
TSUKUBA J. MATH. 
Vol. 31 No. I (2007), 99-127 

HOCHSCIllLD COHOMOLOGY ruNG OF THE 
INTEGRAL GROUP ruNG OF DmEDRAL GROUPSt 

By 

Takao HAYAMI 

Abstract. We will determine the ring structure of the Hochschild 
cohomology HH*(ZD2n) of the integral group ring of the dihedral 
group D2n of order 2n. 

Introduction 

Let RG be a group ring of a finite group G over a commutative ring R. If 
G is an abelian group, the multiplicative structure of the Hochschild cohomology 
HH*(RG) is explained by Holm (12] and Cibils and Solotar [5]. In the case where 
G is a non-abelian group, HH*(RG) can be very complicated ring in general, and 
it is more difficult to determine the multiplicative structure of HH*(RG). 

The Hochschild cohomology ring HH*(RG) is isomorphic to the ordinary 
cohomology ring H*(G,,,,RG), where ",RG is regarded as a left RG-module 
by conjugation. So it is theoretically possible to calculate the products on the 
cohomology if an efficient resolution of G is given. Thus we have determined 
the ring structure of HH*(ZQt) for arbitrary generalized quatemion groups Qt 

by calculating the ordinary cup product in H*(Qt, ",ZQt) using a diagonal ap­
proximation on a periodic resolution of period 4 (see [8]). 

On the other hand, it is well known that the Hochschild cohomology 
HHn(RG) is isomorphic to the direct sum of the ordinary group cohomology of 
the centralizers of representatives of the conjugacy classes of G (see [I, Theorem 
2.11.2], [16, Section 4]): 

HH*(RG) ~ tfJH*(Gj,R). 
j 
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This isomorphism is not in general multiplicative, however Siegel and 
Witherspoon [16, Theorem 5.1] define a new product on EBjH*(Gj,R) so that the 
above additive isomorphism is multiplicative (see [2] for a new proof and a 
generalization of this result). They show that the multiplicative structure of the 
Hochschild cohomology of a group ring is described in terms of cup products, 
corestrictions and restrictions on the ordinary cohomology. This result was 
conjugated by Cibils [4] and Cibils and Solotar [5]. This new product gives 
us much helpful information about the Hochschild cohomology ring of group 
algebras. In this paper, we will calculate the Hochschild cohomology ring of the 
integral group ring of the dihedral group D2n of order 2n for n ~ 3 by using this 
new product. 

In Section 1, as preliminaries, we describe some definitions and properties 
about the Hochschild cohomology, the group cohomology, and the Product 
Formula given by Siegel and Witherspoon [16, Theorem 5.1]. 

In Section 2, we state efficient resolutions for dihedral groups and cyclic 
groups, and we describe the presentations of the integral cohomology rings of 
these groups. In fact, efficient free resolutions of dihedral groups are given by 
Wall [18], Hamada [6] and Handel [7]. We state a slightly different version of 
the Handel's resolution. 

In Section 3, we calculate conjugations, restrictions and corestrictions be­
tween the integral cohomology rings of subgroups of D2n (Propositions 3.4, 3.7 
and 3.9). In order to calculate the cup products using the Product Formula 
we need their computations. These are given by calculating the images of the 
generators of the cohomologies on the cochain level by using chain trans­
formations. 

In Section 4, we calculate the cup products on H*(D2n, ",ZD2n) 
(~HH*(ZD2n)) using the Product Formula (Propositions 4.1 through 4.7), and as 
the main result of this paper we determine the ring structure of H*(D2n,,,,ZD2n) 
(~HH*(ZD2n)) (Theorem 4.8). 

1 Preliminaries 

1.1 Hocbschild Cohomology and Group Cohomology 

Let R be a commutative ring and A an R-algebra which is a finitely gen­
erated projective R-module. If M is a Ae(= A ®RA OP)-module, then the n-th 
Hochschild cohomology of A with coefficients in M is defined by 

Hn(A,M) := ExtAe(A,M). 
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The cup product gives HH*(A) := EBn~oHH"(A) a graded ring structure with 
identity 1 E Z(A) ~ HHO(A), where HHn(A) denotes H"(A,A) and Z(A) de­
notes the center of A, and HH*(A) is called the Hochschild cohomology ring 
of A. The Hochschild cohomology ring HH*(A) is graded-commutative, that is, 
for ex E HHP(A) and P E HHq(A) we have exp = (-1)pqpex (see [14, Proposition 
1.2] for example). 

Suppose that G is a finite group and that A is a G-module. Then we have the 
definition of the n-th cohomology group of G with coefficients in A: 

Let H be a subgroup of G. We denote restriction and corestriction by resff and 
corff, respectively (see [3], (17) or [19]): 

Note that 

res;;: Hn(G,A) ----4 Hn(H,A), 

cor;; : Hn(H,A) ----4 H"(G,A). 

cor;;. res;; ex = IG: Hlex for ex E Hn(G,A). (1.1) 

Let 9 H = gHg- 1 be the conjugacy subgroup of H for 9 E G. Then there is a 
homomorphism called conjugation by g: 

Note that g* is the identity for 9 E H, and note that (glg2) * = 9~ g2 holds for 
gl, g2 E G. These mappings of the cohomology groups are independent of the 
choice of resolutions. 

About the group ring RG there are close relations between the Hochschild 
cohomology and the group cohomology. The Hochschild cohomology ring 
HH*(RG) is isomorphic to the ordinary cohomology ring H*( G, ",RG), where 
",RG is regarded as a left RG-module by conjugation (see [16, Proposition 3.2) 
or [13) for example). 

1.2 Product Formula 

Suppose· that G is a finite group and R is a commutative ring. Let 
gl = 1,92, ... , gr be representatives of the conjugacy classes of G. Fix gi, and 
let Gi be the centralizer of gi. RG;-homomorphisms Og;: R ----4 RG; A I-t Ag; 
and 1[g;: RG ----4 R; LaEGAaa I-t Ag; induce 0;;: Hn(G;,R) ----4 Hn(Gj,,,,RG) and 
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n;/ : Hn(Gi,,,,RG) ~ Hn(Gj,R), respectively. We define Yi: Hn(Gj,R) ~ 

Hn(G,,,,RG) by 

Yi(a) =cor~ e;(a), for aEHn(Gi,R). 

