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INDEPENDENT FAMILIES OF DESTRUCTIBLE GAPS 

By 

Teruyuki YORIOKA* 

Abstract. We investigate the finite support product of forcing 
notions related to destructible gaps, and prove the existence of a 
large set of independent destructible gaps under 0. 

1. Introduction and Notation 

1.1. Introduction 

An COl-tree can be considered as a forcing notion adding an uncountable 
chain. A Suslin tree is a ccc and col-Baire forcing notion (a Suslin algebra). In 
[8], Kurepa showed that the two-product of one Suslin tree does not have the 
countable chain condition: This can be proved by the product lemma for forcings 
and the fact on ccc-forcings because a Suslin tree as a forcing notion adds an 
uncountable chain and then (if it is normal, i.e. any node has at least two 
incomparable extensions) it also has an uncountable antichain. But under 0, for 
any Suslin tree, we can find another Suslin tree such that the product of these 
Suslin trees is also cec. In fact, under 0, we have several variations of families of 
Suslin trees ([1]). 

In this paper, we deal with destructible gaps. A destructible gap is an 
(COl, COl )-gap which can be destroyed by a forcing extension preserving cardinals. 
A destructible gap has a characterization similar to a Suslin tree ([2]). A Suslin 
tree is an COl-tree having no uncountable chains and antichains. On the other 
hand, for an (C01,cot}-pregap (d,f!.I) = (aa,hajIXEC01) with the set aanha empty 
for every IX E COl, we say here that IX and P in COl are compatible if 
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Then by the characterization due to Kunen and Todorcevic, we notice that an 
(CUI, CUj )-pregap is a destructible gap iff it has no uncountable pairwise compatible 
and incompatible subsets of CUI. ('iRe must notice that from results of Farah 
and Hirschom [4, 5], the existence of a destructible gap is independent with the 
existence of a Suslin tree.) 

One of differences from an cuI-tree is that any (CUI,cuJ)-pregap have never had 
an uncountable chain and antichain at the same time. We have forcing notions 

related to an (CUI, cur)-pregap. 

DEFINITION 1.1 [E.g. [3, 7, 10, 11]). Let (d,fJI) = <aa,ba;aEcuI) be an 

(CUI, CUI )-pregap with aa n ba = 0 for every a E CUI· 

1. f7(d, fJI) := {a E [cutl<l\ Va"'" pEa, (aa n bp) U (ap n ba.) "'" 0}, ordered by 

reverse inclusion. 

2. f/(d,fJI):= {aE [CUlr~; UaEO"aan UaEO"ba = 0}, ordered by reverse 

inclusion. 

We note that f7(d, fJI) forces (d, ffJ) to be indestructible and f/(d, ffJ) 
forces (d,PJ) to be separated. Using these forcing notions, we can express char
acterizations of being a gap and destructibility. 

THEOREM 1.2 [E.g. [3, 7, 10, 11]). Let (d,ffJ) be an (CUI,cuJ)-pregap. Then; 

1. (d, £!4) forms a gap iff f7 (d, £!4) has the countable chain condition. 

2. (d, £!4) is destructible (may not be a gap) iff f/(d, ffJ) has the countable 

chain condition. 

Therefore we say that (d, ffJ) is a destructible gap if both f7 (d, £!4) and 
f/(d, £!4) have the ccc. As in the case of a Suslin tree, by the product lemma 
for forcings, we note that f7(d,ffJ) x f/(d,ffJ) does not have the ccc, and the 
referee of the paper [6] has proved that whenever (di , ffJ;) is an (CUI, cud-gap for 
i E I, I1EI f7(dj, ffJj) has the countable chain condition. However it is inde
pendent from ZFC that the above statement is true for f/, i.e. the following 
statements are both consistent with ZFC: Whenever (d;, £!4i) is a destructible gap 

