ON DOUBLE COVERINGS OF A POINTED NON-SINGULAR CURVE WITH ANY WEIERSTRASS SEMIGROUP

By
Jiryo Komeda* and Akira Ohbuchi**

Abstract

Let H be a Weierstrass semigroup, i.e., the set $H(P)$ of integers which are pole orders at P of regular functions on $C \backslash\{P\}$ for some pointed non-singular curve (C, P). In this paper for any Weierstrass semigroup H we construct a double covering $\pi: \tilde{C} \rightarrow C$ with a ramification point \tilde{P} such that $H(\pi(\tilde{P}))=H$. We also determine the semigroup $H(\tilde{P})$. Moreover, in the case where H starts with 3 we investigate the relation between the semigroup $H(\tilde{P})$ and the Weierstrass semigroup of a total ramification point on a cyclic covering of the projective line with degree 6 .

1 Introduction

Let C be a complete nonsingular irreducible curve of genus $g \geq 2$ over an algebraically closed field k of characteristic 0 , which is called a curve in this paper. Let $K(C)$ be the field of rational functions on C. For a point P of C, we set

$$
H(P):=\left\{\alpha \in N_{0} \mid \text { there exists } f \in \boldsymbol{K}(C) \text { with }(f)_{\infty}=\alpha P\right\}
$$

which is called the Weierstrass semigroup of the point P where N_{0} denotes the additive semigroup of non-negative integers. A numerical semigroup means a subsemigroup of N_{0} whose complement in N_{0} is a finite set. For a numerical

[^0]semigroup H the cardinality of $N_{0} \backslash H$ is called the genus of H, which is denoted by $g(H)$. We note that $H(P)$ is a numerical semigroup of genus g. A numerical semigroup H is said to be Weierstrass if there exists a pointed curve (C, P) such that $H=H(P)$.

Let (\tilde{C}, \tilde{P}) be a pointed curve of genus \tilde{g}. Let us take a positive integer g with $\tilde{g} \geqq 6 g+4$. Using the property of the semigroup $H(\tilde{P})$ Torres [7] characterized the condition under which \tilde{C} is a double covering of some curve C of genus g with ramification point \tilde{P}. In this paper when a pointed curve (C, P) of genus g is given we construct many examples of \tilde{H} which is the semigroup of a ramification point of a double covering of C over the point P even if $g(\tilde{H})<6 g+4$. In fact, in Section 2 when H is any Weierstrass semigroup, i.e., there exists a pointed curve (C, P) with $H(P)=H$ we construct a double covering of a curve C with ramification point \tilde{P} over P such that $g(H(\tilde{P})) \geqq 2 g(H)+c(H)-1$ where we denote by $c(H)$ the minimum of non-negative integers c satisfying $c+N_{0} \subseteq H$. We note that $c(H) \leqq 2 g(H)$. We can also describe the semigroup $\tilde{H}=H(\tilde{P})$. For any positive integer m a numerical semigroup H is called an m-semigroup if the least positive integer in H is m. An m-semigroup is said to be cyclic if it is the Weierstrass semigroup of a total ramification point on a cyclic covering of the projective line with degree m. If p is prime, Kim-Komeda [1] gives a computable necessary and sufficient condition for a p-semigroup to be cyclic. In Section 3 we describe a necessary and sufficient condition for a 6 -semigroup to be cyclic. Moreover, for a 3-semigroup H we find the condition for the semigroup $\tilde{H}=H_{n}=2 H+n N_{0}$ in Theorem 2.2 to be cyclic.

2 Weierstrass Points on a Double Covering of a Curve

In this section when a Weierstrass semigroup H is given we construct a double covering $\pi: \tilde{C} \rightarrow C$ with a ramification point \tilde{P} such that $H(\pi(\tilde{P}))=H$. Moreover, we determine the Weierstrass semigroup of the ramification point \tilde{P}. For a numerical semigroup H we use the following notation. For an m-semigroup H we set

$$
S(H)=\left\{s_{0}=m, s_{1}, s_{2}, \ldots, s_{m-1}\right\}
$$

where s_{i} is the minimum element h in H such that $h \equiv i \bmod m$. The set $S(H)$ is called the standard basis for H.

