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THE LICHNEROWICZ THEOREM ON CR MANIFOLDS 

By 

Elisabetta BARLETTA 1 

Abstract. For any compact strictly pseudoconvex CR manifold M 
endowed with a contact form e we obtain the Bochner type for
mula !L1b(jVHfj2) = jnHV2fj2 + (VHf)(Abf) + p(VHf, VHf) + 2Lf 
(involving the sublaplacian L1b and the pseudohermitian Ricci 
curvature p). When M is compact of CR dimension n and 
p(X,X) + 2A(X,JX) ?? kGe(X,X), X E H(M), we derive the esti
mate -il?? 2nkj(2n - 1) on each nonzero eigenvalue 1 of Ab sat
isfying Eigen(Ab; 1) n Ker(T) :f:: (0) where T is the characteristic 
direction of de. 

1. Introduction 

By a well known result by A. Lichnerowicz, [18], and M. Obata, [21], on 
any m-dimensional compact Riemannian manifold (M, g) with Ric?? kg the first 
eigenvalue of the Laplacian satisfies the estimate 

(1) ill ?? mkj (m - 1), 

with equality if and only if M is isometric to the standard sphere sm. The proof 
of (1) relies on the Bochner formula (cf. e.g. [3], p. 131) 

for any f E C<Xl(M). On the other hand, given a compact strictly pseudoconvex 
CR manifold M, with any fixed contact form e one may associate a natural 
second order differential operator L1b (the sublaplacian) which is similar in many 
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respects to the Laplacian of a Riemannian manifold. Indeed, flb is hypoelliptic 
and (by a result of [20]) has a discrete spectrum 

0< -AI < -A2 < ... < -Ak < ... i +00. 

Also (M,O) carries a natural linear connection V (the Tanaka- Webster connection, 

cf. [24]-[25]) preserving the Levi form and the maximally complex distribution, 
and resembling to both the Levi-Civita connection and the Chern connection (in 
Hermitian geometry). Moreover the Ricci tensor p of V is likely to play the role 
of the Ricci curvature in Riemannian geometry. To give an example, by a result 

of J. M. Lee, [15], if p(Z,Z) > 0 for any Z E TI,o(M), Z =1= 0, then the first 
Kohn-Rossi cohomology group HO,l(M,ch) vanishes (as a CR counterpart of 
the classical result in [5]). It is a natural question whether we may estimate the 
spectrum of flb from below, under appropriate geometric assumptions (on p). The 
first attempt to bring (1) to CR geometry belongs to A. Greenleaf, [12]. His result 
is that on any compact strictly pseudoconvex CR manifold M, of CR dimension 
n ~ 3, one has 

(3) -AI ~ nC/(n + 1) 

provided that 

(4) 

for some constant C> O. Here Rap = p(Ta, Tp) is the pseudohermitian Ricci tensor 

while Aap is the pseudohermitian torsion (cf. e.g. [7], p. 102) and {Ta : 1 ::::;; a ::::;; n} 

is a local frame of the CR structure. The proof of (3) relies on the rather involved 
Bochner like formula 

(5) flb(IV1,ofI 2) = 2 ~(faPhp + faP/ap) + 4i ~(fdoa - !afo~J 
~p a 

+2 ~RaPfafp + 2in ~(AaPfdp -Aapfafp) 
a,p a,p 

+ ~ {h(flbf)a + !a (flbf)d 
Cl 

where V 1,of = fClTCl . Cf. also Chapter 9 in [11]. Recently, a large number of 
results were obtained within CR and pseudohermitian geometry, mainly by 
analogy to similar findings in Riemannian geometry (cf. e.g. S. Dragomir et aI., 

[8]-[10]). On this line of thought, one scope of this paper is to establish the 
Bochner like formula 1 

1 Under the conventions in the present paper the suh\ap\acian of [l2l is -I1.b. 
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for any f E COO(M), where the differential operator L given by 

(7) 

As an application we shall prove 

THEOREM 1. Let M be a compact strictly pseudoconvex CR manifold, of CR 
dimension n. Let (j be a contact form on M such that the Levi form Go is positive 
definite. Let A be a nonzero eigenvalue of the sublaplacian !!.b. Suppose that there is 

a constant k > 0 such that i) 

(8) p(X, X) + 2A(X, JX) "?:. kGo(X, X), X E H(M) , 

and ii) there is an eigenfunction f E Eigen(!!.b; A) such that T(f) = O. Then A 
satisfies the estimate 

(9) -2 "?:. 2nkj(2n - 1). 

Another lower bound on -AI (in terms of the diameter of (M, go), where go is the 
Webster metric) was found in [1] (by using estimates of the horizontal gradient 
at a point, rather than L 2 methods) as an extension of the work by Z. Jiaqing & 

y. Hongcang, [13], in Riemannian geometry. Although under more restrictive 
assumptions our estimate (9) is sharper than (3). When (M, (j) is Sasakian (i.e. 
Aap = 0) A. Greenleaf's assumption (4) coincides with our (8). 

