill et al. [27].

3 DETECTING ALGORITHM FOR CONSECU-
TIVE POSITIVES

This section presents a positive detecting algorithm
for consecutive positives, called modified Markov
chain Monte Carlo pool result decoder (MMCPD).

Our primary goal is to compute PrA(xj = 1|r),
for each j, and to choose the clones with highest
posterior probabilities of being a positive for con-
firmatory individual tests. Those clones are called
candidate positives. However, as it stands in (IX),
every exact computation will involve exponential
work in n, making our primary goal impractical
as n is very large. Instead, we estimate the poste-
rior probabilities by drawing samples approximately
according to PrA(X|r). This idea works as long
as a sampling method exists and is able to effi-
ciently produce sufficiently many samples according
to PrA(X|r). To sample from PrA(X|r), we can use the
Gibbs sampler, since the full conditional distributions
PrA(xi|σ1, . . . ,σi−1,σi+1, . . . ,σn, r) are easy to obtain
for each i, due to the local markov property of P�θ(X)
and to the product expression of Pr(r|X).

In this way, Knill et al. [27]’s method can be ex-
tended for detecting consecutive positives. Mimick-
ing their approach, we construct a Markov chain
X0, X1, . . . on the family of all configurations of C with
PrA(X|r) as its stationary distribution. Denote by XS

the vector form of the positive set S. Let XS be the
configuration of C at the end of step t − 1, that is,
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state Xt−1. Step t of the chain updates XS by making
a random decision for each of the n clones on whether
to add it to or remove it from S. At the end of step t,
that is, after all clones have been processed, state Xt

is the final XS . In the Gibbs sampler, for clone ck, the
probability of changing from XS to XS�{ck} equals to

1

1 +
PrA(XS |r)

PrA(XS�{ck}|r)

,
(X)

where � is the symmetric difference, that is, A�B �
(A \B) ∪ (B \A). Notice that with this probability of
changing from XS to XS�{ck} , Xt and hence XS tend
in distribution to PrA(X|r). From Bayes’ Theorem,
P�θ(X) and (VIII) we obtain,

PrA(XS |r)
PrA(XS�{ck}|r)

=
P�θ(XS)

P�θ(XS�{ck})

�
i∈[m]:
ck∈pi

f(ri, (AXS)i)

�
i∈[m]:
ck∈pi

f(ri, (AXS�{ck})i)
.

Notice that, for i such that ck ∈ pi, we have

(AXS�{ck})i =

�
(AXS)i + 1, if ck �∈ S,

(AXS)i − 1, if ck ∈ S.

The prior ratio P�θ(XS)
P�θ(XS�{ck})

can also be efficiently
updated and we will see that it only depends on the
associated states of ck’s neighbors. For convenience,
let XS = (σS

1 , . . . ,σ
S
k , . . . ,σ

S
n ) and σS

−1 = σS
0 = σS

n+1 =
σS
n+2 = 0, for any S. If ck �∈ S, then

P�θ(XS)

P�θ(XS�{ck})
= exp

��θS1 + �θ2σS
k−1 + �θ2σS

k+1 + �θ3σS
k−2

+�θ3σS
k+2 + �θ4σS

k−2σ
S
k−1 + �θ4σS

k−1σ
S
k+1 + �θ4σS

k+1σ
S
k+2

�
.

If ck ∈ S, then

P�θ(XS)

P�θ(XS�{ck})
= exp

�
− �θ1 − �θ2σS

k−1 − �θ2σS
k+1 − �θ3σS

k−2

−�θ3σS
k+2 − �θ4σk−2σ

S
k−1 − �θ4σS

k−1σ
S
k+1 − �θ4σS

k+1σ
S
k+2

�
.