Lemma 2.1. Let H be an m-semigroup and n an odd integer larger than $2 c(H)-2$. We set $H_{n}=2 H+n N_{0}$. Assume that $n \neq 2 m-1$.
i) H_{n} is a $2 m$-semigroup with the standard basis

$$
S\left(H_{n}\right)=\left\{2 m, 2 s_{1}, \ldots, 2 s_{m-1}, n, n+2 s_{1}, \ldots, n+2 s_{m-1}\right\} .
$$

ii) The genus of H_{n} is $2 g(H)+(n-1) / 2$.

Proof. i) Since

$$
\operatorname{Max}\left\{s_{i}-m \mid i=1, \ldots, m-1\right\}=c(H)-1
$$

we get $s_{i}-m \leqq c(H)-1$ for all i. Hence, we have

$$
2 s_{i} \leqq 2(c(H)-1+m) \leqq 4 c(H)-2 \leqq 2 n
$$

because of $m \leqq c(H)$ and the assumption $n \geqq 2 c(H)-1$. Therefore, we obtain the standard basis

$$
S\left(H_{n}\right)=\left\{2 m, 2 s_{1}, \ldots, 2 s_{m-1}, n, n+2 s_{1}, \ldots, n+2 s_{m-1}\right\}
$$

for H_{n}, because

$$
\left\{s \in S\left(H_{n}\right) \mid s \text { is even }\right\}=\left\{2 m, 2 s_{1}, \ldots, 2 s_{m-1}\right\}
$$

and

$$
\left\{s \in S\left(H_{n}\right) \mid s \text { is odd }\right\}=\left\{n, n+2 s_{1}, \ldots, n+2 s_{m-1}\right\}
$$

ii) If we set

$$
n \equiv r \bmod 2 m \quad \text { with } 1 \leqq r \leqq 2 m-1
$$

then we get

$$
\begin{aligned}
g\left(H_{n}\right) & =\sum_{i=1}^{m-1}\left[\left(2 s_{i}\right) /(2 m)\right]+[n /(2 m)]+\sum_{i=1}^{m-1}\left[\left(n+2 s_{i}\right) /(2 m)\right] \\
& =g(H)+(n-r) /(2 m)+(m-1) \cdot(n-r) /(2 m)+\sum_{i=1}^{m-1}\left[\left(r+2 s_{i}\right) /(2 m)\right] \\
& =g(H)+(n-r) / 2+\sum_{i=1}^{m-1}\left(s_{i}-i\right) / m+\sum_{i=1}^{m-1}[(r+2 i) /(2 m)] \\
& =2 g(H)+(n-r) / 2+\sum_{i=1}^{m-1}[(r+2 i) /(2 m)]
\end{aligned}
$$

By the way we have $r+2 i \leqq 4 m-3$, and $r+2 i \geqq 2 m$ if and only if $i \geqq$ $m-(r-1) / 2$. Hence, we obtain

$$
g\left(H_{n}\right)=2 g(H)+(n-r) / 2+(r-1) / 2=2 g(H)+(n-1) / 2
$$

We construct a desired double covering $\pi: \tilde{C} \rightarrow C$ as follows:

Theorem 2.2. Let H be a Weierstrass m-semigroup of genus $r \geqq 0$, i.e., there exists a pointed curve (C, P) such that $H(P)=H$. For any odd $n \geqq 2 c(H)-1$ we set $H_{n}=2 H+n N_{0}$. Assume that $n \neq 2 m-1$. Then there exists a double covering $\pi: \tilde{C} \rightarrow C$ with a ramification point \tilde{P} over P such that $H(\tilde{P})=H_{n}$.

Proof. We consider the divisor $D=((n+1) / 2) P$. Let \mathscr{L} be an invertible sheaf on C such that $\mathscr{L} \simeq \mathcal{O}_{C}(-D)$. Then we have

$$
2 D \sim P+(\text { some effective divisor })=R
$$

where R is a reduced divisor. Here for any two divisors D_{1} and D_{2} on $C D_{1} \sim D_{2}$ means that D_{1} and D_{2} are linearly equivalent. In fact, we have

