HOCHSCHILD COHOMOLOGY RING OF THE INTEGRAL GROUP RING OF DIIHEDRAL GROUPS ${ }^{\dagger}$

By

Takao Hayami

Abstract

We will determine the ring structure of the Hochschild cohomology $\mathrm{HH}^{*}\left(\boldsymbol{Z} D_{2 n}\right)$ of the integral group ring of the dihedral group $D_{2 n}$ of order $2 n$.

Introduction

Let $R G$ be a group ring of a finite group G over a commutative ring R. If G is an abelian group, the multiplicative structure of the Hochschild cohomology $H H^{*}(R G)$ is explained by Holm [12] and Cibils and Solotar [5]. In the case where G is a non-abelian group, $H H^{*}(R G)$ can be very complicated ring in general, and it is more difficult to determine the multiplicative structure of $H H^{*}(R G)$.

The Hochschild cohomology ring $H H^{*}(R G)$ is isomorphic to the ordinary cohomology ring $H^{*}\left(G,{ }_{\psi} R G\right)$, where ${ }_{\psi} R G$ is regarded as a left $R G$-module by conjugation. So it is theoretically possible to calculate the products on the cohomology if an efficient resolution of G is given. Thus we have determined the ring structure of $H H^{*}\left(\boldsymbol{Z} Q_{t}\right)$ for arbitrary generalized quaternion groups Q_{t} by calculating the ordinary cup product in $H^{*}\left(Q_{t},{ }_{\psi} Z Q_{t}\right)$ using a diagonal approximation on a periodic resolution of period 4 (see [8]).

On the other hand, it is well known that the Hochschild cohomology $H H^{n}(R G)$ is isomorphic to the direct sum of the ordinary group cohomology of the centralizers of representatives of the conjugacy classes of G (see [1, Theorem 2.11.2], [16, Section 4]):

$$
H H^{*}(R G) \simeq \bigoplus_{j} H^{*}\left(G_{j}, R\right) .
$$

[^0]This isomorphism is not in general multiplicative, however Siegel and Witherspoon [16, Theorem 5.1] define a new product on $\bigoplus_{j} H^{*}\left(G_{j}, R\right)$ so that the above additive isomorphism is multiplicative (see [2] for a new proof and a generalization of this result). They show that the multiplicative structure of the Hochschild cohomology of a group ring is described in terms of cup products, corestrictions and restrictions on the ordinary cohomology. This result was conjugated by Cibils [4] and Cibils and Solotar [5]. This new product gives us much helpful information about the Hochschild cohomology ring of group algebras. In this paper, we will calculate the Hochschild cohomology ring of the integral group ring of the dihedral group $D_{2 n}$ of order $2 n$ for $n \geq 3$ by using this new product.

In Section 1, as preliminaries, we describe some definitions and properties about the Hochschild cohomology, the group cohomology, and the Product Formula given by Siegel and Witherspoon [16, Theorem 5.1].

In Section 2, we state efficient resolutions for dihedral groups and cyclic groups, and we describe the presentations of the integral cohomology rings of these groups. In fact, efficient free resolutions of dihedral groups are given by Wall [18], Hamada [6] and Handel [7]. We state a slightly different version of the Handel's resolution.

In Section 3, we calculate conjugations, restrictions and corestrictions between the integral cohomology rings of subgroups of $D_{2 n}$ (Propositions 3.4, 3.7 and 3.9). In order to calculate the cup products using the Product Formula we need their computations. These are given by calculating the images of the generators of the cohomologies on the cochain level by using chain transformations.

In Section 4, we calculate the cup products on $H^{*}\left(D_{2 n, \psi} Z D_{2 n}\right)$ ($\simeq H H^{*}\left(Z D_{2 n}\right)$) using the Product Formula (Propositions 4.1 through 4.7), and as the main result of this paper we determine the ring structure of $H^{*}\left(D_{2 n, \psi} Z D_{2 n}\right)$ $\left(\simeq H H^{*}\left(Z D_{2 n}\right)\right)$ (Theorem 4.8).

1 Preliminaries

1.1 Hochschild Cohomology and Group Cohomology

Let R be a commutative ring and Λ an R-algebra which is a finitely generated projective R-module. If M is a $\Lambda^{\mathrm{e}}\left(=\Lambda \otimes_{R} \Lambda^{\mathrm{op}}\right)$-module, then the n-th Hochschild cohomology of Λ with coefficients in M is defined by

$$
H^{n}(\Lambda, M):=\operatorname{Ext}_{\Lambda^{c}}^{n}(\Lambda, M)
$$

The cup product gives $H H^{*}(\Lambda):=\bigoplus_{n \geq 0} H H^{n}(\Lambda)$ a graded ring structure with identity $1 \in Z(\Lambda) \simeq H H^{0}(\Lambda)$, where $H H^{n}(\Lambda)$ denotes $H^{n}(\Lambda, \Lambda)$ and $Z(\Lambda)$ denotes the center of Λ, and $H H^{*}(\Lambda)$ is called the Hochschild cohomology ring of Λ. The Hochschild cohomology ring $H H^{*}(\Lambda)$ is graded-commutative, that is, for $\alpha \in H H^{p}(\Lambda)$ and $\beta \in H H^{q}(\Lambda)$ we have $\alpha \beta=(-1)^{p q} \beta \alpha$ (see [14, Proposition 1.2] for example).

Suppose that G is a finite group and that A is a G-module. Then we have the definition of the n-th cohomology group of G with coefficients in A :

$$
H^{n}(G, A):=\operatorname{Ext}_{R G}^{n}(R, A)
$$

Let H be a subgroup of G. We denote restriction and corestriction by $\operatorname{res}_{H}^{G}$ and $\operatorname{cor}_{H}^{G}$, respectively (see [3], [17] or [19]):

$$
\begin{gathered}
\operatorname{res}_{H}^{G}: H^{n}(G, A) \rightarrow H^{n}(H, A), \\
\operatorname{cor}_{H}^{G}: H^{n}(H, A) \rightarrow H^{n}(G, A) .
\end{gathered}
$$

Note that

$$
\begin{equation*}
\operatorname{cor}_{H}^{G} \cdot \operatorname{res}_{H}^{G} \alpha=|G: H| \alpha \quad \text { for } \alpha \in H^{n}(G, A) \tag{1.1}
\end{equation*}
$$

Let ${ }^{g} H=g H g^{-1}$ be the conjugacy subgroup of H for $g \in G$. Then there is a homomorphism called conjugation by g :

$$
g^{*}: H^{n}(H, A) \rightarrow H^{n}\left({ }^{g} H, A\right)
$$

Note that g^{*} is the identity for $g \in H$, and note that $\left(g_{1} g_{2}\right)^{*}=g_{1}^{*} g_{2}^{*}$ holds for $g_{1}, g_{2} \in G$. These mappings of the cohomology groups are independent of the choice of resolutions.

About the group ring $R G$ there are close relations between the Hochschild cohomology and the group cohomology. The Hochschild cohomology ring $H H^{*}(R G)$ is isomorphic to the ordinary cohomology ring $H^{*}\left(G,{ }_{\psi} R G\right)$, where ${ }_{\psi} R G$ is regarded as a left $R G$-module by conjugation (see [16, Proposition 3.2] or [13] for example).

1.2 Product Formula

Suppose that G is a finite group and R is a commutative ring. Let $g_{1}=1, g_{2}, \ldots, g_{r}$ be representatives of the conjugacy classes of G. Fix g_{i}, and let G_{i} be the centralizer of g_{i}. $R G_{i}$-homomorphisms $\theta_{g_{i}}: R \rightarrow R G ; \lambda \mapsto \lambda g_{i}$ and $\pi_{g_{i}}: R G \rightarrow R ; \sum_{a \in G} \lambda_{a} a \mapsto \lambda_{g_{i}}$ induce $\theta_{g_{i}}^{*}: H^{n}\left(G_{i}, R\right) \rightarrow H^{n}\left(G_{i}, \psi R G\right)$ and
$\pi_{g_{i}}^{*}: H^{n}\left(G_{i}, \psi R G\right) \rightarrow H^{n}\left(G_{i}, R\right), \quad$ respectively. We define $\quad \gamma_{i}: H^{n}\left(G_{i}, R\right) \rightarrow$ $H^{n}(G, \psi R G)$ by

$$
\gamma_{i}(\alpha)=\operatorname{cor}_{G_{i}}^{G} \theta_{g_{i}}^{*}(\alpha), \quad \text { for } \alpha \in H^{n}\left(G_{i}, R\right)
$$

Then we have the following isomorphism of graded R-modules

$$
\begin{equation*}
\Phi: H^{n}\left(G,{ }_{\psi} R G\right) \xrightarrow{\sim} \bigoplus_{i} H^{n}\left(G_{i}, R\right) ; \quad \zeta \mapsto\left(\pi_{g_{i}}^{*} \operatorname{res}_{G_{i}}^{G}(\zeta)\right)_{i} \tag{1.2}
\end{equation*}
$$

and its inverse is given by $\Phi^{-1}(\alpha)=\gamma_{i}(\alpha)$ for $\alpha \in H^{n}\left(G_{i}, R\right)$ (see [16, Section 4]).
Let D be a set of double coset representatives for $G_{i} \backslash G / G_{j}$. For each $a \in D$, there is a unique $k=k(a)$ such that

$$
\begin{equation*}
g_{k}={ }^{b} g_{i}{ }^{b a} g_{j} \tag{1.3}
\end{equation*}
$$

for some $b \in G$. In the above, ${ }^{x} g$ denotes $x g x^{-1}$ for $x, g \in G$. Siegel and Witherspoon [16] define the following new product on $\oplus_{j} H^{*}\left(G_{j}, R\right)$ so that the above additive isomorphism is multiplicative:

Theorem 1.1 (Product Formula). Let $\alpha \in H^{*}\left(G_{i}, R\right), \beta \in H^{*}\left(G_{j}, R\right)$. Then the following equation holds in $H^{*}\left(G,{ }_{\psi} R G\right)$:

$$
\begin{equation*}
\gamma_{i}(\alpha) \smile \gamma_{j}(\beta)=\sum_{a \in D} \gamma_{k}\left(\operatorname{cor}_{W}^{G_{k}}\left(\operatorname{res}_{W}^{b} G_{i} b^{*} \alpha \smile \operatorname{res}_{W}^{b_{W} G_{j}}(b a)^{*} \beta\right)\right), \tag{1.4}
\end{equation*}
$$

where D is a set of double coset representatives for $G_{i} \backslash G / G_{j}, k=k(a)$ and $b=b(a)$ are chosen to satisfy (1.3), and $W={ }^{b a} G_{j} \cap{ }^{b} G_{i}$.

Note that the sum in (1.4) is independent of the choices of a and b, and note that γ_{1} is a monomorphism between the cohomology rings (see [16, Section 5]).

2 Integral Cohomology Rings of Dihedral Groups and Cyclic Groups

In this section, we describe presentations of the integral cohomology rings of dihedral groups and cyclic groups.

Let $D_{2 n}$ denote the dihedral group of order $2 n$ for any positive integer $n \geq 2$:

$$
D_{2 n}=\left\langle x, y \mid x^{n}=y^{2}=1, y x y^{-1}=x^{-1}\right\rangle .
$$

Efficient free resolutions of \boldsymbol{Z} over $\boldsymbol{Z} D_{2 n}$ are given by Wall [18] and Hamada [6]. Handel [7] reformulates this resolution and determines a diagonal approximation on the new resolution. The boundary operators of the Handel's resolution are right $Z D_{2 n}$-homomorphisms. For our convenience, we state a resolution whose boundary operators are left $Z D_{2 n}$-homomorphisms. This is a slightly different version of the Handel's resolution.

Let M^{q} denote a direct sum of q copies of a module M. We set $Y_{q}=\left(Z D_{2 n}\right)^{q+1}$ for $q \geq 0$. As elements of Y_{q} (or \boldsymbol{Z}^{q+1}), we set

$$
c_{q}^{r}= \begin{cases}(\underbrace{(0, \ldots, 0, \stackrel{r}{1}, 0, \ldots, 0}_{q+1}) & (\text { if } 1 \leq r \leq q+1) \\ 0 & \text { (otherwise) }\end{cases}
$$

Define left $Z D_{2 n}$-homomorphisms $\varepsilon: Y_{0} \rightarrow Z ; c_{0}^{1} \mapsto 1$ and $\delta_{q}: Y_{q} \rightarrow Y_{q-1}(q>0)$ given by

$$
\delta_{q}\left(c_{q}^{r}\right)= \begin{cases}\left(x y+(-1)^{(q-r) / 2}\right) c_{q-1}^{r-1}+(x-1) c_{q-1}^{r} & \text { for } q \text { even, } r \text { even, } \tag{2.1}\\ \left(y-(-1)^{(q+r+1) / 2}\right) c_{q-1}^{r-1}+N c_{q-1}^{r} & \text { for } q \text { even, } r \text { odd, } \\ \left(y-(-1)^{(q+r+1) / 2}\right) c_{q-1}^{r-1}-N c_{q-1}^{r} & \text { for } q \text { odd, } r \text { even } \\ \left(x y-(-1)^{(q-r) / 2}\right) c_{q-1}^{r-1}+(x-1) c_{q-1}^{r} & \text { for } q \text { odd, } r \text { odd. }\end{cases}
$$

In the above, N denotes $\sum_{i=0}^{n-1} x^{i}$. It is easy to check that $\varepsilon \cdot \delta_{1}=0$ and $\delta_{q} \cdot \delta_{q+1}=0(q \geq 1)$ hold. To see that the complex (Y, δ) is acyclic, we state a contracting homotopy $T_{q}: Y_{q} \rightarrow Y_{q+1}(q \geq-1)$, where we set $Y_{-1}=Z$:

$$
T_{-1}(1)=c_{0}^{1}
$$

If $q(\geq 0)$ is even, then

$$
T_{q}\left(x^{i} y^{j} c_{q}^{r}\right)= \begin{cases}N_{i} c_{q+1}^{1} & (r=1,0 \leq i<n, j=0) \\ (-1)^{q(q+1) / 2} N_{i} c_{q+1}^{1}+x^{i} c_{q+1}^{2} & (r=1,0 \leq i<n, j=1) \\ 0 & (r \geq 2,0 \leq i<n, j=0) \\ x^{i-1} c_{q+1}^{r+1} & (r(\geq 2) \text { even } 0 \leq i<n, j=1) \\ x^{i} c_{q+1}^{r+1} & (r(\geq 3) \text { odd } 0 \leq i<n, j=1)\end{cases}
$$

where we set

$$
N_{i}= \begin{cases}x^{i-1}+x^{i-2}+\cdots+1 & (i \geq 1) \\ 0 & (i=0)\end{cases}
$$

If $q(\geq 1)$ is odd, then

$$
T_{q}\left(x^{i} y^{j} c_{q}^{r}\right)= \begin{cases}0 & (r=1,0 \leq i \leq n-2, j=0) \\ c_{q+1}^{1} & (r=1, i=n-1, j=0) \\ (-1)^{q(q+1) / 2} c_{q+1}^{1}+x^{-1} c_{q+1}^{2} & (r=1, i=0, j=1), \\ x^{i-1} c_{q+1}^{2} & (r=1,1 \leq i<n, j=1) \\ 0 & (r \geq 2,0 \leq i<n, j=0) \\ x^{i} c_{q+1}^{r+1} & (r(\geq 2) \text { even }, 0 \leq i<n, j=1), \\ x^{i-1} c_{q+1}^{r+1} & (r(\geq 3) \text { odd, } 0 \leq i<n, j=1)\end{cases}
$$

For each $q \geq 0$, it is not hard to see that the equation

$$
\left(\delta_{q+1} T_{q}+T_{q-1} \delta_{q}\right)\left(x^{i} y^{j} c_{q}^{r}\right)=x^{i} y^{j} c_{q}^{r}
$$

holds. Therefore (Y, δ) is a free resolution of \boldsymbol{Z} over $\boldsymbol{Z} D_{2 n}$ (cf. [7, Theorems 2.1 and 3.3]).