The Bochner type formula (6) (as compared to Greenleaf's (5» presents a 
closer resemblance to (2) in Riemannian geometry, perhaps enabling one to look 
for an analogue to the result by M. Obata, [21], as well. Restated in the CR 
category, the problem is whether equality in (9) implies that M is CR iso
morphic to the sphere S2n+l. As it turns out when M = s2n+l the assumptions 
in our Theorem 2 (see below) are satisfied if and only if n = 1. We conjecture 
that any strictly pseudoconvex CR manifold M carrying a contact form (j 

satisfying (8) for some k> 0 and such that i) -2nkj(2n - 1) E SpeC(!!.b), and ii) 
Eigen(!!.b;-2nkj(2n-l»nKer(T)"# (0), is CR isomorphic to S3. 
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2. A Reminder of CR Geometry 

Let (M, Tl,O(M)) be an oriented CR manifold, of CR dimension n. For a 
review of the main notions of CR and pseudohermitian geometry one may see [7]. 
Let H(M) = Re{Tl,O(M) EEl TO,l(M)} be the maximally complex distribution and 
J(Z + Z) = i(Z - Z), Z E Tl,O(M), its complex structure. Let 0 be a pseudo
hermitian structure on M, i.e. 0 is a differential I-form such that Ker(O) = H(M). 
The Levi form is given by Go(X, Y) = (dO)(X,JY), X, Y E H(M). The given 
CR manifold is nondegenerate (respectively strictly pseudo convex) if Go is non
degenerate (respectively positive definite). From now on, let us assume that M is 
nondegenerate. Then each pseudohermitian structure 0 is a contact form i.e. 
'¥ = 0" (dO)n is a volume form on M. Let T be the characteristic direction of 
dO i.e. the unique globally defined nowhere zero tangent vector field T on M 
determined by O(T) = 1 and T J dO = O. Let go be the Webster metric i.e. 

go(X, Y) = Go(X, Y), go(X, T) = 0, go(T, T) = 1, 

for any X, Y E H(M). (M,go) is a semi-Riemannian manifold. If M is strictly 
pseudoconvex and 0 is chosen such that Go is positive definite (note that G-o 
is negative definite) then (M, go) is a Riemannian manifold (whose canonical 
Riemannian volume form is Cn '¥, where Cn = 2-n In!). 

Let M be a strictly pseudoconvex CR manifold and 0 a contact form on M 
such that the Levi form Go is positive definite. The sublaplacian is 

~bf = div(VHf), f E C2(M), 

where div(X) is the divergence of the vector field X (with respect to the 
Riemannian metric go) and VHf = 7tHVf is the horizontal gradient. Precisely 
Vf is the ordinary gradient (i.e. go(Vf, X) = X(f) for any X E T(M)) and 
7tH: T(M) --+ H(M) is the projection associated to the direct sum decomposition 
T(M) = H(M) EEl RT. Let V be the Tanaka-Webster connection of (M,O) i.e. the 
unique linear connection on M obeying to i) H(M) is V-parallel, ii) Vgo = 0, 
VJ = 0, iii) the torsion Tv of V satisfies 

Tv(Z, W) = 0, Tv(Z, W) = 2iGo(Z, W)T, Z, WE Tl,o(M), 

1: 0 J + J 0 1: = 0, 

where 1:(X) = Tv(T, X), X E T(M). A strictly pseudoconvex CR manifold M 
is a Sasakian manifold (in the sense of [4], p. 73) if and only if 1: = O. Given 
two CR manifolds M and N a CR map is a C<X> map f : M --+ N such that 

(dxf)T1,o(M)x s Tl,O(N)!(x) for any x EM. A CR isomorphism is a C<X> dif-
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feomorphism and a CR map. By a recent result of G. Marinescu et al., [19], any 
Sasakian manifold is CR isomorphic to a real submanifold of eN, for some 
N ;;::: 2, carrying the induced CR structure. 

3. The Bochner Formula 

Let {XI, ... , X2n } be a local orthonormal (i.e. Go(Xj, Xk) = bjk) frame of 
H(M), defined on the open subset U f;; M. Then 

2n 

(10) Abf = l)Xj2f - (VXjXj)f} 
j=1 

on U. Let Xo EM be an arbitrary point. As well known H(M) and go are parallel 
with respect to V. Therefore, by parallel displacement of a given orthonormal 
frame {VI, ... , V2n} c H(M)Xo with Va+n = Jxva, 1 :s; (x:s; n, along the geodesics of 
V issuing at Xo we may build a local orthonormal frame {Xj} of H(M), defined 
on an open neighborhood of Xo, such that 

(11) 

Also Xa+n = JXa (as a consequence of VJ = 0). Then (by (10) and Vgo = 0) 

Ab(IVHfI 2)(xo) = LXj2(IVHfI2)(xO) 
j 

= 2 LXj(go(VXjVHf, VHf))XiJ 
j 

= 2 L{go(VXjVXjVHf, VHf) + go(VXjVHf, VXjVHf)}Xo' 
j 

As {Xj} is orthonormal, the first term in the above sum is 

Moreover (by (11)) 

L go(V Xj V Xj VHf, Xk)Xk(f). 
j,k 

go(VXjVXjVHf,Xk)xo = {Xj(go(VXjVHf,Xk)) - go(VXjVHf, VXjXk)}Xo 

= Xj(Xj(go(VHf,Xk)) - go (VHf, VXjXk))xo 

= Xj(XjXkf - (VXjXk)f)xo = Xj« V2f)(Xj,Xk))Xo 

where the Hessian is defined with respect to the Tanaka-Webster connection 



82 Elisabetta BARLETfA 

(V2f)(X, Y) = (Vx df)Y = X(Y(f» - (Vx Y)f, X, Y E T(M). 