Then we have the following isomorphism of graded R-modules 

cI> : Hn( G, ",RG) ~ EB Hn( Gj , R); ( f-t (n;, res~(())i' (1.2) 
i 

and its inverse is given by cI>-l(a) = Yi(a) for a E Hn(Gi,R) (see [16, Section 4]). 

Let D be a set of double coset representatives for Gi\G/Gj . For each a E D, 

there is a unique k = k(a) such that 

(1.3) 

for some bEG. In the above, Xg denotes xgx-1 for x, g E G. Siegel and 

Witherspoon [16] define the following new product on EBjH*(Gj,R) so that the 

above additive isomorphism is multiplicative: 

THEOREM 1.1 (Product Formula). Let a E H*(Gj,R), f3 E H*(Gj,R). Then the 

following equation holds in H* ( G, ljIRG): 

(1.4 ) 

where D is a set of double coset representatives for Gi\G/Gj , k = k(a) and 

b = b(a) are chosen to satisfy (1.3), and W = baGj n bGi. 

Note that the sum in (1.4) is independent of the choices of a and b, and note 

that Yl is a monomorphism between the cohomology rings (see [16, Section 5]). 

2 Integral Cohomology Rings of Dihedral Groups and Cyclic Groups 

In this section, we describe presentations of the integral cohomology rings of 
dihedral groups and cyclic groups. 

Let D2n denote the dihedral group of order 2n for any positive integer n 2:: 2: 

D2n = (x,ylx n = y2 = l,yxy-I = X-I). 

Efficient free resolutions of Z over ZD2n are given by Wall [18] and Hamada [6]. 

Handel [7] reformulates this resolution and determines a diagonal approximation 
on the new resolution. The boundary operators of the Handel's resolution are 
right ZD2n-homomorphisms. For our convenience, we state a resolution whose 
boundary operators are left ZD2n-homomorphisms. This is a slightly different 

version of the Handel's resolution. 
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Let Mq denote a direct sum of q copies of a module M. We set 
Yq = (ZD2n )q+l for q ~ o. As elements of Yq (or Zq+l), we set 

CT={(O'''.'O'!'O'''''~) (if l::;r::;q+l), 
q q+l 

o (otherwise). 

Define left ZD2n-homomorphisms e: Yo -+ Z; cJ ~ 1 and Oq : Yq -+ Yq-l (q> 0) 
given by 

(xy + (-I)(q-T)/2)c~=i + (x - I)C~_1 for q even, r even, 

(y _ (_I)(q+r+l)/2)cT- 1 + Ncr for q even, r odd, 
Oq(c;) = 

q-l q-l (2.1) 
(y - (-1 ) (q+T+l)/2)CT- 1 - NcT for q odd, q-l q-l r even, 

(xy - (-1 )(q-T)/2)C~=i + (x - 1 )C~_1 for q odd, r odd. 

In the above, N denotes ~;:r} Xi. It is easy to check that e· 01 = 0 and 
Oq ·Oq+l = 0 (q ~ 1) hold. To see that the complex (Y,o) is acyclic, we state a 
contracting homotopy Tq : Yq -+ Yq+l (q;<:: -1), where we set Y-l = Z: 

L 1(1) = cJ. 
If q(~ 0) is even, then 

where we set 

(r = 1,0::; i < n,j = 0), 

(r = 1,0::; i < n,j = 1), 
(r ~ 2,0::; i < n,j = 0), 
(r(;<:: 2) even, 0::; i < n,j = 1), 

(r(~ 3) odd, 0::; i < n,j = 1), 

{
X i - 1 +Xi-2 + ... + 1 

Ni = o 
(i ~ 1), 
(i = 0). 

If q(~ I) is odd, then 

o (r = 1,0::; i::; n - 2, j = 0), 
(r= l,i=n-l,j=O), 

(r = 1, i = O,j = 1), 

(r = 1,1 ::; i < n,j = 1), 
(r ~ 2,0 ::; i < n, j = 0), 
(r(~ 2) even, 0::; i < n,j = 1), 

(r(~ 3) odd, 0::; i < n,j = 1). 
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For each q ~ 0, it is not hard to see that the equation 

(~q+lTq + Tq_l~q)(xiyie;) = xiyie; 

holds. Therefore (Y,~) is a free resolution of Z over ZD2n (el [7, Theorems 2.1 
and 3.3]). 

Applying the functor HomzD:z,,(-,Z) to the resolution (Y,~), we have the 
following complex, where we identify HomzD:z,,(Yq,Z) with Zq+l using an iso­

morphism HomzD:z,,(Yq,Z) -+ zq+1; f 1-+ (f(e~),j(e:), ... ,j(erl)): 

# Sf 2 ~ 3 ot 4 ot 5 
(HomZD:z,,(Y,Z),~ ): 0 -+ Z -+ Z -+ Z -+ Z -+ Z -+ ... , 

(x - I )a;+l + (y - (-1 ) (q+T-l)/2)a;::1 for q even, r odd, 

~:+l(a;) = 
-NaT + (xy _ (_I)(q-T)/2)aT+! for q even, r even, q+l q+1 
NaT + (xy + (_I)(q-r)/2)aT+1 for q odd, r odd, q+l q+l 
(x - 1 )a;+l + (y - (-I )(q+T-l)/2)a;!1 for q odd, r even, 

(1 - (-1 )(q+r-l)/2)a;!1 for q even, r odd, 

-naT + (I _ (_I)(q-r)/2)aT+! for q even, r even, 
= q+l q+! 

naT + (I + (_I)(q-r)/2)ar+1 
q+l q+l for q odd, r odd, 

(I - (-1 ) (q+T-l)/2)a;!t for q odd, r even. 