Applying the functor $\operatorname{Hom}_{Z D_{2 n}}(-, Z)$ to the resolution (Y, δ), we have the following complex, where we identify $\operatorname{Hom}_{\boldsymbol{Z} D_{2 n}}\left(Y_{q}, \boldsymbol{Z}\right)$ with Z^{q+1} using an isomorphism $\operatorname{Hom}_{Z D_{2 n}}\left(Y_{q}, Z\right) \rightarrow Z^{q+1} ; f \mapsto\left(f\left(c_{q}^{1}\right), f\left(c_{q}^{2}\right), \ldots, f\left(c_{q}^{q+1}\right)\right)$:

$$
\begin{gathered}
\left(\operatorname{Hom}_{\boldsymbol{Z} D_{2 n}}(Y, \boldsymbol{Z}), \delta^{\#}\right): 0 \rightarrow \boldsymbol{Z} \xrightarrow{\delta_{1}^{*}} \boldsymbol{Z}^{2} \xrightarrow{\delta_{2}^{\#}} \boldsymbol{Z}^{3} \xrightarrow{\delta_{3}^{\#}} \boldsymbol{Z}^{4} \xrightarrow{\delta_{4}^{*}} \boldsymbol{Z}^{5} \rightarrow \cdots, \\
\delta_{q+1}^{\#}\left(a_{q}^{r}\right)=\left\{\begin{array}{ll}
(x-1) a_{q+1}^{r}+\left(y-(-1)^{(q+r-1) / 2}\right) a_{q+1}^{r+1} & \text { for } q \text { even, } r \text { odd, } \\
-N a_{q+1}^{r}+\left(x y-(-1)^{(q-r) / 2}\right) a_{q+1}^{r+1} & \text { for } q \text { even, } r \text { even, } \\
N a_{q+1}^{r}+\left(x y+(-1)^{(q-r) / 2}\right) a_{q+1}^{r+1} & \text { for } q \text { odd, } r \text { odd, } \\
(x-1) a_{q+1}^{r}+\left(y-(-1)^{(q+r-1) / 2}\right) a_{q+1}^{r+1} & \text { for } q \text { odd, } r \text { even, }, \\
= & \begin{cases}\left(1-(-1)^{(q+r-1) / 2}\right) a_{q+1}^{r+1} & \text { for } q \text { even, } r \text { odd, }, \\
-n a_{q+1}^{r}+\left(1-(-1)^{(q-r) / 2}\right) a_{q+1}^{r+1} & \text { for } q \text { even, } r \text { even, } \\
n a_{q+1}^{r}+\left(1+(-1)^{(q-r) / 2}\right) a_{q+1}^{r+1} & \text { for } q \text { odd, } r \text { odd, } \\
\left(1-(-1)^{(q+r-1) / 2}\right) a_{q+1}^{r+1} & \text { for } q \text { odd, } r \text { even. }\end{cases}
\end{array} .\right.
\end{gathered}
$$

In the above, a_{p}^{s} denotes $a c_{p}^{s}$ for $a \in Z$.
If $n \geq 2$ is even, then the module structure of $H^{k}\left(D_{2 n}, Z\right)$ is represented by the form of the subquotient of the complex as follows:

$$
\begin{align*}
& H^{k}\left(D_{2 n}, Z\right) \\
& = \begin{cases}Z & \text { for } k=0, \\
Z c_{4 q}^{1} / n \oplus \oplus_{i=1}^{q} Z\left(\frac{n}{2} c_{4 q}^{4 i-1}+c_{4 q}^{4 i}\right) / 2 \oplus \bigoplus_{i=1}^{q} Z c_{4 q}^{4 i+1} / 2 & \text { for } k=4 q(q \neq 0), \\
\oplus_{i=1}^{q} Z\left(\frac{n}{2} c_{4 q+1}^{4 i-2}-c_{4 q+1}^{4 i-1}\right) / 2 \oplus \bigoplus_{i=1}^{q} Z c_{4 q+1}^{4 i} / 2 & \text { for } k=4 q+1, \\
\oplus_{i=0}^{q} Z\left(\frac{n}{2} c_{4 q+2}^{4 i+1}+c_{4 q+2}^{4 i+2}\right) / 2 \oplus \bigoplus_{i=0}^{q} Z c_{4 q+2}^{4 i+3} / 2 & \text { for } k=4 q+2, \\
\oplus_{i=1}^{q} Z\left(\frac{n}{2} c_{4 q+3}^{4 i}-c_{4 q+3}^{4 i+1}\right) / 2 \oplus \bigoplus_{i=0}^{q} Z c_{4 q+3}^{4 i+2} / 2 & \text { for } k=4 q+3\end{cases} \tag{2.2}
\end{align*}
$$

In the above, M / s denotes the quotient module $M / s M$ for a Z-module M and an element $s \in Z$, and we interpret $\oplus_{i=1}^{q}$ term as 0 if $q=0$. Note that we have the same module structure and ring structure if we use the Handel's resolution. We put $\lambda:=c_{2}^{3} \in H^{2}\left(D_{2 n}, Z\right), \quad \mu:=(n / 2) c_{2}^{1}+c_{2}^{2} \in H^{2}\left(D_{2 n}, Z\right)$, $v:=c_{3}^{2} \in H^{3}\left(D_{2 n}, \boldsymbol{Z}\right)$ and $\xi:=c_{4}^{1} \in H^{4}\left(D_{2 n}, Z\right)$. Then λ, μ, v and ξ multiplicatively generate $H^{*}\left(D_{2 n}, Z\right)$, and the ring structure is given as follows (see [7, Theorem 5.2]):

$$
\begin{align*}
H^{*}\left(D_{2 n}, \boldsymbol{Z}\right)= & \boldsymbol{Z}[\lambda, \mu, v, \xi] /\left(2 \lambda, 2 \mu, 2 v, n \xi, \mu^{2}+\lambda \mu+\left(n^{2} / 4\right) \xi, v^{2}+\lambda \xi\right) \\
& (\operatorname{deg} \lambda=\operatorname{deg} \mu=2, \operatorname{deg} v=3, \operatorname{deg} \xi=4) \tag{2.3}
\end{align*}
$$

In particular, we have

$$
\begin{align*}
H^{*}\left(D_{4}, \boldsymbol{Z}\right)= & Z[\lambda, \mu, v] /\left(2 \lambda, 2 \mu, 2 v, \nu^{2}+\lambda \mu^{2}+\lambda^{2} \mu\right) \\
& (\operatorname{deg} \lambda=\operatorname{deg} \mu=2, \operatorname{deg} \nu=3) \tag{2.4}
\end{align*}
$$

If n is odd, the cohomology groups of $D_{2 n}$ are periodic. The integral cohomology of $D_{2 n}$ is as follows:

$$
H^{k}\left(D_{2 n}, \boldsymbol{Z}\right)= \begin{cases}\boldsymbol{Z} & \text { for } k=0 \tag{2.5}\\ \boldsymbol{Z} c_{4 q}^{1} / n \oplus \boldsymbol{Z} c_{4 q}^{4 q+1} / 2 & \text { for } k=4 q(q \neq 0) \\ 0 & \text { for } k=4 q+1 \\ \boldsymbol{Z} c_{4 q+2}^{4 q+3} / 2 & \text { for } k=4 q+2 \\ 0 & \text { for } k=4 q+3\end{cases}
$$

If we put $\alpha:=c_{2}^{3} \in H^{2}\left(D_{2 n}, Z\right)$ and $\beta:=c_{4}^{1}+c_{4}^{5} \in H^{4}\left(D_{2 n}, Z\right)$, we have the following (see [7, Theorem 5.3]):

$$
\begin{align*}
H^{*}\left(D_{2 n}, \boldsymbol{Z}\right)= & \boldsymbol{Z}[\alpha, \beta] /\left(2 \alpha, 2 n \beta, \alpha^{2}-n \beta\right), \\
& (\operatorname{deg} \alpha=2, \operatorname{deg} \beta=4) . \tag{2.6}
\end{align*}
$$

Next, we describe the integral cohomology ring of the cyclic group. Let $H=\langle a\rangle$ denote the cyclic group of order $l(\geq 2)$. Then the following periodic $\boldsymbol{Z} H$-free resolution for \boldsymbol{Z} of period 2 is well known (see [3, Chapter XII, Section 7] for example):

$$
\begin{gathered}
\left(Z_{H}, \partial_{H}\right): \cdots \longrightarrow \boldsymbol{Z} H \xrightarrow{\left(\partial_{H}\right)_{1}} \boldsymbol{Z} H \xrightarrow{\left(\partial_{H}\right)_{2}} \boldsymbol{Z} H \xrightarrow{\left(\partial_{H}\right)_{1}} \boldsymbol{Z} H \xrightarrow{\varepsilon} \boldsymbol{Z} \longrightarrow 0 \\
\left(\partial_{H}\right)_{1}(c)=c(a-1) \\
\left(\partial_{H}\right)_{2}(c)=c \sum_{i=0}^{l-1} a^{i}
\end{gathered}
$$

Applying the functor $\operatorname{Hom}_{Z H}(-, Z)$ to the above periodic resolution, we have the complex

$$
\begin{aligned}
\left(\operatorname{Hom}_{Z H}\left(Z_{H}, Z\right),\left(\partial_{H}\right)^{\#}\right): 0 & \longrightarrow \boldsymbol{Z} \xrightarrow{\left(\partial_{H}\right)_{1}^{*}} \boldsymbol{Z} \xrightarrow{\left(\partial_{H}\right)_{2}^{*}} \boldsymbol{Z} \xrightarrow{\left(\partial_{H}\right)_{1}^{*}} \boldsymbol{Z} \longrightarrow \cdots, \\
\left(\partial_{H}\right)_{1}^{\#}(c) & =(a-1) c=0 \\
\left(\partial_{H}\right)_{2}^{\#}(c) & =\sum_{i=0}^{l-1} a^{i} c=l c
\end{aligned}
$$

and we have

$$
H^{k}(H, Z)= \begin{cases}Z & \text { for } k=0 \tag{2.7}\\ Z / l & \text { for } k \equiv 0 \bmod 2, k \neq 0 \\ 0 & \text { for } k \equiv 1 \bmod 2\end{cases}
$$

If we put $\chi:=1 \in H^{2}(H, Z)$, then we have the following (see [3, Chapter XII, Section 7]):

$$
\begin{equation*}
H^{*}(H, Z)=\boldsymbol{Z}[\chi] /(l \chi), \quad(\operatorname{deg} \chi=2) \tag{2.8}
\end{equation*}
$$

3 Conjugation, Restriction and Corestriction

In this section, we calculate conjugations, restrictions and corestrictions between the integral cohomology rings of the centralizers of representatives of the conjugacy classes of $D_{2 n}$. These are given by a method similar to [9, Section 2.1].

3.1 The Case n Even

In this subsection, we consider the case $n=2 m(m \geq 2)$. We take representatives of the conjugacy classes of $D_{2 n}$ as follows:

$$
g_{1}=1, \quad g_{2}=x^{m}, \quad g_{i+2}=x^{i} \quad(1 \leq i<m), \quad g_{m+2}=y, \quad g_{m+3}=x y
$$

Then their centralizers are

$$
G_{1}=G_{2}=D_{2 n}, \quad G_{i+2}=\langle x\rangle(1 \leq i<m), \quad G_{m+2}=\left\langle x^{m}, y\right\rangle, \quad G_{m+3}=\left\langle x^{m}, x y\right\rangle
$$

Note that G_{m+2} and G_{m+3} are isomorphic to D_{4}.
In the following, we set

$$
\begin{aligned}
H^{*}\left(G_{r}, \boldsymbol{Z}\right)= & \boldsymbol{Z}[\lambda, \mu, v, \xi] /\left(2 \lambda, 2 \mu, 2 v, n \xi, \mu^{2}+\lambda \mu+\left(n^{2} / 4\right) \xi, v^{2}+\lambda \xi\right) \\
& (\operatorname{deg} \lambda=\operatorname{deg} \mu=2, \operatorname{deg} v=3, \operatorname{deg} \xi=4)
\end{aligned}
$$

$$
\begin{aligned}
H^{*}\left(G_{k+2}, \boldsymbol{Z}\right)= & \boldsymbol{Z}[\sigma] /(n \sigma) \quad(\operatorname{deg} \sigma=2), \\
H^{*}\left(G_{m+r+1}, \boldsymbol{Z}\right)= & \boldsymbol{Z}\left[\lambda_{r}, \mu_{r}, v_{r}\right] /\left(2 \lambda_{r}, 2 \mu_{r}, 2 v_{r}, v_{r}^{2}+\lambda_{r} \mu_{r}^{2}+\lambda_{r}^{2} \mu_{r}\right) \\
& \left(\operatorname{deg} \lambda_{r}=\operatorname{deg} \mu_{r}=2, \operatorname{deg} v_{r}=3\right),
\end{aligned}
$$

where $r=1,2$ and $1 \leq k \leq m-1$. These presentations follow from (2.3), (2.4) and (2.8). By (1.2), (2.2) and (2.7), we have

$$
H^{k}\left(D_{2 n, \psi} \boldsymbol{Z} D_{2 n}\right)= \begin{cases}\boldsymbol{Z}^{m+3} & \text { for } k=0 \\ 0 & \text { for } k=1 \\ (\boldsymbol{Z} / 2)^{4 q} & \text { for } k=2 q+1 \quad(q \geq 1) \\ (\boldsymbol{Z} / 2)^{8(q+1)} \oplus(\boldsymbol{Z} / n)^{m-1} & \text { for } k=4 q+2(q \geq 0) \\ (\boldsymbol{Z} / 2)^{8 q+2} \oplus(\boldsymbol{Z} / n)^{m+1} & \text { for } k=4 q(q \geq 1)\end{cases}
$$