for i E I, llEI f/(di , fJli ) has the countable chain condition; There exists de
structible gaps (d, ffJ) and (CC,~) such that the product f/(d, £!4) x f/(~,~) 
does not have the countable chain condition. (The first consistency is proved to 
just force by a finite support iteration with the book-keeping argument, and the 
second consistency is proved using an observation due to Stevo Todoreevic as 
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follows: If an indestructible gap is restricted to both a Cohen real and its 
complement (viewed as subsets of co), then this pair of new gaps freeze one 
another. This is pointed by the referee of the paper [?] to me.) We will see that 
e.g., we may have two destructible gaps (.91, t!J) and (~, 2d) so that all variations 
!!£o(d, t!J) x !!£1 (d, t!J) have the ccc. Throughout this paper, we consider families 
of destructible gaps as follows. 

DEFINITION 1.3. A family {(di, .?41); i E I} of destructible gaps is inde
pendent if for every combination (!!£i; i E I) where each !!£/ is either f/ or !IF, a 
finite support product TIlE! !!ri(di, t!JI) has the countable chain condition. Moreover, 
{ (d;, t!J I); i E I} is a maximal independent family of destructible gaps if it is 

maximal with the property of independence. 

We note that destructible gaps added by finite approximations are inde
pendent, and if K many Cohen reals are added, then in the extension there is an 
independent family of K many destructible gaps (by the similar argument due to 
Todorcevic). So by a book-keeping argument of the ccc-forcings, for any (finite or 
infinite) cardinal K, it is consistent with ZFC that there exists a maximal in
dependent family of destructible gaps of size K. 

If ° holds, the size of maximal independent families of Suslin trees are quite 
large. In [13] and [14], Zakrzewski has proved that there exists a family of Suslin 
trees of size 2l'1t whose finite support product is also ccc and for any family of 
Suslin trees of size ~1, if the product of members of this family with finite support 
is also ccc, then it is not maximal with respect to this property. These theorems 
are also true for destructible gaps. That is, 

THEOREM 2.1. Under 0, there exists a family of 2l'1t destructible gaps which is 

independent. 

THEOREM 2.2. Under 0, every maximal independent family of destructible 

gaps has size at least ~2. 

1.2. Notation 

A pregap in PJ(co)jfin is a pair (d,.?4) of subsets of PJ(co) such that for all 
a E d and bE t!J, the set an b is finite. For subsets a and b of ro, we say that a 
is almost contained in b (and denote a ~* b) if a\Z is a subset of b for some IE ro. 
If (.91, fJl) is a gap and both ordered sets (d, ~*) and (fJl, ~*) are well ordered 
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and these order type are K and ...1. respectively, then we say that a pregap has 
the type (K, A) or a (K, ...1.)-pregap. Moreover if K =...1., we say that the pregap is 
symmetric. For a pregap (.9:1, f!4), we say that (.9:I,~) is separated if for some 
c E &( w), a s* c and the set en b is finite for every a E .9:1 and b E f!4. If a pregap 
is not separated, we say that it is a gap. Moreover if a gap has the type (K,...1.), it 
is called a (K, A)-gap. 

For an ordinal ex, if we say that <aI;, bl;; ¢ E ex) is a pregap, we always assume 
that 

. ~ < 1/ in ex, al; S* a" and bl; £* b'T' and 
• for every ~ E ex, the set al; n bl; is empty. 

In proofs of theorems, all of pregaps will constructed to satisfy the following 
property. 

DEFINITION 1.4 ([12]). We say that a pregap (.9:1, f!4) = <ay, by; Y E ex) admits 

finite changes if for any p E ex with P = 1/ + k for some 1/ E Lim n ex (where Lim 

is a class of limit ordinals) and k E W, H, J E [wrNo with H n J = 0 and i > 
max(H U J) there exists nEW so that 

a,,+n n i = H, a'T+n \i = ap\i, b'T+n n i = J, and b'T+n \i = bp\i. 

