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IDENTIFICATION OF THE ABSENT SPECfRAL GAPS 
IN A CLASS OF GENERALIZED KRONIG-PENNEY 

HAMILTONIANS 

By 

Hiroaki NnKUNI 

Abstract. We study the spectral gaps of the generalized Kronig­
Penney Hamiltonians which possesses two point interactions in the 
basic period cell. We suppose that each interaction is given by a 
rotation. We determine whether or not the jth spectral gap of the 
Hamiltonian is absent for a given j E N. 

1. Introduction 

In this paper we study the spectral gaps of the one-dimensional Scbrodinger 
operators with particular periodic point interactions. We fix 

1C E (0,2n). 

Let 

For fh,fh E [-n/2,n/2) and 

Al,A2 E SO(2)\{±I}, 

we define the operator H = H(A1,A2,fh,fh) in L2(R) as follows. 

d2 
(Hy)(x) = - dx2Y(x), x E R\r, 

(1) 

{ 2 I ( y(x + 0) ) i8· (y(X - 0) ) . } Dom(H) = y E H (R\r) y'(x+ 0) = e lAj y'(x _ 0) ,x E r j ,] = 1,2 . 
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In Proposition 2.1 we prove that H is self-adjoint. Since the interaction is 2n­

periodic, the operator admits a direct integral decomposition (see [9, Section 
:xm.16]). For fJ E R, we depne the Hilbert space 

~ = {u E LToc(R) I u(x + 2n) = eiPu(x) a.e. x E R} 

equipped with the inner product 

1211: 

(u, v)~ = u(x)v(x) dx, 
'Jl 0 

U,VE~. 

We introduce the fiber operator Hp = Hp(Al, A2, fh, (h) in ~ given by 

d2 
(HpY)(x) = - dx2Y(x), x E R\r, 

Dom(Hp) = {Y E ~ lYE H 2«0,2n)\{K}), 

( y(x + 0) ) = ei(JjAj.( y(x - 0)) for x E rjO,j = I,2}. 
y'(x + 0) y'(x - 0) 

Furthermore, we define the unitary operator 

as 

Then we have 

I 00 

(dJlu)(x,fJ) = FL. L eilpu(x - 2In). 
y2n 1=-00 

For jEN={I,2,3, ... }, let A.j(fJ) be the j-th eigenValue of Hp counted with 
multiplicity. Since Aj E SO(2)\{±I}, we can write the elements of Aj as 

( a' -bo) (COS (Xo -sin (Xo) 
Aj = b1 J = . 1 1 , (Xj E (-n, 0) U (0, n). 

j aj sm (Xj cos (Xj 
(2) 

The basic spectral properties of H are described as follows. 
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PROPOSITION 1.1. 

(a) The function ~O is continuous on [0,2n]. 
(b) It holds that Aj(f1) = AA -f1 + 28\ + 282). 

(c) If f1- (81 + 82) ¢ nZ, then every eigenvalue of HJ.t is simple. 

(d) The spectrum of H(A\,A2, 81, 82) is given by 

()(H(A\,A2' 81, 82)) = U ()(HJ.t(A\,A2,81, 82)) 
J.tE [01 +02,01 +02+"1 

CJJ 

= U ~([81 + 82 , 81 + 82 + n]) 
j=\ 

CJJ 

= U U {Aj(f1)}. 
j=I J.tE [01 +02,01 +02+"J 

(e) The set ()(H(A I ,A2,81, 82)) is independent of 01 and O2. 
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(f) If b1b2 > 0 and 01 = O2 = 0, then the function AA) is strictly monotone 

increasing (respectively, decreasing) function on [0, n] for odd (respectively, even) j. 

(g) If b I b2 < 0 and 01 = O2 = 0, then the function AjO is strictly monotone 

increasing (respectively, decreasing) function on [0, n] for even (respectively, odd) j. 

Since ()(H) is independent of 01 and O2, we hereafter discuss only the case 
where 

which does not cause any loss of generality. We define 

in the case where bl b2 > 0, while we put 

_ {(A'j(n)'~+I(n)) for j even, 
Gj - (Aj(O), Aj+l (0)) for j odd 

if bl b2 < O. Moreover we set Bj = AA[O, n]). The open interval Gj is called the j-th 

gap of the spectrum of H, the closed interval Bj the j-th band. The aim of this 
papar is to determine whether or not the j~th gap is absent for a given j E N. 

Throughout this paper we use the notations 

a == b if a - bEnZ, a'l-b if a-b¢nZ 
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for a,b E R. For convenience we adopt the following classification of the 
parameters /XI and /X2. 

(I) /Xl - /X2 =1= 0, /XI + /X2 =1= 0. 
(II) /XI - /X2 =1= 0, /XI + /X2 == 0. 
(ill) /Xl - /X2 == 0, /XI + /X2 == 0, i.e., 

Our main results are the following three theorems. 

THEOREM 1.2. Let K ¥ n. If the condition (I) holds, then 

Gj ¥ 0 for j E N. 

THEOREM 1.3. Let K ¥ n. Suppose that either (II) or (III) is valid. 
(1) Let Kin ¢ Q. Then we have 

Gj = 0 if and only if j = 3. 

(2) If KI2n = qlp, (p, q) E N 2 and gcd(p, q) = I, then 

{j E N I Gj = 0} = {3} U {pk + 1 IkE N}. 

Though it is hard to identify the indices of the absent spectral gaps in the 
case (IV), we can still determine the positions of them in the next theorem. 

