THE AUTOMORPHISM GROUP OF A CYCLIC p-GONAL CURVE

By

Naonori Ishn and Katsuaki Yoshna

Abstract. Let M be a cyclic p-gonal curve with a positive prime number p, and let V be the automorphism of order p satisfying $M/\langle V \rangle \simeq P^1$. It is well-known that finite subgroups H of Aut (P^1) are classified into five types. In this paper, we determine the defining equation of M with $H \subset Aut(M/\langle V \rangle)$ for each type of H, and we make a list of hyperelliptic curves of genus 2 and cyclic trigonal curves of genus 5, 7, 9 with $H = Aut(M/\langle V \rangle)$.

1 Introduction

Let M be a compact Riemann surface defined by

$$y^{p} - (x - a_{1})^{r_{1}} \cdots (x - a_{s})^{r_{s}} = 0, \qquad (1)$$

where p is a positive prime integer, a_i 's are distinct complex numbers, and r_i 's are integers satisfying $1 \le r_i < p$ (i = 1, ..., s). Put $\mathscr{S} := \{a_1, ..., a_s\}$ (resp. $\{a_1, ..., a_s, a_{s+1} = \infty\}$) when $\sum_{i=1}^{s} r_i \equiv 0 \pmod{p}$ (resp. $\sum_{i=1}^{s} r_i \not\equiv 0 \pmod{p}$). Then the genus g of M is $\frac{(\#\mathscr{S}-2)(p-1)}{2}$. Let C(M) denote the function field C(x, y) of M. For an automorphism $\sigma \in \operatorname{Aut}(M)$, σ^* represents the action on C(M) induced by σ . Let V be the automorphism on M defined by

$$V^*x = x$$
 and $V^*y = \zeta_p y$

with the primitive p-th root $\zeta_p = \exp 2\pi i/p$ of unity. The inclusion $C(x) \subset C(M)$ corresponds to the cyclic normal covering $x: M \to P^1(x)$ of degree p, and its covering group is $\langle V \rangle$. Then x is (totally) ramified over a point $a \in P^1(x)$ if and only if $a \in \mathcal{S}$.

²⁰⁰⁰ Mathematical Subject Classification: 14H05, 14H30, 14H37.

Key words: Compact Riemann surface, Automorophisms, Coverings.

Received June 6, 2005.

Revised May 9, 2006.

In general, a compact Riemann surface of genus g is called a *n*-gonal curve when M has a meromorphic function of degree n and does not have any nontrivial meromorphic functions whose degree is smaller than n. It is known that Mbecomes a *p*-gonal curve provided (p-1)(p-2) < g with a prime number p [10].

From now on, we always assume that M is a compact Riemann surface defined by (1). From the fact mentioned above, M becomes a *p*-gonal curve when $2p - 2 < \#\mathcal{G}$.

Let g_d^1 denote a linear system of degree d and dimension 1, then the linear system $|(x)_{\infty}|$ is g_p^1 . Here $(x)_{\infty}$ is the pole divisor of x on M. We also assume that $|(x)_{\infty}|$ is unique as g_p^1 . In fact the uniqueness of g_p^1 is satisfied when $(p-1)^2 < g$, i.e., $2p < \#\mathscr{G}$ [10]. The uniqueness of g_p^1 on a cyclic p-gonal curve M implies that $\langle V \rangle$ is normal in Aut(M). Moreover we will see that V is in the center of Aut(M). Therefore, for a subgroup G of Aut(M) containing V, we have an exact sequence

$$1 \to \langle V \rangle \to G \xrightarrow{\pi} H \to 1, \tag{(*)}$$

where $H = G/\langle V \rangle$.

