

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 25 年 6 月 10 日現在

機関番号:12102 研究種目:基盤研究(S) 研究期間:2008~2012 課題番号:20224014 研究課題名(和文)ジェット識別測定によるクォーク・グルーオンプラズマ物性の研究 研究課題名(英文)Study of Jets in Quark Gluon Plasma with Parton Identification 研究代表者 三明 康郎(MIAKE YASUO) 筑波大学・数理物質系・教授 研究者番号:10157422

研究成果の概要(和文):ビッグバン直後の宇宙の姿であるクォーク・グルーオンプラズマ(QGP) 状態の物性研究のために、QGP 中を突き抜ける高エネルギーパートン(ジェット)の影響を調 べることが重要である。世界最高エネルギーの重イオン衝突実験において衝撃波状の二粒子相 関を観測し、その詳細なデータを収集した。ジェットの高精度測定のために Dijet Calorimeter を5カ国共同プロジェクトとして提案し、その建設を行った。

研究成果の概要 (英文): In order to study the property of the Quark-Gluon plasma, effects of high energy parton punching through the QGP have been studied. Mach cone like particle correlation have been observed at LHC-ALICE experiment and details are investigated in terms of the strength of Fourier harmonics. For further study of jet phenomena, Di-Jet calorimeter has been proposed and constructed as a collaboration among Japan, China, France, Italy and USA.

			(金額単位:円)
	直接経費	間接経費	合 計
2008 年度	8, 700, 000	2, 610, 000	11, 310, 000
2009 年度	23, 600, 000	7, 080, 000	30, 680, 000
2010 年度	16, 100, 000	4, 830, 000	20, 930, 000
2011 年度	8,800,000	2,640,000	11, 440, 000
2012 年度	8, 200, 000	2, 460, 000	10, 660, 000
総計	65, 400, 000	19, 620, 000	85, 020, 000

交付決定額

研究分野:数物系科学

科研費の分科・細目:物理学・素粒子・原子核・宇宙線・宇宙物理 キーワード:クォーク・グルオンプラズマ、相対論的重イオン衝突、パートン

1. 研究開始当初の背景

米国ブルックヘブン国立研究所において 2000年から始まった RHIC 実験から、クォ ーク・グルーオンプラズマ(QGP)の生成を 示す幾つかの証拠が見つかった。1)運動学 的・化学的平衡状態の成立と高い温度、2)大 きな方位角異方性 (v_2)、3) Baryon Dominance と Quark Number Scaling、4) ジェットの変貌、などである。私たちのチー ムは、2)と3)に関わる大きな貢献を行い、特 に大きな方位角異方性が発生するメカニズ ムに興味を持ち、高運動量パートンの QGP 中の振る舞いに深く関わるのではないかと 推論するに到った。

欧州共同原子核研究機構 CERN では、LHC 加速器が稼働を始め、RHIC 加速器よりも高 エネルギー衝突実験が可能となるため、 RHIC では観測出来なかった超高横運動量パ ートンの衝突事象(JET 事象)の観測が見込ま れる。方位角異方性、特に、ジェットの影響 について RHIC 実験(200 GeV)と LHC 実験 (5.6 TeV)を比較検証するため LHC-ALICE 実験へ参画することとした。

2. 研究の目的

QGP 研究は、発見のステージから、QGP 物 性を理解するステージに進みつつある。RHIC 実験からは、粘性がゼロに近いという完全流 体と考えられるなど大変興味深い。圧力、状 態方程式や音速といった物性を精密に調べ るためには、プローブの利用が効果的である が、最も適切なものが、パートンのハードコ リジョンである。利点としては摂動 QCD でよ く理解されていること、そして、2体散乱で あることから kinematics がはっきりしてい ることである。この性質のよくわかったプロ ーブが QGP 中を通過するときに受ける変化を とらえることが目的である。

研究の方法

QGP 物性研究にはジェットの測定が効果 的である。高運動量パートンが QGP 中で作る 衝撃波(マッハコーン)の角度からは「音速」 を測定できる。また高運動量パートンが QGP 相を通過する際のエネルギー損失量からグ ルーオン密度など物性を知ることが出来る。

米国ブルックヘブン国立研究所における核子 あたり 200GeV の重イオン衝突実験からは、 2粒子相関測定から衝撃波(マッハコーン) と見ることも出来る特徴的な振舞が観測さ れた。まず、10倍以上の高エネルギー衝突で ある CERN-LHC-ALICE 実験において、同 現象を検証する。次に、マッハコーン状の振 舞について粒子種依存性や中芯衝突度依存 性など精密に調べる。ジェット識別測定、特 に Di-Jet の測定と反応平面に対する方位角 異方性の相関測定を系統的に行う。