THEOREM 1.4. Let K ¥ n. Assume that (IV) is valid. We put 'f/j = n2j2 I 
4(n - K)2 for j EN. Then it holds that 

U Bk n Bk+1 = {'f/jl-2 (..foj + _1_)-1 cot K..foj = tan /XI and j E N}. (3) 
k=! ~ 

In order to describe the motivation and background of our study, we give a 
review on the related works [I, 4, 5, 8, 10, 12]. The concept of the Schr6dinger 
operators with periodic point interactions was first inspired by Kronig and Penny 
in 1931. They introduced and discussed in [8] the Hamiltonian which is formally 
expressed as 
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d2 00 
Ll = - dx2 + P L t5(x - 2nl) in L2(R), 

1=-00 

where t5( x) is the Dirac t5-function at the origin and P E R\ {O}. This operator is 
nowadays called the Kronig-Penney Hamiltonian and is frequently referred as the 
most fundamental model in solid states physics. The precise definition of this 
operator is given through boundary conditions on the lattice 2nZ as follows. 

d2 
(L1y)(x) = - dx2y(x), xER\2nZ, 

{ 2 l(y(t+O)) (10)(y(t-O)) } Dom(Lt) = YEH (R\2nZ) y'(t+O) = P 1 y'(t-O) ' tE2nZ . 

They illustrated the graph of the band function of this operator. With the 
advance of the theory of point interactions, this Hamiltonian was widely gen­
eralized. Gesztesy, Holden, and Kirsch inspired a new class of point interactions. 
They studied in [4] and [5] the operator in L2(R) of the form 

d2 
(L2y)(x) = - dx2Y(x), x E R\2nZ, 

{ 2 I( y(t+O)) (1 P) (y(t-O)) } Dom(L2)= YEH(R\2nZ) y'(t+O) = 0 1 y'(t-O) ,tE2nZ, 

where P E R\{O}. This operator has the formal expression 

d2 00 

L2 = - dx2 + P L t5'(x - 2nl) in L 2(R). 
1=-aJ 

They showed that the j-th gap of a(L2) is absent if and only if j = 1 and 
P = -2n. They also proved that every gap of a(LJ) is present. The t5' -interaction 
was generalized by Seba [10] (see also [1]); he proved that the domain of any self­
adjoint extension of (-d2/dx2)lc~(R\{O}) in L2(R) of coupled type is expressed as 

{YEH2(R\{0})I(:/~:~)) =eA(:/~~~))} 
with A E SL2(R), e E C, and lei = 1, and vice versa. Seba [10] and Chernoff 
and Hughes [1] discussed particular classes of self-adjoint extensions of 
(-d2/dx2)lc~(R\{O}) in L2(R) which can be approximated by the Schrodinger 
operators with local short-range potentials in the strong resolvent sense. In 
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[7] Hughes studied the Schrodinger operator in L2(R) with generalized point 
interactions of the form 

d 2 
(L3Y)(X) = - dx2Y(x), x E R\2nZ, 

Dom(L3) = {Y EH2(R\2nZ)I(:Yt:~)) = CA(:,~tt=~)) for t E 2nz}. 

She gave the Floquet-Bloch decomposition of this operator. We note that the 

operator H(AI,A2, (h, O2) is unitarily equivalent to L3 if (A I,A2) E {(A,I) , 
(A, -1), (l,A), (-l, A)}. The operators discussed in [4, 5, 8] involve only one 
point interaction in the basic period cell [0, 2n). In [12] Yoshitomi investigated the 
operators 

d 2 co 
Po = - dx2 + L (PIO(X - K - 2nl) + P20(X - 2nl)) in L2(R), 

I=-co 

d 2 co 
PI = - dX2 + L (PIO'(X - K - 2nl) + P2o'(x - 2nl)) in L2(R) 

I=-co 

which admit two point interactions in the basic period cell. He proved for j E N 

and k E {O, I} that a(Pk) has an absent gap if and only if both PI + P2 = 0 and 
Kin E Q hold. He also showed that if PI + P2 = 0, KI2n = min, (m, n) E N 2, and 
gcd(n,m) = 1, then the j-th gap of a(Pk) is absent if and only if j - k E nN. The 
results in [1, 4, 5, 8, 10, 12) draw our interest in the spectral gaps of the general 
operator 

{ 2 I( Y(X + 0) ) iO· (Y(X - 0) ) .} Dom(Ho)= YEH (R\r) y'(x+O) =e 'q y'(x-O) forxErj ,]=1,2 

with Cl , C2 E SL2(R). However, the spectral gaps of this operator are too hard to 
analyze, because it involves ten real parameters. It seems for the author that the 
absence of gaps in this general setting cannot be determined without imposing 
any structural assumptions on CI and C2 . We notice that the sets 

(4) 

are commutative subgroups of SL2(R). This attracts our attention to the case (1). 
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We organize this paper as follows. Section 2 is devoted to the proof of basic 
spectral properties, the self-adjointness of H and Proposition 1.1. In section 3 we 

locate the absent gaps of a(H), namely, we evaluate the set U:l Bk n Bk+1 in an 
explicit way. To this end we follow the basic argument in [12], that is, we reduce 
the problem to a system of algebraic equations by using the monodromy matrix 

in the proof of Lemma 3.1. We execute, in Lemmas 3.2-3.6, rather hard tasks 
than in (12], because we need the classfication (I)-(IV), while no such classi­

fication is used in [12]. We complete the proof of Theorems 1.2 and 1.4 in this 
section. In section 4 we identify the indices of absent spectral gaps, that is, we 

show Theorem 1.3. For this purpose we establish a new characterization of the 
band edges in terms of the rotation number (see Theorem 4.3). We stress that our 
characterization is completely different from that for regular potentials; in the 

latter the rotation number is identically equal to nl2 on the n-th gap for each 

n E N (cf. [3, Proposition 2.1]). 