On the other hand, it is well known that a finite subgroup H of $\operatorname{Aut}(\mathbb{P}^1)$ is isomorphic to cyclic \mathbb{C}_n , dihedral \mathbb{D}_{2n} , tetrahedral \mathbb{A}_4 , octahedral \mathbb{S}_4 or icosahedral \mathbb{A}_5 . Then it can be said that the group G above is obtained as an extension of these five groups by a cyclic group $\langle V \rangle$ of order p. Consequently there exist special relations among a_1, \ldots, a_s of (1) depending on H.

First we will give a necessary and sufficient condition that the sequence (*) is split.

Next, by applying the concrete representations of finite subgroup H of $\operatorname{Aut}(\mathbf{P}^1(x))$ given by Klein, we determine a defining equation of M which satisfies the condition $H \subset \operatorname{Aut}(M)/\langle V \rangle$ for a given H.

Finally, as applications, we give a classification of hyperelliptic curves M of genus 2 and cyclic tigonal curves of genus g = 5, 7, 9 based on the types of H contained in Aut $(M)/\langle V \rangle$.

2 A Necessary and Sufficient Condition in Which the Exact Sequence (*) is Split

Let *M* be a cyclic *p*-gonal curve defined by the equation (1), and the linear system $|(x)_{\infty}|$ is assumed to be unique as g_p^1 . The symbols *G*, *H*, \mathscr{S} etc. are same as in the previous section. We prepare more notations.

NOTATION 1. Let denote \tilde{T} the element of $H = G/\langle V \rangle \subset \operatorname{Aut}(\mathbf{P}^1(x))$ induced by some element $T \in G$. Let FP(H) (resp. FP(G)) denote the set of points on

 $M/\langle V \rangle \simeq \mathbf{P}^1(x)$ (resp. M) fixed by a non-trivial element of H (resp. G), and let FG(a) denote the set of automorphisms of $\mathbf{P}^1(x)$ which fixes a point $a \in \mathbf{P}^1(x)$. By corresponding $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL(2, \mathbb{C})$ to $A(x) := \frac{\alpha x + \beta}{\gamma x + \delta}$, we have an isomorphism $SL(2, \mathbb{C})/\{\pm 1\} \simeq \operatorname{Aut}(\mathbf{P}^1(x))$. We use the same symbol "A" for both a matrix and an element of $\operatorname{Aut}(\mathbf{P}^1(x))$. Let $\langle A \rangle a$ denote the orbit of $a \in \mathbf{P}^1(x)$ by the subgroup $\langle A \rangle$ generated by $A \in SL(2, \mathbb{C})$.

For $a \in FP(H)$, FG(a) is a cyclic group and FP(FG(a)) consists of two points a and a' with $a \neq a'$. If FG(a) is generated by an element A of order n, then, by changing the coordinate x suitably, we may assume $A(x) = \zeta_n x$ and $FP(\langle A \rangle) = \{0, \infty\}$, where $\zeta_n = \exp(\frac{2\pi i}{n})$.

We start with the following lemma.

LEMMA 2.1. (i) The group H acts on \mathcal{S} .

- (ii) Let a_i and a_j be in \mathscr{S} . If there exists an element $T \in G$ satisfying $\tilde{T}a_i = a_j$, then we have $r_i = r_j$. Here we define r_{s+1} by $r_{s+1} \equiv -\sum_{i=1}^{s} r_i \pmod{p}$ and $0 < r_{s+1} < p$ when $\sum_{i=1}^{s} r_i \not\equiv 0 \pmod{p}$.
- (iii) The automorphism V is contained in the center of G.

PROOF. (i) Let T be an arbitrary automorphism on M. From the uniqueness of g_p^1 , we have a diagram

and this implies that \tilde{T} acts on S.

(ii) Refer to [6], [11].