4. 研究成果

(1) 図1は、LHC 実験において初めて観測された方位角異方性である。RHIC 実験における解析方法と同様にそのフーリエ成分の2次の強度について様々な中芯衝突度において横運動量(pt)依存性を求めた。図中で

LHC-ALICE 実験の結果(データ点)と RHIC 実験の結果(曲線)を比較しているが、両者 は $p_t < 2$ GeV/c では、驚くほど良く一致する ことがわかった。即ち、低横運動量領域では RHIC 実験と同様に生成された QGP に関し て流体力学的描像が良く成り立つことを示 唆している(論文⑧、引用 298 件)。

図1 LHC-ALICE 実験で初めて観測 された方位角異方性 v₂の横運動量依存 性。横運動量が3GeV/cにおいて RHIC 実験と良い一致を示すことがわかった (論文⑧)。

(2) 図2は、LHC-ALICE 実験において観測 された核子あたり2.76 TeV の鉛・鉛衝突に おける二粒子方位角相関分布である。核子あ たり200GeV の金・金衝突と同様の衝撃波状 の特徴的分布が観測された。分布形状はフー リエ解析によって定量的に調べる事が出来 る。衝撃波状の分布は3次のフーリエ成分と して記述することができ、さらに高次の成分 を含んでいることがわかった(論文④、引用 134 件)。

図 2 LHC-ALICE 実験でも観測され た衝撃波状の特徴的方位角相関分布と 2~5次のフーリエ展開(論文④)

(3) 図 3 は、上述のフーリエ成分の 2 次(v_2) と 3 次(v_3)の強度について、高横運動量領域、 即ちジェットの寄与が大きくなる領域にお いて、横運動量依存性を各粒子種についてプ ロットしたものである。 我々が RHIC-PHENIX 実験において求めた v_2 のデ ータと比較している。RHIC 実験と同様の v_2 の振舞は、流体力学とクォーク融合模型によ って説明されると考えられる。10 GeV/c 以上 の高横運動量で v_2 が有限の値を示す一方で、 v_3 がほぼゼロとなっている点は大変興味深 く、多くの理論家の注目を集めている(論文 ②、citation; 32 件)。

図 3 方位角異方性強度 v₂、v₃の 横運動量依存性(論文②)

方位角異方性(v2)の測定は、RHIC 実験にお いても我々が推進し QGP の完全流体性とい う極めて重要な性質を導き出すことの出来 た解析である。LHC においても引き続き解 析を進め、RHIC(200 GeV)とLHC(2.7 TeV) の系統的比較研究を実施した。 RHIC-PHENIX 実験における実績に裏打ち された高い信頼性のもとになしえたことは 高く評価されている。方位角異方性は低横運 動量領域においては、完全流体性など QGP のバルクの性質を明らかにするだけでなく、 衝撃波状の分布形状など、高横運動量領域で は、図3において明らかな変化が見られるよ うに、本研究の目標とするジェットとバルク マターの相互作用の研究に基盤的知見を与 えている。多くの理論家の注目を集めている。

(3) バルクマターとしての QGP を通過する 高エネルギーパートンが引き起こすエネル ギー損失とエネルギー分配の様子を明らか にすることが次のステップである。RHIC 実 験では高エネルギーパートンの生成断面積 が小さすぎて測定できなかったが、高エネル ギー衝突が可能な LHC 実験では 10 fm もの 厚みを持つ QGP を突き抜ける位の高エネル ギージェット事象を観測することが出来る。 QGP 中の相互作用を実験的に調べるために は、相反方向に高エネルギージェットが発生 する Di-Jet 事象を精度良く測る事が極めて 重要である。

Di-Jet 事象測定の要点の第1は、ジェット 測定のエネルギー分解能である。特に Di-Jet エネルギーバランスにより QGP 中の衝突点 とエネルギー損失を測定する。GEANT シミ ュレーションにより、当該実験では、既設の Time Projection Chamber に電磁カロリメー タを組み合わせることによって最善の分解 能を得られることを明らかとした(図4)。 この結果に基づき、電磁カロリメータを開発 製作し、実機についてビームテストを行い、 その性能評価を確認した(図5)。