2. Basic Spectral Properties of H 

Our first aim in this section is to prove the self-adjointness of H. 

PROPOSITION 2.1. The operator H=H(A 1,A2,()1,82) is self-adjoint. 

PROOF. Using integration by parts, we readily obtain 

Dom(H) c Dom(H*). 

Let us prove the reverse inclusion. For all j E Z, we define 

~l = (2nj, 2nj + K) and ~2 = (2nj + K, 2n(j + 1)). 

We introduce the Sobolev space 

equipped with the norm 

We pick U E Dom(H*). By the definition of the adjoint operator, there exists 
v E L2(R) such that 

(5) 
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for all rp E Dom(H). In particular, 

for any rp E Co (I/) and k = 1,2. Thus we get -u" = v E L2(I/) and hence 

where C is a constant independent of j and k (see [11, Theorem 6.26]). Taking 
the summation with respect to j and k, we infer that 

Next, we show that 

Integrating (5) by parts and using -u" = v on R\r, we derive 

"'([ '( )-( )]2nj+K-O [/( )-( )]2nU+Il-O) - L...- rp x u X 2nj+O + rp X u x 2,g+K+O 
jEZ 

"'([ ( )-,--( )]2nj+K-O [( )-,--( )]2nU+Il-O) ° + L...- rp x u X 2nj+O + rp X u X 2nj+K+O = (7) 
jEZ 

for all rp E Dom(H). Now we prepare particular test functions in Dom(H). We fix 
j E Z and take f, g E Co (2nj, 2n(j + 1» which satisfy 

f(2nj+K) = 1, f'(27T.j+K) =0, 

g(2nj + K) = 0, g'(2nj + K) = 1. 

For a, bE R, we define 

and 

{
af(X) + bg(x) if x E ~l, 

rpj(x) = pf(x) + qg(x) if x Ell, 
° otherwise, 

Then rp)x) E Dom(H). Substituting rpj for rp in (7), we obtain 

(8) 

(9) 

(10) 
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-bu(2rcj + K - 0) + qu(2rcj + K + 0) 

+ au'(2rcj + K - 0) - pu'(2rcj + K + 0) = O. (11) 

If a = 1 and b = 0, then p = eifh. cos !X2 and q = eifh. sin (X2 hold. In this case, (11) 
implies 

e-i02 u(2rcj + K + 0) sin (X2 - e-ifhu' (2rcj + K + 0) cos !X2 + u(2rcj + K - 0) = O. (12) 

If a = 0 and b = 1, then p = _e ifh sin !X2 and q = e i02 cos !X2 are valid. In this case 
we obtain 

-u(2rcj + K - 0) + e- i02 u(2rcj + K + 0) cos !X2 

+ e- ifh u'(2rcj + K + 0) sin!X2 = O. 

by (11). Summarizing (12) and (13), we conclude that 

(13) 

( u(2rcj + K + 0) ) = e i02 (COS (X2 -Sin!X2) ( u(2rcj + K - 0) ) (14) 
u'(2rcj + K + 0) sin !X2 cos (X2 u'(2rcj + K - 0) 

for all j E Z. In a similar way, we can gain 

( u(2rcj + 0) ) = e iOI (COS <Xl -sin <Xl) (U(2rcj - 0) ) (15) 
u'(2rcj + 0) sin (Xl cos (Xl u'(2rcj - 0) 

for all j E Z. Therefore we arrive at (6), and thus U E Dom(H). 0 

REMARK 2.2. The operator H = H(A I ,A2 ,B1Jh) is also self-adjoint for 

A\,A2 E SL2 (R), where 

SL2 (R) = {(; ~ )/a,b,e,d E R,ad - be = I}. 
Next we show Proposition 1.1. We consider the equation 

{
_yll(X' A) = AY(x, A), x E R\r, 

y(x + 0, A) _ iOj . y(x - 0, A) . ._ 
(y'(x+o,A)) - e AJ(y'(X_O,A)) for XErJ, ] -1,2, 

(16) 

where A is a real parameter and the symbol ' stands for the differentiation with 

respect to x. This differential equation has two solutions Yl (x, A) and Y2(X, A) 
which are uniquely determined by the initial conditions: 
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Yl(+O,).) = 1, yH+O,).) = 0, 

and 

Y2(+0,).) = 0, y~(+O,).) = 1 

respectively. We introduce the discriminant D()') of the equation (16): 

The matrix 

D().) = Yl(2n+0,).) + y~(2n+0,).). 

M().);= (Yl(2n+o,).) Y2(2n+0,).)) 
y;(2n+0,).) y~(2n+0,A) 

(17) 

(18) 

is called the monodromy matrix of (16). Since det M(A) = e2i(01+02), the char­

acteristic equation of M(A) is 

(19) 

So, A is an eigenvalue of H/l if and only if ei/l is a root of (19). Thus, the sequence 
{Aj(.u)h':l provides all the zeros of D()') - (ei/l + e i(201+20z-/l)). We recall (2). The 

components of the monodromy matrix are directly calculated as follows. 