Unlike the Hessian in Riemannian geometry V~ is never symmetric 

(12) (V2f)(X, Y) = (V2f)(Y,X) - Tv(X, Y)(f), 

where Tv is the torsion of V. On the other hand Tv is pure (cf. [7], p. 102) hence 

(13) Tv(X, Y) = -2Q(X, Y)T, X, Y E H(M). 

Here Q(X, Y) = go (X, JY) (so that Q = -dO). Then (by (12)-(13» 

go(VXj VXj VHf, Xk)Xo = Xj((V2f)(Xj, Xk»xo 

= Xj((V2f) (Xk, Xj) + 2Q(Xj, Xk)Tf)xo 

= go(VXj VXk VHf,Xj)Xo + 2n(Xj,Xk)XoXj(Tf)xo 

so that 

(14) ~Ab(IVHfI2)(xO) = ~)VXjVHfl~ + L{go(VXjVXkVHf,Xj) 
j j,k 

If B is a bilinear form on T(M) we denote by nHB its restriction to H(M). The 
norm of nHB is given by InHBI2 = I:j,kB(Xj,Xk)2. Then 

so that 

(15) 

InHV2fl 2 = L(V2f)(Xj,Xk)2 = L(XjXkf - (VXj Xk)f)2 
hk hk 

= Lgo(VXjVHf,Xk)2 = Lgo(VXjVHf, VXjVHf) 
hk j 

InHV2fl 2 = LIVXjVHfI 2. 
j 

Next [Xj,Xk] = VXjXk - VXkXj - TV(Xj,Xk) hence (by applying (11) and (13» 

[Xj,Xk)xo = 2Q(Xj,Xk)xoTxo 

and taking into account 

VxVy = VyVX + R(X, Y) + V[x. Yj 

(where R is the curvature tensor field of V) we obtain 
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at Xo. Moreover 

that is 

(17) 

ge(VXk Vx/;;Hf,~)xo = {Xk (ge ('1110 V~,~)) - ge(V10VHf, VXkXj)}xo 

= Xk(X/f - (V10Xj)f)X;j 

L ge(Vxk '1110 VHf, Xj)X;j = Xk(t:.bf)X;j· 
j 

Therefore (by (16)-(17)) 

L ge(V1] VXk VHf, Xj)xoXk(f)X;j 
j,k 

= L{Xk(t:.bf)XdLo + L{ge(R(~,Xk)VHf,Xj)Xkf 
k hk 

+ 2n(~, Xk)geC'VTVHf,Xj)Xkf}xo 

= (VHf)(t:.bf)xo + L{ge(R(Xj, VHf)VHf,Xj) 
j 

+ 2g0(~,JVHf)go(VTVHf,Xj)}xo 

= (VHf)(t:.bf)xo + p(VHf, VHf)xo + 2g0(VTVHf,JVHf)xo 
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where p(X, Y) = trace{Z I-> R(Z, Y)X}. Then (by (15)) the identity (14) becomes 

~t:.b(IVHfI2) = InHV2fl 2 + (VHf)(t:.b/) + p(VHf, VHf) 

+2g0(VTVHf,JV Hf) +2g0(VHTf,JVHf) 

which yields (6). 

4. A Lower Bound on -A for A E Spec(t:.b) with 
Eigen(t:.b; A) n Ker(T) #- (0) 

Let M be a compact strictly pseudoconvex CR manifold and e a contact 
form on M with Go positive definite. Let (u, v) = fM uv'l' be the L2 inner product 
on M and lIuli = (u, u) 1/2 the L2 norm. For any f E CrtJ(M) let fo = T(f). We 

shall need the following two lemmas. 
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LEMMA 1. 

(18) 

PROOF. Let {Ta: 1 ~ rx ~ n} be a local frame of T1,o(M), defined on 
U £; M. Then VHf = faTa + j'jTii. on U, where fIX = gaPfp, fp = Tp(f) and 

Tp = Tp, hence 

(19) 

We wish to compute the divergence of the vector field (19). As 'P is parallel with 
respect to V 

diV(JVHf) = trace{TA f---t VTAJVHf} 

where A E {O, 1, ... , n, I, ... , n} (with the convention To = T). We set JAB = 
(V2f)(TA' TB). Then 

VTpJVHf = i(fplXTa - fiTii.) 

where fl = gaYfflY, etc., so that 

(20) 

The identities (12)-(13) furnish the commutation formula lap = fpa - 2igapfo. In 
particular 

(21) fi = faa + 2info 

hence (20) yields (18). Q.e.d. 

LEMMA 2. 

(22) 

Here A(X, Y) = ge(,X, Y) is the pseudohermitian torsion of (M, 0) and L is given 
by (7). 