In the above, M^{r} denotes a direct sum of r copies of a module M.
Moreover we set

$$
H^{*}\left(\left\langle x^{m}\right\rangle, \boldsymbol{Z}\right)=\boldsymbol{Z}[\tau] /(2 \tau) \quad(\operatorname{deg} \tau=2)
$$

First, we calculate conjugation maps. We need chain transformations in both directions between the standard resolution and the resolution given by (2.1). The following equations are useful for the proof of Lemma 3.1:

$$
N_{i}+x^{i} N_{j}=N_{i+j}, \quad N_{i}(x-1)=x^{i}-1, \quad y N_{j}=x^{-j} N_{j} x y(i, j \geq 0) .
$$

Lemma 3.1. Let (X, d) be the standard resolution of $D_{2 n}$ and (Y, δ) the resolution of $D_{2 n}$ given by (2.1).
(i) An initial part of a chain transformation $u_{k}: X_{k} \rightarrow Y_{k}$ lifting the identity map on \boldsymbol{Z} is given as follows:

$$
\begin{aligned}
u_{0}([\cdot]) & =c_{0}^{1} ; \\
u_{1}\left(\left[x^{i} y^{p}\right]\right) & =N_{i} c_{1}^{1}+p x^{i} c_{1}^{2} ; \\
u_{2}\left(\left[x^{i} y^{p} \mid x^{j} y^{q}\right]\right) & = \begin{cases}0 & (\text { if } i+j<n \text { and } p=0), \\
c_{2}^{1} & \text { (if } i+j \geq n \text { and } p=0), \\
x^{i-j} N_{j} c_{2}^{2}+q x^{i-j} c_{2}^{3} & (\text { if } i-j \geq 0 \text { and } p=1), \\
-c_{2}^{1}+x^{i-j} N_{j} c_{2}^{2}+q x^{i-j} c_{2}^{3} & (\text { if } i-j<0 \text { and } p=1),\end{cases}
\end{aligned}
$$

where $0 \leq i, j<n$ and $p, q=0,1$.
(ii) An initial part of a chain transformation $v_{k}: Y_{k} \rightarrow X_{k}$ lifting the identity map on Z is given as follows:

$$
\begin{aligned}
& v_{0}\left(c_{0}^{1}\right)=[\cdot] ; \\
& v_{1}\left(c_{1}^{1}\right)=[x], \quad v_{1}\left(c_{1}^{2}\right)=[y] ; \\
& v_{2}\left(c_{2}^{1}\right)=[N \mid x], \quad v_{2}\left(c_{2}^{2}\right)=[x y \mid x]+[x \mid y], \quad v_{2}\left(c_{2}^{3}\right)=[y+1 \mid y] .
\end{aligned}
$$

Proof. We prove (i) only. It suffices to check that the equation $u_{k-1} d_{k}=$ $\delta_{k} u_{k}$ holds for $k=1,2$. In the case $k=1$, we have

$$
\begin{aligned}
u_{0} d_{1}\left(\left[x^{i} y^{p}\right]\right) & =u_{0}\left(\left(x^{i} y^{p}-1\right)[\cdot]\right)=\left(x^{i} y^{p}-1\right) c_{0}^{1} \\
& =N_{i}(x-1) c_{0}^{1}+p x^{i}(y-1) c_{0}^{1}=\delta_{1} u_{1}\left(\left[x^{i} y^{p}\right]\right)
\end{aligned}
$$

In the case $k=2$, the proof is divided into four cases.
Case $i+j<n, p=0$:

$$
\begin{aligned}
u_{1} d_{2}\left(\left[x^{i} \mid x^{j} y^{q}\right]\right) & =u_{1}\left(x^{i}\left[x^{j} y^{q}\right]-\left[x^{i+j} y^{q}\right]+\left[x^{i}\right]\right) \\
& =\left(x^{i} N_{j}-N_{i+j}+N_{i}\right) c_{1}^{1}=0=\delta_{2} u_{2}\left(\left[x^{i} \mid x^{j} y^{q}\right]\right)
\end{aligned}
$$

Case $i+j \geq n, p=0$:

$$
\begin{aligned}
u_{1} d_{2}\left(\left[x^{i} \mid x^{j} y^{q}\right]\right) & =\left(N_{i+j}-N_{i+j-n}\right) c_{1}^{1}=\left(N_{i+j}-\left(N_{i+j}-x^{i+j-n} N_{n}\right)\right) c_{1}^{1} \\
& =N c_{1}^{1}=\delta_{2} u_{2}\left(\left[x^{i} \mid x^{j} y^{q}\right]\right)
\end{aligned}
$$

Case $i-j \geq 0, p=1$:

$$
\begin{aligned}
u_{1} d_{2}\left(\left[x^{i} y \mid x^{j} y^{q}\right]\right) & =u_{1}\left(x^{i} y\left[x^{j} y^{q}\right]-\left[x^{i-j} y^{1-q}\right]+\left[x^{i} y\right]\right) \\
& =\left(x^{i} y N_{j}-N_{i-j}+N_{i}\right) c_{1}^{1}+\left(q x^{i-j} y+(q-1) x^{i-j}+x^{i}\right) c_{1}^{2} \\
& =x^{i-j} N_{j}(x y+1) c_{1}^{1}+x^{i-j}\left(x^{j}-1+q(y+1)\right) c_{1}^{2} \\
& =x^{i-j} N_{j}\left((x y+1) c_{1}^{1}+(x-1) c_{1}^{2}\right)+q x^{i-j}(y+1) c_{1}^{2} \\
& =\delta_{2} u_{2}\left(\left[x^{i} y \mid x^{j} y^{q}\right]\right)
\end{aligned}
$$

Case $i-j<0, p=1$:

$$
\begin{aligned}
u_{1} d_{2}\left(\left[x^{i} y \mid x^{j} y^{q}\right]\right)= & \left(x^{i} y N_{j}-N_{i-j+n}+N_{i}\right) c_{1}^{1}+\left(q x^{i-j} y+(q-1) x^{i-j}+x^{i}\right) c_{1}^{2} \\
= & -N c_{1}^{1}+x^{i-j} N_{j}\left((x y+1) c_{1}^{1}+(x-1) c_{1}^{2}\right)+q x^{i-j}(y+1) c_{1}^{2} \\
& \left(\text { since } N_{i}-N_{i-j+n}=-x^{i} N_{n-j}=-x^{i-j}\left(N_{n}-N_{j}\right)\right) \\
= & \delta_{2} u_{2}\left(\left[x^{i} y \mid x^{j} y^{q}\right]\right) .
\end{aligned}
$$

To prove (ii), it suffices to check that the equation $d_{k} v_{k}=v_{k-1} \delta_{k}$ holds for $k=1,2$.

Lemma 3.2. Let $H=\langle a\rangle$ denote the cyclic group of order $l(\geq 2) .\left(Z_{H}, \partial_{H}\right)$ denotes the periodic resolution of H and $\left(X_{H}, d_{H}\right)$ denotes the standard resolution of H.
(i) An initial part of a chain transformation $\left(v_{H}\right)_{k}:\left(Z_{H}\right)_{k} \rightarrow\left(X_{H}\right)_{k}$ lifting the identity map on \boldsymbol{Z} is given as follows:

$$
\begin{aligned}
\left(v_{H}\right)_{0}(1) & =[\cdot] ; \\
\left(v_{H}\right)_{1}(1) & =[a] ; \\
\left(v_{H}\right)_{2}(1) & =\sum_{i=0}^{l-1}\left[a^{i} \mid a\right] .
\end{aligned}
$$

(ii) An initial part of a chain transformation $\left(u_{H}\right)_{k}:\left(X_{H}\right)_{k} \rightarrow\left(Z_{H}\right)_{k}$ lifting the identity map on Z is given as follows:

$$
\begin{aligned}
\left(u_{H}\right)_{0}([\cdot]) & =1 ; \\
\left(u_{H}\right)_{1}\left(\left[a^{i}\right]\right) & = \begin{cases}a^{i-1}+a^{i-2}+\cdots+1 & (i \geq 1) \\
0 & (i=0)\end{cases} \\
\left(u_{H}\right)_{2}\left(\left[a^{i} \mid a^{j}\right]\right) & = \begin{cases}1 & (i+j \geq l) \\
0 & (i+j<l),\end{cases}
\end{aligned}
$$

for $0 \leq i, j<l$.
Proof. See [11, Proposition 1] for (i) and [9, Lemma 2.1] for (ii).
Lemma 3.3. Suppose H is a subgroup of a finite group G and A is a G-module. $\left(X_{H}, d_{H}\right)$ and $\left(X_{\left(s_{H}\right)}, d_{\left(s_{H}\right)}\right)$ denote the standard resolutions of H and ${ }^{g} H=g H^{-1}$ for $g \in G$, respectively. Then the conjugation map $g^{*}: H^{k}(H, A) \rightarrow$ $H^{k}\left({ }^{g} H, A\right)$ is given by the following on the cochain level:

$$
\begin{gathered}
\tilde{g}: \operatorname{Hom}_{\boldsymbol{Z} H}\left(\left(X_{H}\right)_{k}, A\right) \rightarrow \operatorname{Hom}_{\left.Z^{(g} H\right)}\left(\left(X_{\left(g_{H}\right)}\right)_{k}, A\right) \\
(\tilde{g}(f))([\cdot])=g f([\cdot]) \quad(k=0), \\
(\tilde{g}(f))\left(\left[\rho_{1}\left|\rho_{2}\right| \ldots \mid \rho_{k}\right]\right)=g f\left(\left[g^{-1} \rho_{1} g\left|g^{-1} \rho_{2} g\right| \ldots \mid g^{-1} \rho_{k} g\right]\right) \quad(k \geq 1),
\end{gathered}
$$

where $\rho_{1}, \rho_{2}, \ldots, \rho_{k} \in{ }^{g} H$.

Proof. See [19, Proposition 2-5-1].

In the following, (X, d) and (Y, δ) denote the standard resolution of $D_{2 n}$ and the resolution of $D_{2 n}$ given by (2.1), respectively.

Moreover, $\left(X^{(l+1)}, d^{(l+1)}\right)$ denotes the standard resolution of $G_{m+l+2}=$ $\left\langle x^{m}, x^{l} y\right\rangle$ for $l=0,1$, and $\left(Y^{(l+1)}, \delta^{(l+1)}\right)$ denotes the resolution of $G_{m+l+2}\left(\simeq D_{4}\right)$ for $l=0,1$ given by (2.1). The boundaries of $\left(Y^{(l+1)}, \delta^{(l+1)}\right)$ are left $Z G_{m+l+2^{-}}$ homomorphisms given by

$$
\left(\delta^{(l+1)}\right)_{q}\left(c_{q}^{r}\right)= \begin{cases}\left(x^{m+l} y+(-1)^{(q-r) / 2}\right) c_{q-1}^{r-1}+\left(x^{m}-1\right) c_{q-1}^{r} & \text { for } q \text { even, } r \text { even }, \\ \left(x^{l} y-(-1)^{(q+r+1) / 2}\right) c_{q-1}^{r-1}+\left(x^{m}+1\right) c_{q-1}^{r} & \text { for } q \text { even, } r \text { odd } \\ \left(x^{l} y-(-1)^{(q+r+1) / 2}\right) c_{q-1}^{r-1}-\left(x^{m}+1\right) c_{q-1}^{r} & \text { for } q \text { odd, } r \text { even } \\ \left(x^{m+l} y-(-1)^{(q-r) / 2}\right) c_{q-1}^{r-1}+\left(x^{m}-1\right) c_{q-1}^{r} & \text { for } q \text { odd, } r \text { odd }\end{cases}
$$

for $q>0$. By Lemma 3.1, an initial part of a chain transformation $\left(u^{(l+1)}\right)_{k}:\left(X^{(l+1)}\right)_{k} \rightarrow\left(Y^{(l+1)}\right)_{k}$ is given by

$$
\begin{aligned}
\left(u^{(l+1)}\right)_{0}([\cdot]) & =c_{0}^{1} ; \\
\left(u^{(l+1)}\right)_{1}\left(\left[x^{m i+l q} y^{q}\right]\right) & =i c_{1}^{1}+q x^{m i} c_{1}^{2} ; \\
\left(u^{(l+1)}\right)_{2}\left(\left[x^{m i+l p} y^{p} \mid x^{m j+l q} y^{q}\right]\right) & = \begin{cases}0 & (i+j<2, p=0), \\
c_{2}^{1} & (i+j=2, p=0), \\
j x^{m(i-j)} c_{2}^{2}+q x^{m(i-j)} c_{2}^{3} & (i-j \geq 0, p=1), \\
-c_{2}^{1}+j x^{m(i-j)} c_{2}^{2}+q x^{m(i-j)} c_{2}^{3} & (i-j<0, p=1),\end{cases}
\end{aligned}
$$

where $i, j, q=0,1$, and an initial part of a chain transformation $\left(v^{(l+1)}\right)_{k}:\left(Y^{(l+1)}\right)_{k} \rightarrow\left(X^{(l+1)}\right)_{k}$ is given by

$$
\begin{aligned}
& \left(v^{(l+1)}\right)_{0}\left(c_{0}^{1}\right)=[\cdot] ; \\
& \left(v^{(l+1)}\right)_{1}\left(c_{1}^{1}\right)=\left[x^{m}\right], \quad\left(v^{(l+1)}\right)_{1}\left(c_{1}^{2}\right)=\left[x^{l} y\right] ; \\
& \left(v^{(l+1)}\right)_{2}\left(c_{2}^{1}\right)=\left[x^{m}+1 \mid x^{m}\right], \quad\left(v^{(l+1)}\right)_{2}\left(c_{2}^{2}\right)=\left[x^{m+l} y \mid x^{m}\right]+\left[x^{m} \mid x^{l} y\right], \\
& \left(v^{(l+1)}\right)_{2}\left(c_{2}^{3}\right)=\left[x^{l} y+1 \mid x^{l} y\right] .
\end{aligned}
$$

Proposition 3.4. The following hold:
(i) $y^{*}(\sigma)=-\sigma$,
(ii) $\left(x^{m / 2}\right)^{*}\left(\mu_{r}\right)=\lambda_{r}+\mu_{r}$ for m even and $r=1,2$.