YI (2n + 0, A) = ei(OI +02 ) [( al a2 - bl b2) cos KVi cos LVi 

+ (alb2 + bla2)Vi sin KVi cos LVi 

+ (aJI + b1a2Vi) cos KVi sin LVi 

+ (-ala2 + b1b2).) sin KVi sin LVi]. (20) 

Y; (2n + 0, A) = ei(OI +Ih) [( al b2 + a2b]) cos KVi cos LVi 

+ (b1b2Vi - ala2Vi) sin KVi cos LVi 

+ (bJI - Via1a2) cos KVi sin LVi 

+ (-a2bl - Aa] b2) sin KVi sin LVi] . (21) 
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Y2(2n + 0, it) = ei(OI+fh) [-(a1b2 + a2bJ) cos 1C..Ji cos -r..Ji 

( a1a2 b1b2). 11 11 + VI - VI SIn 1CV it cos -rv it 

+ (a~ _ b1b2..Ji) cos 1C..Ji sin-r..Ji 

+ (a~2 + b1a2) sin 1C..Ji sin -r..Ji]. (22) 

y~(2n + 0, it) = e i(OI+02) [(a1a2 - blb2) cos 1C..Ji cos-r..Ji 

( b1a2 a1b2). r:; r:; + VI + VI sm 1CV it cos -rv it 

+ (b~ + b2a1..Ji) cos 1C..Ji sin -r..Ji 

+ (b1: 2 _ a1a2) sin 1C..Ji sin -r..Ji] . (23) 

PROOF OF PROPOSITION 1.1. We have only to prove the statements (e), (f), 
and (g), since the demonstrations of (a), (b), (c), and (d) are similar to those of 
[9, Theorem XIII.89 (a), (b), and (c)] and of [9, Theorem XIII.90 (a)]. 

Let us prove (e). By the definition of Hp and that of ~, we claim that 

0"(Hp(AI,A2,81,(h)) = 0"(Hp-OI-(h(A1 , A2 , 0, 0)). 

This combined with (b) and (d) implies the claim (e). 
Next we show (f) and (g). Let 81 = 82 = 0. It follows from (17), (20), and 

(23) that 

So we arrive at the conclusions (f) and (g) in a similar way to [12, Proposition 1, 
(d) and (e)]. D 

3. Location of the Absent Gaps of H 

Henceforth, we assume that 1C #- nand 81 + 82 = 0. In this section we use the 
notations aj and bj instead of cos Clj and sin Clj for the sake of simplicity. It is 
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also useful to rewrite the clasmcation (I), (II), (ill), and (IV) as the following 
equivalent forms, respectively. 

(I)' alb2 - b1a2 =F 0, a1b2 + bla2 =F 0. 
(II)' alb2 - bla2 =F 0, alb2 + bla2 = O. 
(ill)' a1b2 - bla2 = 0, alb2 + bla2 = 0, i.e., 

(ai, a2, bl,b2) = (0,0,1,1), (0,0,1, -1), (0,0, -I, 1), (0,0, -I, -1). 

(IV)' alb2 - bta2 = 0, atb2 + bla2 =F 0. 

We note that A. is a double eigenvalue of Ho (respectively, HlIJ if and only if 
M(A.) = I (respectively, M(A.) = -1); cf. [12, Lemma 4]. 

To handle the case (1) we prove the following lemma. 

LEMMA 3.1. If M(A.) = ±I. A. =F 0, A. =F 1, a2b2 =F 0 and alb2 - bta2 =F 0, then 

we have sin 7:..[J,. = sin "..[J,. = ° and a2bl + at b2 = O. 

PROOF. Suppose M(A.) = ±I. Since 

yf (2n + 0, A.) = 0, Y2(2n + 0, A.) = 0, Yt (2n + 0, A.) - y~(2n + 0, A.) = 0, 

we have the following three equalities. 

(atb2 + a2br) cos "v1 cos 7:v1 + (b:Jl- v'Iata2) cos "v1 sin 7:v1 

+ (btb2 - ata2)v1 sin "v1 cos 7:v1- (a2bl + A.a1b2) sin "v1 sin 7:v1 = O. (24) 

-(ajb2 + a2br) cos "v1 cos 7:v1 + (a:;x - b1b2v1) cos "v1 sin 7:v1 

+ ( a:;x - b:Jl) sin "v1 cos 7:v1 + (a~2 + bl a2) sin "v1 sin 7:v1 = o. 

( at b2 "a2bj ") "." ..[J,. + b1a2Y A. - v1 - alb2y A. cos "Y A. sm 7:Y A. 

( " "a2bt aI b2). " " + a jb2YA,+a2bIYA,- v1- v1 sm"yA.cos7:VA. 

+ blb2 (A. -~) sin "v1 sin 7:v1 = O. 

(25) 

(26) 
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First of all, we prove that sin 'l:.JI sin K.JI = 0 by contradiction. We assume 
sin 'l:.JI sin K.JI =1= O. We put Xl = cot K.JI, X2 = cot 'l:.JI. We devide (24), (25), 
and (26) by sin 'l:.JI sin K.JI to get 

(alb2 + a2bt)x lx2 + (bJI - .JIa1a2 )Xl 

+ (blb2.JI - ala2VI)x2 + (-a2bl - Aalb2) = 0, (27) 

(28) 

+ (alb2VI + a2bl VI -aJi- aJI )X2 + blb2 (A -~) = 0. (29) 

Calculating {(27) + (28)} x (a2bl + alb2) - (29) x (blb2 - aja2), we have 

2a2b2xI + bi ( VI + ~) = O. 