We note that an (a, a)-pregap <aI;, b<;j ~ E ex) can be considered a function f 

from ex x W into 3 such that for each Y E ex, 

ay = {k E w;j(y, k) = O} and by = {k E w;j(y, k) = I}. 

In other words, a function f codes an (ex, ex )-pregap. 

2. Consequences from 0 

Under 0, there is an independent family of destructible gaps of size 2~1. The 
following proof is a modification of the proof in [13]. 

THEoREM 2.1. Under 0, there exists a family of2~1 destructible gaps which is 

independent. 

PROOF. Let <Do:; a E WI) be a O-sequence for WI x WI, i.e. Do: E &(ex) x &(ex) 
for all exEWI and for all <Eo,E1)E&(WJ)X&(wJ), the set {exEWI; 

<EO n ex, El n ex) = Do:} is stationary, and say Do: = <D2, D~) for each ex E WI. In 
this proof (and the proof of the next theorem), we consider the following coding 
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between pairs <0, n) of subsets of countable ordinals and natural numbers and 

pairs of sequences of the form «Xi; i En), <Eli; i E n» such that each Xi is a 

binary sequence with a fixed length and each Eli is either !IF or !/. Let (f, E COl + 1, 
o s;: (f, and n E co. (0 is considered as a function in 20! by thinking of its 

characteristic function.) We say that <0, n) codes «Xi; i En), <Eli; i E n» if each 

Xi is a binary sequence of length ex, each Elj is either !IF or !/, and for each i E n, 
k E co and "E Lim n ex, 

Eli = !IF {=? O(i) = 0, 

xi(k) = O(n· (k + 1) + i), and Xi(" + k) = D(17 + n· k + i). 
A pair <O,n) can be recovered from a pair «Xj;iEn),<Elj;iEn» by this 

manner. We note that if ex and {3 are limit ordinals in COl + 1 with ex < {3, 
Os;: ex, 0' s;: {3, n E CO, and <O,n) and <O',n) code «Xi; i En), <Eli; i E n» and 

«xi; i En), <El:; i E n» respectively, then D = 0' n ex holds iff xi t (j, = Xj and 

El: = Eli hold for every i E n. Let <In; n E CO) be a sequence of functions such that 
each In is an injection from ([cod<Nor into COl and for distinct natural numbers m 

and n, 

Im[([cod<No)m] n1n[([cod<Non = 0, 

where In[([cor]<N0)"j is a image of the set ([cod<No)n by In. 
We will construct, by recursion on (f, E COl, a function f from 2<wl X co into 3 

with the following properties: 

1. For any xE2'" fi({SE2<0!;ss;:x} x co) codes an (ex,ex)-pregap with the 

admission of finite changes, i.e. when we let 

as := {kECO;f(s,k) = O} and bs := {kECO;f(s,k) = I} 

for each s E 2<w1, <axty, bxty ; Y E ex) forms an (ex, ex)-pregap and admits 

finite changes, 

2. If ex is a limit ordinal and there exists n E co such that 
. 02 s;: In[([coJ]<N0)"j and I;;! [02] s;: ([exJ<Nor, 

• the pair <O~,n) codes the pair «xi;iEn),<Eli;iEn» of the se
quence of binary sequences of length ex and the sequence of mem

bers in {!IF,!/} and the family 1;;1 [02J is a maximal antichain in 

rIiEn Eli ( <ax;ty, bx;tY)YECZ)' 
then for this unique n E CO, there is an infinite subset SO! of natural numbers 

such that for every T E I1iEn Eli ( <ax;tY, bx;tr)YEcz), there is mE co so that for 
every I E SO! \m, every finite sequence <Hi, Ki; i En) with the property that 
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Hi and Ki are disjoint subsets of I for all i E n and there exists a E J;l [021 
such that for all i E n, 
• if !!tf is f/, then 

and 

U ax;t~ \l f;; aXi \l and 
~EI1(i) 