(iii) Suppose ord $\tilde{T} = n$. Then we may assume that \tilde{T} is defined by $\tilde{T}^*x = \zeta_n x$, and then $FP(\langle T \rangle) = \{0, \infty\}$. For $a \in M/\langle V \rangle \simeq P^1(x)$ with $a \notin \{0, \infty\}$, the orbit $\langle \tilde{T} \rangle a$ is $\{a, \zeta_n a, \ldots, \zeta_n^{p-1} a\}$. The set \mathscr{S} is decomposed into orbits of $\langle \tilde{T} \rangle$ depending on the order $\#\mathscr{S} \cap \{0, \infty\}$.

- (a) $\#\{\mathscr{S} \cap \{0,\infty\}\} = 2$ $\mathscr{S} = \{0\} \cup \{\infty\} \cup \langle \tilde{T} \rangle b_1 \cup \cdots \cup \langle \tilde{T} \rangle b_t$,
- (b) $\underline{\#\{\mathscr{S}\cap\{0,\infty\}\}}=1$ (we may assume $\mathscr{S}\cap\{0,\infty\}=\{0\}$), $\mathscr{S}=\{0\}\cup\langle \tilde{T}\rangle b_1\cup\cdots\cup\langle \tilde{T}\rangle b_t$,
- (c) $\# \{ \mathscr{S} \cap \{0, \infty\} \} = 0$ $\mathscr{S} = \langle \tilde{T} \rangle b_1 \cup \cdots \cup \langle \tilde{T} \rangle b_l$

where b_1, \ldots, b_t are non-zero elements in \mathscr{S} with $b_i \neq \infty$ and $\langle \tilde{T} \rangle b_i \cap \langle \tilde{T} \rangle b_j = \emptyset$ for $i \neq j$.

In case (a), from (i) of this lemma, M is defined by

$$y^{p} = x(x^{n} - b_{1}^{n})^{u_{1}} \cdots (x^{n} - b_{t}^{n})^{u_{t}}, \qquad (2)$$

with $n \sum_{i=1}^{t} u_i + 2 \equiv 0 \pmod{p}$. In case (b), M is also defined by (2) with $n \sum_{i=1}^{t} u_i + 1 \equiv 0 \pmod{p}$. In both cases (a) and (b), by acting T^* on (2), we have

$$(T^*y)^p = \tilde{T}^*(x)(\tilde{T}^*(x)^n - b_1^n)^{u_1} \cdots (\tilde{T}^*(x)^n - b_t^n)^{u_t} = \zeta_n y^p.$$

Then T is defined by $T^*x = \zeta_n x$ and $T^*y = \varepsilon y$, where ε satisfies $\varepsilon^p = \zeta_n$. Since $V^*x = x$ and $V^*y = \zeta_p y$, we have $V^*T^* = T^*V^*$.

In case (c), we can also prove as above.

Lemma 2.1 (i) and (ii) imply the following.

LEMMA 2.2. Assume $\mathscr{S} \not\ni \infty$. Let $\mathscr{S} = \bigcup_{i=1}^{u} Hb_i^{(1)}$ (disjoint) be the decomposition of \mathscr{S} into orbits $Hb_i^{(1)} = \{b_i^{(1)}, \ldots, b_i^{(S_i)}\} (\subset \mathbb{C})$. Then the equation (1) is transformed into

$$y^{p} = \prod_{i=1}^{u} \{ (x - b_{i}^{(1)}) \cdots (x - b_{i}^{(s_{i})}) \}^{r_{i}}$$
(3)

with $1 \le r_i < p$ and $\sum_{i=1}^u s_i r_i \equiv 0 \pmod{p}$.

Let $\tilde{\pi} : \mathbf{P}^1(x) \to \mathbf{P}^1(u)$ be a normal covering defined by $u = f_1(x)/f_0(x)$ with a Galois group *H*, where $f_0(x)$ and $f_1(x)$ are polynomials relatively prime to each other. We write $(b_0 : b_1)$ for a point of *u*-plane $\mathbf{P}^1(u)$ with $u = \frac{b_1}{b_0}$. Then we have the following theorem.

