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INDEPENDENT FAMILIES OF DESTRUCTIBLE GAPS

By
Teruyuki YORIOKA*

Abstract. We investigate the finite support product of forcing
notions related to destructible gaps, and prove the existence of a
large set of independent destructible gaps under $.

1. Imntroduction and Notation

1.1. Introduction

An w;-tree can be considered as a forcing notion adding an uncountable
chain. A Suslin tree is a ccc and w;-Baire forcing notion (a Suslin algebra). In
[8], Kurepa showed that the two-product of one Suslin tree does not have the
countable chain condition: This can be proved by the product lemma for forcings
and the fact on ccc-forcings because a Suslin tree as a forcing notion adds an
uncountable chain and then (if it is normal, i.e. any node has at least two
incomparable extensions) it also has an uncountable antichain. But under ¢, for
any Suslin tree, we can find another Suslin tree such that the product of these
Suslin trees is also ccc. In fact, under ¢, we have several variations of families of
Suslin trees ([1]).

In this paper, we deal with destructible gaps. A destructible gap is an
(w1, @1)-gap which can be destroyed by a forcing extension preserving cardinals.
A destructible gap has a characterization similar to a Suslin tree ([2]). A Suslin
tree is an wj-tree having no uncountable chains and antichains. On the other
hand, for an (w;,w;)-pregap (o, %) = {ay, by; o € ;) with the set a, N b, empty
for every o € w;, we say here that « and § in w; are compatible if

(@ Nbg)U(agNbdy) = &.
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Then by the characterization due to Kunen and Todoréevié, we notice that an
(01, 1)-pregap is a destructible gap iff it has no uncountable pairwise compatible
and incompatible subsets of w;. (We must notice that from results of Farah
and Hirschorn [4, 5], the existence of a destructible gap is independent with the
existence of a Suslin tree.)

One of differences from an w;-tree is that any (w;, ®;)-pregap have never had
an uncountable chain and antichain at the same time. We have forcing notions
related to an (w,;)-pregap.

Dermurion 1.1 [E.g. [3, 7, 10, 11]). Let (o, B) =<ay,by;€ @) be an
(1, 1)-pregap with a,Nb, = & for every o € w.

1. Z(o,B) = {o¢€ ] Va # B €a,(a,Nbg)U(agNb,) # &}, ordered by
reverse inclusion.

2. #(ot,B) = {o€ 0] U,y @aNUye, b = &}, ordered by reverse
inclusion.

We note that & («/,%) forces (&£,%8) to be indestructible and (o, %)
forces (o7, B) to be separated. Using these forcing notions, we can express char-
acterizations of being a gap and destructibility.

TreOREM 1.2 [E.g. [3, 7, 10, 11]). Let (&Z,%B) be an (w1, w1 )-pregap. Then;

1. (o£,B) forms a gap iff F(L,%B) has the countable chain condition.
2. (o#,9B) is destructible (may not be a gap) iff F (L, B) has the countable
chain condition.

Therefore we say that (/,4%) is a destructible gap if both &% (Z,4%) and
S (A, %) have the ccc. As in the case of a Suslin tree, by the product lemma
for forcings, we note that & (o, %) x & (&, %) does not have the ccc, and the
referee of the paper [6] has proved that whenever (&, %;) is an (w,w;)-gap for
iel, [l;c; # (i, %) has the countable chain condition. However it is inde-
pendent from ZFC that the above statement is true for &, ie. the following
statements are both consistent with ZFC: Whenever (.of;, %;) is a destructible gap
for iel, [],.; ¥ (i, ®;) has the countable chain condition; There exists de-
structible gaps (&,%) and (¥,92) such that the product &(s,%) x ¥(¥,2P)
does not have the countable chain condition. (The first consistency is proved to
just force by a finite support iteration with the book-keeping argument, and the
second consistency is proved using an observation due to Stevo Todorcevi¢ as
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follows: If an indestructible gap is restricted to both a Cohen real and its
complement (viewed as subsets of ), then this pair of new gaps freeze one
another. This is pointed by the referee of the paper [?] to me.) We will see that
e.g., we may have two destructible gaps (&7, %) and (¥, 2) so that all variations
Zo(A,B) x %1 (£, B) have the ccc. Throughout this paper, we consider families
of destructible gaps as follows.

DeFINITION 1.3, A4 family {(£;,B:);i€ I} of destructible gaps is inde-
pendent if for every combination {%;;i € I) where each %; is either & or ¥, a
finite support product [1;.; %i(s;, B;) has the countable chain condition. Moreover,
{(s#;,%B;);i eI} is a maximal independent family of destructible gaps if it is
maximal with the property of independence.