Since a2b2 =1= 0, we obtain 

Xl = _..!!2. (VI + _1 ). 
2a2 .JI (30) 

Substituting this for (29), we infer that 

(31) 

Furthermore, we substitute (30) and (31) for (28) to get 

Because alb2 - bla2 =1= 0, we obtain x? = xi = -1. However, this contradicts the 
fact that cot z =1= ±.J=T for all Z E C. Hence we have sin 'l:VI sin K.JI = 0, that 
is, 

sin 'l:VI = ° or sin KVI = 0. (32) 
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As the next step, we show sin 'o-v'I = sin 1C-v'I = o. Let us discuss the former 
case of (32). We infer by yf(2n + O,.,t) + Y2(2n + O,.,t) = 0 and Yl (2n + O,.,t) -

y2(2n + O,.,t) = 0 that 

(al a2 - b1b2) ( -v'I - J.x) sin 1Cy'I = 0, (33) 

(34) 

Since (ala2 - b1b2)2 + (a1b2 + bla2)2 = 1, we claim that a1a2 - b1b2 and 
alb2 + b1a2 do not vanish simultaneously. This together with (33), (34), and 
the assumption .,t =1= 1 yields sin 1C-v'I = O. Likewise, the latter of (32) implies 

sin 'ov'I = o. 
Therefore we get sin 'ov'I = sin 1Cv'I = o. Combing this with (12), we con-

clude that a2b1 + a1 b2 = o. D 

In the next two lemmas we discuss M(O) and M(l). 

LEMMA 3.2. If M(l) = ±I, then we have a1b2 + b1a2 = O. 

PROOF. It follows from M(l) = ±I and (9) that alb2 + a2bl = o. D 

LEMMA 3.3. Suppose M(O) = ±I. Then we have 

PROOF. By M(O) = ±I, (24), (25), and (26), we have 

(alb2 + a2br) + b1b2'O = 0, (35) 

-(alb2 + a2bl) + ala2'O + ala21C - b1b21C + alb2'01C = 0, (36) 

alb2('O - 1C) - a2bl ('0 + 1C) - blb2'01C = O. (37) 

Since 2n - 1C = '0, we find that (37) is equivalent to the equation 

(38) 

We prove b2 = 0 by contradiction. We assume b2 =1= O. First of all, we show 
b l =1= O. We also proceed by contradiction. Suppose b l = O. Then we infer by 
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al =I 0 and (35) that b2 = 0 which is a contradiction. Thus we obtain bl =I O. In 
view of (35) we claim that alb2 + a2b! = -b!b2'L # O. By (35), we have 

(39) 

We get (a2b! - a!b2)(a2bj + alb2) = 0 by substituting (39) for (38). This means 
a2b} - alb2 = 0 because of alb2 + a2bl # O. Substituting (39) for (36), we derive 
the equation. 

Plugging a2b} = b2a! into (40), we arrive at al = -nbJ/2. Since a! = -nbJ/2 and 

a2bl - a}b2 = 0, we have a2 = -nb2/2. Inserting al = -nbJ/2 and a2 = -nb2/2 
into (39), we get K = n which is a contradiction. Therefore, the initial suppo­
sition is false, that is, we obtain b2 = O. Furthermore we have b l = 0 in view of 

a2 =I 0 and (35). Thus we get a!b2 + a2b! = O. Lemma 3.3 is completely proved 

OO~ 0 

Next, we discuss the case where a2b2 = O. 

LEMMA 3.4. If a2b! + a!b2 =I 0, a!b2 - b!a2 # 0, and a2b2 = 0, then we have 
M(A) =I ±I for all A E R, i.e., Gj =I 0 for all j E N. 

PROOF. We define 

s = {A E RIM (A) = I or M (A) = -I}. (41) 

First of all, we remark Lemma 3.2 and Lemma 3.3 say 0,1 r/= S. We prove S = 0 
by contradiction. Suppose that S # 0. Then there exists A E R\{O, I} for which 

A E S. Since a2b2 = 0, we have 

(42) 

Let us discuss the former case of (42). We have a2b! # 0 by b2 = 0 and 

a2b! + a!b2 # O. It follows by (20), (23), and b2 = 0 that 

0= YI (2n + 0, A) - y~(2n + 0, A) = a2b! ( v'I - ~) sin 2nv'I. (43) 

Noticing A. # 1 and a2b! =I 0, we have sin 2nVI = ° from (43). Substituting 
sin 2nVI = 0 for Y; (2n + 0, A) = 0, we find a contradiction cos 2nVI = O. 
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Next we consider the latter case of (42). It follows by a2 = ° and 
alb2 - bla2 i= ° that alb2 i= 0. It follows from 

and a2 = ° that 

Yl(2n+O,A) - y~(2n+O,A) = 0, 

y; (2n + 0, A) + Y2(2n + 0, A) = ° 

al Sin(K - r)v'l + bl ( v'l + ~) sin Kv'l sin rv'l = 0, (44) 

bl Sin(K - r)v'l- al (v'l + ~) sin Kv'l sin rv'l = 0. (45) 

So we have 

(bt + at) ( v'l + ~) sin Kv'l sin rv'l = 0. (46) 

We demonstrate A#- -1 by contradiction. Assume that A = -1. Then (44) is 
equivalent to Sin(K - r)i = ° owing to al #- 0. Moreover sin(K - r)i = ° is equiv­
alent to K = n. This is a contradiction for our assumption K #- n. Thus we get 
A #- -1. This combined with (46) yields sin KVI sin rVI = 0. Furthermore, we 
get sin KVI = sin rVI = ° in view of (44). It follows by sin KVI = sin rVI = 0, 
a2 = 0, (22), and Y2(2n + 0, A) = ° that alb2 = ° which is a contradiction. 

Since we have found contradictions in both cases of (42), we conclude 

S=0· o 

We are now in a position to prove Theorem 1.2. 

PROOF OF THEOREM 1.2. The assertion immediately follows from Lemmas 
3.1-3.4. 0 

Next, we prove Theorem 1.4. 