From Assumption 4 and that P�θ is strictly pos-
itive (that is, P�θ(X) > 0 for any X), we can see
that the Markov chain is aperiodic, since it has a
positive probability of remaining in the same state,
and that the Markov chain is also irreducible, since
it is possible to go from any state to any other state.
This assures uniqueness of and convergence to the
stationary distribution PrA(X|r) as well as the ergodic
property. For discussions of the Gibbs sampler, we re-
fer to Roberts and Smith [35] and Tierney [36]. Hence,
starting with any state and running Gibbs sampler
algorithm after a suitable warmup period, samples
obtained from a realization of the Markov chain can
approximately be regarded as the desired ones drawn

according to PrA(X|r). By taking sufficiently many
samples from the Markov chain, the proportion of the
samples with σi = 1 can be thus a Bayesian estimate
of PrA(xi = 1|r).

As an extension of MCPD, MMCPD has two attrac-
tive merits. First, only local neighborhood relations
and state values are needed to update the prior ratio
and likelihood ratio, making the computation effi-
cient. Second, its implementation requires no explicit
restriction on the structure of pooling designs. This
provides us a considerable freedom to choose and
optimize the pooling designs we want to use, rather
than the ones we have to use. Particularly, MMCPD
is able to decode the pooling results obtained by
screening random pooling designs.

4 RANDOM k-SET DESIGN

This section discusses random pooling designs in the
presence of consecutive positives and experimental
errors.

4.1 Motivation and Related work
Among all, we are particularly interested in random
k-set designs. A is said to be a random k-set design if
each column of A is a k-subset of [m] that is generated
independently and uniformly at random. k is called
the replication number, deciding how many pools
each clone will be put into. Since there may exist
other positive detecting algorithms for consecutive
positives, a practical lower bound of the optimal
value of m, independent of any positive detecting
algorithm, will be attractive. This motivated us to seek
a nontrivial information-theoretic lower bound of m.
Information-theoretic bounds have been extensively
studied in many fields. For example, related studies
can be found in Atia and Saligrama [1], Chan et al
[7] and [8], Wang et al. [40] and Wainwright [41].
Our computation method shares some commonplaces
either in purpose or in formulation with prior work
such as Bruno et al. [6], Knill et al. [26], Wang et al. [40]
and Wainwright [41]. However, the algorithmic con-
sideration of consecutive positives and experimental
errors with random k-set designs makes our method
different from any of them.

4.2 Problem Formulation
Notice that the Gibbs sampler (Geman and Geman
[19]) allows us to estimate the distribution of the pos-
itive patterns of P�θ. Hence, to choose proper values of
m and k for P�θ and f , we begin by fixing a positive
pattern ddd and formulate the subproblem in terms of ddd
and f .

Let Ω(ddd) ⊆
�
(σ1, . . . ,σn) ∈ {0, 1}n :

n�
i=1

σi = |ddd|
�

be the nonempty subset consisting of all the vectors
with positive pattern ddd. If XP belongs to Ω(ddd), due to
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the heterogenous property of P�θ, we think of XP ran-
domly and uniformly distributed over Ω(ddd). Denote
by Am,k the set of all k-set designs with size m. Similar
to Assumption 6, only knowing the k-set design does
not change the distribution of XP over Ω(ddd). We
formally states this by introducing Assumption 7.

Without causing confusion, when ddd is fixed and
known, we denote by Pr(X) the probability that X is
chosen from Ω(ddd) as the positive set and by PrA(X)
the probability that X is the positive set given k-set
design A.

Assumption 7. When ddd is given and the values of m and
k have been decided, given any k-set design A ∈ Am,k,
PrA(X) = Pr(X), for all X ∈ Ω(ddd).

Given any instance of random k-set design A, a
positive detecting algorithm φ with respect to A is a
mapping from the m-vector observation r to an esti-
mated vector of positives, say of the form X �P = φA(r).
Accordingly, based on the k-set design A, the average
probability of decoding error of any positive detecting
algorithm is defined as

perr(A) =
1

|Ω(ddd)|
�

X∈Ω(ddd)

Pr[φA(r) �= X|X].

We apply Fano’s lemma [10] to lower bound the
average probability of decoding error. Notice that
X

A−→ AX
f−→ r forms a Markov chain, we can arrive

at the form used in Wang et al. [40]

perr(A) ≥ 1− HA(r)−HA(r|X) + 1

log |Ω(ddd)| .