In the above, a; denotes ae; for a E Z. 
If n ~ 2 is even, then the module structure of Hk(D2n'Z) is represented by 

the form of the subquotient of the complex as follows: 

for k = 0, 

for k = 4q + I, 
(2.2) 

ctZ(~C4i+l + C4i+ 2)/2 ffi ctzc4i+3j2 Q7 2 4q+2 4q+2 W Q7 4q+2 
;=0 i=O 

for k = 4q+2, 

for k = 4q+3. 
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In the above, M/s denotes the quotient module M/sM for a Z-module M and 
an element s e Z, and we interpret EB~1 term as 0 if q = O. Note that we 
have the same module structure and ring structure if we use the Handel's 
resolution. We put A := ci e H2(D2n' Z), p, := (n/2)c! + ci e H2 (D2n , Z), 
v:=cteH3(D2n,Z) and C;:=cjeH4(D2n,Z). Then A, p" v and c; multi­
plicatively generate H*(D2n'Z), and the ring structure is given as follows (see 
[7, Theorem 5.2]): 

H*(D2n' Z) = Z[A,p" v, c;l/(2A, 2p" 2v,nc;,p,2 + Ap, + (n2/4)c;, v2 + Ac;), 

(deg A = deg p, = 2, deg v = 3, deg c; = 4). 

In .particular, we have 

H*(D4' Z) = Z[A,p" vl/ (2A, 2p" 2v, v2 + Ap,2 + A2 p,), 

(deg A = deg p, = 2, deg v = 3). 

(2.3) 

(2.4) 

If n is odd, the cohomology groups of D2n are periodic. The integral coho­
mology of D2n is as follows: 

Z for k= 0, 
Zc~/n $ ZC~+1 /2 for k = 4q (q -# 0), 

Hk(D2n' Z) = 0 for k = 4q + 1, (2.5) 
Zc::1~/2 for k = 4q + 2, 
o for k = 4q + 3. 

If we put a. := ci e H 2 (D2n, Z) and P := cj + cl e H4(D2n' Z), we have the fol­
lowing (see [7, Theorem 5.3]): 

H*(D2n'Z) = Z[a.,Pl/(2a.,2np,a.2 - np), 

(deg a. = 2, deg P = 4). (2.6) 

Next, we describe the integral cohomology ring of the cyclic group. Let 
H = (a) denote the cyclic group of order l(~ 2). Then the following periodic 
ZH-free resolution for Z of period 2 is well known (see [3, Chapter XII, Section 
7] for example): 

(ZH,OH) : ... ---7 ZH ~ ZH ~ ZH ~ ZH ~ Z ---70, 

/-1 

(OHh(c) = c La;. 
;=0 
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Applying the functor HomZH( -, Z) to the above periodic resolution, we have 
the complex 

) # (OH)t (OH)r (OH)t 
(HomZH(ZH,Z),(OH ):O~Z~Z~Z~Z~"" 

(oH)f(c) = (a -l)c = 0, 

/-1 

(OH)t(C) = ~.:::>iC = Ie, 
i=O 

and we have 

{
z for k= 0, 

Hk(H,Z) = Z/l for k == 0 mod 2, k =F 0, 

o for k == 1 mod 2. 

(2.7) 

If we put x:= 1 E H 2(H,Z), then we have the following (see [3, Chapter XII, 
Section 7]): 

H*(H,Z) =Z[xl/(lX), (degx=2). (2.8) 

3 Conjugation, Restriction and Corestriction 

In this section, we calculate conjugations, restrictions and corestrictions 
between the integral cohomology rings of the centralizers of representatives of 
the conjugacy classes of D2n. These are given by a method similar to [9, Section 
2.1]. 

3.1 The Case n Even 

In this subsection, we consider the case n = 2m (m ~ 2). We take repre­
sentatives of the conjugacy classes of D2n as follows: 

Then their centralizers are 

G1 = (h. = D2n, Gi+2 = (x) (1 ~ i < m), Gm+2 = (xm, y), Gm+3 = (xm,xy). 

Note that Gm+2 and Gm+3 are isomorphic to D4. 

In the following, we set 

H*(Gr, Z) = Z[A,,u, v, (l/(2A,2,u,2v,n(,,u2 + A,u + (n2/4)(, v2 + A(), 

(deg A = deg,u = 2, deg v = 3, deg (= 4), 
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H* (Chc+2, Z) = Z[O"lI (nO") (deg 0" = 2), 

H*(Gm+r+l'Z) = Z[A"J.l,., Vr]j(2A,,2J.l,.,2vr• v; + Arf.l; +A;J.l,.) 

(deg AT = deg J.l,. = 2, deg Vr = 3), 
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where r = 1,2 and 1 ~ k ~ m - 1. These presentations follow from (2.3), (2.4) 
and (2.8). By (1.2), (2.2) and (2.7), we have 

zm+3 

o 
Hk(D2n,,,,ZD2n) = (Zj2)4q 

(Zj2)8(q+l) EB (Zjn)m-l 

(Zj2)8q+2 EB (Zjn)m+l 

for k= 0, 
for k = 1, 

for k = 2q + 1 (q '2 1), 

for k= 4q+2 (q'2 0), 

fork=4q (q'21). 

In the above, Mr denotes a direct sum of r copies of a module M. 
Moreover we set 

H*( <xm ), Z) = Z[-r]j(2-r) (deg -r = 2). 

First, we calculate conjugation maps. We need chain transformations in both 
directions between the standard resolution and the resolution given by (2.1). The 
following equations are useful for the proof of Lemma 3.1: 

Ni+Xi~=Ni+j, Ni(x-1)=xi -1, y~=x-j~xy (i,j'20). 

LEMMA 3.1. Let (X,d) be the standard resolution of D2n and (Y,O) the 

resolution of D2n given by (2.1). 

(i) An initial part of a chain transformation Uk : Xk ---7 Yk lifting the identity 

map on Z is given as follows: 

Uo([-]) = cJ; 

where 0 ~ i, j < nand p, q = 0, 1. 

(if i + j < nand p = 0), 
(if i + j '2 n and p = 0), 
(if i - j '2 0 and p = 1), 
(if i - j < 0 and p = 1), 

(ii) An initial part of a chain transformation Vk : Yk ---7 Xk lifting the identity 

map on Z is given as follows: 
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vo(cJ) = [.); 

VI(Ct) = [x], VI(Ct) = [y); 

v2(ci) = [Nix]' V2(Ci) = [xy I x] + [xly], v2(ci) = [y + 11 y). 

PROOF. We prove (i) only. It suffices to check that the equation Uk-Idk = 
~kUk holds for k = 1,2. In the case k = 1, we have 

Uodl([XiyP]) = UO«Xiyp - 1)[·]) = (XiyP - l)cJ 

=Ni(x-l)cJ +pxi(y-l)cJ =~lUl([Xiyp]). 