U bXit~\l f;; bXi\l, 
~ EI1(i) 

• if!!ti is IF, then a(i)U't"(i) is a condition in IF«axlty,bxitY)YECX) and for 
any e E aU), 

By the property 1, the construction at successor stages are trivial. Assume that 
IX is a limit ordinal and satisfies the assumption of the property 2 for an n E ()) 

and say <O!,n) codes a sequence <Xii i E n) of functions in 2CX and a sequence 

<!!tiiiEn). Let <J1.hihE())) enumerate conditions in I1iEn!!ti«axlty,bxitY)YEcx) and 
let lcx := {i E nj!!ti = f/}. For all X E 2 CX\ {Xii i En}, we simply take f t{x} x ()), 

such that axnbx = 0, both ())\(axUbx), ax\axtY and bx\bxtY are infinite, and 
axtl' f;;* ax and bxtY f;;* bx for every y E IX. We construct f t ({Xii i En} x ())) which 
satisfies the property 2 as follows. 

By recursion on k E ()), we will construct <cL i E n) E IXn and Ik E ()) such that 

· It < lk+l for every k E ()), 
• for each i E n, the sequence < eL k E ())) is cofina! in IX, and 

• axiteLI n Ik-l = ax1tet n Ik-l, axitet_1 \It-l f;; axit(k' bXitCLI n Ik-l = bXit(k n lk-I 
and bx1tCL \lk-l f;; bXitCI' for every i E nand k E ()). 

Assume that we have already constructed Ck and Ih for all h E k and i E n. Let 
{«HJ,KJjiEn),'t"j)ijENk} enumerate all pairs of sequences <Hi,KijiEn) so 
that Hi and Ki are disjoint subsets of Ik-I and members of the set {J1.hih E k}. 
(So Nk = 21k-lxn X k.) By the induction hypothesis of the property 1 and our 
assumption, we can choose <17}i i E n) E IXn and Uj E J;! [021 by recursion on j E Nk 
such that 

• for each. i E n, put a-I (i) := 0 and 17~! := eLl' 
• we take large enough 17} E IX for each i E n such that 

- if i E lcx, then 
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and 

and 
- if i E n\Ia, then we take 'not only 1'fJ but also a natural number eJ ~ h-l 

and a condition vAn in ff( (axity, bXitY)YEa), which extends 7:j(i) such that 
* 1'fJ > max('[j(i)), 

and 

(in this case, we don't need take care what are axi t1/j n lk-l and 

bXitl'J i n lk-J), 
J 

* for every C; E vAi), 

axite;\ej c:; ax1tl'Jj\ej and bxite;\eJ c:; bX1tl'Jj\ej, 

* for any (.fl, K) E gP(eJ)2 with H n K = 0, there exists C; E Vj(i) such 
that 

and 

* {(axite; \eJ, bx;tl; \eJ)j C; E vj(in = {(aXi te; \eJ, bXitl; \eJ); C; E '[j(in, 
and 

- (Ij is compatible with 

({ 1'fJ}, Vj(i')j i E fa & i' E n\Ia), 

in TIiEn Eri ( (ax;ty, bXitY)YEa)' 

(In the case that i E n\Ia, we take 1'fJ, ej and vAi) as follows: At first, we take 
eJ > h-l such that for every (=I- ( in '[j(i), 

((ax;tl; nbx;W) U (ax;W nbx;tl;)) c:; eJ. 

Next, we take 1'fj > max(7:j(i)) such that for every C; E 7:j(i), 
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aXite\eJ ~ ax1 t1fJ\eJ and bxite\eJ ~ bX1t1fJ\eJ. 

Then we take a family ;te of pairs of subsets of eJ such that 

.;te contains all <ax;teneJ,bxlteneJ) for ~E'tj(i), 
• for every <H,K) =1= <H',K') in ;te, HnK = 0 and 

(HnK')U(H'nK) =1= 0, 

and 
• for every pair <H, K) of subsets of eJ with H n K empty, there exists 

<H',K') E;te such that 

(HnK')U(H'nK) = 0. 