$$
\operatorname{deg}(2 D-P)=2 \cdot(n+1) / 2-1=n \geqq 2 c(H)-1 \geqq 2 r+1
$$

because of $c(H) \geqq r+1$. Hence, the divisor $2 D-P$ is very ample. We set $\Delta=$ $|2 D-P|$ where for a divisor E on C we denote by $|E|$ the set of effective divisors on C which are linearly equivalent to E. By Bertini's Theorem there exists a nonempty open subset U in Δ which is contained in the set

$$
\Delta_{0}=\{E \in \Delta \mid E \text { is reduced }\} .
$$

We consider the non-empty open subset

$$
U_{1}=\{E \in \Delta \mid P \notin E\} .
$$

Then $U \cap U_{1}$ is non-empty open. Take a divisor R^{\prime} in $U \cap U_{1}$. We may set $R=P+R^{\prime}$. Now we have isomorphisms

$$
\mathscr{L}^{\otimes 2} \simeq \mathcal{O}_{C}(-2 D) \simeq \mathcal{O}_{C}(-R) \subset \mathcal{O}_{C} .
$$

Using the composition of the above two isomorphisms we can construct a double covering

$$
\pi: \tilde{C}=\operatorname{Spec}\left(\mathcal{O}_{C} \oplus \mathscr{L}\right) \rightarrow C
$$

whose branch locus is R (See Mumford [6]). By Riemann-Hurwitz formula the genus of \tilde{C} is

$$
2 r+(n-1) / 2=2 g(H)+(n-1) / 2 .
$$

Let $\tilde{P} \in \tilde{C}$ be the ramification point of π over P. By Proposition 2.1 in KomedaOhbuchi [4] we obtain

$$
h^{0}\left(\tilde{C}, \mathcal{O}_{\tilde{C}}((n-1) \tilde{P})\right)=h^{0}\left(C, \mathcal{O}_{C}(((n-1) / 2) P)\right)+h^{0}\left(C, \mathscr{L} \otimes \mathcal{O}_{C}(((n-1) / 2) P)\right)
$$

and

$$
h^{0}\left(\tilde{C}, \mathcal{O}_{\tilde{C}}((n+1) \tilde{P})\right)=h^{0}\left(C, \mathcal{O}_{C}(((n+1) / 2) P)\right)+h^{0}\left(C, \mathscr{L} \otimes \mathcal{O}_{C}(((n+1) / 2) P)\right)
$$

Since $\mathscr{L} \simeq \mathcal{O}_{C}(-((n+1) / 2) P)$, we get

$$
h^{0}\left(\tilde{C}, \mathcal{O}_{\tilde{C}}((n-1) \tilde{P})\right)=h^{0}\left(C, \mathcal{O}_{C}(((n-1) / 2) P)\right)
$$

and

$$
h^{0}\left(\tilde{C}, \mathcal{O}_{\tilde{C}}((n+1) \tilde{P})\right)=h^{0}\left(C, \mathcal{O}_{C}(((n+1) / 2) P)\right)+1
$$

The assumption $n \geqq 2 c(H)-1$ implies that

$$
h^{0}\left(C, \mathcal{O}_{C}(((n+1) / 2) P)\right)=h^{0}\left(C, \mathcal{O}_{C}(((n-1) / 2) P)\right)+1 .
$$

Thus, we get

$$
h^{0}\left(\tilde{C}, \Theta_{\tilde{C}}(n \tilde{P})\right)=h^{0}\left(\tilde{C}, \Theta_{\tilde{C}}((n-1) \tilde{P})\right)+1
$$

which implies that $n \in H(\tilde{P})$. Moreover, we have $H(\tilde{P}) \supset 2 H$. Thus, we get $H(\tilde{P}) \supseteqq 2 H+n N_{0}=H_{n} . \quad$ By Lemma 2.1 ii) we have $g\left(H_{n}\right)=g(H(\tilde{P}))$, which implies that $H(\tilde{P})=H_{n}$.

Since for any $m \leqq 5$ every m-semigroup is Weierstrass (Maclachlan [5], Komeda [2], [3]), we get the following:

Corollary 2.3. Let H be an m-semigroup for some $2 \leqq m \leqq 5$. For any odd $n \geqq 2 c(H)-1$ with $n \neq 2 m-1$ there exists a double covering with a ramification point whose Weierstrass semigroup is $2 H+n N_{0}$.