In the case k = 2, the proof is divided into four cases. 
Case i + j < n, p = 0: 

uld2([Xi I xjyq]) = Ul (xi[xjyq)- [Xi+jyq] + [Xi]) 

. 1 . . 
= (X'~ - Ni+j + Ni)cl = 0 = ~2U2([X'1 xlyq]). 

Case i + j ~ n, p = 0: 

1 .. = NCl = ~2U2([X' I xlyq]). 

Case i - j ~ 0, p = 1: 

u1d2([Xiy I xjyq]) = Ul (Xiy[xjyq)- [xi-jyl-q) + [XiyJ) 

= (Xiy~ - Ni- j + Ni)cl + (qxi-jy + (q - l)xi- j + xi)cf 

= xi-j~(xy + l)cl + xi-j(xj - 1 + q(y + l))cf 

= xi-j~«xy + l)cf + (x - l)cf) + qxi-j(y + l)cf 

= ~2U2([Xiy I xjyqJ). 

Case i - j < 0, p = 1: 

uld2([Xiy I xjyqJ) = (Xiy~ - Ni-j+n + Ni)cf + (qxi-jy + (q - 1 )xi-j + xi)cf 

= -NcI + xi-j~«xy + l)cl + (x - l)cf) + qxi-j(y + l)cf 

(since Ni - Ni-j+n = -xiNn_j = -xi-j(Nn -~)) 
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To prove (ii), it suffices to check that the equation dkvk = Vk-I<>k holds for 
k= 1,2. 0 

LEMMA 3.2. Let H = (a) denote the cyclic group of order l(";? 2). (ZH, as) 
deno tes the periodic resolution of H and (XH, dn) denotes the standard resolution 

of H. 

(i) An initial part of a chain transformation (VH)k : (ZH)k -t (XH)k lifting the 

identity map on Z is given as follows: 

(VH)o(1) = [.J; 

(VH)!(1) = [aJ; 

/-1 

(vHh(l) = 2:)ai laJ. 
i=O 

(ii) An initial part of a chain transformation (UH)k : (XH)k -t (ZH)k lifting the 

identity map on Z is given as follows: 

for 0 s i, j < I. 

(UH)O([']) = 1; 

(UH)! ([a i]) = {ao
i- l + a i - 2 + ... + 1 (i";? 1), 

(i = 0); 

PROOF. See [11, Proposition 1] for (i) and [9, Lemma 2.1] for (ii). 0 

LEMMA 3.3. Suppose H is a subgroup of a finite group G and A is a 

G-module. (XH,dH) and (X(9H),d(9H)) denote the standard resolutions of Hand 

g H = gHg-! for g E G, respectively. Then the conjugation map g* : Hk(H, A) -t 

Hk(gH,A) is given by the following on the cochain level: 

(g(f))([.]) = gf([·]) (k = 0), 

(g(f))([Pllp21·· ·IPk]) = gf([g-!Plglg- Ip2gl·· ·Ig-!Pkg]) (k";? 1), 
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PROOF. See [19, Proposition 2-5-1]. o 

In the following, (X,d) and (Y,J) denote the standard resolution of D2n and 
the resolution of D2n given by (2.1), respectively. 

Moreover, (X(l+l), d(l+l)) denotes the standard resolution of Gm+I+2 = 
<xm,xly) for 1= 0, 1, and (y(I+l),J(l+l)) denotes the resolution of Gm+I+2(~ D4) 

for 1= 0, 1 given by (2.1). The boundaries of (y(l+l),J(I+l)) are left ZGm+I+2-

homomorphisms given by 

(xm+ly + (-1 ) (q-r)/2)c;=i + (xm - 1 )C;_l 

(xly - (_I)(q+r+l)/2)c;=t + (xm + l)c;_l 

(xly - (_I)(q+r+l)/2)c;=1_ (xm + l)c;_l 

(xm+ly - (-I)(q-r)/2)c;=1 + (xm - I)C;_l 

for q even, r even, 

for q even, r odd, 

for q odd, r even, 

for q odd, r odd, 

for q> O. By Lemma 3.1, an initial part of a chain transformation 
(u(l+l))k: (X(I+l))k ----7 (y(l+l))k is given by 

(i+j<2,p=0), 
(i+ j=2,p=0), 
(i-j~O,p=I), 

(i-j<O,p=l), 

where i, j, q = 0, 1, and an initial part of a chain transformation 
(v(l+l))k: (y(l+l))k ----7 (X(l+l))k is given by 

(v(l+l))o(cci) = [.]; 

(v(l+I))1 (cD = [xm], (v(l+I))1 (cf) = [xly]; 

(v(l+I)h(ci) = [xm + 11 xm], (v(l+I)h(ci) = [xm+ly I xm] + [xm I xly], 

(v(l+I)h(ci) = [xly + 11 xly]. 

PROPOSITION 3.4. The following hold: 

(i) y*(o-) = -(1, 

(ii) (xm/2) * (fl.r) = Ar + fl.r for m even and r = 1,2. 
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Moreover, g* maps l(eHO(Gr,Z)) to l(eHO(gGr;Z)) for 1:S;r:S;m+3 and 

g eD2n. 

PROOF. We prove (xm/2)*(,ul) = Al +,ul (meven) only. This is given by the 

composition of the following maps on the cochain level: 

;I « (1») ) -----t HomzG.,+2 X 2' Z 

p~ Z3 
-----t , 

where we set 1= ml2 and p~ denotes the isomorphism HomZG.,+2«y(1)h,Z) ~ Z3 
stated in Section 2. Since 

(;Z(P!;I(,ud . (u(1)h))«v(1)h(ci)) = p~-l(,ul) . (u(l)h([xm + 11 xm)) = 1, 

(;I(P~-l(,ud· (u(1»)2))«v(1)h(ci)) = P~-l(,ud· (u(l)h([ylxm] + [xm I xmy)) = 1, 

(;I(P~-l(,ud· (u(l)h))«V(1))2(d)) =P~-l(,ud· (u(l)h([xmy+ llxmy)) = 1, 

it follows that (xm/2)*(,uI) = A.I +,ul holds. Similarly, we have (Xm/2)"(#2) = 
A2 + ,u2. The equation y*(O") = -0" is obtained by using Lemmas 3.2 and 3.3. 

o 

Next, we calculate restriction maps. In the following, (ZH,OH) denotes the 
periodic resolution of a cyclic subgroup H of D2n • 