Moreover, g^{*} maps $1\left(\in H^{0}\left(G_{r}, Z\right)\right)$ to $1\left(\in H^{0}\left({ }^{g} G_{r}, Z\right)\right)$ for $1 \leq r \leq m+3$ and $g \in D_{2 n}$.

Proof. We prove $\left(x^{m / 2}\right)^{*}\left(\mu_{1}\right)=\lambda_{1}+\mu_{1}$ (m even) only. This is given by the composition of the following maps on the cochain level:

$$
\begin{aligned}
& \boldsymbol{Z}^{3} \xrightarrow{\beta_{2}^{\prime-1}} \operatorname{Hom}_{\boldsymbol{Z} G_{m+2}}\left(\left(Y^{(1)}\right)_{2}, \boldsymbol{Z}\right) \\
& \xrightarrow{\left.\widetilde{x}^{(1)}\right)_{2}^{*}} \operatorname{Hom}_{\boldsymbol{Z} G_{m+2}}\left(\left(X^{(1)}\right)_{2}, \boldsymbol{Z}\right) \\
& \xrightarrow{\widetilde{x^{\prime}}} \operatorname{Hom}_{\boldsymbol{Z} G_{m+2}}\left(\left(X^{(1)}\right)_{2}, \boldsymbol{Z}\right) \\
& \xrightarrow{\left(v^{(1)}\right)_{2}^{*}} \operatorname{Hom}_{\boldsymbol{Z} G_{m+2}}\left(\left(Y^{(1)}\right)_{2}, \boldsymbol{Z}\right) \\
& \xrightarrow{\beta_{2}^{\prime}} \boldsymbol{Z}^{3},
\end{aligned}
$$

where we set $l=m / 2$ and β_{2}^{\prime} denotes the isomorphism $\operatorname{Hom}_{Z_{G_{m+2}}}\left(\left(Y^{(1)}\right)_{2}, Z\right) \xrightarrow{\sim} Z^{3}$ stated in Section 2. Since

$$
\begin{aligned}
& \left(\tilde{x^{l}}\left(\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\right)\right)\left(\left(v^{(1)}\right)_{2}\left(c_{2}^{1}\right)\right)=\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\left(\left[x^{m}+1 \mid x^{m}\right]\right)=1, \\
& \left(\tilde{x^{l}}\left(\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\right)\right)\left(\left(v^{(1)}\right)_{2}\left(c_{2}^{2}\right)\right)=\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\left(\left[y \mid x^{m}\right]+\left[x^{m} \mid x^{m} y\right]\right)=1, \\
& \left(\tilde{x^{l}}\left(\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\right)\right)\left(\left(v^{(1)}\right)_{2}\left(c_{2}^{3}\right)\right)=\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\left(\left[x^{m} y+1 \mid x^{m} y\right]\right)=1,
\end{aligned}
$$

it follows that $\left(x^{m / 2}\right)^{*}\left(\mu_{1}\right)=\lambda_{1}+\mu_{1}$ holds. Similarly, we have $\left(x^{m / 2}\right)^{*}\left(\mu_{2}\right)=$ $\lambda_{2}+\mu_{2}$. The equation $y^{*}(\sigma)=-\sigma$ is obtained by using Lemmas 3.2 and 3.3.

Next, we calculate restriction maps. In the following, $\left(Z_{H}, \partial_{H}\right)$ denotes the periodic resolution of a cyclic subgroup H of $D_{2 n}$.

Lemma 3.5. (i) A chain transformation $w_{k}:\left(Z_{\langle x\rangle}\right)_{k} \rightarrow Y_{k}$ lifting the identity map on \boldsymbol{Z} is given by $w_{k}(1)=c_{k}^{1}(k \geq 0)$.
(ii) An initial part of a chain transformation $\left(w^{(l)}\right)_{k}:\left(Y^{(l)}\right)_{k} \rightarrow Y_{k}(l=1,2)$ lifting the identity map on \boldsymbol{Z} is given as follows:

$$
\begin{aligned}
& \left(w^{(l)}\right)_{0}\left(c_{0}^{1}\right)=c_{0}^{1} \\
& \left(w^{(l)}\right)_{1}\left(c_{1}^{1}\right)=N_{m} c_{1}^{1}, \quad\left(w^{(l)}\right)_{1}\left(c_{1}^{2}\right)=N_{l-1} c_{1}^{1}+x^{l-1} c_{1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(w^{(l)}\right)_{2}\left(c_{2}^{r}\right)= \begin{cases}N_{l-1} c_{2}^{r-1}+c_{2}^{r} & (\text { if } r=1,3), \\
x^{l-1} N_{m} c_{2}^{r} & (\text { if } r=2) ;\end{cases} \\
& \left(w^{(l)}\right)_{3}\left(c_{3}^{r}\right)= \begin{cases}N_{m} c_{3}^{r} & (\text { if } r \text { odd }), \\
(-1)^{r / 2} N_{l-1} c_{3}^{r-1}+x^{l-1} c_{3}^{r} & (\text { if } r \text { even }) ;\end{cases} \\
& \left(w^{(l)}\right)_{4}\left(c_{4}^{r}\right)= \begin{cases}(-1)^{(r-1) / 2} N_{l-1} c_{4}^{r-1}+c_{4}^{r} & \text { (if } r \text { odd }), \\
x^{l-1} N_{m} c_{4}^{r} & \text { (if } r \text { even }),\end{cases}
\end{aligned}
$$

Proof. (i) is easily obtained. To prove (ii), it suffices to check that $\delta_{k} \cdot\left(w^{(l)}\right)_{k}=\left(w^{(l)}\right)_{k-1} \cdot\left(\delta^{(l)}\right)_{k}$ holds for $k=1,2,3,4$. The proof is straightforward.

Lemma 3.6. (i) A chain transformation $s_{k}:\left(Z_{\left\langle x^{m}\right\rangle}\right)_{k} \rightarrow\left(Z_{\langle x\rangle}\right)_{k}$ lifting the identity map on \boldsymbol{Z} is given by $s_{2 k}(1)=1 ; s_{2 k+1}(1)=N_{m}(k \geq 0)$.
(ii) A chain transformation $\left(s^{(l)}\right)_{k}:\left(Z_{\left\langle x^{m}\right\rangle}\right)_{k} \rightarrow\left(Y^{(l)}\right)_{k}(l=1,2)$ lifting the identity map on \boldsymbol{Z} is given by $\left(s^{(l)}\right)_{k}(1)=c_{k}^{1}(k \geq 0)$.

Proposition 3.7. The following hold:
(i) $\operatorname{res}_{\langle x\rangle}^{D_{2 n}} \lambda=0, \operatorname{res}_{\langle x\rangle}^{D_{2 n}} \mu=m \sigma, \operatorname{res}_{\langle x\rangle}^{D_{2 n}} \xi=\sigma^{2}$.
(ii) $\operatorname{res}_{G_{m+2}}^{D_{2 n}} \lambda=\lambda_{1}, \operatorname{res}_{G_{m+2}}^{D_{2 n}} \mu=\left\{\begin{array}{ll}0 & (m \text { even }), \\ \mu_{1} & (m \text { odd }),\end{array}, \operatorname{res}_{G_{m+2}}^{D_{2 n}} \nu=v_{1}\right.$,

$$
\operatorname{res}_{G_{m+2}}^{D_{2 n}} \xi=\mu_{1}^{2}+\lambda_{1} \mu_{1} .
$$

(iii) $\operatorname{res}_{G_{m+3}}^{D_{2 n}} \lambda=\lambda_{2}, \operatorname{res}_{G_{m+3}}^{D_{2 n}}, ~ \mu=\left\{\begin{array}{ll}\lambda_{2} & (m \text { even }), \\ \lambda_{2}+\mu_{2} & \text { (} m \text { odd }),\end{array} \operatorname{res}_{G_{m+3}}^{D_{2 n}} v=v_{2}\right.$,

$$
\operatorname{res}_{G_{m+3}}^{D_{2 n}} \xi=\mu_{2}^{2}+\lambda_{2} \mu_{2} .
$$

(iv) $\operatorname{res}_{\left\langle x^{m}\right\rangle}^{G_{m+r+1}} \lambda_{r}=0, \operatorname{res}_{\left\langle x^{m}\right\rangle}^{\langle x\rangle} \sigma=\operatorname{res}_{\left\langle x^{m}\right\rangle}^{G_{m+r+1}} \mu_{r}=\tau(r=1,2)$.

Moreover, $\operatorname{res}_{G_{r}}^{D_{2 n}} 1=1\left(\in H^{0}\left(G_{r}, Z\right)\right)$ and $\operatorname{res}_{\left\langle x^{m}\right\rangle}^{G_{r}} 1=1\left(\in H^{0}\left(\left\langle x^{m}\right\rangle, Z\right)\right)$ hold for $3 \leq r \leq m+3$.

Proof. These are given by using Lemmas 3.5 and 3.6. We calculate $\operatorname{res}_{G_{m+2}}^{D_{2 n}} \lambda$ and $\operatorname{res}_{G_{m+2}}^{D_{2 n}} \mu$ as examples. These are given by the composition of the following maps on the cochain level:

$$
\begin{aligned}
& Z^{3} \xrightarrow{\alpha_{2}^{-1}} \\
& \xrightarrow{\left(w^{(1)}\right)_{2}^{*}} \operatorname{Hom}_{Z D_{2 n}}\left(Y_{2}, \boldsymbol{Z}\right) \\
& \operatorname{Hom}_{Z_{G_{m+2}}}\left(\left(Y^{(1)}\right)_{2}, Z\right) \\
& \xrightarrow{\beta_{2}^{\prime}} \\
& Z^{3},
\end{aligned}
$$

where α_{2} denotes the isomorphism $\operatorname{Hom}_{Z D_{2 n}}\left(Y_{2}, \boldsymbol{Z}\right) \xrightarrow{\sim} \boldsymbol{Z}^{3}$ stated in Section 2. Since

$$
\begin{aligned}
& \alpha_{2}^{-1}(\lambda) \cdot\left(w^{(1)}\right)_{2}\left(c_{2}^{1}\right)=\alpha_{2}^{-1}(\lambda)\left(c_{2}^{1}\right)=0 \\
& \alpha_{2}^{-1}(\lambda) \cdot\left(w^{(1)}\right)_{2}\left(c_{2}^{2}\right)=\alpha_{2}^{-1}(\lambda)\left(N_{m} c_{2}^{2}\right)=0 \\
& \alpha_{2}^{-1}(\lambda) \cdot\left(w^{(1)}\right)_{2}\left(c_{2}^{3}\right)=\alpha_{2}^{-1}(\lambda)\left(c_{2}^{3}\right)=1 \\
& \alpha_{2}^{-1}(\mu) \cdot\left(w^{(1)}\right)_{2}\left(c_{2}^{1}\right)=\alpha_{2}^{-1}(\mu)\left(c_{2}^{1}\right)=m \\
& \alpha_{2}^{-1}(\mu) \cdot\left(w^{(1)}\right)_{2}\left(c_{2}^{2}\right)=\alpha_{2}^{-1}(\mu)\left(N_{m} c_{2}^{2}\right)=m \\
& \alpha_{2}^{-1}(\mu) \cdot\left(w^{(1)}\right)_{2}\left(c_{2}^{3}\right)=\alpha_{2}^{-1}(\mu)\left(c_{2}^{3}\right)=0
\end{aligned}
$$

it follows that $\operatorname{res}_{G_{m+2}}^{D_{2 n}} \lambda=\lambda_{1}$ and $\operatorname{res}_{G_{m+2}}^{D_{2 n}} \mu=m \mu_{1}$ hold.
Finally, we calculate corestriction maps. To compute them we need the following lemma:

Lemma 3.8. Suppose H is a subgroup of index l of a finite group G and A is a G-module. Fix a set of right coset representatives $S=\left\{\omega_{1}(=1), \omega_{2}, \ldots, \omega_{l}\right\}$ of H in G, and let $c(g)(\in S)$ denote the representative of the right coset containing $g \in G$. $\left(X_{G}, d_{G}\right)$ and $\left(X_{H}, d_{H}\right)$ denote the standard resolutions of G and H, respectively. Then the corestriction map $\operatorname{cor}_{H}^{G}: H^{k}(H, A) \rightarrow H^{k}(G, A)$ is given by the following on the cochain level:

$$
\begin{gathered}
T_{H}^{G}: \operatorname{Hom}_{Z H}\left(\left(X_{H}\right)_{k}, A\right) \rightarrow \operatorname{Hom}_{Z G}\left(\left(X_{G}\right)_{k}, A\right) \\
\left(T_{H}^{G}(u)\right)([\cdot])=\sum_{\omega \in S} \omega^{-1} u([\cdot]) \quad(k=0), \\
\left(T_{H}^{G}(u)\right)\left(\left[\sigma_{1}\left|\sigma_{2}\right| \ldots \mid \sigma_{k}\right]\right)=\sum_{\omega \in S} \omega^{-1} u\left(\left[c(\omega) \sigma_{1} c\left(\omega \sigma_{1}\right)^{-1}\left|c\left(\omega \sigma_{1}\right) \sigma_{2} c\left(\omega \sigma_{1} \sigma_{2}\right)^{-1}\right| \ldots\right.\right. \\
\left.\left.\mid c\left(\omega \sigma_{1} \cdots \sigma_{k-1}\right) \sigma_{k} c\left(\omega \sigma_{1} \cdots \sigma_{k}\right)^{-1}\right]\right) \quad(k \geq 1),
\end{gathered}
$$

where $u \in \operatorname{Hom}_{Z H}\left(\left(X_{H}\right)_{k}, A\right)$ and $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k} \in G$.
Proof. See [19, Proposition 2-5-2].
Proposition 3.9. The following hold:

$$
\operatorname{cor}_{\langle x\rangle}^{D_{2 n}} \sigma=0, \quad \operatorname{cor}_{G_{m+2}}^{D_{2 n}} \mu_{1}=\lambda+\mu(m \text { even }), \quad \operatorname{cor}_{G_{m+3}}^{D_{2 n}} \mu_{2}=\mu(m \text { even }) .
$$