If we take H as the semigroup generated by 3,4 and 5 , we get the following examples:

Example 2.4. For any $g \geqq 7$ there exists a double covering with a ramification point whose Weierstrass semigroup is generated by $6,8,10$ and $2 g-7$.

3 Cyclic 6-semigroups

First, we describe the condition for a 6 -semigroup to be cyclic in tems of the standard basis. Using the description we determine the condition on n under which the semigroup H_{n} in Theorem 2.2 is cyclic when H is a 3-semigroup.

Lemma 3.1. Let H be a cyclic 6 -semigroup. Then there exists a pointed curve (C, P) satisfying $H(P)=H$ such that the curve C is defined by an equation of the form

$$
z^{6}=\prod_{q=1}^{5} \prod_{j=1}^{i_{q}}\left(x-c_{q j}\right)^{q}
$$

with $\sum_{q=1}^{5} q i_{q} \equiv 1$ or $5 \bmod 6$ and that $f(P)=(0: 1)$ where $f: C \rightarrow \boldsymbol{P}^{1}$ is the surjective morphism defined by $f(Q)=(1: x(Q))$. Here $c_{q j}$'s are distinct elements of k.

Proof. Since H is a cyclic 6-semigroup, there is a pointed curve (C, P) such that C is a cyclic covering of \boldsymbol{P}^{1} of degree 6 with its total ramification point P satisfying $H(P)=H$. Hence, C is defined by an equation of the form

$$
z^{6}=\prod_{q=1}^{5} \prod_{j=1}^{i_{q}}\left(x-c_{q j}\right)^{q}
$$

where i_{1}, \ldots, i_{5} are non-negative integers. If $f: C \rightarrow \boldsymbol{P}^{1}$ is the morphism sending Q to $(1: x(Q))$, then $f(P)=(0: 1)$ or $\left(1: c_{q j}\right)$ for $q=1$ or 5 and some j. Even if $f(P)=\left(1: c_{q j}\right)$, we may assume that $f(P)=(0: 1)$ by transforming the variable x into $X=1 /\left(x-c_{q j}\right)$. In this case, we get $\sum_{q=1}^{5} q i_{q} \equiv 1$ or $5 \bmod 6$.

Proposition 3.2. Let (C, P) be a pointed curve as in Lemma 3.1. Then we have

$$
\begin{aligned}
S(H(P))= & \left\{6, \sum_{i=1}^{5} q i_{q}, 2\left(i_{1}+2 i_{2}+i_{4}+2 i_{5}\right), 3\left(i_{1}+i_{3}+i_{5}\right),\right. \\
& \left.2\left(2 i_{1}+i_{2}+2 i_{4}+i_{5}\right), \sum_{i=1}^{5}(6-q) i_{q}\right\} .
\end{aligned}
$$

Proof. We set

$$
\begin{gathered}
f^{-1}\left(\left(1: c_{q j}\right)\right)=\left\{P_{q j}\right\} \quad \text { for } q=1,5 \\
f^{-1}\left(\left(1: c_{q j}\right)\right)=\left\{P_{q j}, P_{q j}^{\prime}\right\} \quad \text { for } q=2,4 \\
f^{-1}\left(\left(1: c_{q j}\right)\right)=\left\{P_{q j}, P_{q j}^{\prime}, P_{q j}^{\prime \prime}\right\} \quad \text { for } q=3
\end{gathered}
$$

Let H be the semigroup generated by $6, b_{1}=\sum_{i=1}^{5} q i_{q}, b_{2}=2\left(i_{1}+2 i_{2}+i_{4}+2 i_{5}\right)$, $b_{3}=3\left(i_{1}+i_{3}+i_{5}\right), \quad b_{4}=2\left(2 i_{1}+i_{2}+2 i_{4}+i_{5}\right) \quad$ and $\quad b_{5}=\sum_{i=1}^{5}(6-q) i_{q} . \quad$ Since
$\sum_{q=1}^{5} q i_{q} \equiv 1$ or $5 \bmod 6, H$ is a numerical semigroup. First, we show that $H \subseteq H(P)$. We have