LEMMA 3.5. (i) A chain transformation Wk : (Z(x»)k ---+ Yk lifting the identity 

map on Z is given by wk(l) = cfc (k;;::: 0). 
(ii) An initial part of a chain transformation (W(l))k: (y(l»)k ---+ Yk (I = 1,2) 

lifting the identity map on Z is given as follows: 

(w(l»)o(cJ) = cJ; 

(w(l)h (cD = NmcL (w(l)h (c?) = Nl-lct + xl-lC?; 
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PROOF. (i) is easily obtained. To prove (ii) , it suffices to check that 
<h· (w(l))k = (W(l)h_l . (t5(l))k holds for k = 1,2,3,4. The proof is straightfor­

ward. 0 

LEMMA 3.6. (i) A chain transformation Sk: (Z(xm»k ~ (Z(x»k lifting the 
identity map on Z is given by s2k(1) = 1; S2k+l(1) = Nm (k;;::: 0). 

(ii) A chain transformation (s(l))k: (Z(xm»k ~ (y(l))k (l = 1,2) lifting the 
identity map on Z is given by (s(l))k(l) = cJc (k;;::: 0). 

PROPOSITION 3.7. The following hold: 

(m even), D1n 

( d'd) resG v = V2, m 0, m+3 

PROOF. These are given by using Lemmas 3.5 and 3.6. We calculate 
resGD1n .A. and resGD1n !l as examples. These are given by the composition of the 

m+2 m+2 

following maps on the cochain level: 

p~ Z3 
---+ , 
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where 1X2 denotes the isomorphism HomzDo. (Y2, Z) ~ Z3 stated in Section 2. 
Since 

1X21(tl) . (w(l)h(ci) = 1X21(tl)(ci) = 0, 

1X21(tl)· (w(l)h(cD = 1X21(tl)(Nmc;) = 0, 

1X2 I (tl). (w(I)h(c~) = 1X21(tl)(ci} = 1, 

1X2I(Ji.) . (w(l)h(ci) = 1X2I (Ji.) (cj) = m, 

1X21 (Ji.) . (w(l))2( cD = 1X21 (Ji.) (NmcD = m, 

1X21(Ji.). (w(l))2(d) = 1X21(Ji.)(Ci} = 0, 

it follows that resGD2n A = Al and resGD2n Ji. = mJi.1 hold. 
m+2 m+2 o 

Finally, we calculate corestriction maps. To compute them we need the 
following lemma: 

LEMMA 3.8. Suppose H is a subgroup of index I of a finite group G and A is 
a G-module. Fix a set of right coset representatives S = {COl (= 1), CO2, ... , COl} of H 
in G, and let c(g) (E S) denote the representative of the right coset containing g E G. 
(XG,dG) and (XH,dH) denote the standard resolutions of G and H, respectively. 
Then the corestriction map cor}J: Hk(H,A) -+ Hk(G,A) is given by the folloWing 
on the cochain level: 

(T;(u))([.]) = L co-Iu([.]) (k = 0), 
roES 

(T;(u)) ([0"110"21 . . ·IO"k)) = L co-1u([c(co )0"1 c(coO"J}-1Ic(coO"J)0"2c(COO"I 0"2)-11 ... 

roES 

where u E HomZH( (XH )k' A) and 0"1,0"2, .. ·, O"k E G. 

PROOF. See [19, Proposition 2-5-2]. o 

PROPOSITION 3.9. The following hold: 

cor(Dx2n) 0" = 0, corDG2n J1.1 = tl + Ji. (m even), corGD2n Ji.2 = J1. (m even). 
m+2 m+3 
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PROOF. First we calculate cort) a. Using Lemmas 3.1, 3.2 and 3.8, this is 
given by the composition of the following maps on the cochain level: 

v" 
~ HOmZD2n(Y2,Z) 

where P2 denotes an isomorphism HomZ(x>((Z(x>h,Z) -=. Z; f r---; f(1). Let 
{I, y} be a set of right coset representatives of <x) in D2n • Then C(Xi) = 1 and 
C(Xiy) = Y hold. Since 

n-l 

= 2::)21 (a) . (U(x»)2([c(l)x ic(x i )-11 C(Xi)XC(Xi+l)-I] 
i=O 

n-l 

= LP21 (a) . (U(x)U[xilx] + [x-ilx- l ]) 

;=0 

=n, 

(Tg") (P21 (a) . (U(x>h))(V2(ci)) 

= p21(a). (u<x>h([c(l)xyc(xy)-ll c(xy)xC(y)-I] 

+ [c(y)xYC(x-l)-I I c(x-1)xc(lfI] 

+ [c(I)XC(X)-I I c(x)YC(xy)-I] + [c(y)xc(yx)-I I c(yx)yc(x-I)-I]) 

=P21(a)· (U(x)h([xlx- l ] + [X-l Ix] + [xiI] + [x-Ill]) 

=2, 
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(T{':)(P2I(a). (U(x)h»(V2(cD) 

= PlI(a) . (U(x)h([c(l)yc(y)-ll c(y)yc(I)-l] + [c(y)yc(I)-11 c(l)yc(y)-l] 

+ [c(l)lc(l)-ll c(I)YC(y)-l] + [c(y)lc(y)-l/ c(y)yc(l)-l]) 

= 4Pl l (a). (U(x)h([1 I 1]) 

=0, 

we have corg.') a = 2J.l = O. 
Next, let m be even and {I, x, ... , x m- l } a set of right coset representatives of 

Gm+2 = <xm, y) in D2n • Then C(Xi) = c(xm+i) = Xi (0 ~ i ~ m -1) and C(Xiy) = 
c(xm+iy) = xm- i (1 ~ i ~ m) hold. Since 

(T~2(p~-1(J.lI)· (u(l)h» (v2(ci» 

m-l n-l 
= L L(p~-l(J.lI)· (u(l)h) ([C(Xi)XJc(Xi+J)-1 I C(Xi+l)xc(Xi+j+l)-l]) 

i=O J=O 

=m, 

m-l 
= L(p~-l(J.ld . (u(l)h)([c(xi)xyc(xi+1y)-1 I C(Xi+1y)xC(Xly)-I] 

i=O 

+ [c(xi)xc(xi+l)-ll C(Xi+l)yc(Xi+ly)-l]) 