Proof. First we calculate $\operatorname{cor}_{\langle x\rangle}^{D_{2 n}} \sigma$. Using Lemmas 3.1, 3.2 and 3.8, this is given by the composition of the following maps on the cochain level:

$$
\begin{aligned}
& \boldsymbol{Z} \xrightarrow{\beta_{2}^{-1}} \operatorname{Hom}_{\boldsymbol{Z}\langle x\rangle}\left(\left(\boldsymbol{Z}_{\langle x\rangle}\right)_{2}, \boldsymbol{Z}\right) \\
& \xrightarrow{\left(u_{\langle x\rangle}\right)_{2}^{*}} \operatorname{Hom}_{\boldsymbol{Z}\langle x\rangle}\left(\left(X_{\langle x\rangle}\right)_{2}, \boldsymbol{Z}\right) \\
& \xrightarrow{T_{\langle x\rangle}^{D_{2 n}}} \operatorname{Hom}_{\boldsymbol{Z} D_{2 n}}\left(X_{2}, \boldsymbol{Z}\right) \\
& \xrightarrow{v_{2}^{*}} \operatorname{Hom}_{\boldsymbol{Z} D_{2 n}}\left(Y_{2}, \boldsymbol{Z}\right) \\
& \xrightarrow{\alpha_{2}} \boldsymbol{Z}^{3},
\end{aligned}
$$

where β_{2} denotes an isomorphism $\operatorname{Hom}_{\boldsymbol{Z}\langle x\rangle}\left(\left(Z_{\langle x\rangle}\right)_{2}, \boldsymbol{Z}\right) \xrightarrow{\sim} \boldsymbol{Z} ; f \mapsto f(1)$. Let $\{1, y\}$ be a set of right coset representatives of $\langle x\rangle$ in $D_{2 n}$. Then $c\left(x^{i}\right)=1$ and $c\left(x^{i} y\right)=y$ hold. Since

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
\left(T_{\langle x\rangle}^{D_{2 n}}\right. \\
\left.\left(\beta_{2}^{-1}(\sigma) \cdot\left(u_{\langle x\rangle}\right)_{2}\right)\right)\left(v_{2}\left(c_{2}^{1}\right)\right) \\
= \\
\sum_{i=0}^{n-1} \beta_{2}^{-1}(\sigma) \cdot\left(u_{\langle x\rangle}\right)_{2}\left(\left[c(1) x^{i} c\left(x^{i}\right)^{-1} \mid c\left(x^{i}\right) x c\left(x^{i+1}\right)^{-1}\right]\right. \\
\\
\left.\quad+\left[c(y) x^{i} c\left(y x^{i}\right)^{-1} \mid c\left(y x^{i}\right) x c\left(y x^{i+1}\right)^{-1}\right]\right) \\
= \\
=\sum_{i=0}^{n-1} \beta_{2}^{-1}(\sigma) \cdot\left(u_{\langle x\rangle}\right)_{2}\left(\left[x^{i} \mid x\right]+\left[x^{-i} \mid x^{-1}\right]\right) \\
= \\
\begin{array}{rl}
\left(T_{\langle x\rangle}^{D_{2 n}}\right. \\
\left.\left(\beta_{2}^{-1}(\sigma) \cdot\left(u_{\langle x\rangle}\right)_{2}\right)\right)\left(v_{2}\left(c_{2}^{2}\right)\right) \\
=\beta_{2}^{-1}(\sigma) \cdot\left(u_{\langle x\rangle}\right)_{2}\left(\left[c(1) x y c(x y)^{-1} \mid c(x y) x c(y)^{-1}\right]\right.
\end{array} \\
\quad \quad+\left[c(y) x y c\left(x^{-1}\right)^{-1} \mid c\left(x^{-1}\right) x c(1)^{-1}\right] \\
\quad
\end{array} \quad+\left[c(1) x c(x)^{-1} \mid c(x) y c(x y)^{-1}\right]+\left[c(y) x c(y x)^{-1} \mid c(y x) y c\left(x^{-1}\right)^{-1}\right]\right) \\
& =\beta_{2}^{-1}(\sigma) \cdot\left(u_{\langle x\rangle}\right)_{2}\left(\left[x \mid x^{-1}\right]+\left[x^{-1} \mid x\right]+[x \mid 1]+\left[x^{-1} \mid 1\right]\right) \\
& =2,
\end{aligned}
$$

$$
\begin{aligned}
& \left(T_{\langle x\rangle}^{D_{2 n}}\left(\beta_{2}^{-1}(\sigma) \cdot\left(u_{\langle x\rangle}\right)_{2}\right)\right)\left(v_{2}\left(c_{2}^{3}\right)\right) \\
& \quad=\beta_{2}^{-1}(\sigma) \cdot\left(u_{\langle x\rangle}\right)_{2}\left(\left[c(1) y c(y)^{-1} \mid c(y) y c(1)^{-1}\right]+\left[c(y) y c(1)^{-1} \mid c(1) y c(y)^{-1}\right]\right. \\
& \left.\quad \quad+\left[c(1) 1 c(1)^{-1} \mid c(1) y c(y)^{-1}\right]+\left[c(y) 1 c(y)^{-1} \mid c(y) y c(1)^{-1}\right]\right) \\
& \quad=4 \beta_{2}^{-1}(\sigma) \cdot\left(u_{\langle x\rangle}\right)_{2}([1 \mid 1]) \\
& \quad=0
\end{aligned}
$$

we have $\operatorname{cor}_{\langle x\rangle}^{D_{2 n}} \sigma=2 \mu=0$.
Next, let m be even and $\left\{1, x, \ldots, x^{m-1}\right\}$ a set of right coset representatives of $G_{m+2}=\left\langle x^{m}, y\right\rangle$ in $D_{2 n}$. Then $c\left(x^{i}\right)=c\left(x^{m+i}\right)=x^{i}(0 \leq i \leq m-1)$ and $c\left(x^{i} y\right)=$ $c\left(x^{m+i} y\right)=x^{m-i}(1 \leq i \leq m)$ hold. Since

$$
\left(T_{G_{m+2}}^{D_{2 n}}\left(\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\right)\right)\left(v_{2}\left(c_{2}^{1}\right)\right)
$$

$$
=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1}\left(\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\right)\left(\left[c\left(x^{i}\right) x^{j} c\left(x^{i+j}\right)^{-1} \mid c\left(x^{i+j}\right) x c\left(x^{i+j+1}\right)^{-1}\right]\right)
$$

$$
=m \beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\left(\left[x^{m} \mid x^{m}\right]\right)
$$

$$
=m
$$

$$
\left(T_{G_{m+2}}^{D_{2 n}}\left(\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\right)\right)\left(v_{2}\left(c_{2}^{2}\right)\right)
$$

$$
=\sum_{i=0}^{m-1}\left(\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\right)\left(\left[c\left(x^{i}\right) x y c\left(x^{i+1} y\right)^{-1} \mid c\left(x^{i+1} y\right) x c\left(x^{i} y\right)^{-1}\right]\right.
$$

$$
\left.+\left[c\left(x^{i}\right) x c\left(x^{i+1}\right)^{-1} \mid c\left(x^{i+1}\right) y c\left(x^{i+1} y\right)^{-1}\right]\right)
$$

$$
=\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\left(\left[x^{m} y \mid x^{m}\right]\right)
$$

$$
=1
$$

$$
\left(T_{G_{m+2}}^{D_{2 n}}\left(\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\right)\right)\left(v_{2}\left(c_{2}^{3}\right)\right)
$$

$$
=\sum_{i=0}^{m-1}\left(\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\right)\left(\left[c\left(x^{i}\right) y c\left(x^{i} y\right)^{-1} \mid \cdot c\left(x^{i} y\right) y c\left(x^{i}\right)^{-1}\right]\right.
$$

$$
\left.+\left[1 \mid c\left(x^{i}\right) y c\left(x^{i} y\right)^{-1}\right]\right)
$$

$$
=\beta_{2}^{\prime-1}\left(\mu_{1}\right) \cdot\left(u^{(1)}\right)_{2}\left([y \mid y]+(m-1)\left[x^{m} y \mid x^{m} y\right]\right)
$$

$$
=m-1
$$

it follows that $\operatorname{cor}_{G_{m+2}}^{D_{2 n}} \mu_{1}=(m-1) \lambda+\mu=\lambda+\mu$ holds.

Finally, let m be even and $\left\{1, x, \ldots, x^{m-1}\right\}$ a set of right coset representatives of $G_{m+3}=\left\langle x^{m}, x y\right\rangle$ in $D_{2 n}$. Then $c\left(x^{i}\right)=c\left(x^{m+i}\right)=x^{i}(0 \leq i \leq m-1)$ and $c\left(x^{i} y\right)=c\left(x^{m+i} y\right)=x^{m-i+1} \quad(2 \leq i \leq m+1)$ hold. By a similar calculation as above, we have $\operatorname{cor}_{G_{m+3}}^{D_{2 n}} \mu_{2}=(m-2) \lambda+\mu=\mu$.

Note that from (1.1), Propositions 3.7 and 3.9, and [19, Proposition 4-3-7], we have

$$
\operatorname{cor}_{G_{m+2}}^{D_{2 n}}\left(\lambda_{1} \mu_{1}\right)=\operatorname{cor}_{G_{m+2}}^{D_{2 n}}\left(\operatorname{res}_{G_{m+2}}^{D_{2 n}} \lambda \cdot \mu_{1}\right)=\lambda \cdot \operatorname{cor}_{G_{m+2}}^{D_{2 n}} \mu_{1}= \begin{cases}\lambda^{2}+\lambda \mu & (m \text { even }) \\ \lambda \mu & (m \text { odd })\end{cases}
$$

and so on.

3.2 The Case n Odd

In the case n odd, the calculations are easily obtained. We set $t=(n-1) / 2$. We take representatives of the conjugacy classes of $D_{2 n}$ are

$$
g_{1}=1, \quad g_{i+1}=x^{i} \quad(1 \leq i \leq t), \quad g_{t+2}=y
$$

and their centralizers are

$$
G_{1}=D_{2 n}, \quad G_{i+1}=\langle x\rangle \quad(1 \leq i \leq t), \quad G_{t+2}=\langle y\rangle,
$$

respectively. We set

$$
\begin{aligned}
H^{*}\left(G_{1}, \boldsymbol{Z}\right) & =\boldsymbol{Z}[\alpha, \beta] /\left(2 \alpha, 2 n \beta, \alpha^{2}-n \beta\right) \quad(\operatorname{deg} \alpha=2, \operatorname{deg} \beta=4), \\
H^{*}\left(G_{k+1}, \boldsymbol{Z}\right) & =\boldsymbol{Z}[\rho] /(n \rho) \quad(\operatorname{deg} \rho=2), \\
H^{*}\left(G_{t+2}, \boldsymbol{Z}\right) & =\boldsymbol{Z}[\chi] /(2 \chi) \quad(\operatorname{deg} \chi=2),
\end{aligned}
$$

where $1 \leq k \leq t$. These presentations follow from (2.6) and (2.8). By (1.2), (2.5) and (2.7), we have

$$
H^{k}\left(D_{2 n, \psi} \boldsymbol{Z} D_{2 n}\right)= \begin{cases}\boldsymbol{Z}^{t+2} & \text { for } k=0 \\ 0 & \text { for } k \equiv 1(4), \\ (\boldsymbol{Z} / 2)^{2} \oplus(\boldsymbol{Z} / n)^{t} & \text { for } k \equiv 2(4), \\ 0 & \text { for } k \equiv 3(4), \\ (\boldsymbol{Z} / 2)^{2} \oplus(\boldsymbol{Z} / n)^{t+1} & \text { for } k \equiv 0(4), k \neq 0\end{cases}
$$

By computations similar to Propositions 3.4, 3.7 and 3.9, we have

$$
y^{*}(\rho)=-\rho, \quad \operatorname{res}_{\langle x\rangle}^{D_{2 n}} \alpha=0, \quad \operatorname{res}_{\langle x\rangle}^{D_{2 n}} \beta=\rho^{2}, \quad \operatorname{cor}_{\langle x\rangle}^{D_{2 n}} \rho=0 .
$$

Moreover, by (1.1), (2.6) and (2.8), we have $\operatorname{res}_{\langle y\rangle}^{D_{2 n}} \alpha=\chi, \operatorname{res}_{\langle y\rangle}^{D_{2 n}} \beta=\chi^{2}$.

4 Products on $H^{*}\left(D_{2 n, \psi} Z D_{2 n}\right)$

In this section, we will determine the ring structure of the Hochschild cohomology $H^{*}\left(D_{2 n}, \psi Z D_{2 n}\right)\left(\simeq H H^{*}\left(Z D_{2 n}\right)\right)$ by using the Product Formula. In the following, we write $X Y$ in place of $X \smile Y$ for brevity.