PROOF. By the very definition of Lf 

where 



The Lichnerowicz theorem on CR manifolds 

By Green's lemma and (18) 

J1 = JM {div(1oJVHf) - 10 diV(JVHf)}'P 

= - JM 10 div(JVHf)'P = -2nllfoI12, 

J2 = JM div(fJVTVHf)'P - JMf diV(JVTVHf)'P 

= - JMf diV(JVTVHf)'P. 

85 

Let us compute in local coordinates diV(JVTVHf). According to the notations 
used in the proof of lemma 1, set !ABC = (V3f)(TA , TB, Tc) where 

(V3f)(X, Y,Z) = (VxV2f)(Y,Z) 

= X((V2f)(Y,Z» - (V2f)(VxY,Z) - (VY)(Y, VxZ) , 

for any X, Y,Z E T(M). Then 

JVTVHf = i(foa.Ta. - fo«T«) 

yields 

so that (by "IT = 0) 

(23) div(JVTVHf) = trace{TA 1---+ Vr:4JVTVHf} = i(fa.Oa. - fao«) , 

where fa.O P = g/fYfa.O'Y' etc. We need the third order commutation formula 

(24) fPoa. = fa.Op + 2igap1oo + Ap!ay - AUpy + Ap,ah - A~,ph 

where foo = (V2f)(T, T) = T2(f). This follows from 

(V 3f) (X, T, Y) - (V 3f)(Y, T,X) 

= 2Q(X, Y)foo - X(r(Y)f) + Y(r(X)f) + r([X, YDf 

i.e. 

(V 3f) (X, T, Y) = (V3f)(Y, T,X) + m(X, Y)foo 

+ (V2f)(Y, r(X» - (V2f) (X, r(Y» - S(X, Y)f, 
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for any X, Y E H(M), where SeX, Y) = (Vxr) Y - (Vyr)X. Indeed we may set 
X = Til. ~d Y = Tp in the pr~vious identity and observe that SeTa, Tp) = 
A~ Ty - AY -Ty where r(TIJ.) = A~Tp- and the covariant derivatives Ap~ are given P, II. a,p , a 
by (Vr;r)Tp = A;'IJ.Ty. The identity (24) leads to 

/ro/' = faOli. + 2infoo +AIJ.P/ap -AaPf~ +AIJ.P,lJ.fp -Aai,afp 

hence (23) becomes 

div(JVTVHf) = 2nfoo - i(AaP/ap - A~fap + AaP,a.!p - AaP,dp). 

Therefore 

where 

JM ffoo = JMfT(fo)'¥ = JM {T(ff()) - f02},¥ 

= JM {div(ffoT) - ffo div(T)},¥ -lifol/ 2 

hence (by div(T) = 0) 

On the other hand div(ZaTa) = ZIJ.,IJ. hence (by Green's lemma) 

JM fA aP,Jp = JM {(ffpA aP),a - A aPfa.!p - f AaPfp,IJ.}'¥ 

= - JM (AIJ.Pfafp + fA IJ.Pfp,IJ.)'¥ 

where fp,a = (VT• df)Tp = /ap. Hence 

Jz = 2nllfol1 2 + i JM (AaPfdp - AaPflJ.fp)'¥ 

and then (by A(VH f,Jv H f) = i(AlJ.pflJ.fP - AapfafP)) we may conclude that 

12 = 2nllfol/ 2 - 1M A(VHf,JVHf)'¥ 

so Lemma 2 is proved. 
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Let us prove Theorem 1. Note that CVHf)(f) = rVHf12. Let A be an 
eigenvalue of Ab and f an eigenfunction corresponding to A such that T(f) = O. 
Then (6) becomes 

Let us integrate over M and use Green's lemma, Lemma 2 and the assumptions 
(i)-(ii) in Theorem 1 to get 

0= IInH V2fl1 2 + AIIVHfl1 2 + fM {p(VHf, VHf) + 2A(VHf,JVHf)}'P 

;;::: IInH V2fl1 2 + (A + k)IIVH fl12 

that is 

(25) 

Once again, as f is an eigenfunction 

that is 

(26) 

II Abfl12 = fM IAdI2'P = A fMfAbf'P = A fMf div(VHf)'P 

= A fM {div(fVHf) - (VHf)(f)}'P 

Next (with the notations in Section 2) we set 

so that 

InHV2fl 2 = I)V2f)(.\j, Xk)2 = L IVjl2 = Iwl2 
j,k j 

where w = (Iv, I,···, IV2n1) (and IVjl, Iwl are the Euclidean norm of Vj, w). By the 
Cauchy-Schwarz inequality 

InHV 2fl 2 = Iwl2 ;;::: 2~ Iw, (1, ... ,1)12 

~ ~ ( ~ I"jl)' " 2~ ( ~ I (V'f)(Xj, Xj)I) , 
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hence 

(27) 

Finally, by (26)-(27) the inequality (25) becomes (whenever IIAb/1l =1= 0, that is 
J =1= 0) 

to conclude that -J::::::. 2nkj(2n - 1). Q.e.d. 