$$
\begin{gathered}
\operatorname{div} z=-b_{1} P+\sum_{j=1}^{i_{1}} P_{1 j}+5 \sum_{j=1}^{i_{5}} P_{5 j}+\sum_{j=1}^{i_{2}}\left(P_{2 j}+P_{2 j}^{\prime}\right) \\
+2 \sum_{j=1}^{i_{4}}\left(P_{4 j}+P_{4 j}^{\prime}\right)+\sum_{j=1}^{i_{3}}\left(P_{3 j}+P_{3 j}^{\prime}+P_{3 j}^{\prime \prime}\right), \\
\operatorname{div}\left(x-c_{q j}\right)=-6 P+6 P_{q j} \text { for } q=1,5, \\
\operatorname{div}\left(x-c_{q j}\right)=-6 P+3 P_{q j}+3 P_{q j}^{\prime} \text { for } q=2,4, \\
\operatorname{div}\left(x-c_{q j}\right)=-6 P+2 P_{q j}+2 P_{q j}^{\prime}+2 P_{q j}^{\prime \prime} \quad \text { for } q=3 .
\end{gathered}
$$

For any $m \in\{1,2,3,4,5\}$ we set

$$
y_{m}=\prod_{q=1}^{5} \prod_{j=1}^{i_{q}}\left(x-c_{q j}\right)^{-[-m q / 6]}
$$

where $[r]$ denotes the largest integer less than or equal to r for any real number r. Then we get

$$
\begin{aligned}
\operatorname{div}\left(y_{m} / z^{m}\right)= & -\sum_{q=1}^{5}(-m q-6[-m q / 6]) i_{q} P+(6-m) \sum_{j=1}^{i_{1}} P_{1 j} \\
& +(-6[-5 m / 6]-5 m) \sum_{j=1}^{i_{5}} P_{5 j} \\
& +(-3[-2 m / 6]-m) \sum_{j=1}^{i_{2}}\left(P_{2 j}+P_{2 j}^{\prime}\right) \\
& +(-3[-4 m / 6]-2 m) \sum_{j=1}^{i_{4}}\left(P_{4 j}+P_{4 j}^{\prime}\right) \\
& +(-2[-3 m / 6]-m) \sum_{j=1}^{i_{3}}\left(P_{3 j}+P_{3 j}^{\prime}+P_{3 j}^{\prime \prime}\right) .
\end{aligned}
$$

Hence we obtain

$$
\operatorname{div}\left(y_{m} / z^{m}\right)_{\infty}=b_{6-m} P
$$

for any $m \in\{1,2,3,4,5\}$. Thus, we have $H \cong H(P)$, which implies that $g(H) \geqq$ $g(H(P))$. By Hurwitz's theorem we get

$$
g(H(P))=\left(5 i_{1}+4 i_{2}+3 i_{3}+4 i_{4}+5 i_{5}-5\right) / 2 .
$$

But we have

$$
\begin{aligned}
g(H) \leqq \sum_{q=1}^{5}\left[b_{q} / 6\right]= & {\left[\left(\sum_{i=1}^{5} q i_{q}\right) / 6\right]+\left[\left(2\left(i_{1}+2 i_{2}+i_{4}+2 i_{5}\right)\right) / 6\right] } \\
& +\left[\left(3\left(i_{1}+i_{3}+i_{5}\right)\right) / 6\right]+i_{1}+i_{2}+i_{4}+i_{5} \\
& +\left[\left(-2\left(i_{1}+2 i_{2}+i_{4}+2 i_{5}\right)\right) / 6\right] \\
& +\sum_{q=1}^{5} i_{q}+\left[\left(-\sum_{i=1}^{5} q i_{q}\right) / 6\right] \\
= & \left(5 i_{1}+4 i_{2}+3 i_{3}+4 i_{4}+5 i_{5}-5\right) / 2=g(H(P))
\end{aligned}
$$

because $\sum_{q=1}^{5} q i_{q} \equiv 1$ or $5 \bmod 6$. Therefore, we get the equality $g(H)=g(H(P))$, which implies that $H(P)=H$. Moreover, by the above equality the standard basis for $H(P)$ must be the desired one.

Using the above description of a cyclic 6 -semigroup in terms of the standard basis we get a computable necessary and sufficient condition for a 6 -semigroup to be cyclic.