PROOF OF THEOREM 1.4. By (IV) we have 

(al,bd = ±(a2,b2). (47) 

We recall (41). We note that Lemmas 3.2 and 3.3 imply that 0,1 1: S. Since 
al b2 - bl a2 = 0, the elements of the monodromy matrix take the following 
forms. 
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YI (2n + 0,,1.) = [(a1a2 - b1b2) cos ".Jl cos .. .Jl 

+ 2a1b2Vi sin "Vi cos .. Vi 

+ al b2 ()x + Vi) cos "Vi sin .. Vi 
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+ (-ala2 + b1b2,1.) sin "Vi sin 'tVi]. (48) 

Y; (2n + 0,,1.) = [2al b2 cos "Vi cos 7:Vi 

+ (b lb2 - ala2)Vi sin "Vi cos 7:Vi 

+ e:;; -Vial a2) cos "Vi sin 'tVi 

- alb2(1 +,1.) sin "Vi sin 7:Vi] . 

Y2(2n + 0,,1.) = [-2al b2 cos "VI cos 'tVi 

( a1a2 blb2). r;; r;; + v1 - v1 sm "v,1. cos 'tv,1. 

+ ( a:;; _ b l b2 Vi) cos "Vi sin 7:Vi 

+ al b2 G + 1) sin "Vi sin 7:.Jl]. 

y~(2n + 0,,1.) = [(al a2 - b1b2 ) cos "Vi cos 7:.Jl 

2al b2 . r;; r;; + v1 sm "V A cos 'tV A 

+ al b2 ()x + .Jl) cos ".Jl sin 7:.Jl 

(49) 

(50) 

+ (b~2 _ ala2) sin "Vi sin 7:Vi]. (51) 

Suppose A E S. Because Yl (2n + 0,,1.) - y~ (2n + 0, A) = 0, we have 
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that is, 

on account of b2 '* 0 and ..t '* 1. 
Next we show sin Ky'i '* 0 by contradiction. We suppose sin Ky'i = O. Sub­

stituting this for Y~ (2n + O,..t) + Y2(2n + O,..t) = 0, we observe that 

(bl b2 + ala2) (Jx -vl) sin r:vl = o. (53) 

Let us prove sin r:y'i '* o. Seeking a contradicti0rt' we assume that sin r:y'i = o. 
Then we have al cos Ky'i = 0 from (53) and b2 '* O. By sin Ky'i = 0, it turns out 

that al = 0 which is a contradiction with al b2 - a2bl = 0 and a l b2 + a2bl '* O. 
This means sin r:y'i '* o. Though we have b1b2 + ala2 = 0 from sin r:y'i '* 0, 
..t '* 1, and (53), this is a contradiction. In fact, b1b2 + ala2 = 0 and our as­
sumption al b2 - a2bl = 0 reduce to, a2 = o. This is why sin Ky'i '* O. 

It follows from (52), al '* 0, and sin Ky'i '* 0 that 

cos r:VI = - ~1 ( vl + Jx) sin r:vl. (54) 

This yields sin r:y'i '* o. Substituting (54) for Y2(2n + O,..t) = 0, we have 

0= (b1b2 + a/a2) cos Kvl + ::1 (vl + Jx) sin Kvl. (55) 

By (47) this equation reduces to 

cos Kvl = - :~l ( vl + Jx) sin KVI. (56) 

We get Sin(K - r:)v'i = 0 by (54) and (56). Thus, there exists kEN satisfying 
..t = '1k. This implies the inclusion 

S C {TJj I cos Kyfiij = - 2bl (yfiij + _1_) sin Kyfiij, j EN}. 
al .jifj 

Conversely, we assume that there exists j EN for which A. = TJj satisfies (56). 
Plugging..t = (nj/(K - r:))2 into (56), we obtain (54). Substituting (54) and (56) for 
(48)-(51), we observe M(A.) = I or M(A.) = -I. So we get 
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S:::> {'Ii I cos KJ1ij = - ~l ( J1ij + ~) sin KJ1ij,j eN}. 

Therefore we conclude (3). 

We discuss the case (ill) in the following lemma. 

LEMMA 3.5. Assume that (ill) holds. If Kin ¢ Q, then S = {I}. 
If Kin = min, (n,m) e N 2, gcd(n,m) = I, m ¢ 2N, then 

S = {I} U {n2ll j eN}. 

If Kin = min, (n,m)eN2, gcd(n,m) = 1, me2N, then 

S = {I} U { n72 
keN}. 
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o 

PROOF. Suppose (III), i.e., al = a2 = O. Then b2 =f. O. This implies 0 ¢ S 
due to Lemma 3.3. Since al = a2 = 0, we have M(I) = -blb2I. Taking notice 
of blb2 = ±I, we conclude Ie S. Finally, we discuss M(A) for A ¢ {O, I}. Since 
al = a2 = 0, we get 

YI (2n + 0, A) = b1b2( -cos K.Ji cos -r.Ji + A sin K.Ji sin -r.Ji), (57) 

Y; (2n + 0, A) = b1b2 ( .Ji sin K.Ji cos 'l'.Ji + Jx cos K.Ji sin 'l'.Ji), (58) 

Y2 (2n + 0, A) = b 1 b2 (Jx sin K.Ji cos -r.Ji - .Ji cos K.Ji sin 'l'.Ji ). 

Y~ (2n + 0, A) = bl b2 (-cos K.Ji coS't.Ji + ~ sin K.Ji sin -r.Ji). ( 59) 

Assume that M(A) = ±I. Since Yl(2n+0,A) - y~(2n+0,A) =O,we have 

Since y; (2n + 0, -1) = 0 is equivalent to K = n, we get A =f. -1. Since A =f. ± I 
and b1b2 = ±I, we see sin KVI sin 'l'VI = O. This together with y; (2n + 0, A) = 0 
implies sin KVI = sin -rVI = O. 
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Conversely, if sin KvII = sin -rvII = 0 holds, then it follows that 

M(A) = I or M(A) = -I. 