= p~-l (J.ld . (u(l)h([xmy I xm]) 

= 1, 

m-l 
= L(p~-l(J.ld . (u(l)h)([c(xi)YC(xiy)-ll·c(xiy)yc(xi)-l] 

i=O 

+ [11 C(Xi)YC(Xiy)-l]) 

= p~-I(J.ll) . (u(1)h([yly] + (m - l)[xmy I xmy]) 

=m-l, 

it follows that corGDJ.n J.l1 = (m - 1)A. + J.l = A. + J.l holds. 
m+2 
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Finally, let m be even and {I, x, ... ,xm- 1} a set of right coset repre­
sentatives of Gm+3 = (xm,xy) in D2n. Then C(Xi) = c(xm+i) = Xi (0':::;; i.:::;; m -1) 
and C(Xiy) = c(xm+iy) = xm-i+l (2':::;; i.:::;; m + 1) hold. By a similar calculation as 

above, we have corGDp, fl.2 = (m - 2)A + J.l = J.l. 0 
m+3 

Note that from (1.1), Propositions 3.7 and 3.9, and [19, Proposition 4-3-7], we 

have 

Dp, (1) Dp, ( Dp, 1 ) 1 Dp, {A2 + AJ.l (m even), corG /LIJ.ll = corG resG /L . J.lI = /L . corG J.ll = 
.. +2 m+2 m+2 m+2 AJ.l (m odd), 

and so on. 

3.2 The Case n Odd 

In the case n odd, the calculations are easily obtained. We set t = (n - l)j2. 

We take representatives of the conjugacy classes of D2n are 

gl = 1, gi+1 = Xi (1 .:::;; i.:::;; t), gt+2 = y, 

and their centralizers are 

Gl = D2n, Gi+1 = (x) (1 .:::;; i.:::;; t), Gt+2 = (y), 

respectively. We set 

H*(GI' Z) = Z[IX,PlI(21X, 2np, 1X2 - np) (deg IX = 2, deg P = 4), 

H*(Gk+I'Z) = Z[p]j(np) (deg p = 2), 

H*(Gt+2,Z) = Z[X]j(2X) (degx = 2), 

where 1 .:::;; k .:::;; t. These presentations follow from (2.6) and (2.8). By (1.2), (2.5) 
and (2.7), we have 

zt+2 

o 
Hk(D2n,1/IZD2n) = (Zj2)2 E!3 (Zjn)t 

o 
(Zj2)2 E!3 (Zjn)t+1 

for k = 0, 

for k == 1 (4), 

for k == 2 (4), 

for k == 3 (4), 

for k == 0 (4), k # O. 

By computations similar to Propositions 3.4, 3.7 and 3.9, we have 

*( ) - D1n _ 0 D1n P - 2 D1n - 0 Y P - -p, res (x) IX - , res(x) - p, cor (x) p - . 

Moreover, by (Ll), (2.6) and (2.8), we have res~ IX = X, res~» P = X2 • 
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4 Products on H* (D'J.n , ",ZD'J.n) 

In this section, we will determine the ring structure of the Hochschild 
cohomology H*(D'J.n, ",ZD'J.n)(!:::!. HH*(ZD'J.n)) by using the Product Formula. In 
the following, we write XY in place of X......, Y for brevity. 

4.1 The Case n Even 

In this subsection, we calculate the products on the Hochschild cohomology 
H*(D2n, ",ZD'J.n)(!:::!. HH*(ZD'J.n)) for the case n = 2m (m ~ 2). In the following, 
we set 

A2 = Yl (A.), B2 = Yl (p), A3 = YI (v), A4 = Yl (e), Co = Y2(1), 

(Ei)O = Yi+2(1) (I ::; i::; m -I), (Eih = Yi+2(a) (1::; i::; m -I), 

So = Ym+2(1), S2 = Ym+2(,ud, To = Ym+3(1), T2 = Ym+3(Jl2)' 

Moreover, we set Fi = (E1)i (i = 0,2), 

(E-k)O 
2 

Uk = (Ek)o 
2Co 
(En-k)o 

(-m < k < 0), 
(k = 0), 
(0 < k < m), 
(k = m), 
(m < k < n), 

-(E-k)2 
o 

Vk = (Ekh 
o 
-(En-kh 

(-m < k < 0), 
(k = 0), 
(0 < k< m), 
(k= m), 
(m < k < n). 

In the following, we interpret 2:~:(2)-1 term as 0 if m = 2. 

First, we calculate products in degree O. The products in degree 0 correspond 
to the multiplication in the center of ZD2n • By using this identification, we have 
the following proposition: 

PROPOSITION 4.1. (i) If m is even, the following equations hold in 
HO(D'J.n, ",ZD'J.n): 

cg = 1, CO(Ei)O = (Em-i)o, CoSo = So, CoTo = To, 

(£.) S = { 2So (i even), (Eo) T, = { 2To (i even), 
I 0 0 2To (i odd), I 0 0 2So (i odd), 

(m/2)-1 m/2 
sg = TJ = m(l + Co) + m L (E2/)0' SoTo = m L(E21-1)0, 

[=1 1=1 
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(ii) If m is odd, the following equations hold in HO(D2n, ",ZD2n): 

(m-l)/2 

(E-) S, = {2So (i even), 
I ° ° 2To (i odd), 

S5 = m + m L (E2/) ° , (Ei)o(E.i)o = Ui+j + Ui- j. 
1=1 

REMAR.K 1. Since the equations (E2)0 = FJ - 2 and (Ek)o = Fo(Ek-do -
(Ek-2)0 (3 ~ k ~ m - 1) hold, it follows that the powers of Fo generate (Ek)o 
(2 ~ k ~ m - 1). Hence HO(D2n, ",ZD2n ) is generated by the products of Co, Fo, 
So and To (resp. Co, Fo and So) for the case m even (resp. m odd). 

Next, we compute cup products for generators of HO (D2n , ",ZD2n ) and 
generators of H2(D2n' ",ZD2n). 

PROPOSITION 4.2. (i) If m is even, the following equations hold in 

H2(D2n,,,,ZD2n): 

(1) CoA2 = Y2(il), COB2 = Y2(Ji), CO(Eih = -(Em- i)2' CoS2 = SoA2 + S2, 
COT2 = ToA2 + T2. 