Theorem 3.3. Let H be a 6 -semigroup with

$$
S(H)=\left\{6,6 m_{1}+1,6 m_{2}+2,6 m_{3}+3,6 m_{4}+4,6 m_{5}+5\right\}
$$

Then it is cyclic if and only if we have

$$
m_{2}+m_{5} \geqq m_{3}+m_{4}, \quad m_{1}+m_{5} \geqq m_{2}+m_{4} \quad \text { and } \quad m_{1}+m_{4} \geqq m_{2}+m_{3} .
$$

Proof. First, assume that H is cyclic. By Lemma 3.1 and Proposition 3.2 there are non-negative integers $i_{1}, i_{2}, i_{3}, i_{4}$ and i_{5} such that

$$
\left\{\begin{array}{l}
\left.i_{1}+2 i_{2}+3 i_{3}+4 i_{4}+5 i_{5}=6 m_{1}+1 \text { (resp. } 6 m_{5}+5\right) \\
\left.2 i_{1}+4 i_{2}+2 i_{4}+4 i_{5}=6 m_{2}+2 \text { (resp. } 6 m_{4}+4\right) \\
3 i_{1}+3 i_{3}+3 i_{5}=6 m_{3}+3 \\
\left.4 i_{1}+2 i_{2}+4 i_{4}+2 i_{5}=6 m_{4}+4 \text { (resp. } 6 m_{2}+2\right) \\
5 i_{1}+4 i_{2}+3 i_{3}+2 i_{4}+i_{5}=6 m_{5}+5\left(\text { resp. } 6 m_{1}+1\right)
\end{array}\right.
$$

Considering $i_{1}, i_{2}, i_{3}, i_{4}, i_{5}$ to be variables the determinant of the coefficient matrix is 1296. By calculation the above system of linear equations has a unique solution

$$
\begin{gathered}
i_{1}=m_{3}+m_{4}+1-m_{1}\left(\text { resp. } m_{2}+m_{3}-m_{5}\right) \\
i_{2}=m_{2}+m_{5}-m_{3}-m_{4}\left(\text { resp. } m_{1}+m_{4}-m_{2}-m_{3}\right)
\end{gathered}
$$

$$
\begin{gathered}
i_{3}=m_{1}+m_{5}-m_{2}-m_{4} \\
i_{4}=m_{1}+m_{4}-m_{2}-m_{3}\left(\text { resp. } m_{2}+m_{5}-m_{3}-m_{4}\right) \\
i_{5}=m_{2}+m_{3}-m_{5}\left(\text { resp. } m_{3}+m_{4}+1-m_{1}\right)
\end{gathered}
$$

Since all i_{q} 's must be non-negative, we get the desired result.
We shall show the "only if"-part. Let i_{q} 's be as in the above, which are nonnegative by the assumption. Then we get the pointed curve (C, P) as in Lemma 3.1. Using Proposition 3.2 we get $H=H(P)$, which implies that H is cyclic.

When H is a 3-semigroup, we give a criterion for the 6 -semigroup H_{n} as in Lemma 2.1 to be non-cyclic.

Proposition 3.4. Let H be a 3-semigroup with $S(H)=\left\{3,3 l_{1}+1,3 l_{2}+2\right\}$ and n an odd integer larger than $2 c(H)-2$ and distinct from 5. We set $H_{n}=$ $2 H+n N_{0}$.
i) If $n \equiv 3 \bmod 6$, then the 6-semigroup H_{n} is cyclic.
ii) Let $n \equiv 1 \bmod 6$. If $2 l_{1}=l_{2}$, then the 6-semigroup H_{n} is cyclic. Otherwise, H_{n} is not cyclic.
iii) Let $n \equiv 5 \bmod 6$. If $l_{1}=2 l_{2}+1$, then the 6-semigroup H_{n} is cyclic. Otherwise, H_{n} is not cyclic.