THEOREM 2.1. Let M be defined by the equation (1). Then the exact sequence (*) is split if and only if

(A) $FP(H) \cap \mathscr{S} = \emptyset$, or (B) for $a \in FP(H) \cap \mathscr{S}$, #FG(a) is not divisible by p.

PROOF. Put #H = n. Then #G = pn. We may assume $\mathscr{S} \not\equiv \infty$. Then M is defined by (3) in Lemma 2.2. We regard M/G as a *u*-plane $\mathbb{P}^1(u)$, and consider the normal covering

The automorphism group of a cyclic p-gonal curve

$$M/\langle V \rangle \simeq \boldsymbol{P}^1(x) \stackrel{\tilde{\pi}}{\to} M/G \simeq \boldsymbol{P}^1(u),$$

whose covering group is *H*. We assume $u = f_1(x)/f_0(x)$. We can also assume that the image $\tilde{\pi}(\mathscr{S})$ does not contain $\infty \in \mathbb{P}^1(u)$.

Now we assume that (*) is split. Then $G = \langle V \rangle \times H$. We have a commutative diagram and canonical isomorphisms

$$\begin{array}{cccc} M & \xrightarrow{x} & M/\langle V \rangle \\ (\natural) & \pi \\ & & & & \downarrow_{\tilde{\pi}} \\ & & M/H & \xrightarrow{y} & M/G, \end{array} \begin{array}{c} \operatorname{Gal}(\pi) \simeq \operatorname{Gal}(\tilde{\pi}) \simeq H \\ \operatorname{Gal}(x) \simeq \operatorname{Gal}(u) \simeq \langle V \rangle \\ C(M) \simeq C(M/H) \underset{C(u)}{\otimes} C(x), \end{array}$$

where $\operatorname{Gal}(\psi)$ means the covering group of a given normal covering $\psi: M_1 \to M_2$ of compact Riemann surfaces M_i . Put $\tilde{\pi}(\mathscr{S}) = \{(1:b_1), \ldots, (1:b_u)\}$, where $b_i \ (i = 1 \cdots u)$ are distinct complex numbers. Then we may assume that M/H is defined by

$$y^p = (u - b_1)^{t_1} \cdots (u - b_u)^{t_u}$$
 with $\sum_{i=1}^u t_i \equiv 0$ and $0 < t_i < p$. (4)

The isomorphism $C(M) \simeq C(M/H) \bigotimes_{C(u)} C(x)$ implies that x and y have a relation

$$y^{p} = \left(\frac{f_{1}(x)}{f_{0}(x)} - b_{1}\right)^{t_{1}} \cdots \left(\frac{f_{1}(x)}{f_{0}(x)} - b_{u}\right)^{t_{u}}.$$
 (5)

By replacing $f_0^{(\sum_{i=1}^u t_i)/p} y$ with y, we have

$$y^{p} = (f_{1}(x) - b_{1}f_{0}(x))^{t_{1}} \cdots (f_{1}(x) - b_{u}f_{0}(x))^{t_{u}},$$
(6)

and this equation defines M. Let $\mathscr{S}_i = \{b_i^{(1)}, \ldots, b_i^{(s_i)}\}$ $(i = 1, \ldots, u)$ be the set of points b in $\mathbb{P}^1(x)$ satisfying $\tilde{\pi}(b) = b_i$. Then, by the assumptions $\infty \notin \mathscr{S}$ and $\infty \notin \tilde{\pi}(\mathscr{S})$, we have factorizations

$$f_1(x) - b_i f_0(x) = C_i \{ (x - b_i^{(1)}) \cdots (x - b_i^{(s_i)}) \}^{m_i}$$
 with $n = m_i s_i$ and $C_i \neq 0$.