The average probability of decoding error over Am,k

can be lower bounded as follows:

EA[perr(A)] ≥1−
EA

�
m�
i=1

HA(ri)

�
− EA[HA(r|X)] + 1

log |Ω(ddd)| .

(XI)

4.3 A lower bound of EA[perr(A)]

Provided n, ddd and f are fixed and known, we begin
by stating a set of lemmas and a necessary condition
on m and k for EA[perr(A)] = 0, on the conditions that
the positive set X with positive pattern ddd is randomly
and uniformly distributed over Ω(ddd) and A is random
k-set design, independently and uniformly from Am,k.
Their proofs will be given in appendices.

Lemma 1. For any h ∈ [m],

EA[HA(rh)] ≤ −
3�

j=0

fddd,m,k(j) log fddd,m,k(j),

where

fddd,m,k(j) =
1�

i=0

λ1−i
ddd,m,k(1− λddd,m,k)

if(j, i),

and
λddd,m,k = (1− k

m
)|ddd|.

We introduce some notations for an exact compu-
tation of EA[HA(rh|X)]. Let |AX| = |{h ∈ [m] :
(AX)h = 1}|. Given an X with positive pattern ddd,
denote by P |ddd|

X,m,k(t) the probability that a k-set design
A, uniformly chosen at random from Am,k, satisfies
|AX| = t. Recall that the columns of random k-
set design are independent and uniformly chosen at
random. This suggests that P |ddd|

X,m,k(t) = P |ddd|
X�,m,k(t) for

any X and X � with ddd. Thus, we can write P |ddd|
m,k(t) for

short. For any integers a and b, we define an indicate
function of a and b as follows:

δ(a, b) =

�
0 if a < b,

1 if a ≥ b.

Lemma 2. P |ddd|
m,k(t) can be iteratively computed, for t =

k, . . . , |ddd|k.

P |ddd|
m,k(t) =

k�

w=0

µm,k,t(w)P
|ddd|−1
m,k (t− k + w),

where

µm,k,t(w) = δ(t− k + w, k)

�t−k+w
w

��m−(t−k+w)
k−w

�
�m
k

� ,

and in particular

P 1
m,k(k) = 1.

Using Lemma 2, we can obtain a closed expression
of EA[HA(r|X)].

Lemma 3.

EA[HA(r|X)] =

|ddd|k�

t=k

P |ddd|
m,k(t)

�
tHf (1) + (m− t)Hf (0)

�
,

where

Hf (i) = −
3�

j=0

f(j, i) log f(j, i),

for i = 0, 1.

Respectively substituting the results of Lemma 1
and Lemma 3 for EA[HA(r)] and EA[HA(r|X)] in (XI),
we can easily compute an information-theoretic lower
bound of the average probability of decoding error,
that is,

EA[perr(A)] ≥ 1− I(ddd, f,m, k) + 1

log |Ω(ddd)| , (XII)

where

I(ddd, f,m, k) = −m
3�

j=0

fddd,m,k(j) log fddd,m,k(j)

−
|ddd|k�

t=k

P |ddd|
m,k(t)

�
tHf (1) + (m− t)Hf (0)

�
.
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For convenience, we denote by ILB(|Ω(ddd)|, f,m, k)
the information-theoretic lower bound of (XII). By
letting EA[perr(A)] = 0, (XII) derives a necessary
condition on m and k.

Theorem 4 (Necessity Theorem). EA[perr(A)] vanishes
to 0 only if m and k satisfy the condition

log |Ω(ddd)| ≤ I(ddd, f,m, k) + 1.

In each subproblem where ddd is fixed and known,
the Necessity Theorem implies that roughly m =
O(log |Ω(ddd)|) pools are least required for complete
identifiability. This casts a light on the usefulness of
knowing the overlap structure of clone maps. Prior
knowledge of consecutive positives shrinks the size
of the sample space of positives, which hence reduces
the size of pooling design. This observation is con-
sistent with the original motivation of Balding and
Torney [4] and Colbourn [9].