4.1 The Case n Even

In this subsection, we calculate the products on the Hochschild cohomology $H^{*}\left(D_{2 n, \psi} Z D_{2 n}\right)\left(\simeq H H^{*}\left(Z D_{2 n}\right)\right)$ for the case $n=2 m(m \geq 2)$. In the following, we set

$$
\begin{aligned}
A_{2} & =\gamma_{1}(\lambda), \quad B_{2}=\gamma_{1}(\mu), \quad A_{3}=\gamma_{1}(\nu), \quad A_{4}=\gamma_{1}(\xi), \quad C_{0}=\gamma_{2}(1), \\
\left(E_{i}\right)_{0} & =\gamma_{i+2}(1) \quad(1 \leq i \leq m-1), \quad\left(E_{i}\right)_{2}=\gamma_{i+2}(\sigma) \quad(1 \leq i \leq m-1), \\
S_{0} & =\gamma_{m+2}(1), \quad S_{2}=\gamma_{m+2}\left(\mu_{1}\right), \quad T_{0}=\gamma_{m+3}(1), \quad T_{2}=\gamma_{m+3}\left(\mu_{2}\right) .
\end{aligned}
$$

Moreover, we set $F_{i}=\left(E_{1}\right)_{i}(i=0,2)$,

$$
U_{k}=\left\{\begin{array}{ll}
\left(E_{-k}\right)_{0} & (-m<k<0), \\
2 & (k=0), \\
\left(E_{k}\right)_{0} & (0<k<m), \\
2 C_{0} & (k=m), \\
\left(E_{n-k}\right)_{0} & (m<k<n),
\end{array} \quad V_{k}= \begin{cases}-\left(E_{-k}\right)_{2} & (-m<k<0) \\
0 & (k=0) \\
\left(E_{k}\right)_{2} & (0<k<m) \\
0 & (k=m) \\
-\left(E_{n-k}\right)_{2} & (m<k<n)\end{cases}\right.
$$

In the following, we interpret $\sum_{l=1}^{(m / 2)-1}$ term as 0 if $m=2$.
First, we calculate products in degree 0 . The products in degree 0 correspond to the multiplication in the center of $\boldsymbol{Z} D_{2 n}$. By using this identification, we have the following proposition:

Proposition 4.1. (i) If m is even, the following equations hold in $H^{0}\left(D_{2 n, \psi} Z D_{2 n}\right)$:

$$
\begin{gathered}
C_{0}^{2}=1, \quad C_{0}\left(E_{i}\right)_{0}=\left(E_{m-i}\right)_{0}, \quad C_{0} S_{0}=S_{0}, \quad C_{0} T_{0}=T_{0}, \\
\left(E_{i}\right)_{0} S_{0}=\left\{\begin{array}{lll}
2 S_{0} & \text { (i even }), \\
2 T_{0} & \text { i odd }),
\end{array} \quad\left(E_{i}\right)_{0} T_{0}= \begin{cases}2 T_{0} & \text { (i even }), \\
2 S_{0} & \text { i odd }),\end{cases} \right. \\
S_{0}^{2}=T_{0}^{2}=m\left(1+C_{0}\right)+m \sum_{l=1}^{(m / 2)-1}\left(E_{2 l}\right)_{0}, \quad S_{0} T_{0}=m \sum_{l=1}^{m / 2}\left(E_{2 l-1}\right)_{0}, \\
\left(E_{i}\right)_{0}\left(E_{j}\right)_{0}=U_{i+j}+U_{i-j} .
\end{gathered}
$$

(ii) If m is odd, the following equations hold in $H^{0}\left(D_{2 n}, \psi Z D_{2 n}\right)$:

$$
\begin{gathered}
C_{0}^{2}=1, \quad C_{0}\left(E_{i}\right)_{0}=\left(E_{m-i}\right)_{0}, \quad C_{0} S_{0}=T_{0}, \quad\left(E_{i}\right)_{0} S_{0}= \begin{cases}2 S_{0} & (i \text { even }), \\
2 T_{0} & (i \text { odd }),\end{cases} \\
S_{0}^{2}=m+m \sum_{l=1}^{(m-1) / 2}\left(E_{2 l}\right)_{0}, \quad\left(E_{i}\right)_{0}\left(E_{j}\right)_{0}=U_{i+j}+U_{i-j} .
\end{gathered}
$$

Remark 1. Since the equations $\left(E_{2}\right)_{0}=F_{0}^{2}-2$ and $\left(E_{k}\right)_{0}=F_{0}\left(E_{k-1}\right)_{0}-$ $\left(E_{k-2}\right)_{0}(3 \leq k \leq m-1)$ hold, it follows that the powers of F_{0} generate $\left(E_{k}\right)_{0}$ ($2 \leq k \leq m-1$). Hence $H^{0}\left(D_{2 n, \psi} Z D_{2 n}\right)$ is generated by the products of C_{0}, F_{0}, S_{0} and T_{0} (resp. C_{0}, F_{0} and S_{0}) for the case m even (resp. m odd).

Next, we compute cup products for generators of $H^{0}\left(D_{2 n, \psi} Z D_{2 n}\right)$ and generators of $H^{2}\left(D_{2 n, \psi} Z D_{2 n}\right)$.

Proposition 4.2. (i) If m is even, the following equations hold in $H^{2}\left(D_{2 n, \psi} Z D_{2 n}\right)$:
(1) $C_{0} A_{2}=\gamma_{2}(\lambda), C_{0} B_{2}=\gamma_{2}(\mu), C_{0}\left(E_{i}\right)_{2}=-\left(E_{m-i}\right)_{2}, C_{0} S_{2}=S_{0} A_{2}+S_{2}$, $C_{0} T_{2}=T_{0} A_{2}+T_{2}$.
(2) $\left(E_{i}\right)_{0} A_{2}=\left(E_{i}\right)_{0} S_{2}=\left(E_{i}\right)_{0} T_{2}=0, \quad\left(E_{i}\right)_{0} B_{2}=m\left(E_{i}\right)_{2}, \quad\left(E_{i}\right)_{0}\left(E_{j}\right)_{2}=$ $V_{i+j}+V_{j-i}$.
(3) $S_{0} A_{2}=\gamma_{m+2}\left(\lambda_{1}\right), \quad S_{0} B_{2}=S_{0}\left(E_{i}\right)_{2}=0, \quad S_{0} S_{2}=\left(1+C_{0}\right)\left(A_{2}+B_{2}\right)+$ $m \sum_{l=1}^{(m / 2)-1}\left(E_{2 l}\right)_{2}, S_{0} T_{2}=m \sum_{l=1}^{m / 2}\left(E_{2 l-1}\right)_{2}$.
(4) $T_{0} A_{2}=T_{0} B_{2}=\underset{(m / 2)-1}{\gamma_{m+3}\left(\lambda_{2}\right), ~} T_{0}^{l=1}\left(E_{i}\right)_{2}=0, T_{0} S_{2}=m \sum_{l=1}^{m / 2}\left(E_{2 l-1}\right)_{2}, T_{0} T_{2}=$ $\left(1+C_{0}\right) B_{2}+m \sum_{l=1}^{(m / 2)-1}\left(E_{2 l}\right)_{2}$.
(ii) If m is odd, the following equations hold in $H^{2}\left(D_{2 n, \psi} Z D_{2 n}\right)$:
(1) $C_{0} A_{2}=\gamma_{2}(\lambda), C_{0} B_{2}=\gamma_{2}(\mu), C_{0}\left(E_{i}\right)_{2}=-\left(E_{m-i}\right)_{2}$.
(2) $\left(E_{i}\right)_{0} A_{2}=0,\left(E_{i}\right)_{0} B_{2}=m\left(E_{i}\right)_{2},\left(E_{i}\right)_{0}\left(E_{j}\right)_{2}=V_{i+j}+V_{j-i}$.
(3) $S_{0} A_{2}=\gamma_{m+2}\left(\lambda_{1}\right), \quad S_{0} B_{2}=\gamma_{m+2}\left(\mu_{1}\right), \quad S_{0}\left(E_{i}\right)_{2}=0, \quad C_{0} S_{0} A_{2}=\gamma_{m+3}\left(\lambda_{2}\right)$, $C_{0} S_{0}\left(A_{2}+B_{2}\right)=\gamma_{m+3}\left(\mu_{2}\right)$.

Proof. Table 1 is useful for computations.
We prove (i) only. By the Product Formula, we have

$$
\begin{equation*}
\gamma_{1}(\alpha) \gamma_{r}(\beta)=\gamma_{r}\left(\operatorname{cor}_{G_{r}}^{G_{r}}\left(\operatorname{res}_{G_{r}}^{D_{2 n}} \alpha \cdot \operatorname{res}_{G_{r}}^{G_{r}} \beta\right)\right)=\gamma_{r}\left(\operatorname{res}_{G_{r}}^{D_{2 n}} \alpha \cdot \beta\right) \tag{4.1}
\end{equation*}
$$

Table 1. Data for the Product Formula.

$i \quad j$	a	$g_{i}{ }^{\text {a }}{ }_{j}$	b	k	${ }^{6} G_{i}$	${ }^{\text {ba }} G_{j}$	$W={ }^{b} G_{i} \cap{ }^{\text {ba }} G_{j}$
$1 \quad r(1 \leq r \leq m+3)$	1	g_{r}	1	r	$D_{2 n}$	G_{r}	G_{r}
$2 \quad 2$	1	1	1	1	$D_{2 n}$	$D_{2 n}$	$D_{2 n}$
$2 r+2(1 \leq r<m)$	1	x^{m+r}	y	$m-r+2$	$D_{2 n}$	$\langle x\rangle$	$\langle x\rangle$
$2 \quad m+2$ (m even)	1	$x^{m} y$	$x^{m / 2}$	$m+2$	$D_{2 n}$	G_{m+2}	G_{m+2}
$2 \quad m+2$ (m odd)	1	$x^{m} y$	$x^{(m+1) / 2}$	$m+3$	$D_{2 n}$	G_{m+3}	G_{m+3}
$2 \quad m+3$ (m even)	1	$x^{m+1} y$	$x^{m / 2}$	$m+3$	$D_{2 n}$	G_{m+3}	G_{m+3}
$2 \quad m+3$ (m odd)	1	$x^{m+1} y$	$x^{(m-1) / 2}$	$m+2$	$D_{2 n}$	G_{m+2}	G_{m+2}
$r+2 s+2(1 \leq r, s<m)$	1 y	x^{r+s} x^{r-s}	$\begin{aligned} & 1(r+s<m) \\ & 1(r+s=m) \\ & y(r+s>m) \\ & 1(r>s) \\ & 1(r=s) \\ & y(s>r) \end{aligned}$	$\begin{gathered} r+s+2 \\ 2 \\ n-r-s+2 \\ r-s+2 \\ 1 \\ s-r+2 \end{gathered}$	$\begin{aligned} & \langle x\rangle \\ & \langle x\rangle \\ & \langle x\rangle \\ & \langle x\rangle \\ & \rangle \\ & \rangle \\ & \langle x\rangle \end{aligned}$	$\begin{aligned} & \langle x\rangle \\ & \rangle\rangle \\ & \langle x\rangle \end{aligned}$	$\begin{aligned} & \langle x\rangle \\ & \langle x\rangle \\ & \langle x\rangle \\ & \langle x\rangle \\ & \rangle\rangle \\ & \rangle\rangle \\ & \langle x\rangle \end{aligned}$
$r+2 \quad m+2(1 \leq r<m)$	1	$x^{r} y$	$\begin{aligned} & x^{-r / 2}\left(\begin{array}{l} r \\ \text { even }) \\ x^{(1-r) / 2} \end{array}(r \text { odd })\right. \end{aligned}$	$\begin{aligned} & m+2 \\ & m+3 \end{aligned}$	$\begin{aligned} & \langle x\rangle \\ & \langle x\rangle \end{aligned}$	$\begin{gathered} \left\langle x^{m}, x^{-r} y\right\rangle \\ \left\langle x^{m}, x^{1-r} y\right\rangle \end{gathered}$	$\begin{aligned} & \left\langle x^{m}\right\rangle \\ & \left\langle x^{m}\right\rangle \end{aligned}$
$r+2 \quad m+3 \quad(1 \leq r<m)$	1	$x^{r+1} y$	$\begin{aligned} & x^{-r / 2}(r \text { even }) \\ & x^{(-r-1) / 2}(r \text { odd }) \\ & \hline \end{aligned}$	$\begin{array}{r} m+3 \\ m+2 \\ \hline \end{array}$	$\begin{aligned} & \langle x\rangle \\ & \langle x\rangle \\ & \hline \end{aligned}$	$\begin{aligned} & \left\langle x^{m}, x^{1-r} y\right\rangle \\ & \left\langle x^{m}, x^{-r} y\right\rangle \\ & \hline \end{aligned}$	$\begin{aligned} & \left\langle x^{m}\right\rangle \\ & \left\langle x^{m}\right\rangle \\ & \hline \end{aligned}$
$m+2 m+2$ (m even)	$\begin{aligned} & 1 \\ & x^{l}\left(1 \leq l<\frac{m}{2}\right) \\ & x^{m / 2} \end{aligned}$	$\begin{gathered} 1 \\ x^{-2 t} \\ x^{m} \end{gathered}$	$\begin{aligned} & 1 \\ & y \\ & 1 \end{aligned}$	$\begin{gathered} 1 \\ 2 l+2 \\ 2 \end{gathered}$	$\begin{aligned} & G_{m+2} \\ & G_{m+2} \\ & G_{m+2} \end{aligned}$	$\begin{gathered} G_{m+2} \\ \left\langle x^{m}, x^{-2 l} y\right\rangle \\ G_{m+2} \end{gathered}$	$\begin{aligned} & G_{m+2} \\ & \left\langle x^{m}\right\rangle \\ & G_{m+2} \end{aligned}$
$m+2 m+3$ (m even)	$x^{l}\left(0 \leq l<\frac{m}{2}\right)$	$x^{-2 l-1}$	y	$2 l+3$	G_{m+2}	$\left\langle x^{m}, x^{-2 l-1} y\right\rangle$	$\left\langle x^{m}\right\rangle$
$m+3 m+3$ (m even)	$\begin{aligned} & 1 \\ & x^{l} \\ & x^{m / 2} \end{aligned}\left(1 \leq l<\frac{m}{2}\right)$	${ }^{1}$ $x^{-2 l}$ x^{m}	$\begin{aligned} & 1 \\ & y \\ & 1 \end{aligned}$	$\begin{gathered} 1 \\ 2 l+2 \\ 2 \end{gathered}$	$\begin{gathered} G_{m+3} \\ \left\langle x^{m}, x^{-1} y\right\rangle \\ G_{m+3} \end{gathered}$	$\begin{gathered} G_{m+3} \\ \left\langle x^{m}, x^{-2 l-1} y\right\rangle \\ G_{m+3} \end{gathered}$	$\begin{aligned} & G_{m+3} \\ & \left\langle x^{m}\right\rangle \\ & G_{m+3} \end{aligned}$

for $\alpha \in H^{*}\left(D_{2 n}, \boldsymbol{Z}\right), \beta \in H^{*}\left(G_{r}, \boldsymbol{Z}\right)(1 \leq r \leq m+3)$. By the above equation and Proposition 3.7 we have $C_{0} A_{2}=\gamma_{2}(\lambda), C_{0} B_{2}=\gamma_{2}(\mu)$, and so on.

The other equations are obtained by using Theorem 1.1, Propositions 3.4, 3.7 and 3.9 and Table 1. We calculate $S_{0} S_{2}$ as an example.

$$
\begin{aligned}
S_{0} S_{2}= & \gamma_{m+2}(1) \gamma_{m+2}\left(\mu_{1}\right) \\
= & \gamma_{1}\left(\operatorname{cor}_{G_{m+2}}^{D_{2 n}} \mu_{1}\right)+\gamma_{2}\left(\operatorname{cor}_{G_{m+2}}^{D_{2 n}}\left(x^{m / 2}\right)^{*} \mu_{1}\right) \\
& +\sum_{l=1}^{(m / 2)-1} \gamma_{2 l+2}\left(\operatorname{cor}_{\left\langle x^{m}\right\rangle}^{\langle x\rangle}\left(\operatorname{res}_{\left\langle x^{m}\right\rangle}^{\left\langle x^{m}, x^{-2 l} y\right\rangle}\left(y x^{l}\right)^{*}\left(\mu_{1}\right)\right)\right) \\
= & \gamma_{1}(\lambda+\mu)+\gamma_{2}(\lambda+\mu)+m \sum_{l=1}^{(m / 2)-1} \gamma_{2 l+2}(\sigma) \\
= & \left(1+C_{0}\right)\left(A_{2}+B_{2}\right)+m \sum_{l=1}^{(m / 2)-1}\left(E_{2 l}\right)_{2} .
\end{aligned}
$$

In the above calculation, note that restriction maps commute with conjugation maps and the conjugation maps are the identity on $H^{2}\left(\left\langle x^{m}\right\rangle, \boldsymbol{Z}\right)=\boldsymbol{Z} / 2$. The other computations are similar.