図4 電磁カロリメータと TPC の組み 合わせによって得られる Di-Jet 測定に おけるエネルギー分解能

図5 開発製作した電磁カロリメータ DCal 実機のビームテストによる性能 評価。

Di-Jet 事象測定の第2の要点は、多くの事 象を計測するための装置の立体角である。装 置の立体角は費用に比例するので、米国、フ ランス、イタリア、中国の研究者に呼びかけ、 Di-Jet カロリメータープロジェクト(提案 者;三明、運営;5カ国代表による合議)を 立ち上げることに成功した。

図 6 米仏伊中日の 5 カ国協力で建設 した Di-Jet カロリメータ DCal

QGP 物理のような pioneering 実験では測 定可能範囲を拡大できることは大変なメリ ットである。LHC 加速器の運転計画の変更 や 2011.3.11 の東日本大震災による損壊のた めに、当初計画から遅れたが、米仏伊中日の 5 カ国の協力で DCal は無事完成した。本経 費のみの場合の5倍の規模の測定器が完成 したことになる。DCal は LHC-ALICE 実験 の基幹装置として今後10年以上にわたって 運用がなされ測定成果を出し続ける。大きな 貢献が期待される。

図7 LHC-ALICE 実験にインストー ル直前の Di-Jet カロリメータ DCal

*論文の引用件数は 2013.6.6 現在 INSPIRE による。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計91件)

- Global event properties in Pb + Pb collisions at LHC energies from ALICE, ALICE Collaboration (<u>T. Chujo</u>), 査読有, Prog. Theor. Phys. Suppl. 193(2012) 62-66, DOI: 10.1143/PTPS.193.62
- ② Anisotropic flow of charged hadrons,

pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV, ALICE collaboration (B. Abelev, <u>T. Chujo</u>, <u>S. Esumi, H. Hamagaki</u>, <u>M. Inaba</u>, <u>Y. Miake</u>, 他 958 名、7 ν 7 $\tau^{^{\prime}}$ y>师順), 査読有, Phys. Lett. B719(2013)18-28, DOI: 10.1016/j.physletb.2012.12.066

- ③ Harmonic decomposition of two-particle angular correlations in Pb-Pb collisions at √ s_{NN} = 2.76 TeV, ALICE Collaboration (K. Aamodt <u>T. Chujo</u>, <u>S. Esumi</u>, <u>H. Hamagaki</u>, <u>M. Inaba</u>, <u>Y. Miake</u>, 他 944 名、7Nファベット順), 査読有, Phys. Lett. B708(2012)249-264, DOI: 10.1016/j.physletb.2012.01.060
- ④ Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at √ s_{NN} = 2.76 TeV, ALICE Collaboration (K. Aamodt, <u>T. Chujo</u>, <u>S. Esumi</u>, <u>H. Hamagaki</u>, <u>M. Inaba</u>, <u>Y. Miake</u>, 他 939 名、アルファヘ^{*}ット順), 査読有, Phys. Rev. Lett. 107, 032301, 2011, DOI: 10.1103/PhysRevLett. 107. 032301
- ⑤ Suppression of away-side jet fragments with respect to the reaction plane in Au+Au collisions at √ s_{NN} = 200 GeV, PHENIX Collaboration (A. Adare <u>T. Chujo</u>, <u>S. Esumi</u>, <u>H. Hamagaki</u>, <u>M. Inaba</u>, <u>M. Konno</u>, <u>Y. Miake</u>, 他 420 名、*TNT*7^{^*}*y*</sup>▶順), 査読 有, Phys. Rev. C84(2011)024904, DOI: 10.1103/PhysRevC. 84.024904
- ⑥ Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb--Pb Collisions at √ s_{NN} =2.76 TeV., ALICE Collaboration (K. Aamodt, <u>T. Chujo, S. Esumi, H. Hamagaki,</u> <u>M. Inaba, Y. Miake</u>, 他 908 名、7ル77^{ヘ*}ット 順), Phys. Lett., 査読有, B696, 30-39, 2011, DOI: 10.1016/j. physletb. 2010. 12. 020
- ⑦ Azimuthal anisotropy of neutral pion production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV: Path-length dependence of jet quenching and the role of initial geometry., PHENIX Collaboration (A. Adare, <u>T. Chujo</u>, <u>S. Esumi</u>, <u>H. Hamagaki</u>, <u>M. Inaba</u>, <u>Y. Miake</u>, 他 379 名、 $7 \nu 7 7 \gamma^{\circ} \gamma \triangleright$ 順), Phys. Rev. Lett. 査 読 有, 105, 142301:1-6, 2010,