Additionally, ILB(|Ω(ddd)|, f,m, k) can be used to
predict the influence of f and k on the positive
detectability of random k-set designs. To show this,
we re-examine one of the screening problems studied
by Knill et al. [27] and Uehara and Jimbo [37]. In
the problem, the DNA library consists of 1298 clones
without linear orders, among which there are four
positives, and thus |Ω(ddd)| =

�1298
4

�
. Assigning two set

of values to f , we fix f1 and f2 as shown in TABLE 1
and TABLE 2, respectively.

TABLE 1: f1: Knill et al. [27]

f(0, 0) = 0.871 f(0, 1) = 0.05

f(1, 0) = 0.016 f(1, 1) = 0.11

f(2, 0) = 0.035 f(2, 1) = 0.27

f(3, 0) = 0.078 f(3, 1) = 0.57

TABLE 2: f2: Uehara and Jimbo [37]

f(0, 0) = 0.856 f(0, 1) = 0.02

f(1, 0) = 0.126 f(1, 1) = 0.155

f(2, 0) = 0.016 f(2, 1) = 0.288

f(3, 0) = 0.002 f(3, 1) = 0.537

By fixing the value of m (m = 47, 60, 131), Fig. 1
shows the variation of ILB(|Ω(ddd)|, f,m, k) as the val-
ues of f and k vary.

Similar to the LDPC (Low-Density Parity-Check)
codes (see Gallager [17] and Mackay and Neal [28]),
random k-set designs demonstrates a degree of error-
tolerant ability, which is closely related with the value
of k. The U-shaped curve of k is in accordance with
our expectation, since either too small or too large
a value of k will weaken the positive detectability
of random k-set designs. As Uehara and Jimbo [37]
mentioned, we also observe that there is a big gap
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Fig. 1: Comparison of ILB(|Ω(ddd)|, f,m, k) subject to
f1 and f2

between the values of ILB(|Ω(ddd)|, f,m, k) when k = 3
and k = 4.

Comparing Fig. 1 (a) with Fig. 1 (b), the influence of
f is also noticeable. Uehara and Jimbo [37] proposed
f2 for repairing the unnatural monotonicity of f1 in
which f(1, 0) < f(2, 0) < f(3, 0). They also simu-
lated the positive detectability of BNPD and MCPD
subject to f2 and showed that the seemingly slight
modification remarkably improves the performance of
MCPD and BNPD. Interestingly, as is shown in Fig. 1,
the variation of ILB(|Ω(ddd)|, f,m, k) implies that f1 is
more difficult to cope with, which also coincides with
their simulation results.

4.4 Random Pooling Designer
Given a positive pattern ddd it is often over compli-
cated to obtain the exact |Ω(ddd)|. Instead, we estimate
a lower bound of |Ω(ddd)|. We consider the positive
pattern of the form ddd = (d1, d2, 0, 0) for some positive
integer d1 and nonnegative integer d2. We claim that

|Ω(ddd)| =
�d1−d2

d2

� d1−d2�
i=1

(n− d1 + d2 − 3i+ 4) is a lower

bound of |Ω(ddd)|. This can be seen as follows. To begin
with, it is obvious that there are d1 − 2d2 maximum
consecutive subset with a single positive and d2 maxi-
mum consecutive subset with 2 consecutive positives,
and therefore we can treat each single positive as
a red ball and each pair of consecutive positives as
a blue ball. To calculate |Ω(ddd)|, it is equivalent to
counting how many ways these d1 − d2 balls with
distinguishable colors can be put into n− (d1−d2)+1
urns such that any two ball have at least an urn
between. This constraint implies that each ball will
occupy at most 3 urns. Thus, to place the ith ball, at
least (n−(d1−d2)+1−3(i−1)) urns are left to choose
from, for i = 1, 2, . . . , d1 − d2. Noticing that

�d1−d2

d2

�

is the number of ways to color these balls without
repetition, the desired lower bound is obtained.

With |Ω(ddd)| and f , we give the algorithm called RPD
(random pooling designer) for exhaustive search of
the least value of m and some value of k that satisfy
the Necessity Theorem. mddd,f and kddd,f denote by the
least value of m and by the value of k with respect
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to |Ω(ddd)| and f , respectively. With the values of mddd,f

and kddd,f , various strategies can be used to choose the
proper values of m and k for θ̂ and f .