Remark 2. By Proposition 4.2, we have

$$
\left(E_{i}\right)_{2}= \begin{cases}F_{2}+\sum_{l=1}^{(i-1) / 2}\left(E_{2 l}\right)_{0} F_{2} & (i(\geq 3) \text { odd }) \\ \sum_{l=1}^{i / 2}\left(E_{2 l-1}\right)_{0} F_{2} & (i \text { even })\end{cases}
$$

By Remark 1, $\left(E_{i}\right)_{2}$ is generated by the products of F_{0} and F_{2}. Therefore, $H^{2}\left(D_{2 n, \psi} \boldsymbol{Z} D_{2 n}\right)$ is generated by the products of $C_{0}, F_{0}, S_{0}, T_{0}, A_{2}, B_{2}, F_{2}$, S_{2} and T_{2} (resp. $C_{0}, F_{0}, S_{0}, A_{2}, B_{2}$ and F_{2}) for the case m even (resp. m odd).

Proposition 4.3. The following equations hold in $H^{3}\left(D_{2 n, \psi} Z D_{2 n}\right)$:

$$
C_{0} A_{3}=\gamma_{2}(v), \quad\left(E_{i}\right)_{0} A_{3}=0, \quad S_{0} A_{3}=\gamma_{m+2}\left(v_{1}\right), \quad T_{0} A_{3}=\gamma_{m+3}\left(v_{2}\right)
$$

Proof. These are immediate from (4.1) and Proposition 3.7.

Remark 3. $H^{3}\left(D_{2 n, \psi} Z D_{2 n}\right)$ is generated by the products of C_{0}, S_{0}, T_{0} and A_{3} (resp. C_{0}, S_{0} and A_{3}) for the case m even (resp. m odd).

Proposition 4.4. (i) If m is even, the following equations hold in $H^{4}\left(D_{2 n, \psi} Z D_{2 n}\right)$:
(1) $A_{2}^{2} C_{0}=\gamma_{2}\left(\lambda^{2}\right), A_{2} B_{2} C_{0}=\gamma_{2}(\lambda \mu), A_{2}^{2} S_{0}=\gamma_{m+2}\left(\lambda_{1}^{2}\right), A_{2}^{2} T_{0}=\gamma_{m+3}\left(\lambda_{2}^{2}\right)$.
(2) $A_{4} C_{0}=\gamma_{2}(\xi), \quad A_{4}\left(E_{i}\right)_{0}=\gamma_{i+2}\left(\sigma^{2}\right), \quad A_{4} S_{0}=\gamma_{m+2}\left(\lambda_{1} \mu_{1}+\mu_{1}^{2}\right), \quad A_{4} T_{0}=$ $\gamma_{m+3}\left(\lambda_{2} \mu_{2}+\mu_{2}^{2}\right)$.
(3) $A_{2}\left(E_{i}\right)_{2}=B_{2} S_{2}=\left(E_{i}\right)_{2} S_{2}=\left(E_{i}\right)_{2} T_{2}=0, A_{2} S_{2}=\gamma_{m+2}\left(\lambda_{1} \mu_{1}\right), A_{2} T_{2}=$ $B_{2} T_{2}=\gamma_{m+3}\left(\lambda_{2} \mu_{2}\right), B_{2}\left(E_{i}\right)_{2}=m A_{4}\left(E_{i}\right)_{0},\left(E_{i}\right)_{2}\left(E_{j}\right)_{2}=A_{4}\left(U_{i+j}-U_{i-j}\right)$, $S_{2}^{2}+A_{2}^{2}=T_{2}^{2}=A_{2} B_{2}+A_{4} S_{0}^{2}, S_{2} T_{2}=A_{4} S_{0} T_{0}$.
(ii) If m is odd, the following equations hold in $H^{4}\left(D_{2 n, \psi} Z D_{2 n}\right)$:
(1) $A_{2}^{2} C_{0}=\gamma_{2}\left(\lambda^{2}\right), \quad A_{2} B_{2} C_{0}=\gamma_{2}(\lambda \mu), \quad A_{2}^{2} S_{0}=\gamma_{m+2}\left(\lambda_{1}^{2}\right), \quad A_{2} B_{2} S_{0}=$ $\gamma_{m+2}\left(\lambda_{1} \mu_{1}\right), \quad B_{2}^{2} S_{0}=\gamma_{m+2}\left(\mu_{1}^{2}\right), \quad A_{2}^{2} C_{0} S_{0}=\gamma_{m+3}\left(\lambda_{2}^{2}\right), \quad A_{2} B_{2} C_{0} S_{0}=$ $\gamma_{m+3}\left(\lambda_{2}^{2}+\lambda_{2} \mu_{2}\right), B_{2}^{2} C_{0} S_{0}=\gamma_{m+3}\left(\lambda_{2}^{2}+\mu_{2}^{2}\right)$.
(2) $A_{4} C_{0}=\gamma_{2}(\xi), A_{4}\left(E_{i}\right)_{0}=\gamma_{i+2}\left(\sigma^{2}\right)$.
(3) $A_{2}\left(E_{i}\right)_{2}=0, B_{2}\left(E_{i}\right)_{2}=m A_{4}\left(E_{i}\right)_{0},\left(E_{i}\right)_{2}\left(E_{j}\right)_{2}=A_{4}\left(U_{i+j}-U_{i-j}\right)$.

Proof. Note that γ_{1} is a monomorphism between the cohomology rings (see [16, Section 5]). Thus the products of $\gamma_{1}(-)$ and $\gamma_{r}(-)(1 \leq r \leq m+3)$ are obtained by using (4.1) and Proposition 3.7. The other equations are obtained by using Theorem 1.1, Propositions 3.4, 3.7 and 3.9 and Table 1.

Remark 4. By Proposition 4.4 and Remark 1 , note that $A_{4}\left(E_{i}\right)_{0}$ is generated by the products of A_{4} and F_{0}. Hence $H^{4}\left(D_{2 n, \psi} Z D_{2 n}\right)$ is generated by the products of $C_{0}, F_{0}, S_{0}, T_{0}, A_{2}, B_{2}, S_{2}, T_{2}$ and A_{4} (resp. $C_{0}, F_{0}, S_{0}, A_{2}, B_{2}$ and A_{4}) for the case m even (resp. m odd).

Remark 5. By (4.1), $\gamma_{2}\left(\lambda^{i} \mu^{j} v^{k} \xi^{l}\right)$ is generated by the products of A_{2}, B_{2}, A_{3}, A_{4} and C_{0}. Similarly, from (4.1) and Propositions 3.7 and 4.4, we have

$$
\gamma_{r+2}\left(\sigma^{2 i+p}\right)=\gamma_{1}\left(\xi^{i}\right) \gamma_{r+2}\left(\sigma^{p}\right) \quad(i \geq 0, p=0,1)
$$

where $1 \leq r \leq m-1$. By summarizing Remarks 1 and 2 , it follows that $\gamma_{r+2}\left(\sigma^{i}\right)$ is generated by the products of A_{4}, F_{0} and F_{2}.

Moreover, from (4.1) and Propositions 3.7 and 4.4, we have

$$
\begin{align*}
\gamma_{m+r+1}\left(\mu_{r}^{i+2}\right) & =\gamma_{m+r+1}\left(\left(\operatorname{res}_{G_{m+r+1}}^{D_{2 n}} \lambda\right) \mu_{r}^{i+1}+\left(\operatorname{res}_{G_{m+r+1}}^{D_{2 n}} \xi\right) \mu_{r}^{i}\right) \\
& =\gamma_{1}(\lambda) \gamma_{m+r+1}\left(\mu_{r}^{i+1}\right)+\gamma_{1}(\xi) \gamma_{m+r+1}\left(\mu_{r}^{i}\right) \quad(i \geq 0, r=1,2) \tag{4.2}
\end{align*}
$$

Using Proposition 4.4 and (4.2), it is shown that $\gamma_{m+r+1}\left(\mu_{r}^{k}\right)$ is generated by the products of $\gamma_{1}(\lambda), \gamma_{1}(\nu), \gamma_{m+r+1}(1)$ and $\gamma_{m+r+1}\left(\mu_{r}\right)$ by the induction on k. Since

$$
\gamma_{m+r+1}\left(\lambda_{r}^{i} \mu_{r}^{j} \nu_{r}^{k}\right)=\gamma_{1}(\lambda)^{i} \gamma_{1}(\nu)^{k} \gamma_{m+r+1}\left(\mu_{r}^{j}\right) \quad(i, j, k \geq 0, r=1,2),
$$

it follows that $\gamma_{m+r+1}\left(\lambda_{r}^{i} \mu_{r}^{j} \nu_{r}^{k}\right)$ is multiplicatively generated by $\gamma_{1}(\lambda), \gamma_{1}(\mu), \gamma_{1}(v)$, $\gamma_{1}(\xi), \gamma_{m+r+1}(1)$ and $\gamma_{m+r+1}\left(\mu_{r}\right)$.

Hence, $H^{k}\left(D_{2 n, \psi} Z D_{2 n}\right)(k \geq 5)$ is generated by the products of C_{0}, F_{0}, S_{0}, $T_{0}, A_{2}, B_{2}, F_{2}, S_{2}, T_{2}$ and $A_{4}\left(\right.$ resp. $C_{0}, F_{0}, S_{0}, A_{2}, B_{2}, F_{2}$ and A_{4}) for the case m even (resp. m odd).

4.2 The Case n Odd

In this subsection, let $n(\geq 3)$ be odd. We put $t=(n-1) / 2$. The computations of the products on the Hochschild cohomology $H^{*}\left(D_{2 n},{ }_{\psi} Z D_{2 n}\right)\left(\simeq H H^{*}\left(Z D_{2 n}\right)\right)$ are similar to Section 4.1. In the following, we set

$$
\begin{aligned}
A_{2} & =\gamma_{1}(\alpha), \quad A_{4}=\gamma_{1}(\beta) \\
\left(E_{i}\right)_{0} & =\gamma_{i+1}(1) \quad(1 \leq i \leq t), \quad\left(E_{i}\right)_{2}=\gamma_{i+1}(\rho) \quad(1 \leq i \leq t), \\
S_{0} & =\gamma_{t+2}(1)
\end{aligned}
$$

Moreover, we set $F_{i}=\left(E_{1}\right)_{i}(i=0,2)$ and

$$
U_{k}=\left\{\begin{array}{ll}
\left(E_{-k}\right)_{0} & (-t<k<0), \\
2 & (k=0), \\
\left(E_{k}\right)_{0} & (1 \leq k \leq t), \\
\left(E_{n-k}\right)_{0} & (t<k<n),
\end{array} \quad V_{k}= \begin{cases}-\left(E_{-k}\right)_{2} & (-t<k<0) \\
0 & (k=0) \\
\left(E_{k}\right)_{2} & (1 \leq k \leq t) \\
-\left(E_{n-k}\right)_{2} & (t<k<n)\end{cases}\right.
$$

First, we calculate the products in degree 0 . These are obtained by computations similar to Proposition 4.1.

Proposition 4.5. The following equations hold in $H^{0}\left(D_{2 n}, \psi Z D_{2 n}\right)$:

$$
\left(E_{i}\right)_{0} S_{0}=2 S_{0}, \quad S_{0}^{2}=n+n \sum_{i=1}^{t}\left(E_{i}\right)_{0}, \quad\left(E_{i}\right)_{0}\left(E_{j}\right)_{0}=U_{i+j}+U_{i-j}
$$

Remark 6. $H^{0}\left(D_{2 n, \psi} Z D_{2 n}\right)$ is generated by the products of F_{0} and S_{0} (cf. Remark 1).

Next, we calculate the products in degree 2.

Proposition 4.6. The following equations hold in $H^{2}\left(D_{2 n, \psi} Z D_{2 n}\right)$:

$$
\left(E_{i}\right)_{0} A_{2}=S_{0}\left(E_{i}\right)_{2}=0, \quad S_{0} A_{2}=\gamma_{t+2}(\chi), \quad\left(E_{i}\right)_{0}\left(E_{j}\right)_{2}=V_{i+j}+V_{j-i}
$$

Remark 7. $H^{2}\left(D_{2 n, \psi} Z D_{2 n}\right)$ is generatedby the products of F_{0}, S_{0}, A_{2} and F_{2} (cf. Remark 2).

Remark 8. Since the equations

$$
\operatorname{res}_{\langle x\rangle}^{D_{2 n}} \beta^{k}=\rho^{2 k}, \quad \operatorname{res}_{\langle y\rangle}^{D_{2 n}} \beta^{k}=\chi^{2 k}(k \geq 0)
$$

hold, by (4.1) the cup product with $A_{4}=\gamma_{1}(\beta)$ gives a periodicity isomorphism

$$
A_{4} \smile-: H^{k}\left(D_{2 n, \psi} Z D_{2 n}\right) \xrightarrow{\sim} H^{k+4}\left(D_{2 n, \psi} Z D_{2 n}\right)
$$

for all $k \geq 1$.
Finally, we have the following proposition.
Proposition 4.7. The following equations hold in $H^{4}\left(D_{2 n}, \psi Z D_{2 n}\right)$: $A_{4}\left(E_{i}\right)_{0}=\gamma_{i+1}\left(\rho^{2}\right), A_{4} S_{0}=\gamma_{t+2}\left(\chi^{2}\right), A_{2}\left(E_{i}\right)_{2}=0,\left(E_{i}\right)_{2}\left(E_{j}\right)_{2}=A_{4}\left(U_{i+j}-U_{i-j}\right)$.

4.3 Ring Structure

We will state the ring structure of $H^{*}\left(D_{2 n, \psi} Z D_{2 n}\right)$ by summarizing Sections 4.1 and 4.2.