Fixing any ~o E'tii), for each <H,K) E ;te\{ <axite neJ,bx;te neJ);~ E 'tj(i)}, let 
P<H,K) E IX such that 

aXI tp(H,K) n eJ = H, bx; tp(H,K) n eJ = K, 

ax1tp(H,K) \eJ = axiteo \eJ and bx;tp(H,K) \eJ = bx;teo \eJ. 

We have to note that every P<H,K) is diffrent from 11]. At last, let 

vii) := 'tj(i) U {P<H,K); <H, K) E ;te\{ <aXite n eJ, bx;te n eJ); ~ E 'tj(i)}}. 

We should note that 11J doesn't belong to aii) in this case, because Vj(i) and {11j} 
are incompatible in F( <ax;ty, bX;tY)YEex).) 

We must notice in the construction <11J; i E n) that for each j E Nk and 

• for each i E lex, 

and 

• for each i E n\Iex, aii) U'tj(i) E F( <axity, bXifY)YEex) and for every ~ E aj(i), 

(ax;te n (bx1f1fJ\eJ» U ((axi f1fJ\eJ) n bx;fe) =1= 0, 

therefore 

By the property 1 again, we take a large enough ordinal (i E IX such that 
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• for each i E Ia., 

and 
• for each i E n\Ia., 

axd(£ n lk-l = ax;t(LI n lk-l, aXft711l<_1 \!k-l f:; aXftck' 

bx;t(£ n lk-l = bx;t(L n lk-l, and bXft71fvk_1 \!k-l f:; bXft{!c. 

Then we choose large enough lk > lk-l such that 

• for all i E n, 

and 
• for all i E n\Ia., j E Nk and ~ E O"j(i), 

which completes the construction of ci and lk. 

We define 

aX;:= U ax;t(~ and bx;:= U bXit(£ 
kew kew 

and Sa. := {lk;k E co}, which complete the construction of f. 
The rest of the proof is that the family 
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is independent. It suffices to prove that for every n E co, (Xi; i En) E (2Wl) nand 
(g[i;iEn), the product forcing Ileng[i(axita.,bx;ta.)a.ewJ has the countable chain 
condition because of the following well known statement: If a finite support 
product TIl'erPy of forcing notions has an uncountable antichain, then there is 
r' E [rrNO such that the product TIyer' Pl' also has an uncountable antichain. 
(This can be shown by considering a A-system refinement of the set of supports of 
conditions in the antichain.) 
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Assume that a subset Y ofTIiEn.o£i(axira,bxira)"EcoJ is a maximal antichain. 
Let EO:=Jn[Y] and a subset E1 of COl such that (El,n) codes a pair of 

sequences (Xi; i E n) and (.o£i; i En). By <>, we can find a limit ordinal a such that 

• In[([a]<N°rJ = In[([coI]<NorJ nIX, 
• EO n a = DO and E1 nIX = D1 and 

" a' 
• yn((IX]<Nor is a maximal antichain in TIiEn.o£i(axity,bxitY)YEa). 

We will conclude that yn ([a]<No)n is a maximal antichain III 

TIiEn .o£i( (axifa, bXit"\:ECOI) as below. 
Let 1:= {i E n;.o£i = Y'}. Take any condition r in 

II .o£i( (aXi ta, bXi ta)a E COl) \ ([a]<Nor 
ien 

and let (rli; i E I) E cof be such that for each i E I, 

axi t'7i = U aXite and bXd'7i = U bxite · 
eEr(i) ';ET(i) 

In considering the property 2 for a condition (r(i) n £X; i En), we take a large 
enough 1 E Sri. such that for all i E n 

• if i E I and 1'/; is smaller than a, then 

aXi t'1; \Z .::; aXi ta \Z and bXi tlJi \Z ~ bxd" \Z, 

• if i E I and 1'/; is not smaller than £X, 

and 
• if i E n\I, then for all (E r(i)\£x, 

axit,,\Z,::; aXit~\Z and bxd,,\Z'::; bXit.;\Z· 

For each i E n, let 

Hi := axi t'7i n I and K i := bxi t'7i n I. 