We note that destructible gaps added by finite approximations are inde-
pendent, and if k many Cohen reals are added, then in the extension there is an
independent family of x many destructible gaps (by the similar argument due to
Todorcevic). So by a book-keeping argument of the ccc-forcings, for any (finite or
infinite) cardinal x, it is consistent with ZFC that there exists a maximal in-
dependent family of destructible gaps of size k.

If { holds, the size of maximal independent families of Suslin trees are quite
large. In [13] and [14], Zakrzewski has proved that there exists a family of Suslin
trees of size 2™ whose finite support product is also ccc and for any family of
Suslin trees of size R, if the product of members of this family with finite support
is also ccc, then it is not maximal with respect to this property. These theorems
are also true for destructible gaps. That is,

THEOREM 2.1.  Under <, there exists a family of 2™ destructible gaps which is
independent.

TuEOREM 2.2. Under <), every maximal independent family of destructible
gaps has size at least N,.

1.2. Notation

A pregap in Z(w)/fin is a pair (&£, %) of subsets of #(w) such that for all
ac s/ and b e B, the set aNb is finite. For subsets a and b of w, we say that a
is almost contained in b (and denote a =* b) if a\/ is a subset of b for some / € w.
If (o7, %) is a gap and both ordered sets (&, =*) and {#,<*) are well ordered
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and these order type are x and A respectively, then we say that a pregap has
the type (x,A) or a (x,A)-pregap. Moreover if k¥ = A, we say that the pregap is
symmetric. For a pregap (&,%), we say that (o, %) is separated if for some
c € P(w), a =* ¢ and the set cNb is finite for every a € o/ and b € #. If a pregap
is not separated, we say that it is a gap. Moreover if a gap has the type (k, 1), it
is called a (x,A)-gap.

For an ordinal «, if we say that {ag, be; £ € ) is a pregap, we always assume
that

{<nin a, as S*a, and bs &*b,, and

« for every £ €a, the set a:Nbs is empty.
In proofs of theorems, all of pregaps will constructed to satisfy the following
property.

DerNITION 1.4 ([12]). We say that a pregap (4, %B) = {a,,b,;y € a) admits
finite changes if for any fea with f=n+k for some nelimNa (where Lim
is a class of limit ordinals) and ke w, H,J € [0]™ with HNJ = & and i >
max(HUJ) there exists n€ w so that

pnNi=H, ap,\i=ap\i, bynNi=J, and by.,\i=Dbp\i
We note that an («,«)-pregap <ag,be¢; & € @) can be considered a function f
from o X @ into 3 such that for each y € a,
a,={kew;f(y,k) =0} and b,={kew;f(yk) =1}

In other words, a function f codes an («,o)-pregap.

2. Consequences from

Under <, there is an independent family of destructible gaps of size 2™ . The
following proof is a modification of the proof in [13].

THEOREM 2.1. Under {, there exists a family of 2™ destructible gaps which is
independent.

ProorF. Let (Dy;a € ;) be a {-sequence for w; x wy, i.e. D, € 2(«) X P(a)
for all aew; and for all (E° E'>eP(w)x P(w;), the set {acwi;
E°Na, E'Nay = D.} is stationary, and say D, = (Dg, D;) for each a € w;. In
this proof (and the proof of the next theorem), we consider the following coding
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between pairs {D,n) of subsets of countable ordinals and natural numbers and
pairs of sequences of the form (x;;ien),{(%;;ien)yy such that each x; is a
binary sequence with a fixed length and each %; is either & or &. Let a € w; + 1,
Dcoa and new. (D is considered as a function in 2% by thinking of its
characteristic function.) We say that (D,n) codes {x;;i e n),{%;;ien)) if each
x; 1s a binary sequence of length «, each %; is either & or &, and for each i e n,
kew and 7elimNa,

%= < D(i) =0,
xi(k)=D(n-(k+1)+1i), and x;(n+k)=D@n+n-k+i).