Theorem 4.8. Let $D_{2 n}$ denote the dihedral group of order $2 n$ for $n \geq 3$.
(i) Let n be even. We set $m=n / 2$.
(1) If m is even, the Hochschild cohomology ring $H^{*}\left(D_{2 n, \psi} Z D_{2 n}\right)$ $\left(\simeq H H^{*}\left(Z D_{2 n}\right)\right)$ is commutative, generated by elements

$$
\begin{gathered}
C_{0}, F_{0}, S_{0}, T_{0} \in H^{0}\left(D_{2 n, \psi} Z D_{2 n}\right), \quad A_{2}, B_{2}, F_{2}, S_{2}, T_{2} \in H^{2}\left(D_{2 n, \psi} Z D_{2 n}\right), \\
A_{3} \in H^{3}\left(D_{2 n, \psi} Z D_{2 n}\right), \quad A_{4} \in H^{4}\left(D_{2 n, \psi} Z D_{2 n}\right) .
\end{gathered}
$$

The relations follow from Table 2.
(2) If m is odd, the Hochschild cohomology ring $H^{*}\left(D_{2 n, \psi} Z D_{2 n}\right)$ $\left(\simeq H H^{*}\left(Z D_{2 n}\right)\right)$ is commutative, generated by elements

$$
\begin{array}{cl}
C_{0}, F_{0}, S_{0} \in H^{0}\left(D_{2 n, \psi} Z D_{2 n}\right), & A_{2}, B_{2}, F_{2} \in H^{2}\left(D_{2 n, \psi} Z D_{2 n}\right), \\
A_{3} \in H^{3}\left(D_{2 n, \psi} Z D_{2 n}\right), & A_{4} \in H^{4}\left(D_{2 n, \psi} Z D_{2 n}\right) .
\end{array}
$$

The relations follow from Table 3.
Table 2. Cohomology ring $H^{*}\left(D_{2 n, \psi} Z D_{2 n}\right)\left(\simeq H H^{*}\left(Z D_{2 n}\right)\right)$ for $n=2 m$ ($m \geq 2$ even).

	C_{0}	F_{0}	S_{0}	T_{0}	A_{2}	B_{2}	F_{2}	S_{2}	T_{2}	A_{3}	A_{4}
C_{0}	1	$\left(E_{m-1}\right)_{0}$	S_{0}	T_{0}	$C_{0} A_{2}$	$C_{0} B_{2}$	-(Em-1) $)_{2}$	$S_{0} A_{2}+S_{2}$	$T_{0} A_{2}+T_{2}$	$C_{0} A_{3}$	${ }_{n} C_{0} A_{4}$
F_{0}		$\begin{cases}2\left(C_{0}+1\right) & (m=2) \\ \left(E_{2}\right)_{0}+2 & (m \geq 4)\end{cases}$	$2 T_{0}$	$2 S_{0}$	0	$m F_{2}$	$\begin{cases}0 & (m=2) \\ \left(E_{2}\right)_{2} & (m \geq 4)\end{cases}$	0	0	0	${ }_{n} F_{0} A_{4}$
S_{0}			I	J	$S_{0} A_{2}$	0	0	K	L	$S_{0} A_{3}$	${ }_{2} S_{0} A_{4}$
T_{0}				I	$T_{0} A_{2}$	$T_{0} A_{2}$	0	L	$K+\left(1+C_{0}\right) A_{2}$	$T_{0} A_{3}$	${ }_{2} T_{0} A_{4}$
${ }_{2} A_{2}$					A_{2}^{2}	$A_{2} B_{2}$	0	$A_{2} S_{2}$	$A_{2} T_{2}$	$A_{2} A_{3}$	$A_{2} A_{4}$
${ }_{2} B_{2}$						$A_{2} B_{2}$	$m F_{0} A_{4}$	0	$A_{2} T_{2}$	$B_{2} A_{3}$	$B_{2} A_{4}$
${ }_{n} F_{2}$							$\begin{cases}2 A_{4}\left(C_{0}-1\right) & (m=2) \\ A_{4}\left(\left(E_{2}\right)_{0}-2\right) & (m \geq 4)\end{cases}$	0	0	0	$F_{2} A_{4}$
${ }_{2} S_{2}$								$A_{4} I+A_{2}^{2}+A_{2} B_{2}$	$A_{4} J$	$S_{2} A_{3}$	$S_{2} A_{4}$
${ }_{2} T_{2}$									$A_{4} I+A_{2} B_{2}$	$T_{2} A_{3}$	$T_{2} A_{4}$
${ }_{2} A_{3}$										$A_{2} A_{4}$	$A_{3} A_{4}$
${ }_{n} A_{4}$											A_{4}^{2}

[^1]Table 3. Cohomology ring $H^{*}\left(D_{2 n, \psi} Z D_{2 n}\right)\left(\simeq H H^{*}\left(Z D_{2 n}\right)\right)$ for $n=2 m$ ($m \geq 3$ odd).

	C_{0}	F_{0}	S_{0}	A_{2}	B_{2}	F_{2}	A_{3}	A_{4}
C_{0}	1	$\left(E_{m-1}\right)_{0}$	$C_{0} S_{0}$	$C_{0} A_{2}$	$C_{0} B_{2}$	$-\left(E_{m-1}\right)_{2}$	$C_{0} A_{3}$	${ }_{n} C_{0} A_{4}$
F_{0}		$\left(E_{2}\right)_{0}+2$	$2 C_{0} S_{0}$	0	$m F_{2}$	$\left(E_{2}\right)_{2}$	0	${ }_{n} F_{0} A_{4}$
S_{0}			$m+m \sum_{l=1}^{(m-1) / 2}\left(E_{21}\right)_{0}$	$S_{0} A_{2}$	$S_{0} B_{2}$	0	$S_{0} A_{3}$	${ }_{2} S_{0} A_{4}$
${ }_{2} A_{2}$				A_{2}^{2}	$A_{2} B_{2}$	0	$A_{2} A_{3}$	$A_{2} A_{4}$
${ }_{2} B_{2}$					$A_{2} B_{2}-m A_{4}$	$m F_{0} A_{4}$	$B_{2} A_{3}$	$B_{2} A_{4}$
${ }_{n} F_{2}$						$A_{4}\left(\left(E_{2}\right)_{0}-2\right)$	0	$F_{2} A_{4}$
${ }_{2} A_{3}$							$A_{2} A_{4}$	$A_{3} A_{4}$
${ }_{n} A_{4}$								A_{4}^{2}

${ }_{1} W_{k}$ means that l is the order of $W_{k} \in H^{k}\left(D_{2 n, \psi} Z D_{2 n}\right)$ as a Z-module.
$\left(E_{i}\right)_{0}(1 \leq i \leq m-1)$ are defined inductively by $\left(E_{1}\right)_{0}=F_{0},\left(E_{2}\right)_{0}=F_{0}^{2}-2$ and $\left(E_{k}\right)_{0}=F_{0}\left(E_{k-1}\right)_{0}-$ $\left(E_{k-2}\right)_{0}(3 \leq i \leq m-1)$.
$\left(E_{i}\right)_{2}(1 \leq i \leq m-1)$ are defined by $\left(E_{1}\right)_{2}=F_{2},\left(E_{k}\right)_{2}= \begin{cases}F_{2}+\sum_{l=1}^{(k-1) / 2}\left(E_{2 l}\right)_{0} F_{2} & (k \geq 3 \text { odd }), \\ \sum_{l=1}^{k / 2}\left(E_{2 l-1}\right)_{0} F_{2} & (k \text { even }) .\end{cases}$
(ii) If n is odd, the Hochschild cohomology ring $H^{*}\left(D_{2 n, \psi} Z D_{2 n}\right)$ $\left(\simeq H H^{*}\left(Z D_{2 n}\right)\right)$ is commutative, generated by elements $F_{0}, S_{0} \in H^{0}\left(D_{2 n, \psi} Z D_{2 n}\right), \quad A_{2} \in H^{2}\left(D_{2 n, \psi} Z D_{2 n}\right), \quad A_{4} \in H^{4}\left(D_{2 n, \psi} Z D_{2 n}\right)$.

The relations follow from Table 4.

Table 4. Cohomology ring $H^{*}\left(D_{2 n, \psi} Z D_{2 n}\right)\left(\simeq H H^{*}\left(Z D_{2 n}\right)\right)$ for $n=2 t+1 \quad(t \geq 1)$.

	F_{0}	S_{0}	A_{2}	F_{2}	A_{4}
F_{0}	$\begin{cases}F_{0}+2 & (t=1) \\ \left(E_{2}\right)_{0}+2 & (t \geq 2)\end{cases}$	$2 S_{0}$	0	$\left\{\begin{array}{cc}-F_{2} & (t=1) \\ \left(E_{2}\right)_{2} & (t \geq 2)\end{array}\right.$	${ }_{n} F_{0} A_{4}$
S_{0}		$n+n \sum_{i=1}^{t}\left(E_{i}\right)_{0}$	$S_{0} A_{2}$	0	${ }_{n} S_{0} A_{4}$
${ }_{2} A_{2}$			$n A_{4}$	0	$A_{2} A_{4}$
${ }_{n} F_{2}$				$\begin{cases}A_{4}\left(F_{0}-2\right) & (t=1) \\ A_{4}\left(\left(E_{2}\right)_{0}-2\right) & (t \geq 2)\end{cases}$	$F_{2} A_{4}$
${ }_{2 n} A_{4}$				A_{4}^{2}	

${ }_{l} W_{m}$ means that l is the order of $W_{m} \in H^{m}\left(D_{2 n, \psi} Z D_{2 n}\right)$ as a Z-module.
$\left(E_{i}\right)_{0}(1 \leq i \leq t)$ are defined inductively by $\left(E_{1}\right)_{0}=F_{0},\left(E_{2}\right)_{0}=F_{0}^{2}-2$ and $\left(E_{k}\right)_{0}=F_{0}\left(E_{k-1}\right)_{0}-$ $\left(E_{k-2}\right)_{0} \quad(3 \leq i \leq t)$.
$\left(E_{i}\right)_{2}(1 \leq i \leq t)$ are defined by $\left(E_{1}\right)_{2}=F_{2},\left(E_{k}\right)_{2}= \begin{cases}F_{2}+\sum_{l=1}^{(k-1) / 2}\left(E_{2 l}\right)_{0} F_{2} & (k \geq 3 \text { odd }), \\ \sum_{l=1}^{k / 2}\left(E_{2 l-1}\right)_{0} F_{2} & (k \text { even }) .\end{cases}$

Acknowledgements

The author would like to express his gratitude to Professor K. Sanada for valuable comments and suggestions. The author would also like to express his gratitude to the referee for valuable comments and suggestions towards the improvement of the paper.

References

[1] Benson, D. J., Representations and cohomology II: cohomology of groups and modules, Cambridge University Press, Cambridge, 1991.
[2] Bouc, S., Hochschild constructions for Green functors, Comm. Algebra 31 (2003), 403-436.
[3] Cartan, H. and Eilenberg, S., Homological Algebra, Princeton University Press, Princeton NJ, 1956.
[4] Cibils, C., Tensor product of Hopf bimodules over a group, Proc. Amer. Math. Soc. 125 (1997), 1315-1321.
[5] Cibils, C. and Solotar, A., Hochschild cohomology algebra of abelian groups, Arch. Math. 68 (1997), 17-21.
[6] Hamada, S., On a free resolution of a dihedral group, Tohoku Math. J. (2) 15 (1963), 212-219.
[7] Handel, D., On products in the cohomology of the dihedral groups, Tohoku Math. J. (2) 45 (1993), 13-42.
[8] Hayami, T., Hochschild cohomology ring of the integral group ring of the generalized quaternion group, SUT J. Math. 38 (2002), 83-126.
[9] Hayami, T., On Hochschild cohomology ring of the integral group ring of the quaternion group, Tsukuba J. Math. 29 (2005), 363-387.
[10] Hayami, T. and Sanada, K., Cohomology ring of the generalized quaternion group with coefficients in an order, Comm. Algebra 30 (2002), 3611-3628.
[11] Hayami, T. and Sanada, K., On cohomology rings of a cyclic group and a ring of integers, SUT J. Math. 38 (2002), 185-199.
[12] Holm, T., The Hochschild cohomology ring of a modular group algebra: the commutative case, Comm. Algebra 24 (1996), 1957-1969.
[13] Nozawa, T. and Sanada, K., Cup products on the complete relative cohomologies of finite groups and group algebras, Hokkaido Math. J. 28 (1999), 545-556.
[14] Sanada, K., On the Hochschild cohomology of crossed products, Comm. Algebra 21 (1993), 2727-2748.
[15] Sanada, K., Remarks on cohomology rings of the quaternion group and the quaternion algebra, SUT J. Math. 31 (1995), 85-92.
[16] Siegel, S. F. and Witherspoon, S. J., The Hochschild cohomology ring of a group algebra, Proc. London Math. Soc. (3) 79 (1999), 131-157.
[17] Thomas, C. B., Characteristic classes and the cohomology of finite groups, Cambridge University Press, Cambridge, 1986.
[18] Wall, C. T. C., Resolutions for extensions of groups, Proc. Cambridge Philos. Soc. 57 (1961), 251-255.
[19] Weiss, E., Cohomology of groups, Academic Press, New York-London, 1969.

Takao Hayami

Department of Mathematics, Science University of Tokyo Wakamiya-cho 26, Shinjuku-ku, Tokyo 162-0827, Japan
E-mail: hayami@ma.kagu.tus.ac.jp

[^0]: ${ }^{\dagger}$ AMS 2000 Mathematics Subject Classification. 16E40, 20 J06.
 Key words and phrases. Hochschild cohomology ring, dihedral group, cup product, Product Formula. Received August 29, 2005.
 Revised June 13, 2006.

[^1]: $\left(E_{i}\right)_{0}(1 \leq i \leq m-1)$ are defined inductively by $\left(E_{1}\right)_{0}=F_{0},\left(E_{2}\right)_{0}=F_{0}^{2}-2$ and $\left(E_{k}\right)_{0}=F_{0}\left(E_{k-1}\right)_{0}-\left(E_{k-2}\right)_{0}(3 \leq i \leq m-1)$. $F_{2}+\sum_{l=1}^{(k-1) / 2}(E$
 $\sum_{l=1}^{-1) / 2}\left(E_{2 l}\right)_{0} F_{2} \quad(k \geq 3$ odd),
 (k even).
 $I=m\left(C_{0}+1\right)+m \sum_{l=1}^{(m / 2)-1}\left(E_{2 l}\right)_{0}, J=m \sum_{l=1}^{m / 2}\left(E_{2 l-1}\right)_{0}, K=\left(C_{0}+1\right)\left(A_{2}+B_{2}\right)+m \sum_{l=1}^{(m / 2)-1}\left(E_{2 l}\right)_{2}, L=m \sum_{l=1}^{m / 2}\left(E_{2 l-1}\right)_{2}$.
 In the above, we interpret $\sum_{l=1}^{(m / 2)-1}$ term as 0 if $m=2$.