We close the section with the following remark on assumption (li) in 
Theorem 1. The problem whether Eigen(Ab; A) n Ker(T) =1= 0 is in general 
open. Nevertheless if M = S2n+l is the standard sphere then eigenfunctions 
f E Eigen(Ab; -4(n + 1)) with T(f) = 0 may be easily produced (here -4(n + 1) 
is the second nonzero eigenvalue of the ordinary Laplacian on S2n+l). Indeed let 
A be the Laplace-Beltrami operator of (s2n+l, goo)' As well known (cf. e.g. [3]) 
Av = -t(t + 2n)v, where v is the restriction to S2n+l of a harmonic polynomial 
H E Yft (here Yft is the space of harmonic, i.e. AR2n+2H = 0, polynomials 
H : R2n+2 _ R which are homogeneous of degree t) and the whole spectrum 
of A on S2n+l may be obtained this way. Note that Yf2 consists of all H = 

"'L-i,j(aijXixj + bijXiyj + Cijyiyj) with "'L-i(aii + Cii) = O. For the sphere (dl)T = To 
where l: S2n+l _ C n+1 is the inclusion while To = xjOjayj - yjajaxj and 
(xj , yj) are the natural coordinates on C n+1 ';::; R2n+2, hence 

(28) Yf2nKer(To) = {H = ~aij(xixj + /yj): ~aii = o}. 
',J I 

Finally, by a formula of A. Greenleaf (cf. op. cit.) 

(29) Ab = A - T2 

hence -4(n + 1) E SpeC(Ab) and (0) =1= Eigen(A; -4(n + 1)) n Ker(T) £; Eigen(Ab; 
-4(n + 1)). On the other hand note that Yfl n Ker(To) = (0). So the eigen
functions of Ab we consider (cf. (28) above) are spherical harmonics of degree 2. 
However 4(n + 1) is greater equal than minus the third eigenvalue of Ab (cf. 
Proposition 3 below). See also our Appendix A for a short proof of (29). 

5. Consequeuces of -2nkj(2n - 1) E SpeC(Ab) 

Let M be a strictly pseudoconvex CR manifold and () a contact form on M 

such that Go is positive definite. We recall a few concepts from sub-Riemannian 
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geometry (cf. e.g. R. S. Strichartz, [23]) on a strictly pseudoconvex CR manifold. 
Let x E M and g(x) : T;(M) -+ H(M)x determined by 

Go,x(V, g(x)~) = ~(v), V E H(M)x' ~ E T;(M). 

Note that the kernel of g is precisely the conormal bundle 

H(M)-; = {co E T;(M) : Ker(co) ;;2 H(M)x}, x E M. 

That is Go is a sub-Riemannian metric on H(M) and g its alternative description 
(cf. (2.1) in [23], p. 225). 

Let y : 1-+ M be a piecewise C 1 curve (where If; R is an interval). Then y 

is a lengthy curve if y(t) E H(M)Y(I) for every tEl such that Y(t) is defined. A 
piecewise C1 curve ~ : I -+ T*(M) is a cotangent lift of y if ~(t) E TY{I)(M) and 
g(y(t))~(t) = Y(t) for every t (where defined). The length of a lengthy curve 
y : I -+ M in sub-Riemannian geometry 

L(y) = L {~(t)[g(y(t))~(t)]}I/2 dt = L GO,y(l) (Y(t) , y(t)) 1/2 

coincides with the Riemannian length of y as a curve in (M, go). The Camot

Carat~eodory distance p(x, y) among x, y E M is the infimum of the lengths of all 
lengthy curves joining x and y. By a well known theorem of W. L. Chow, [6], 
any two points x, y E M may be joined by a lengthy curve (and one may easily 
check that p is a distance function on M). 

Let go be the Webster metric of (M,O). Then go is a contraction of the sub
Riemannian metric Go (Go is an expansion of go) i.e. 

(30) d(x, y) -::;, p(x, y), x, y E M. 

(cf. [23], p. 230) where d is the distance function corresponding to the Webster 
metric. Although p and d are inequivalent distance functions, they determine the 
same topology. A first step towards recovering M. Obata's arguments (cf. [21]) is 
the following 

THEOREM 2. Let (M,O) be a compact strictly pseudoconvex CR manifold 

of CR dimension n, such that p(X, X) + 2A(X, JX) ~ kGo(X, X) for some 

k> 0 and any X E H(M). Assume that A. == -2nkj(2n - 1) E Spec(~b) and 

Yf == Eigen(~b; A.) n Ker(T) =I (0). Then any eigenfunction f E Yf is given by 

(31) f(y(s)) = rx cos (sVC), s E R, c = kj(2n - 1), 
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along each lengthy geodesic y: R ~ M of the Tanaka- Webster connection V 

such that lycs)1 = 1 and yeO) = Xo, where Xo eM is a point such that f(xo) = 

suPxeM f(x) == (l. 

Assume additionally that (M,O) is 8asakian (1: = 0). If any two points of M 
can be joined by a Camot-Caratheodory minimizing lengthy geodesic then f(x) = 

a cos(r(x)v'C), x e M, where rex) = p(xo,x) is the Camot-Caratheodory distance 
from Xo. If Yo eM is a point such that f(yo) = infxeM f(x) then f(yo) = -(l. 