(2) (Ei)oA2 = (Ei)oS2 = (Ei )oT2 = 0, (Ei)oB2 = m(Eih, (Ei)O(Ej)z = 

Vi+j + ~-i' 
(3) SOA2 = Ym+2(ild, SOB2 = So(Eih = 0, SOS2 = (1 + CO)(A2 + B2) + 

(m/2)-1 m/2 
m L: (EZZ )2' SOT2 = m L: (Ezl-1h· 
~ ~l ~ 

(4) ToA2 = ToB2 = Ym+3( .. h), To(Eih = 0, ToSz = m L: (EZ1-l)2' ToT2 = 
(m/2)-1 1=1 

(1 + Co)B2 + m L: (E2/h· 
1=1 

(ii) If m is odd, the following equations hold in H2(D2n, ",ZD2n ): 

(1) CoA2 = Y2(il), COB2 = Y2(Ji), CO(Eih = -(Em-i)z· 
(2) (Ei)oA2 = 0, (Ei)oBz = m(Eih, (Ei)o(Ejh = Vi+j + ~-i' 
(3) SoAz = Ym+2(ilt), SOB2 = Ym+z(Jid, So(Ei)z = 0, CoSoAz = Ym+3(il2), 

COSO(A2 + Bz) = Ym+3(Ji2)' 

PROOF. Table 1 is useful for computations. 
We prove (i) only. By the Product Formula, we have 
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for ex E H*(D'bI,Z), P E H*(Gr,Z) (1:::;; r:::;; m + 3). By the above equation and 
Proposition 3.7 we have COA2 = Y2(.A.), COB2 = Y2(P,), and so on. 

The other equations are obtained by using Theorem 1.1, Propositions 3.4, 3.7 
and 3.9 and Table 1. We calculate SOS2 as an example. 

SOS2 = Ym+2(1)Ym+2(P,d 

= Y (corD2n 11) + Y (corD2n (xm/2) * 11 ) 1 Gm+2 ,...1 2 Gm+2 ,...1 

(m/2)-1 
= Y1 (.A. + p,) + h(.A. + p,) + m L Y2/+2(a) 

1=1 

(m/2)-1 
= (1 + Co) (A2 + B2) + m L (E2/h· 

1=1 

In the above calculation, note that restriction maps commute with conjugation 
maps and the conjugation maps are the identity on H2( <xm), Z) = Z /2. The 
other computations are similar. D 

REMARK 2. By Proposition 4.2, we have 

(i-l)/2 

F2 + L (E2/)oF2 (i(~ 3) odd), 
1=1 

;/2 

L(E2/-t}oF2 

1=1 
(i even). 

By Remark 1, (E;h is generated by the products of Fo and F2. Therefore, 
H2 (D'bI , ",ZD2n ) is generated by the products of Co, Fo, So, To, A2, B2, F2, 
S2 and T2 (resp. Co, Fo, So, A2, B2 and F2) for the case m even (resp. m 
odd). 

PROPOSITION 4.3. The following equations hold in H3(D'bI, ",ZD'bI): 

COA3 = Y2(V), (E;)oA3 = 0, SOA3 = Ym+2(Vt), ToA3 = Ym+3(V2). 

PROOF. These are immediate from (4.1) and Proposition 3.7. D 
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REMARK 3. H3(D2n,,,,ZD2n) is generated by the products of Co, So, To and 
A3 (resp. Co, So and A3) for the case m even (resp. m odd). 

PRoposmoN 4.4. (i) If m is even, the following equations hold in 

H 4(D2n, ",ZD2n): 

(1) AiCo = Y2(A2), A2B2CO = Y2(AJl), AiSo = Ym+2(A?), AiTo = Ym+3(AJ). 
(2) A4CO = Y2(C;), A4(Ei)0 = Yi+2(0'2), A4S0 = Ym+2(A1Jl1 + Jlf), A4To = 

Ym+3(A2Jl2 + Jti). 
(3) A2(Ei h = B2S2 = (Ei)2S2 = (EihT2 = 0, A2S2 = Ym+2(Al,uI), A2T2 = 

B2T2 = Ym+3(A2,u2), B2(Ei)2 = mA4(Ei)0, (Eih(E.ih = A4(Ut+J - Ut- j ), 

S1 + Ai = Tf = A2B2 + A4SJ, S2T2 = A4SoTo. 
(ii) If m is odd, the following equations hold in H4(D2n,,,,ZD2n): 

(1) AiCo = Y2(A2), A2B2Co = Y2(l,u), AlSo = Ym+2(l?), A2B2S0 = 
Ym+2(AI,ul), BiSo = Ym+2(,uf), AiCoSo = Ym+3(Ai), A2B2COSO = 
Ym+3(li + ).2,u2), Bicoso = Ym+3(Ai + Jti). 

(2) A4CO = Y2(C;), A4(Ei)0 = Yi+2(0'2). 
(3) A2(Eih = 0, B2(Eih = mA4(Ei )0, (Eih(E.ih = A4(Ui+J - Ui - i ). 

PROOF. Note that 1'1 is a monomorphism between the cohomology rings 
(see [16, Section 5]). Thus the products of 1'1 (-) and Yr( -) (1 ~ r ~ m + 3) are 
obtained by using (4.1) and Proposition 3.7. The other equations are obtained by 
using Theorem 1.1, Propositions 3.4, 3.7 and 3.9 and Table 1. 0 

REMARK 4. By Proposition 4.4 and Remark 1, note that A4(Ei)O is gen­
erated by the products of A4 and Fo. Hence H 4(D2n, ",ZD2n ) is generated by the 
products of Co, Fo, So, To, A2, B2, S2, T2 and A4 (resp. Co, Fo, So, A2, B2 and 
A4) for the case m even (resp. m odd). 

REMARK 5. By (4.1), Y2(li,ui vk C;/) is generated by the products of A2, B2, 
A3 , A4 and Co. Similarly, from (4.1) and Propositions 3.7 and 4.4, we have 

Yr+2(0'2i+P) = 1'1 (C;i)Yr+2(O'P) (i ~ O,p = 0, 1), 

where 1 :5; r :5; m - 1. By summarizing Remarks 1 and 2, it follows that Yr+2(O'i) is 
generated by the products of A4, Fo and F2. 