Proof. By Lemma 2.1 i) we have

$$
S\left(H_{n}\right)=\left\{6,6 l_{1}+2,6 l_{2}+4, n, n+6 l_{1}+2, n+6 l_{2}+4\right\} .
$$

For any $i=1, \ldots, 5$, let $s_{i} \in S\left(H_{n}\right)$ such that $s_{i} \equiv i \bmod 6$. We set $m_{i}=\left[s_{i} / 6\right]$.
First, we consider the case where $n \equiv 3 \bmod 6$. Then we have

$$
m_{1}=l_{2}+[n / 6]+1, \quad m_{3}=[n / 6] \quad \text { and } \quad m_{5}=l_{1}+[n / 6] .
$$

Thus, we get $m_{1}+m_{5}>m_{2}+m_{4}$. Since $2 l_{1} \geqq l_{2}$ and $2 l_{2}+1 \geqq l_{1}$, we have

$$
m_{2}+m_{5} \geqq m_{3}+m_{4} \quad \text { and } \quad m_{1}+m_{4} \geqq m_{2}+m_{3}
$$

By Theorem 3.3 the 6 -semigroup H_{n} is cyclic.
Second, we consider the case where $n \equiv 1 \bmod 6$. Then we have

$$
m_{1}=[n / 6], \quad m_{3}=l_{1}+[n / 6] \quad \text { and } \quad m_{5}=l_{2}+[n / 6] .
$$

Thus, we get $m_{2}+m_{5}=m_{3}+m_{4}$. If $2 l_{1}>l_{2}$, then we have

$$
m_{1}+m_{4}=[n / 6]+l_{2}<2 l_{1}+[n / 6]=m_{2}+m_{3},
$$

which implies that H_{n} is not cyclic. Let $2 l_{1}=l_{2}$. Then we have

$$
m_{1}+m_{4}=m_{2}+m_{3} .
$$

Moreover, we see that $c(H)=6 l_{1}+2-3+1=6 l_{1}$. By the assumption we have $n \geqq 12 l_{1}-1$, which implies that $[n / 6] \geqq 2 l_{1}-1$. Hence we obtain

$$
m_{1}+m_{5}=l_{2}+2[n / 6] \geqq l_{2}+4 l_{1}-2>l_{1}+l_{2}=m_{2}+m_{4}
$$

Thus, if $2 l_{1}=l_{2}$, then H_{n} is cyclic.
Last, let $n \equiv 5 \bmod 6$. The method similar to the case $n \equiv 1 \bmod 6$ works well.

Using the above result we get a criterion for the 6-semigroup in Example 2.4 to be cyclic.

Example 3.5. For any $g \geqq 7$ let $H(g)$ be the semigroup generated by 6,8 , 10 and $2 g-7$. The 6 -semigroup $H(g)$ is cyclic if and only if $g \equiv 2 \bmod 3$.

References

[1] Kim, S. J. and Komeda, J., The Weierstrass semigroup of a pair of Galois Weierstrass points with prime degree on a curve, Bull. Braz. Math. Soc. 36 (2005), 127-142.
[2] Komeda, J., On Weierstrass points whose first non-gaps are four, J. Reine Angew. Math. 341 (1983), 68-86.
[3] Komeda, J., On the existence of Weierstrass points whose first non-gaps are five, Manuscripta Math. 76 (1992), 193-211.
[4] Komeda, J., A. Ohbuchi, Weierstrass points with first non-gap four on a double covering of a hyperelliptic curve, Serdica Math. J. 30 (2004), 43-54.
[5] Maclachlan, C., Weierstrass points on compact Riemann surfaces, J. London Math. Soc. 3 (1971), 722-724.
[6] Mumford, D., Prym varieties I, Contributions to Analysis, Academic Press, New York, 1974, 325-350
[7] Torres, F., Weierstrass points and double coverings of curves, Manuscripta Math. 83 (1994), 39-58.

Jiryo Komeda

Department of Mathematics
Center for Basic Education and Integrated Learning Kanagawa Institute of Technology
Atsugi, 243-0292, Japan
e-mail: komeda@gen.kanagawa-it.ac.jp
fax: +81-46-241-4262

Akira Ohbuchi
Department of Mathematics
Faculty of Integrated Arts and Sciences
Tokushima University
Tokushima, 770-8502, Japan
e-mail: ohbuchi@ias.tokushima-u.ac.jp
fax: +81-88-656-7297

[^0]: *Partially supported by Grant-in-Aid for Scientific Research (17540046), Japan Society for the Promotion of Science.
 ** Partially supported by Grant-in-Aid for Scientific Research (17540030), Japan Society for the Promotion of Science.
 2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14C20.
 Key words and phrase: Weierstrass semigroup of a point, Double covering of a curve, Cyclic covering of the projective line with degree 6 .
 Received December 8, 2005.
 Revised March 6, 2006.