Consequently Mn/Vc consists solely of critical points of f and each x e Mn/Vc is 
degenerate. 

Here, for a given s e R we let Ms consist of all points x e M such that there 
is a lengthy geodesic y: R ~ M of V, parametrized by arc length, such that 
yeO) = Xo and yes) = x. The assumptions in Theorem 2 are rather restrictive and, 
among all odd dimensional spheres, are satisfied only on 8 3 (thus motivating the 
conjecture in the Introduction). Precisely 

PROPOSITION 1. Let M = 8 2n+1 with the standard contact form 0 = 

Ha - a)lzI2. If i) the inequality (8) is satisfied for some k> 0, ii) -2nkj(2n - 1) 
eSpec(Abl, and iii) Eigen(Ab;-2nkj(2n-l))nKer(T) =F (0), then k=4 and 
n = 1. Conversely the statements i)-iii) hold on 8 3. Moreover if M = 8 3 and 

H = a(xr + yr - xi - yi) + 2b(XIX2 + YlY2), f = His), b =F 0, 

(a spherical harmonic of degree 2 on 8 3 such that T(f) = 0) then a = sUPxeS3 f(x) 
= ...; a2 + b2 and f(y(s)) = a cos(2s) for any lengthy geodesic y : R ~ 8 3 of V (the 
Tanaka- Webster connection of 8 3) parametrized by arc length and such that yeO) is 

a maximum point of f. Moreover 

(32) { ( b)" bP.) 2 2 a - a } Mn/2 = )..,p.,---,---:).. +p. =-2-,A.,p.eR 
a-a a-a a 

consists solely of degenerate critical points of f. 

The proof of Proposition 1 is relegated to Appendix A. 

PROOF OF THEOREM 2. Assume that).. = -2nkj(2n - 1) is an eigenValue of 
Ab and let f e lIl' be an eigenfunction of Ab corresponding to ).. such that 
T(f) = O. By the Bochner type formula (6) one has 

~Ab(IVH f12) = InHV2fl 2 + )..IVH fl2 + p(VH f, VHf) + 2Lf. 
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Once again we integrate and use Lemma 2 and the assumption (8). We get 

(the last inequality is a consequence of (27)) hence 

so that (again by (27)) 

(33) 

The following lemma of linear algebra is well known. If A E Rm2 satisfies 
mlAI2 = trace(A)2 then A = (11m) trace(A)lm, where 1m is the unit matrix of 
order m. Therefore (by (33)) 

2 1 
'lCHV f = 2n (db!)Ge. 

In particular the identities (12)-(13) are consistent with our assumption that 
fa = O. Using again db! = Ad we may conclude that 

(34) 

where c = kl(2n - 1). 
M. Obata's proof (cf. op. cit.) of the fact that equality in (1) yields M m ~ sm 

(an isometry) is an indication that we should evaluate (34) along a lengthy 
geodesic of the Tanaka-Webster connection, and integrate the resulting ODE. 
Let us recall briefly the needed material on geodesics (as developed in [2]). Let 
(U, x l , ... ,x2n+ 1) be a system of local coordinates on M and let us set 
g dxi = gijOj, where Oi = ojaxi. A sub-Riemannian geodesic is a C l curve yet) 
in M satisfying the Hamilton-} acobi equations associated to the Hamiltonian 
function H(x,!;) =!gij(X)!;i!;j that is 

(35) 

(36) 

for some cotangent lift !;(t) E T*(M) of yet). Let y(t) EM be a sub-Riemannian 
geodesic and s = ¢J(t) a C l diffeomorphism. As shown in (2), if yet) = YC¢J(t)) then 
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)I(s) is a sub-Riemannian geodesic if and only if tfo is affine, i.e. tfo(t) = at + p, 
for some a, pER. In particular, every sub-Riemannian geodesic may be re

parametrized by arc length tfo(t) = I~ lY(u)1 duo In [2] we introduced a canonical 

cotangent lift of a given lengthy curve y: I ---t M by setting 

~ : I ---t T*(M), ~(t)TY(I) = 1, ~(t)X = go(y, X), 

for any X E H(M\(I) , and showed that 

THEoREM 3. Let M be a strictly pseudoconvex CR manifold and () a contact 

form on M such that Go is positive definite. A C1 curve y(t) EM, It I < e, is a sub

Riemannian geodesic of (M,H(M), Go) if and only if y(t) is a solution to 

(37) VyY = -2b(t)Jy, b'(t) = A(y, y), It I < e, 

with Y(O) E H(M)y(o), for some C1 function b: (-e, e) ---t R. 

R. S. Strichartz's paper [23] manifestly doesn't involve any elements of con

nection theory or curvature. As argued by R. S. Strichartz (cf. op. cit.) curvature 
is a measurement of the deviation of the given Riemannian manifold from its 

Euclidean model (and sub-Riemannian manifolds exhibit no approximate Eucli
dean behavior). Nevertheless, in view of Theorem 2 when (M, ()) is a Sasakian 

manifold (i.e. r = 0) the lengthy geodesics of V are among the sub-Riemannian 
geodesics and it is likely that a variational theory of the geodesics of V (as started 

in [2]) is the key step towards bringing the results of [21] to CR geometry. 