Summarizing the above discussion, we have 

S\{l} = {A E R\{O, I} I sin KVi = sin -rVi = OJ. 

In a similar way to [12, Lemma 6], we acquire the conclusion. D 

We put an end to this section by proving the following lemma. 

LEMMA 3.6. Assume that (II) is valid Then we have the following statements 

(1)-(3). 

(I) If K/n ¢ Q, then S = {I}. 
(2) If (m,n) E N 2, K/n = min, gcd(n,m) = 1,' and m ¢ 2N, then 

S= {I}U{n2/ljEN}. 

(3) If (m,n) E N 2, K/n = min, gcd(n,m) = 1, and mE 2N, then 

S = {I} U { n72 
kEN}. 

PROOF. Using Lemma 3.3 and b2 -# 0, we have M(O) -# ±1. This implies 
O¢S. 

Next, we discuss M(I). By (II) we have aja2 - bjb2 = ±1. It follows from 
(20)-(23) that M(I) = (aja2 - bjb2)1. So we get 1 E S. 

Next we discuss M(A) for A ¢ {O, I}. Suppose A ¢ {O, I} and M(A) = ±1. 

Since Yj (2n + 0, A) - y~(2n + 0, A) = 0, b2 -# 0, ajb2 + bja2 = 0, and A -# I, we 
have 

sin 't"Vi{ 2aI cos KVi - bi (.Jx+ Vi) sin KVi} = O. (60) 

Let us show that 

(61) 

Seeking a contradiction, we assume that 



Spectral gaps in Kronig-Penney Hamiltonians 59 

Since at i= 0, we have 

cos Kv'I = ~l (v'I + Jx) sin Kv'I. (62) 

This means sin KyiI i= O. Substituting (62) and alb2 + b1a2 = 0 for each element 
of the monodromy matrix, we have 

YI (2n + 0, A) = [( al a2 - bl b2) :~l ( v'I + ~) sin KV1 cos -rv'I 

+ al b2 ( ~ - v'I) :~l ( v'I + ~) sin Kv'I sin -rv'I 

+ (-ala2 + blb2A) sin Kv'I sin -rv'I], (63) 

Y; (2n + 0, A) = [(blb2 - ala2)v'I sin Kv'I cos-rv'I 

+ e:;; -v'Ial a2) :~l ( v'I + ~) sin Kv'I sin -rv'I 

+ alb2(l - A) sin Kv'I sin -rv'I], (64) 

Y2(2n + 0, A) = [(ala2 - blb2) ~ sin Kv'I cos-rv'I 

+ (a~ _ b1b2v'I) :~l (v'I + ~) sin Kv'I sin-rv'I 

(65) 

y~ (2n + 0, A) = [( al a2 - bi b2) :~I ( v'I + ~) sin Kv'I cos -rv'I 

+ alb2 ( v'I - ~) :~I ( v'I + ~) sin Kv'I sin-rv'I 

+ (b~2 _ ala2) sin Kv'I sin -rv'I]. (66) 

It follows from Yl (2n + 0, A) + Y2(2n + 0, A) = 0 that 
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0= (blb2 - ala2) ( v'X - ~) sin Kv'X cos -rv'X 

+ { (blb2 + ala2) (~ - v'X) } ~l ( v'X + ~) sin Kv'X sin-rv'X 

+ alb2 (~ - .it) sin Kv'X sin -rv'X. 

Because sin K..Ji =1= 0, this equation reduces to 

So we have sin -r..Ji =1= O. Likewise, the equation 

Y~ (2n + O,.it) - Y2(2n + O,.it) = 0 

reduces to 

0= (bl b2 - ala2) ( v'X + ~) cos-rv'1 

+ (blb2 - ala2) :~l ( ..Ji + ~y sin-r..Ji 

+ al b2 { - ( v'1 + ~y + 4} sin -rv'1. 

Substituting (67) for (68), we have 

and therefore 

{:~l (b l b2 + ala2) + alb2 } ( v'1 + ~y sin-rv'1 

+ :~1 (bl b2 - ala2) ( v'1 + ~y sin-rv'1 

- al b2 ( v'1 + ~) 2 
sin -rv'1 + 4al b2 sin -rv'1 = 0 

(68) 

(69) 
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Considering (62) and (69), we find a contradiction cot2 1(,..Ji. = -1. Therefore it 
turns out that (61) holds. 

Using (60), we get sin -r..Ji. = O. Furthermore it follows from alb2 +bla2 = 0, 
(22), and Y2(2n + 0, A.) = 0 that sin 1(,..Ji. = O. Thus we have 

S\{I} c {A. E R\{O, I} I sin 1(,..Ji. = sin -rv'I = O}. 

It is easy to show the reverse inclusion. Therefore we complete the proof. 

o 

4. Indices of the Absent Gaps of H 

In this section we demonstrate Theorem 1.3. To this end we introduce the 
Priifer transform of a solution to (16); see [2, Chapter 8]. Let fh = O2 = 0 and let 
y be a solution of (16). By (r,co) we denote the polar coordinates of (y,y'): 

y = r sin co, y' = r cos co. 

Then co = w(x, A.) verifies the equations 

~ co(x, A.) = cos2 co(x, A.) + A. sin2 co(x, A.), x E R\r, (70) 

co(x + 0, A.) = co(x - 0, A.) - rtj, for x E r j , j = 1,2. (71) 

The initial condition 

co(+O,A.) = COo (72) 

uniquely determines the solution to the above equations. The function co is called 
the Priifer transform of y. We define the rotation number of (16) as 

p(A.) = lim co(2nt + 0, A.) - co( +0, A.) . 
/-+00 2nt 

(73) 

In a similar way to the proof of [6, Theorem 2.1], we see that the limit exists and 
is independent of the initial value coo. Furthermore, the function p(A.) is non­
decreasing on R. Henceforth we discuss the cases (ill) and (II). Since rtl + rt2 == 0 
in each case and since the discriminant D(A.) is n-antiperiodic with respect to rt2, 

it suffices to consider the case where 

(74) 

First, we prove the following claim. 
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LEMMA 4.1. Suppose (74). Let co(x,.il, coo) be the solution of (70)-(72) with 

° ~ COo < n. 