Then applying the property 2 of the construction above to these £X, n, I, 
(Hi, Ki; i E n) and (r(i) n £X; i En), we get 0" E J;1 [D~] .::; Y n ([£xrNOr such that 

• if i E I, then 
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U aXit~\l ~ aXi1a.\l and 
(ea(i) 

U bx11e\1 ~ bxIta.\l, 
I; ea(i) 
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• if i E n\I, then aU) U (t(i) n ex) is a condition in S;>( <ax;ty, bXitY>YEa.) and for 
any C; E aU) 

Then 

• if i E I, then 

· if i E n\I, then for every C; E u(i) and C;' E 1: (i) \ ex, 

(axltl; n bx.rd U (ax;j( n bXil';) '1= 0, 

o 

To show the following theorem, we prove that for any independent family r 
of ~l many destructible gaps, using <>, we find a gap which is independent from 
r. The following proof is also similar to the proof in [14]. 

THEOREM 2.2. Under <>, every maximal independent family of destructible 

gaps has size at least ~2. 

PROOF. This proof is similar to a proof of Theorem 2.1. Let <Da; ex E CUI) be 
a <>-sequence on CUI and <In ; n E cu) be as in this proof of Theorem 2.1. (But in 
the proof, we assume that each I n is an injection from ([CUr]<llo x CUI x 2t into 
cud And assume that r:={(d.;,.18.;);C;ECUI\{O}} is an independent family of 
destructible gaps. We denote that (d(,.18.;) = <az,bZ;(ECUl). By recursion, we 
construct a function f from CUI x cu into 3 with the following property: 

1. For any ex E CUI, f I (ex x cu) codes a pregap as in the proof of Theorem 
2.1. 

2. For any ex E CUI, the pregap decoded by f I (ex x cu) admits finite changes. 
3. If IX is a limit ordinal and there exists n E cu such that 

• Da. ~ In[([CUr]<No x CUI X 2rJ and J;l [Da] ~ ([exrNo x IX x 2t, 
• for all C;, rt E Da and i E n, letting 
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J;l(~) =: <a!(i),y!(i),h!(i);iEn), 

h!(i) = h;(i), ygCi) = y;(i) and yg(O) = y;(O) = 0, and 
• letting fa:= {y~(i); 1 S i En} for some (any) ~ E DC! and PIj = ff if 
h~(i) = 0 and !!(j =.9 if hg(i) = 1, the family {<ag(i); i E n); ~ E DC!} is a 
maximal antichain in lIen Pl;(dy;(i) ~ lX, £14Yt (i) ~ a), where (do ~ lX, £140 ~ a) 
= <a?, b?; ( E a) is the pregap decoded by f rca x ill), 

then for this unique nEill, there is an infinite subset Srt. of natural numbers 
so that for every I E Sa and finite sequence <Hi, K j ; i E n) with the property 
that Hi and Ki are disjoint subsets of Z for all i E n, there exists a E J;l [D21 
such that for all i E n, 

• if !!(j is .9, then for some (any) ~ E DC!, 

u a~;(i\Z £; a~\Z and 
(e a(i) 

U b?(i\Z £; b~\l, 
(e a(i) 

and 
• if !!(j is ff, then for some (any) C; E Drt. and for any (E aU), 

(a~;(i) n (b~\l)) U ((a~\l) n b~e(i)) -:f= 0. 

By a similar argument in the proof of Theorem 2.1, we can see that f 
decoded a destructible gap which is independent from r. 0 
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