Our approach (based on V) is not in contradiction with the arguments in [23]: 
indeed the curvature of V is related to the pseudo convexity properties of M (as 
understood in complex analysis in several variables) rather than to its intrinsic 

shape. To emphasize the impact of connection theory within our approach 
we may prove the following elementary regularity result. Note that a sub

Riemannian geodesic is required to be of class C2 (cf. [23], p. 233) and no higher 
regularity is expected a priori. In turn, any C 1 geodesic of V is automatically of 
class CIXJ [as a projection on M of an integral curve of some standard horizontal 

vector field (cf. Prop. 6.3 in [14], Vol. I, p. 139) having CIXJ coefficients]. 
Let y(t) EM be a lengthy geodesic of the Tanaka-Webster connection, 

parametrized by arc-length (lY(t)1 = 1). Then (by (34)) 

d 2(f 0 y) = -cf 0 y 
dt2 

hence f(y(t)) = A cos(ty'c) + B sin(ty'c). As M is compact there is Xo EM such 
that f(xo) = sUPxEM f(x) =: a. Let y(t) be a lengthy geodesic of V such that 
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yeO) = Xo· Then A = a and {dU 0 y)/dth=o = 0 yields B = 0 so that f(y(t» = 
a cos(tv'C), which is (31). 

Again by compactness (M,p) is a complete metric space, hence (cf. Theorem 
7.1 in [23], p. 244) any sub-Riemannian geodesic can be extended indefinitely. 
Since .. = 0 the statements about sub-Riemannian geodesics in [23] apply to the 
lengthy geodesics of V as well. Let y : R -t M be a lengthy geodesic of V such 

that lY(s) 1 = 1, yeO) = Xo and y(Smin) = Yo. By (31) 

o = ! {f 0 y} =Stnin = -ave sin ( veSmin) 

hence Smin = mn/y'c for some mE Z. Then a> f(yo) = (-l)ma implies that m is 
odd. Again by (31), Mn/v'C c f- 1 (-a). Finally, let x E Mn/v'C and (U, Xi) a local 
coordinate system on M such that x E U. As TU) = 0 

hence x is a degenerate critical point. Therefore, the points of Mn/v'C may fail to 
be isolated. Nevertheless 

PROPOSITION 2. Let (M, B) be a compact Sasakian manifold. If for any 
x E B(XOl n/ y'c) there is a length minimizing (with respect to the Carnot
Caratheodory distance) lengthy geodesic joining Xo and x then the exponential map 
expxo : N(XOl n/ y'c) -> B(xo,n/ y'c) (with respect to the Tanaka- Webster connec
tion) is a surjection. 

Here B(xo, R) = {x EM: p(xo, x) < R} is the Camot-Caratheodory ball of 
center Xo and radius R > O. Also N(xo, R) = {w E H(M)xo : Iwl < R}. 

PROOF OF PROPOSITION 2. To see that the restriction of expxo to N(xo,n/ y'c) 
IS indeed B(xo, n/ y'c)-valued let WE N(xo, n/ y'c), w =1= 0, and t = Iwl. Let us 
set v = (l/t)w and consider the geodesic y : R -> M of V with the initial data 
yeO) = Xo and yeO) = v, so that 

expxo(w) = expxo(tv) = yet). 
Then 

P(XOl yet»~ ~ t lY(s) 1 ds = t < n/ve 

l.e. yet) E B(xo, n/ y'c). 
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To see that expXo : N(xo, n/ v'C) ----t B(xo, n/ v'C) is on-to let x e B(xo, n/ v'C) 
and let y : R ----t M be a length minimizing geodesic joining xo and x and such 

that YeO) = v e H(M)Xo' with Ivl = 1. Then yet) = x for some t e R\{O}, so that 
expXo (tv) = x. Next 

gO,Xo(tv, tv) = t21vl 2 = r(x)2 < n2/e 

I.e. tv e N(xo, n/ v'C). Q.e.d. 

A generalization of the Lichnerowicz-Obata theorem ([18], [21]) to the case of 
Riemannian foliations was obtained by J. M. Lee & K. Richardson, [17] (see also 
[16]). The leaf space of a Riemannian foliation is often an orbifold (for instance 
if all leaves are compact) so that (in light of [9]) one expects analogs to Theorems 
1 and 2 on a CR orbifold (see also E. Stanhope, [22]). This matter will be 
addressed in a further paper. 

Appendix A. On the Spectrum of the SUblaplacian on the Standard Sphere 

Let M be a strictly pseudoconvex CR manifold and () a contact form on M 
with Go positive definite. Let V O be the Levi-Civita connection of the semi
Riemannian manifold (M, go). Then (cf. e.g. [11], Chapter 1) 

(38) V O = V + (n - A) ® T + r ® () + 2() 0 J 

where 0 is the symmetric tensor product. Then 

(39) V~X=VxX-A(X,X)T, XeH(M). 