A pair {D,n) can be recovered from a pair {(x;;ien),{Zi;ieny)y by this
manner. We note that if « and B are limit ordinals in w; +1 with « < 8,
Dca D'cB new, and <(D,n) and {D’,n) code {x;;iend,{%;ien)) and
Kxl;ieny,{Z/;ien)) respectively, then D=D'Na holds iff x!e=x; and
Z! = %; hold for every i e n. Let {J,,;n € @) be a sequence of functions such that
each J, is an injection from ([e;]<")" into @, and for distinct natural numbers m
and n,

Tn[([@1] )" 1N Ta[([1] )] = &,

where J,[([w1]<®)"] is a image of the set ([w;]<"®)" by J,.
We will construct, by recursion on « € w;, a function f from 2<®' x @ into 3
with the following properties:

1. For any xe€2% f[({s€2<%s< x} x w) codes an (a,«)-pregap with the
admission of finite changes, i.e. when we let

a:={kew;f(sk)=0} and b= {kew;f(sk)=1)

for each s€2<”, {aypy,bxyy;y €a) forms an («,«)-pregap and admits

finite changes,

2. If a is a limit ordinal and there exists n € w such that

* D € Ju[([@1] )" and J;'[Dg] < ()<,

+ the pair (D;,n> codes the pair (x;;ieny,{Z;ien)yy of the se-
quence of binary sequences of length o and the sequence of mem-
bers in {#,%} and the family J;![DY] is a maximal antichain in
Hien %(<axif7’bxrfy>yea)’

then for this unique n € w, there is an infinite subset S, of natural numbers

such that for every 7 € [[;., Zi({@xty bx;lyVyeq), there is m € » so that for

every | € S,\m, every finite sequence {H'’, K';i € n) with the property that
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H' and K’ are disjoint subsets of / for all i € n and there exists o € J;*[D?]
such that for all ien,
< if Z; is &, then

( U ax,.ran')U (Hin U bx,[é) =Q,

Lea(i) ¢ea(i)

U axirg\l < ax,.\l and U bx;[é\l < bx,.\l,
Cea(i) tea(i)

and
« if Z; is &, then o(i) Ut(i) is a condition in # ({ay,ty,bx1yYye.) and for
any ¢ € o(i),

(axiff n (bx,\l)) U ((axi\l) N bxiff) # .

By the property 1, the construction at successor stages are trivial. Assume that
o is a limit ordinal and satisfies the assumption of the property 2 for an ne w
and say (D;,n> codes a sequence {x;;i € ny of functions in 2* and a sequence
(Zi;ieny. Let {u;;h € ) enumerate conditions in [[;., Zi({axy, bx1yDyeq) and
let I, .= {ien; % = %}. For all xe2*\{x;;ien}, we simply take f |{x} x w,
such that a,Nby, = J, both w\(axUby), a\ax, and by\by;, are infinite, and
axpy S* ax and byy, S* by for every y € a. We construct f [ ({x;;i € n} x @) which
satisfies the property 2 as follows.

By recursion on k € w, we will construct (C,’;; ien)ea” and [, € w such that

* Iy < Iy for every k € w,

- for each ien, the sequence (C,i;keco) is cofinal in o, and

. aX-'TC;‘;_I ﬂlk_1 = axir(;; ﬂlk_l, aXifC;;_l\lk"l = axim, bx'_rc;;_l N lk_1 = bx.‘rc;'; ﬂlk_1
and b, i \l-1 S b, i, for every ien and k € 0.

Assume that we have already constructed {; and J, for all hek and ien. Let
{«H},Kf;ien),7;je N} enumerate all pairs of sequences (H',K';ien) so
that H' and K' are disjoint subsets of /x_; and members of the set {u,;% € k}.
(So Ny =2k-1*" x k) By the induction hypothesis of the property 1 and our
assumption, we can choose (77]?; ien)ea®and g eJ; L [Dg] by recursion on j € Ny
such that

- for each ien, put o_1(i) := & and 7, := C,’;_l,
« we take large enough 17]? e a for each ien such that
— if i el,, then
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@it N1 = Hji> bxrf’lj' Oy = K}i’

G\ 2 [ U ampeUagpy |\ ket
¢egia ()

bx.-rrz,-"\lk-l =2 ( U bx:!€be;rrrf'_.)\lk—1’
geaji(i) !
and

— if i e n\I,, then we take not only #/ but also a natural number e} >
and a condition v;(i) in & ({@xy, bx;1y)yeq)> Which extends 7;(i) such that
* ;> max(7(i)),

and

ax.-mj\lk—l = ax;fr/j_l\lk-l’
and
by, I"I_,»"\lk_l = by, U 1

:ﬂlk._l and

(in this case, we don’t need take care what are Qi

by Nley),

xi [}
* for every & e (i),

a1\ < ay, rnjg\e} and  byre\ej < byyr\e),

* for any (H,K)eﬂ’(e]f')2 with HNK = (&, there exists & € v;({) such

that
(axre NK)U (HNbx1e) = &,
and
* {axie\e), bue\e s & € vi(1)} = {<axre\e, bxire\e)>; € € (D)},
and

— 0; is compatible with
nbov(@)siely & i'en\L,
in Hien %(<axif7’bxif?>yea)-

(In the case that i en\I, we take 7/, ¢/ and v;(i) as follows: At first, we take
e/ > 1 such that for every & # ¢’ in 7(d),

((@xte Nbype) U (ag e Nbxire)) < €.