We fix y E [0, n). Then we have 

{
rt2-n 

lim co(2n + O,.il, coo) = 2 
1-+-00 rt2 - n 

if rt2 E (-n,O), 
if rt2 E (0, n), 

where the limit is uniform with respect to COo E [0, y]. 

PROOF. In order to prove this lemma, we recall a basic fact on the Priifer 

transform from [2, Chapter 8, Theorem 2.1]. Let c < d. For fJ E [0, n), let 0 = 
O(x,.il, c,fJ) be the solution to the equations 

~O = cos2 O+.il sin2 0 on R, (75) 

Then it holds that 

lim O(d,.il, c,fJ) = 0. 
1 .... -00 

(76) 

We fix COo E [0, y]. By (76) we have 

lim CO(K - O,.il, coo) = ° 
1->-00 

and thus 

lim CO(K + O,.il, coo) = -rt2. 
1 .... -00 

(77) 

First we discuss the case where rt2 E (0, n). We pick ° such that -n < -rt2 < 
t5 < 0. It follows by (77) that there exists .ilo = ito (coo) E R such that 

-n < CO(K + O,.il, coo) < ° for.il ~ ito. 

This combined with the comparison theorem [2, Chapter 8] implies 

8(2n,.il, K, -n) < co(2n - O,.il, coo) < 8(2n, A., K,O) for.il ~ ..1.0 . 

Since the right side of (75) is n-periodic in 8 and since (76) holds, we have 

lim 8(2n,.il, K, -n) = lim 8(2n,.il, K,O) = -n. 
1 .... -00 1 .... -0() 
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Thus we get 

lim co(2n - 0, A, coo) = -n 
). .... -00 

and hence 

lim co(2n + 0, A, coo) = (X2 - 2n. 
). .... -00 

By the comparison theorem and COo E [0, y], we have 

co(2n + 0, A, 0) ~ co(2n + 0, A, coo) ~ co(2n + 0, A, y). 

Thus we get the assertion for (X2 E (O,n). Likewise we get the conclusion for 
(X2 E (-n, 0). D 

LEMMA 4.2. For all (X2 E (-n, 0) U (O,n), we have 

lim p(A) = -1. 
). .... -00 

PROOF. First we discuss the case where (X2 E (0, n). Pick y such that (X2 < 
Y < n. By Lemma 4.1 there exists .1.0 E R such that 

-2n ~ co(2n + 0, A, coo) ~ y - 2n 

for A ~ .1.0 and 0 ~ COo ~ y. Since the right side of (70) is n-periodic with respect 
to co, we have 

-4n ~ co( 4n + 0, A, coo) ~ y - 4n 

for A ~ AO and 0 ~ COo ~ y. By induction we get 

-2nn ~ co(2nn + 0, A, coo) ~ -2nn + y 

for n E N, A ~ ito, and 0 ~ COo ~ y. Thus 

p(A) = -1 

for A ~ ito. Therefore we obtain the assertion for (X2 E (O,n). In a similar way we 
get the claim for (X2 E (-n, 0). D 

We can now characterize the endpoints of the n-th gap as follows. For n E N, 

we put Bn = [an,bnl. 

THEOREM 4.3. For n E N, we have 
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{ n-1} an=max AERlp(A)=-1+-2-· 

PROOF. Using Lemma 4.2 and following the lines of the proof of [3, 
Proposition 2.1], we get the claim. 0 

We are now ready to complete the proof of Theorem 1.3. 

PROOF OF THEOREM 1.3. First, we discuss the case (III). We have only to 
consider the case where al = a2 = n12. In this case, (71) reduces to 

(78) 

n 
w(2n+ O,A) = w(2n- O,A) -"2' (79) 

If A = 1, (70) is equivalent to w' = 1. This together with (78) and (79) implies 
w(27lt + 0, 1,0) = nt. So, we get p( 1) = 1/2. On the other hand, it follows from 
Lemma 3.5 that 1 E S. This means that a gap disappears at {I}. Since pel) = 1/2 

and 1 E S, we conclude that the third gap is absent by Theorem 4.3. 

Suppose Kin = min, (n,m) E N 2, gcd(n,m) = 1 and m ¢: 2N. Due to Lemma 
3.5, we have S={1}U{n2lljEN}. Put A=n2l. The equation (70) takes the 
form 

(80) 

The general solution of this equation is 

( tan('Y'x + V)) 
arctan . , 

nJ 

where v is a constant. Adopting Wo = 0 in the initial condition (72) and using 
the jumps (78) and (79), we have w(2nt + 0, n2j2, 0) = (2nj - 1 )nt. Thus peA) = 

(2nj - 1)/2. By Theorem 4.3, we conclude that the (2nj + l)-st gap vanishes at 
the point {n2j2}. 

Next we consider the case where Kin = min, (n, m) E N 2, gcd(n, m) = 1 and 
m E 2N. By a similar argument as above we see that 
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co(2nt + O,n2/14,O) = (nj-l)nt 

and that the (nj + l)-st gap disappears at the point {n2j214}. Thus we have the 
assertion of Theorem 1.3 in the case (ill). 

Likewise, we get the claim in the case (IT). 0 
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