The positive integers m_i are ramification indices of $\tilde{\pi}$ over $(1:b_i)$ and $m_i = \#FG(b_i^{(k)})$. So the equation (6) may assume to be transformed into

$$y^{p} = \prod_{i=1}^{u} \{ (x - b_{i}^{(1)}) \cdots (x - b_{i}^{(s_{i})}) \}^{m_{i}t_{i}},$$
(7)

and we have $\mathscr{G} \subset \bigcup_{i=1}^{t} \mathscr{G}_{i}$. If some m_{i} is divisible by p, we can omit the term $\{(x - b_{i}^{(1)}) \cdots (x - b_{i}^{(s_{i})})\}^{m_{i}t_{i}}$ of (7) by replacing y with $y/\{\prod_{k=1}^{s_{i}} (x - b_{i}^{(k)})\}^{m_{i}t_{i}/p}$.

Further we can delete the term $(u - b_i)^{t_i}$ from the equation (4). Finally we can get the equation (4) satisfying $\mathscr{S} = \bigcup_{i=1}^{t} \mathscr{S}_i$ and $(m_i, p) = 1$.

Conversely assume that (A) or (B) is satisfied and M is be defined by the equation (3) in Lemma 2.2. Put $b_i = \tilde{\pi}(b_i^{(1)})$ (i = 1, ..., u). Then, for each b_i , we have $f_1(x) - b_i f_0(x) = C_i \{(x - b_i^{(1)}) \cdots (x - b_i^{(s_i)})\}^{m_i}$ again. The assumption (A) or (B) implies $(m_i, p) = 1$. Then, from $(r_i, p) = 1$ and $(m_i, p) = 1$, there exists an integer s_i satisfying $0 < s_i < p$ and $s_i r_i \equiv m_i \pmod{p}$ for each *i*. Put $s = \prod_{i=1}^u s_i$. Then there exist two integers u_i and M_i satisfying $sr_i = u_im_i + M_ip$. Raising both sides of (3) to s-th power and replacing $y^s / \{\prod_{i=1}^u \{(x - b_i^{(1)}) \cdots (x - b_i^{(s_i)})\}^{M_i}\}$ with y again, we have

$$y^{p} = \prod_{i=1}^{u} \{(x - b_{i}^{(1)}) \cdots (x - b_{i}^{(s_{i})})\}^{u_{i}m_{i}} = C \prod_{i=1}^{u} (f_{1}(x) - b_{i}f_{0}(x))^{u_{i}},$$

where C is a non-zero constant. Therefore we may assume that M is defined by $y^p = \prod_{i=1}^u (f_1(x) - b_i f_0(x))^{u_i}$, and then $C(M) = C(M/H) \bigotimes_{C(u)} C(x)$.

3 Defining Equations of p-gonal Curves M with an Exact Sequence (*)

In this section, we give defining equations of M and representations of G according to each type of finite subgroups H of $\operatorname{Aut}(\mathbf{P}^1)$ classified by Klein [8]. Let $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL(2, \mathbb{C})$. As in the previous section, we also write A for the element $\{\pm A\}$ in $SL(2, \mathbb{C})/\{\pm 1\} \simeq \operatorname{Aut}(\mathbf{P}^1(x))$ as long as there is no confusion. Although there are p distinct elements of G which induce $A \in H$, we also use the symbol A abusively for an element of G which induces $A \in H$. In order to determine the action of A^* on the function field $\mathbb{C}(x, y)$, it is sufficient to investigate A^*y .

Let $\tilde{\pi} : \mathbf{P}^1(x) \to \mathbf{P}^1(u)$ be a finite normal covering defined by a rational function $u = \frac{f_1(x)}{f_0(x)}$ with $(f_0, f_1) = 1$, and let H be is its covering group. Put #H = s. Take $(b_0 : b_1) \in \mathbf{P}^1(u)$. Let $m \ge 1$ be the ramification index of $\tilde{\pi}$ over $(b_0 : b_1)$. Then there are three types of factorizations of the polynomial

$$\tilde{P}_{(b_{a}:b_{1})} := b_{0}f_{1}(x) - b_{1}f_{0}(x).$$

That is:

$$\tilde{P}_{(b_o:b_1)} = \begin{cases} (i) & C \prod_{i=1}^{t} (x - a_i)^m & \text{with } t \ge 1 \text{ and } mt = s, \\ (ii) & C \prod_{i=1}^{t-1} (x - a_i)^m & \text{with } t - 1 \ge 1 \text{ and } mt = s, \\ (iii) & C, \end{cases}$$

where C is a non-zero constant. Type (i) (resp. (ii)) happens when $\tilde{\pi}(\infty) \neq (b_0 : b_1)$ (resp. $\tilde{\pi}(\infty) = (b_0 : b_1)$ and m < s). Type (iii) happens when $\tilde{\pi}(\infty) = (b_0 : b_1)$ and m = s. Then H must be a cyclic group.

Define a polynomial $P_{(b_0:b_1)}$ and a positive integer $d_{(b_0:b_1)}$ as follows.

(i)
$$P_{(b_0:b_1)}(x) = \prod_{i=1}^{t} (x - a_i), \quad d_{(b_0:b_1)} = t \text{ if } \tilde{P}_{(b_0:b_1)} \text{ is of type (i),}$$

(ii) $P_{(b_0:b_1)}(x) = \prod_{i=1}^{t-1} (x - a_i), \quad d_{(b_0:b_1)} = t \text{ if } \tilde{P}_{(b_0:b_1)} \text{ is of type (ii),}$
(iii) $P_{(b_0:b_1)}(x) = 1, \quad d_{(b_0:b_1)} = s \text{ if } \tilde{P}_{(b_0:b_1)} \text{ is of type (iii).}$

The following lemma comes form the consideration similar to that of the previous section.

LEMMA 3.1. Let M be a cyclic p-gonal curve defined by (1) with $\#\mathscr{G} > 2p$ (therefore M has a unique g_p^1). Assume $\operatorname{Aut}(M)/\langle V \rangle$ contains the finite subgroup H above. Then there exists a finite set $\{(b_{0,i} : b_{1,i}) | 1 \le i \le r\}$ of distinct points in $\mathbb{P}^1(u)$, and M can be defined by

$$y^{p} = \prod_{i=1}^{r} P^{u_{i}}_{(b_{0,i}:b_{1,i})}, \quad 1 \le u_{i} \le p-1,$$
(8)

$$\sum_{i=1}^{r} u_i d_{(b_{0,i}:b_{1,i})} \equiv 0 \pmod{p}, \quad \#\mathcal{S} = \sum_{i=1}^{r} d_{(b_{0,i}:b_{1,i})} > 2p.$$

Moreover the number of $P_{(b_{0,i},b_{1,i})}$ of type (i) among $P_{(b_{0,i},b_{1,i})}$ $(1 \le i \le r)$ is at least (r-1). If there is a $P_{(b_{0,i},b_{1,i})}$ of type (iii), H is a cyclic group.

Next we introduce the results from F. Klein.

LEMMA 3.2 ([8], [4]). Let $\tilde{\pi}: \mathbf{P}^1(x) \to \mathbf{P}^1(u)$ be a finite normal covering defined by a rational function $u = \frac{f_1(x)}{f_0(x)}$. Then the covering group H of $\tilde{\pi}$ is cyclic, dihedral, tetrahedral, octahedral or icosahedral. And, by choosing coordinates x and u suitably, $u = \frac{f_1(x)}{f_0(x)}$ and the generators of H can be represented as in Table 1 of Appendix.

PROPOSITION 3.1. Let H be one of the groups in Table 1. Then the polynomials $P_{(b_0,b_1)}$ in each type of H are given in Table 2 of Appendix.