Next, we take 17]? > max(7j(i)) such that for every ¢& e 7;(i),
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axiff\e} = axi[r]j’\e; and inlf\e} L= bxilrrj"\e;'
Then we take a family # of pairs of subsets of e} such that

* # contains all <ayeNef,byeNef> for & e (i),
- for every <H,K> # (H',K’> in #, HNK = & and

(HNK')U(H'NK) # &,

and
- for every pair (H,K) of subsets of ¢! with HNK empty, there exists

i
(H',K'Y € # such that
(HNK)U(H'NK) = &.

Fixing any & € 7;(i), for each (H,K) e #\{<axeNej,byeNel>; & €1i(i)}, let
P¢u iy € « such that

axifl’(ﬂ,lo ﬂej = H, bxifﬂ(ﬂ‘lo ﬂe} = K,
ax;[pg;_,()\e; = ax rfo\e} and by, rP(H,K)\e; = by, féo\e;'
We have to note that every p(y g is diffrent from 77} . At last, let
V(1) = 5;(0) U{pe xy; CH, KD € #\{Laxpe Ne), bz Neld; & € 7(i)} )

We should note that #; doesn’t belong to g;(i) in this case, because v;(i) and {n/}
are incompatible in F ({axy, bx;1yDyeq)-)
We must notice in the construction <77]?;ien> that for each je N and

« for each ie I,
( U ax,»rcnKji> U (Hj"n U bxfr¢> =,
0 teoili)

(( U ax.-chax,-rn}>\lk-l) n << U infobX;f’l;)\lk——l) =,
ge;li) 0

and
- for each ien\l, g;(i)Ut;(i) € F ({axty, buity)yeq) and for every £ e g;(i),

(@it N (Bt \€))) U (a1 \&)) Nbxi1e) # B,
therefore
(axif-f N (bx;fr);\lk—l)) U ((ax;[nj"\lk—l) nbxiff) # .

By the property 1 again, we take a large enough ordinal {; € a such that
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\Ik_l (o= axlrcll:,

bx;[C,'; Nh_1 = bx,- o Nl_;, and ( U by 1e Ub"ir'l;rk-i)\lk—l [ b-"tm’

Eeon -1 ()

- for each ie I,

Eean—1(3)

Argi V1 = i N, ( U axteUayp,

and

- for each ien\I,,
Bty Vi1 = @y DVlets - @yl N1 S @y
in[C}; N lk—l = bxi M};-l n lk—l; and bxir”;,k_l \Ik~1 < erTC;i‘
Then we choose large enough [/, > [_; such that
« for all ien,
(@ (@1t Ubyp) V| = K
and

« for all ien\l,, je Ny and ¢ € g;(i),

((@xite My 1)) U (@i Nbxite)) O (Be\De-1) # S,

which completes the construction of ¢} and I.
We define

ax,- = U ax'_rc;; and bx'. = U bx'rc;c
kew kew

and S, := {l;k € w}, which complete the construction of f.
The rest of the proof is that the family

{<ax!‘an bx[a§ aEW);XE 2w1}

is independent. It suffices to prove that for every ne w, {x;ien)ye (2*)" and
{(%;;i € ny, the product forcing [];., %i({ax e, bx;ta aecw,) has the countable chain
condition because of the following well known statement: If a finite support
product [ . P, of forcing notions has an uncountable antichain, then there is
[’ e [[)™ such that the product [,er Py also has an uncountable antichain.
(This can be shown by considering a A-system refinement of the set of supports of
conditions in the antichain.)
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Assume that a subset Y of [];., Zi({a@xt«, bx;ta)uecw,) I8 @ maximal antichain.
Let E®:=J,[Y] and a subset E' of ; such that (E',n> codes a pair of
sequences {x;;i € ny and {%;;i € n). By {, we can find a limit ordinal « such that

* Tl <)) = Tnl([@1] )" N,
- E°Na=D? and E'Na =D}, and
« YN ([J™)” is a maximal antichain in ];., Zi(Xaxty OxilyDyea)-