Given a local Go-orthonormal frame {Xa : 1 ::;; a::;; 2n} of H(M) one has (by (39) 
and trace(r) = 0) 

2n 

Af = 2).:t)(.:t)f) - (V~.:t))(f)} = T(T(f)) + Ad 
j=O 

for any f e C<Xl(M), where Xo = T, proving Greenleaf's formula (29). Let f!J't be 
the set of all homogeneous polynomials H : R2n+2 ----t R of degree deg(H) = t and 
.n"t = f!J't nKer(AR2n+2). To compute eigenvalues of Ab starting from Spec(A) we 
consider the equation 

(40) Ad + T2(f) = -t(2n + t)f 

with f = Hls2n+' and He .n"t. For example if t = I and He.n"1 = f!J'1 then 
T$(H) = -H hence -2n E Spec(Ab). In general 
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PROPOSITION 3. If there is A E R and ~t n Ker(TJ + ill) =1= (0) then 
A - t(2n + t) E Spec(Ab). For instance one may produce the eigenvalues {-2n, 
-4n, -6n - 8, -6n} c Spec(Ab) and Eigen(Ab; -2n) n 91 =1= (0), Eigen(Ab; -4n) n 
9 2 =1= (0) and Eigen(Ab;..t) n 9 3 =1= (0) for each ..t E {-6n - 8, -6n}. 

n+l i 0 i 0 i . . 
If H = 2:".:iJ=l (aijx Xl + bijx yl + CijY yl) E 9 2 (WIth aij, bij E R, aft = aij, 

cji=cij) then TJH=-..tH if and only if 2(cij-aij)=-Aaij, 2(bij+bii )=..tbij 
and 2(cij - aij) = ..tcij. Hence Ker(TJ + ill) n 92 = (0) for any ..t E R\{4} and 

Ker(T5 + 41) n 9 2 = {aij(xixi - yiyi) + bijXiyi : aij, bij E R, aij = aji} C ~2. 

Similarly Ker( TJ + ill) n 9 3 = (0) for any ..t E R\ {I, 9} and 

2 {i i Ok Ok • Ker(To +1) n~3 = (aijkx +bijkY )(xlx + yly ): aijk,bijk ER symmetrIc, 

I>ijj = :L biji = 0, 1 ~ i ~ n + I}, 
1 J 

Ker(T5 + 91) n ~3 = {aijkxi(xiXk - 3yiyk) + bijk(/yi - 3XiXi)yk : aijk, bijk E R 

symmetric, :L aijj = :L bijj = 0, 1 ~ i ~ n + 1 }. 
J } 

Proposition 3 is proved. The calculation of the full Spec(Ab) on 8 2n+! is an open 

problem. 

PROOF OF PROPOSITION 1. Let R be the curvature of the Tanaka-Webster 

connection. Then (cf. Chapter 1 in [11]) 

(41) R(X, Y)Z = Ge(Y,Z)X - Ge(X,Z)Y 

+ Ge(JY, Z)JX - Ge(JX, Z)JY - 2Ge(JX, Y)JZ 

for any X, Y, Z E H(82n+1). Taking the trace in (41) we obtain 

(42) p(X, X) = 2(n + l)Ge(X,X). 

The assumptions i)-ii) imply that -2nkj(2n - 1) is an eigenvalue of the ordinary 

Laplacian on 8 2n+!. On the other hand ~l nKer(To) = (0) hence 2nkj(2n - 1) is 

greater equal than 4(n + 1). Finally (by (42)) k ~ 2(n + 1) hence n = 1 and k = 4. 

Let Ve be the Levi-Civita connection of 8 3. As 8 3 is a Sasakian manifold 

vty = Vyy + 2t9(y)Jy (by (38)) for any C 1 curve yet) in 8 3. In particular any 
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lengthy geodesic y of V is a geodesic of S3 as well. Moreover any geodesic y of V 

with Y(O) E H(S3)y(O) is lengthy. Indeed (as VT = 0) 

:t {Oy(t) (y(t))} = go(y, VyT)y(t) = 0 

hence O(Y)y(t) = Oy(O) (Y(o)) = o. Let Xo E S3 such that rt = f(xo). Let y be a 
lengthy geodesic of V, parametrized by arc length, such that yeO) = Xo. Then 

yes) = Xo cos s + x sin s, S E R, for some x E R4 such that Ilxll = 1 and 

<xo, x) = o. If U = S3\{X2 = Y2 = O} the Levi distribution H(S3)lu is spanned 
by 

hence the condition that y is lengthy reads 

. 0 I . 0 I QJ oxi xc + RJ oyi Xo = AXxo + flYxo 

for some A,flER, where Qi=xi(x) and Ri=yi(x), jE{1,2}, or 

(43) 

(44) 

QI = A, Q2 = flG(Xo) - AF(xo), 

RI = fl, R2 = -flF(xo) - AG(XO). 

Let us set pi = xi(xo) and Si = yi(xo). The solution to the constrained extreme 

value problem rt = SUPXESl f(x) is rt = va2 +b2 and 

where A = (rt - a)jb, hence F(xo) = bj(1X - a) and G(xo) = O. Finally Ilxll = 1 
may be written -l? + fl2 = (IX - a)j(21X) hence (43)-(44) yield (32) in Proposition l. 
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