DOI: 10.1103/PhysRevLett.105.142301

(8) Elliptic Flow of Charged Particles in Pb-Pb Collisions at $\sqrt{s_{\rm NN}}$ =2.76 TeV,

ALICE Collaboration (K. Aamodt, <u>T. Chujo</u>, <u>S. Esumi</u>, <u>H. Hamagaki</u>, <u>M. Inaba</u>, <u>Y. Miake</u>, 他 1056 名、アルファヘッット順), Phys. Rev. Lett, 査読有, 105, 252302:1-11, 2010, DOI: 10.1103/PhysRevLett. 105. 252302

- ⑨ Charged-particle multiplicity density at mid-rapidity in central Pb-Pb collisions at √s_{NN} = 2.76 TeV., The ALICE Collaboration (K. Aamodt, <u>T. Chujo</u>, <u>S. Esumi</u>, <u>H. Hamagaki</u>, <u>M. Inaba</u>, <u>Y. Miake</u>, 他 954 名、*TNTT*^、yト順), Phys. Rev. Lett., 査読有, 105, 252301:1-6, 2010, DOI: 10.1103/PhysRevLett.105.252301
- 1) Systematic Studies of Elliptic Flow Measurements in Au+Au Collisions at √ s_{NN} = 200-GeV., PHENIX Collaboration (S. Afanasiev, <u>T. Chujo</u>, <u>S. Esumi</u>, <u>H. Hamagaki</u>, <u>M. Inaba</u>, <u>Y. Miake</u>, 他 341 名、 7ルファヘ[×]ット順), Phys. Rev., 査読有, C80, 024909:1-27, 2009, DOI: 10.1103/PhysRevC. 80.024909

〔学会発表〕(計 83 件)

- ① <u>江角晋一</u>、"Overview of flow results from ALICE experiment", CIPANP 2012 (招待講演),2012.6.2, Petersburg, Florida, USA
- ② <u>江 角 晋 一</u>、 "Charge asymmetric correlation measurement in 200 GeV Au+Au collisions at RHIC-PHENIX", Workshop On P- and CP-odd Effects in Hot and Dense Matter (2012) (招待講 演), 2012.6.25, Brookhaven National Laboratory, New York, USA
- ③ <u>江角晋一</u>、"High pT Hadron Suppression and v2 in PHENIX", 8th International Workshop on High pt Physics at LHC(招 待講演), 2012. 9. 23, Wuhan, China
- ④ 中條達也、"Physics with DCal in ALICE", Symposium on Jet Physics at RHIC and LHC, 2011.7.21, Hangzhou, China
- ⑤ 窪田晋太郎、"Upgrade of ALICE Electromagnetic Calorimeter to enhance di-jet measurements", Quark Matter 2011, XXII International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, 2011. 5. 23-8, Annecy, France

- ⑥ <u>三明康郎</u>、"Experimental Seminar: Quark- Gluon Plasma", Asian Winter School on Strings, Particles and Cosmology, 2012.1.11, 群馬県草津
- ⑦ <u>中 條 達 也</u>、"DCal for the ALICE experiment at LHC", 3rd Asian Triangle 国際会議、2010/10/20, 武漢、中国
- ⑧ <u>江角晋一</u>、" Interplay between jet and v₂", 4th international workshop highpT physics at LHC, 2009.2.6, プラハ、 チェコ共和国
- ③ <u>三明康郎</u>、"Jet as a homework from RHIC to LHC", Workshop for ALICE upgrades, 2009.11.7, ソウル、韓国
- ① <u>江角晋一</u>、"Jet-flow correlations", Flow and Dissipation in ultra relativistic heavy ion collision, 2009/9/14,トレント、イタリア
- <u>三明康郎</u>、"Flow measurements in heavy ion collisions", Tamura symposium heavy ion physics、2008.11.20,オース ティン、米国

〔その他〕 ホームページ等 http://utkhii.px.tsukuba.ac.jp/

- 6.研究組織
 (1)研究代表者
 - 三明 康郎 (MIAKE YASUO) 筑波大学・数理物質系・教授 研究者番号:10157422
- (2)研究分担者
 江角 晋一(ESUMI SIN' ICHI)
 筑波大学・数理物質系・准教授
 研究者番号:10323263

中條 達也 (CHUJO TATSUYA) 筑波大学・数理物質系・講師 研究者番号:70418622

金野 正裕 (KONNO MASAHIRO) (H20-H21) 筑波大学・数理物質科学研究科・研究員 研究者番号:60466654

稲葉 基(INABA MOTOI) 筑波技術大学・産業技術部・准教授 研究者番号:80352566