Random Pooling Designer

Input: |Ω(ddd)| and f
Output: mddd,f and kddd,f

mddd,f ← 1
kddd,f ← 1
temp ← ILB(|Ω(ddd)|, f,mddd,f , kddd,f )
while temp > 0 do

mddd,f ← mddd,f + 1
kddd,f ← 1
while temp > ILB(|Ω(ddd)|, f,mddd,f , kddd,f ) and k ≤
m do

temp ← ILB(|Ω(ddd)|, f,mddd,f , kddd,f )
kddd,f ← kddd,f + 1

end while

end while

5 SIMULATION
This section shows the performance of MMCPD with
random k-set designs chosen by RPD.

5.1 Simulation Method
The simulations are performed as follows.

1) Letting n = 1298 be the size of C, the prior
knowledge of consecutive positives is set to
d1 = 6, d2 = 2.4, d3 = 0.01 and d4 = 0.001.

2) The likelihoods of experimental error f are set
to f1 given in TABLE 1.

3) Find an approximate prior probability distribu-
tion Pθ that incorporates the prior knowledge by
solving (V).

4) Estimate the distribution of positive patterns of
Pθ.

5) Choose proper positive patterns, and compute
|Ω(ddd)|, mddd,f and kddd,f , for each chosen ddd.

6) Choose mθ,f and kθ,f such that mθ,f is the least
value with ILB(|Ω(ddd)|, f1,mθ,f , kθ,f ) < 0, for all
the chosen positive patterns.

7) The positive set P is given in two ways.
• Fix {240, 241, 890, 891, 1001, 1002} as the pos-

itive set.
• Randomly choose a positive set approxi-

mately according to Pθ.
8) Generate a random k-set design A with some

proper values of k and m.
9) Compute the number of positives in each pool.

10) Based on 11), determine the pooling results r
randomly according to f1.

11) Implement MMCPD to decode the corrupted
pooling results r. The posterior probability of
being a positive is estimated for each clone.

12) Clones are sorted in a decreasing order accord-
ing to their posterior probabilities.

5.2 Preprocess of Pooling Procdedure

Solving (VII) with Descombes et al. [11]’s method,
we find that θ̂ = (6.96,−7.65, 4.955, 2.01) is a suitable
approximation for the the desired prior distribution.
However, the estimation based on MCMC simulation
is costly and hence a good initial θ will accelerate
the convergence of Descombes et al [11]’s method.
In implementation, to find a proper initial θ involves
some guesswork and it can be done in a bisection way
by using trial and failure method.

Next, we take 10000 samples for estimating the dis-
tribution of positive patterns of Pθ̂ and list the positive
patterns with sample mean above 0.0025 in TABLE 3.
It also lists the corresponding mddd,f s and kddd,f s with
respect to the positive patterns of our consideration
and f1. Particularly, ddd = (0, 0, 0, 0) is trivial and we
remove it from our consideration. The total positive
patterns of our consideration roughly account for 95%
of the positive patterns of the samples.

TABLE 3: Estimated Distribution of ddd with respect to
Pθ̂ and Values of mddd,f and kddd,f with respect to f1

ddd Sample Mean mddd,f kddd,f

(0, 0, 0, 0) 0.0286 - -
(1, 0, 0, 0) 0.0307 17 7
(2, 0, 0, 0) 0.0192 33 9
(2, 1, 0, 0) 0.065 17 4
(3, 0, 0, 0) 0.0075 48 10
(3, 1, 0, 0) 0.0798 33 6
(4, 1, 0, 0) 0.0470 48 8
(4, 2, 0, 0) 0.0791 31 5
(5, 1, 0, 0) 0.0191 63 8
(5, 2, 0, 0) 0.0925 46 6
(6, 1, 0, 0) 0.006 96 9
(6, 2, 0, 0) 0.0617 61 7
(6, 3, 0, 0) 0.0618 44 5

(7, 2, 0, 0) 0.0232 75 7
(7, 3, 0, 0) 0.0717 58 6
(8, 2, 0, 0) 0.0071 88 8
(8, 3, 0, 0) 0.0459 72 6
(8, 4, 0, 0) 0.0385 55 4
(9, 3, 0, 0) 0.0189 85 7
(9, 4, 0, 0) 0.0446 69 5