PROOF. For example, when
$$H = \mathbf{A}_4$$
 and $u = \frac{(x^4 - 2\sqrt{3}ix^2 + 1)^3}{(x^4 + 2\sqrt{3}ix^2 + 1)^3}$,
 $\tilde{P}_{(1:1)}(x) = (x^4 - 2\sqrt{3}ix^2 + 1)^3 - (x^4 + 2\sqrt{3}ix^2 + 1)^3 = \{x(x^4 - 1)\}^2$

and 0, ± 1 , $\pm i$ and ∞ are points over (1:1) with ramification index 2. Then $P_{(1:1)}(x) = x(x^4 - 1)$ is of type (ii). When $H = \mathbf{A}_5$ and $u = \frac{f_1(x)}{f_0(x)} = \frac{\{-x^{20} - 1 + 228(x^{15} - x^5) - 494x^{10}\}^3}{1728x^5(x^{10} + 11x^5 - 1)^5}$, we have $\tilde{P}_{(1:1)} = \{-x^{20} - 1 + 228(x^{15} - x^5) - 494x^{10})\}^3 - \{1728x^5(x^{10} + 11x^5 - 1)\}^5$ $= -(x^{30} + 522x^{25} - 10005x^{20} - 10005x^{10} - 522x^5 + 1)^2$,

and $P_{(1:1)} = x^{30} + 522x^{25} - 10005x^{20} - 10005x^{10} - 522x^5 + 1$ is of type (i). In any other cases, we can calculate by the same way as above.

By this proposition and Lemma 3.1, we can get defining equations of M with H of Table 1, and they are written in Theorem 3.1.

We can get the representation A^*y for the generators A of H in Table 1, by letting A act on both sides of the defining equations of M directly. But, before practicing the calculation, we will make closer observations on the action of A.

DEFINITION 1. For $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL(2, \mathbb{C})$. Define $j(A, x) := \gamma x + \delta$ with a variable x on \mathbb{C} . When $A \infty = \infty$ (i.e., $\gamma = 0$), define $j(A, \infty) := j(DAD^{-1}, 0) = \alpha$, where $D = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. And when $A \infty \neq \infty$, define $j(A, \infty) := 1$. Of course an automorphism of $\mathbb{P}^1(x)$ induced by a matrix A is also induced by -A, and j(-A, x) = -j(A, x) for a variable x.

First we will write down several properties of j(A, x).

LEMMA 3.3. Let $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ and B be in $SL(2, \mathbb{C})$, and let x be a variable on \mathbb{C} . Then

- (i) j(AB, x) = j(A, Bx)j(B, x).
- (ii) $\alpha \gamma A(x) = j(A, x)^{-1}$.
- (iii) $j(A, x)j(A^{-1}, A(x)) = 1$.
- (iv) Assume that the order of $A \in \operatorname{Aut}(\mathbb{P}^1)$ is l (i.e., l is the least positive integer satisfying $A^l = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$). Take $a \in \mathbb{P}^1(x)$ such that $a \notin FP(\langle A \rangle)$. (a) Assume $\infty \notin \langle A \rangle a$. Then

$$\prod_{i=1}^{l} j(A^{-1}, A^{i}(a)) = j(A^{l}, x) = \begin{cases} 1 & \text{if } A^{l} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \\ -1 & \text{if } A^{l} = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \end{cases}$$

(b) Assume $a = \infty$. Then $j(A^{-1}, A(a)) = 0$ and

$$\prod_{i=2}^{l} j(A^{-1}, A^{i}(a)) = -j(A^{l}, x) = \begin{cases} -1 & \text{if } A^{l} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \\ 1 & \text{if } A^{l} = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \end{cases}$$

- (v) For $a \in FP(\langle A \rangle)$, $j(A, a) = j(BAB^{-1}, B(a))$.
- (vi) Let $FP(\langle A \rangle) = \{a_1, a_2\}$. Then $j(A, a_1)$ and $j(A, a_2)$ are primitive l (resp. 2l)-th roots of 1 if $A^l = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (resp. $-\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$). And $j(A, a_1)j(A, a_2) = 1$.