We will conclude that YN ([oJ<™)” is a maximal antichain in

Hien %((axﬁa:bx,-[a>aew,) as below.
Let I:={ien;%; = &}. Take any condition 7 in

H%(<axifdabxifa>aew|)\([‘x]<ko)n
ien
and let <{n;;ieI) e o] be such that for each iel,

axin, = U axie and byp, = U bupe
Ee(i) Ee(i)

In considering the property 2 for a condition {z(i)Na;ien), we take a large
enough /€ S, such that for all ien

«if ieI and #; is smaller than «, then
Axitn,\I S ax;te\l and by, \I C by, 1e\/,
*if iel and #; is not smaller than o,
axte\! S axy,\I and by 1\l S by;py,\L,
and
« if ien\I, then for all & e 7(i)\e,
axte\l € axpe\I and by, 1o\l S by 1o\l
For each ien, let
H':=ay;, Nl and K':=byp, NI
Then applying the property 2 of the construction above to these a, n, I,
CH',K'ien)y and {z(i)No;ien), we get o€ J; DY = ¥ N([a]<)" such that

o

- if i e, then

( U ax,.r,:ﬂK’)U(H"ﬂ U bxi[¢'>:®a
)

Ceo(i Eeal(i)
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U axte\l S axta\l and  {J bgre\l S e\,
¢ea(i) ¢ea(i)
and
« if i e n\I, then o(¥) U (z(i) Na) is a condition in & ({axy, bxyYyeq) and for
any ¢ e o(i)

(@xte N (bxste\D)) U (@1 \]) N bxy1e) # -
Then

« if ie I, then

( U axiffﬂbxif'h) U <axif’7;n U bx,[.f) =,

¢ea(i) éea(i)
« if ien\J, then for every ¢ ea(i) and &' e z(i)\a,

(@xire Nbyper) U (g e Nbxe) # S,

therefore 7 and o are compatible in [, ., %i(<axta; bxiteVacw,)- O

To show the following theorem, we prove that for any independent family I"
of X; many destructible gaps, using <, we find a gap which is independent from
I'. The following proof is also similar to the proof in [14].

THEOREM 2.2. Under <, every maximal independent family of destructible
gaps has size at least N,.

Proor. This proof is similar to a proof of Theorem 2.1. Let (Dy; 0 € w;) be
a {-sequence on w; and {(J,;n € ) be as in this proof of Theorem 2.1. (But in
the proof, we assume that each J, is an injection from ([w,]<™ x w; x 2)" into
®;.) And assume that I := {(s, B¢); ¢ € 01\{0}} is an independent family of
destructible gaps. We denote that (s, B;) = <a§,b§;( € w;y. By recursion, we
construct a function f from w; X @ into 3 with the following property:

1. For any a € w;, f | (¢ X w) codes a pregap as in the proof of Theorem
2.1
2. For any « € w;, the pregap decoded by f [ (¢ X w) admits finite changes.
3. If « is a limit ordinal and there exists n € @ such that
* Dy € Jn[([e1]™ x 01 x 2)"] and J;1[D,] = ([o] <™ x a x 2)",
« for all ¢£,7eD, and i€ n, letting
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T7H(8) =: <ol (i), yE(i), hE(i);i e m,

B(0) = K@), 7E() = 72(0) and 92(0) = 3(0) =0, and
* letting I, := {y¢(i);1 <ien} for some (any) {eD, and %;=# if
h¢(i) = 0 and &; = & if h(i) = 1, the family {<o{(i);ien);{ e D,} is a
maximal antichain in [];_, fl"i(dyg(i) P o, Byzi) I'a), where (fp | o, %o | o)
= {a},bf;{ € a) is the pregap decoded by f | (« x @),
then for this unique n € w, there is an infinite subset S, of natural numbers
so that for every / € S, and finite sequence {H;, K;;i € n) with the property
that H; and K; are disjoint subsets of / for all i € n, there exists ¢ € J; ! [DY]
such that for all ien,
« if %; is &, then for some (any) & € D,

(1 0m)a{ y w0m) <o

Leo(i) Lea(i)

U af\tca®\l and | bFO\1cbl\,
Lea(d) Lea(i)

and
< if &; is &, then for some (any) ¢ € D, and for any ( € a(i),

@Y n e\ U ((\)NBED) % .

By a similar argument in the proof of Theorem 2.1, we can see that f
decoded a destructible gap which is independent from T. 0
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