(10, 3, 0, 0) 0.0048 98 7
(10, 4, 0, 0) 0.0272 82 6
(10, 5, 0, 0) 0.0181 65 4
(11, 4, 0, 0) 0.0118 95 6
(11, 5, 0, 0) 0.0217 78 5
(12, 4, 0, 0) 0.0041 108 6

(12, 5, 0, 0) 0.0128 91 5
(12, 6, 0, 0) 0.0059 74 4
(13, 5, 0, 0) 0.0040 104 6
(13, 6, 0, 0) 0.0087 86 5
(14, 6, 0, 0) 0.0048 99 5
(14, 7, 0, 0) 0.0028 82 4
(15, 7, 0, 0) 0.0038 95 4

Others 0.0216 - -
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5.3 Simulation 1: Fixed Positive Set
Of all the chosen positive patterns, ddd = (6, 3, 0, 0)
attracts our attention because it has relatively high fre-
quency, contains relatively large number of positives,
but requires few pools with small value of k. By fixing
the positive set P = {240, 241, 890, 891, 1001, 1002},
500 simulations are implemented to show MMCPD’s
positive detectability with random 5-set designs of
size 44.

In each simulation, beginning with the state drawn
from i.i.d Bernoulli trials with parameter q = 6

1298 ,
the warmup period includes 5000 steps. After the
warmup period, another 15000 steps are run, and the
states obtained in every 3 steps are used as samples
to estimate the posterior probability of being positive
for each clone, that is, approximately the proportion
of the obtained states including the given clone. We
subsample the Markov chain in hope of weakening
potential autocorrelations among the samples. Denote
by CP the set of candidate positives. MMCPD outputs
CP which consists of the six clones with the high-
est mean posterior probabilities. TABLE 4 shows the
number of times among 500 simulations that |P ∩CP |
positives can be identified by using MMCPD.

TABLE 4: Positive Detectability of MMCPD for Fixed
Positive Set

|P ∩ CP | Times

6 98
5 39
4 149
3 37
2 112
1 23
0 42

During the simulations, we observed that MMCPD
detects the underlying true positives in a pairwise
way, which can also be seen from the TABLE 4.
Successfully decoding one underlying true positive
will remarkably improve the performance of detecting
the consecutive one. Besides, we can also see that
the lower bound ILB(|Ω(ddd)|, f1,mddd,f , kddd,f ), though
underestimates the underlying true minimal number
of pools required, is nontrivial and useful.

5.4 Simulation 2: Random Positive Set
By using the TABLE 3, we can verify that mθ̂,f = 108
is the least value with ILB(|Ω(ddd)|, f1,mθ̂,f , kθ̂,f ) < 0,
for all the chosen positive patterns, where kθ̂,f = 6.

1000 simulations are implemented to show MM-
CPD’s positive detectability. In each simulation, a
nonempty positive set is first randomly generated
approximately according to Pθ̂ and then a random 6-
set design of size 108 is independently constructed.
The decoding procedure of random positive set is
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Fig. 2: Detectability of MMCPD for Random Positive
set

the same with that of the fixed positive set except
for the choice of the set of candidate positives. To
evaluate the detectability of MMCPD for randomly
generated positive set P , we introduce the success
ratio Suc(P ) � |P∩CP |

|P | , where CP is the candidate
positive set of |P | clones which have the highest
mean posterior probabilities. Obviously, the complete
identifiability occurs when Suc(P ) = 1. This measure-
ment is nevertheless strict. Fig. 2 shows the simulation
results.

In the simulations, MMCPD showed a stable and
reliable performance with random designs. Its novel
detectability is due to the prior knowledge of consec-
utive positives and also due to the proper choice of
values of m and k suggested by RPD. There are 593
instances where MMCPD completely identified all the
randomly generated positives. However, if too many
positives or/and errors occur, MMCPD tends to fail.
Denote by EFN and EFP the number of false negative
errors and that of false positive errors, respectively.
TABLE 5 lists all the instances with the success ratio
less than 0.4.