Moreover, from (4.1) and Propositions 3.7 and 4.4, we have 

( i+2) « Dm l) HI + ( D2n J:) i) Ym+r+!,ur = Ym+r+l resGm+r+1 Jlr resGm+r+1 .. Jl, 
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Using Proposition 4.4 and (4.2), it is shown that Ym+r+l (~) is generated by the 
products of )'ICA.), YI(V), )'m+r+I(I) and )'m+r+ICUr) by the induction on k. Since 

)'m+r+l (A.;ttlv:) = )'1 (.A.)i)'1 (v)k)'m+r+l (ttl) (i, j, k ~ 0, r = 1,2), 

it follows that )'m+r+l (A.:tt!v~) is multiplicatively generated by )'t (A.), )'t (tt), )'t (v), 

)'1(~)' )'m+r+l(l) and )'m+r+t(f-lr)· 
Hence, Hk(D2n' ",ZD2n) (k ~ 5) is generated by the products of Co, Fo, So, 

To, A2, B2, F2, S2, T2 and A4 (resp. Co, Fo, So, A2, B2, F2 and A4) for the case m 
even (resp. m odd). 

4.2 The Case n Odd 

In this subsection, let n(z 3) be odd. We put t = (n - 1)/2. The computations 
of the products on the Hochschild cohomology H*(D2n, ",ZD2n )(t::= HH*(ZD2n» 
are similar to Section 4.1. In the following, we set 

A2 = )'1 (ex), A4 = Yt (P), 

(Ei)O = )'i+l (1) (1 ::;; i::;; t), (Eih = )';+1 (p) (1::;; i ::;; t), 

So = )'/+2(1). 

Moreover, we set Fi = (Ed; (i = 0,2) and 

(-t < k < 0), 
(k = 0), 
(1 ::;; k ::;; t), 
(t < k < n), 

First, we calculate the products in degree o. These are obtained by com­
putations similar to Proposition 4.1. 

PROPOSITION 4.5. The following equations hold in HO(D2n, ",ZD2n): 

1 

(Ei)oSo = 2So, SJ = n + n L(Ei)o, (Ei)o(Ej)o = U;+j + Ui- j. 
;=1 

REMARK 6. HO (D2n , ",ZD2n) is generated by the products of Fo and So (el 
Remark 1). 

Next, we calculate the products in degree 2. 
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PROPOSITION 4.6. The following equations hold in H2 (D2n , t/tZD2n): 

(Ei)oA2 = So(Eih = 0, SOA2 = Yt+2(X), (Ei)o(Ejh = Vi+j + Vi-i' 
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REMARK 7. H2(D2n, t/tZD2n ) is generatedby the products of Fo, So, A2 and 
F2 (cf Remark 2). 

REMARK 8. Since the equations 

rest) [3k = p2k, res~y> [3k = X2k (k 2: 0) 

hold, by (4.1) the cup product with A4 = Yl ([3) gives a periodicity isomorphism 

A4 '-" - : Hk(D2n' ",ZD2n) ~ Hk+4(D2n' t/tZD2n ) 

for all k:2: 1. 

Finally, we have the following proposition. 

PROPOSITION 4.7. The following equations hold in H4 (D2n , ",ZD2n ): 

A4(Ei )0 = Yi+l (p2), A4So = Yt+2(X2), A2(Eih = 0, (Eih(E.ih = A4(Ui+j - Ui- j ). 

4.3 Ring Structure 

We will state the ring structure of H*(D2n' t/tZD2n) by summarizing Sections 
4.1 and 4.2. 

THEOREM 4.8. Let D2n denote the dihedral group of order 2n for n :2: 3. 

(i) Let n be even. We set m = n12. 

(1) If m is even, the Hochschild cohomology ring H*(D2n,l/tZD2n) 

(~HH*(ZD2n)) is commutative, generated by elements 

Co,Fo, So, To E HO (D2n , ",ZD2n ) , A 2, B2,F2, S2, T2 E H2 (D2n , ",ZD2n ), 

A3 E H 3(D2n , ",ZD2n ) , A4 E H4(D2n, ",ZD2n ). 

The relations follow from Table 2. 

(2) If m is odd, the Hochschild cohomology ring H*(D2n,t/tZD2n) 

(~HH*(ZD2n)) is commutative, generated by elements 

Co,Fo, So EHo(D2n,,,,ZD2n), A 2,B2,F2 EH2(D2n,,,,ZD2n ), 

A3 EH3(D2n ,l/tZD2n ), A4 EH4(D2n ,l/tZD2n). 

The relations follow from Table 3. 
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Table 3. Cohomology ring H* (D2n' ",ZD2n)("'" HH*(ZD2n)) for n = 2m (m:2 3 odd). 

Co 

Fo 

So 

IA2 

2BI 

nF2 

2A 3 

nA4 

I (Em-do CoSo COA2 COB2 -(Em-Ih COA3 nCO~ 

(E2)0 + 2 2CoSo 0 mF2 (E2h 0 nFo~ 

(",-1)/2 
m+m 2: (E2/)o SOA2 SOB2 0 SOA3 2SoA4 

1=1 

A2 
2 A2B2 0 A2A3 A2A4 

A2B2-~ mFOA4 B2A3 B2~ 

A4((E2)0 - 2) 0 FZ A4 

AZA4 A3A4 

A2 
4 

(ii) If n is odd, the Hochschild cohomology ring H*(D2n,,,,ZD2n) 

(~HH*(ZD2n)) is commutative, generated by elements 

Fo, So E HO(D2n , ",ZD2n ), A2 E H2(D2n, ",ZD2n), A4 E H 4(D2n , ",ZD2n ). 

The relations follow from Table 4. 
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Table 4. Cohomology ring H'(D2n""ZD2n)(~ HH*(ZD2n)) for n = 2t + 1 (t;::: 1). 

Fo { Fo+2 (t = 1) 
2So 0 { -Fl (t = 1) 

nFOA4 
(E2)0 +2 (t;::: 2) (E2lz (t ;::: 2) 

t 

So n + n 1:: (Ei)O SOA2 0 nSOA4 
i=1 

2A2 nA4 0 A2A4 

nF2 
{ A4(Fo - 2) (t = 1) 

F2 A4 
A4((E2)o - 2) (t ;::: 2) 

2n~ A2 
4 

(k;::: 3 odd), 

(k even). 
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