TABLE 5: Instances Where MMCPD Performed
Badly

Index ddd EFN EFP Suc(P )

1 (1, 0, 0, 0) 0 21 0
2 (2, 0, 0, 0) 4 17 0
3 (1, 0, 0, 0) 0 14 0
4 (15, 6, 0, 0) 4 7 0.133333
5 (21, 10, 0, 0) 7 6 0.285714
6 (3, 0, 0, 0) 1 13 0.333333
7 (3, 0, 0, 0) 2 18 0.333333
8 (12, 5, 0, 0) 1 13 0.333333
9 (11, 4, 0, 0) 6 7 0.363636
10 (16, 7, 0, 0) 4 4 0.375
11 (8, 3, 0, 0) 3 17 0.375
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Typically, these instances are hard. If too many
positives or/and experimental errors occur, or if the
positive pattern of consecutive positives deviates far
from our prior knowledge, or a concurrence of some
of these difficulties, will weaken the positive de-
tectability of MMCPD. To overcome this, we may
either enlarge the set of candidate positives or use
a pooling design with more pools, or both.

6 CONCLUSION
In this paper, we study the problem of screening
clone maps in the presence of experimental errors. In
conclusion, as was foreseen in Balding and Torney [4]
the overlap structure of clone maps facilitates efficient
pooling experiments. Our method also allows non
unique-screening as long as the prior knowledge can
appropriately be interpreted.

APPENDIX A
PROOF OF LEMMA 1
EA

�
HA(rh)

�
can be written into

�

A∈Am,k

Pr(A)

�
−

3�

j=0

PrA(rh = j) log PrA(rh = j)

�
.

Notice that −x log x defined on R+ is a concave
function. Hence, by using Jensen’s inequality we can
obtain an upper bound of EA

�
HA(rh)

�
, that is,

EA

�
HA(rh)

�

=
3�

j=0

�

A∈Am,k

−Pr(A)PrA(rh = j) log PrA(rh = j)

≤
3�

j=0

−
� �

A∈Am,k

Pr(A)PrA(rh = j)

�

· log
� �

A∈Am,k

Pr(A)PrA(rh = j)

�

Hence, to end our proof it suffices to calculate�
A∈Am,k

Pr(A)PrA(rh = j). Since the sample space

Ω(ddd) is fixed and known, due to the fact that X
A−→

AX
f−→ r forms a Markov chain we have

PrA(rh = j) =
�

X∈Ω(ddd)

PrA(X)PrA(rh = j|X).

Due to Assumptions 3 and 4, we have

PrA(rh = j|X)

=
1�

i=0

PrA(rh = j, (AX)h = i|X)

=
1�

i=0

Pr(rh = j|(AX)h = i)Pr((AX)h = i|X)

=
1�

i=0

f(j, i)Pr((AX)h = i|X).

(A. 1)

Since PrA(X) = Pr(X) is assumed in Assumption 7,
we further have

�

A∈Am,k

Pr(A)PrA(rh = j)

=
�

A∈Am,k

Pr(A)
�

X∈Ω(ddd)

PrA(X)PrA(rh = j|X)

=
�

X∈Ω(ddd)

Pr(X)
�

A∈Am,k

Pr(A)PrA(rh = j|X).

(A. 2)

Since for any fixed X with |ddd| positives, Pr((AX)h =
i|X) = 1 if pooling design A contains at least one
positive in the hth pool, otherwise 0. When the hth
pool is considered, if X is fixed and A is random k-
set design constructed by independent column gen-
eration of uniform random k-sets and hence A is
chosen independently and uniformly from Am,k, then
Pr((AX)h = 0|X) = 1 with probability (1 − k

m )|ddd| .
Therefore, we have

�

A∈Am,k

Pr(A)PrA(rh = j|X)

=
1�

i=0

f(j, i)
�

A∈Am,k

Pr(A)Pr((AX)h = i|X)

=
1�

i=0

f(j, i)

�
1− k

m

�|ddd|(1−i)�
1−

�
1− k

m

�|ddd|�i

.

(A. 3)

Consequently, we finish the proof by combining the
results of (A. 1), (A. 2) and (A. 3).

APPENDIX B
PROOF OF LEMMA 2
We assume |ddd|k ≤ m. For a fixed XP with |ddd| positives
and a fixed t, let A|ddd|

XP ,m,k(t) be the subset of all
the k-set designs of size m satisfying |AXP | = t.
Obviously, the value of t can range from k to |ddd|k,
and it is determined by the columns corresponding to
the positive set P . Since the columns of random k-set
designs are randomly and independently generated,
it follows that P |ddd|

XP ,m,k(t) only depends on |ddd|, m and
k. Therefore, any XP with |ddd| positives can be used
to derive P |ddd|

m,k(t). Let u|ddd|
XP ,m,k(t) be the number of

ways of choosing columns corresponding to XP such
that any k-set design with those columns belongs to
A|ddd|

XP ,m,k(t). Due to construction method of random
k-set designs, we have

P |ddd|
m,k(t) =

|A|ddd|
XP ,m,k(t)|�m

k

�n =
u|ddd|
XP ,m,k(t)
�m
k

�ddd .

Hence, to end our proof it suffices to give an
iterative expression of u|ddd|

XP ,m,k(t). Without loss of
generality and for the sake of simplicity, we express
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u|ddd|
XP ,m,k(t) by u|ddd−1|

XP � ,m,k(t
�)s, for some P � ⊂ P with

|ddd|− 1 positives.
Let v1, . . . , v|ddd|−1 be the columns of a k-set de-

sign A corresponding the positive set P � and v|ddd|
be the column corresponding to P \ P �. Notice that,
for w = 0, 1, . . . , k, if there are t − k + w positive
coordinates in the vector

�|ddd|−1
j=1 vj , then we have�t−k+w

w

��m−(t−k+w)
k−w

�
ways to choose v|ddd| such that

�|ddd|−1
j=1 vj+v|ddd| has t positive coordinates. This implies

that

u|ddd|
XP ,m,k(t) =

k�

w=0

δ(t− k + w, k)

�
t− k + w

w

�

·
�
m− (t− k + w)

k − w

�
u|ddd|−1
XP � ,m,k(t− k + w).

Dividing by
�m
k

�|ddd| on both sides, the proof ends.

APPENDIX C
PROOF OF LEMMA 3
By the definition of conditional entropy and Assump-
tion 7, we have

EA

�
HA(r|X)

�

=
�

A∈Am,k

Pr(A)
�

X∈Ω(ddd)

PrA(X)HA(r|X)

=
�

X∈Ω(ddd)

Pr(X)
�

A∈Am,k

Pr(A)

� �

r∈{0,1,2,3}m

−PrA(r|X)

· log PrA(r|X)

�
.

(C. 1)

Given any X ∈ Ω(ddd), we have the partition

Am,k =

|ddd|k�

t=k

A|ddd|
X,m,k(t).

Moreover, recall that PrA(r|X) =
m�

h=1
f(rh, (AX)h)

due to Assumptions 3 and 4. Therefore, this implies
when X ∈ Ω(ddd) is fixed, for any given A ∈ A|ddd|

X,m,k(t),

HA(r|X) =
m�

h=1

H(rh|(AX)h)

= t
3�

j=0

−f(j, 1) log f(j, 1)

+ (m− t)
3�

j=0

−f(j, 0) log f(j, 0)

= tHf (1) + (m− t)Hf (0).

(C. 2)

Using the result of (C. 2) and Lemma 3, it follows that

(C.1) =
�

X∈Ω(ddd)

Pr(X)

|ddd|k�

t=k

�

A∈A|ddd|
X,m,k(t)

Pr(A)

·
�
tHf (1) + (m− t)Hf (0)

�

=
�

X∈Ω(ddd)

Pr(X)

|ddd|k�

t=k

P |ddd|
m,k(t)

�
tHf (1)

+ (m− t)Hf (0)

�

=

|ddd|k�

t=k

P |ddd|
m,k(t)

�
tHf (1) + (m− t)Hf (0)

�
.
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