PROOF. We can prove (i), (ii) and (iii) by simple calculations.

(iv) We will prove only (b). Assume $a = \infty$. As $\gamma \neq 0$ and $A(a) = \frac{\alpha}{\gamma}$, we have $j(A^{-2}, A(a)) = -1$ and $j(A^{-1}, A(a)) = 0$. Since $j(A^{-1}, A^i(a)) = j(A^{i-2}, A(a))/j(A^{i-1}, A(a))$ ($2 \le i \le l-1$) and $j(A^{-1}, A^l(a)) = j(A^{-1}, \infty) = 1$ by the definition, we have

$$\prod_{i=2}^{l} j(A^{-1}, A^{i}(a)) = \prod_{i=2}^{l-1} \frac{j(A^{i-2}, A(a))}{j(A^{i-1}, A(a))} = \frac{1}{j(A^{l-2}, A(a))}$$
$$= \frac{1}{j(A^{l}, A^{-2}A(a))j(A^{-2}, A(a))} = -\frac{1}{j(A^{l}, A^{-2}(a))} = -j(A^{l}, x).$$

(v) Since A(a) = a, the assertion comes from (i), (iii) and $j(A, \infty) = \alpha$.

(vi) By (v), we may assume $a_1 = 0$, $a_2 = \infty$ and $A = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{pmatrix}$ where ε is a primitive *l* or 2*l*-th root of 1. Then $j(A, 0) = \varepsilon^{-1}$ and $j(A, \infty) = \varepsilon$.

Let $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in H$. First we observe the action of A^* on polynomials $P_{(b_0:b_1)}$.

LEMMA 3.4. Assume that $A \in \operatorname{Aut}(\mathbb{P}^1(x))$ has an order *l*. Let $P_{(b_0:b_1)}$ be a polynomial of type (i) or (ii) above. Put $\mathcal{U} := \{a_1, \ldots, a_t\}$ (resp. $\{a_1, \ldots, a_{t-1}, \infty\}$) when $P_{(b_0:b_1)}$ is of type (i) (resp. (ii)). Then A^* acts on $P_{(b_0:b_1)}$ in the following manner.

(I) If $\mathscr{U} \cap FP(\langle A \rangle) = \emptyset$, then $t \equiv 0 \pmod{l}$ and

$$A^{*}(P_{(b_{0}:b_{1})}(x)) = P_{(b_{0}:b_{1})}(A(x)) = j(A, x)^{-t} j(A^{l}, x)^{t/l} P_{(b_{0}:b_{1})}(x).$$

(II) If $\mathcal{U} \cap FP(\langle A \rangle)$ consists of one fixed point $c \in P^1(x)$ of A, then $t-1 \equiv 0 \pmod{l}$ and

$$A^{*}(P_{(b_{0}:b_{1})}(x)) = j(A^{-1},c)j(A,x)^{-t}j(A^{l},x)^{(t-1)/l}P_{(b_{0}:b_{1})}(x).$$

(III) If $\mathcal{U} \cap FP(\langle A \rangle)$ consists of two points c, c' of A, then $t - 2 \equiv 0 \pmod{l}$, and

$$A^*(P_{(b_0:b_1)}(x)) = j(A, x)^{-l} j(A^l, x)^{(l-2)/l} P_{(b_0:b_1)}(x).$$

These representations are independent from the choice of matrix A or -A.

PROOF. (I) Assume $\mathscr{U} \ni \infty$ (i.e., $P_{(b_0:b_1)}$ is of type (ii)). Let

$$\mathscr{U} = \{\infty, A(\infty), \dots, A^{l-1}(\infty)\} \cup (\bigcup_{k=2}^r \langle A \rangle c_k)$$

be the decomposition of \mathscr{U} into the orbits of $\langle A \rangle$. Then lr = t, $\gamma \neq 0$ and

$$P_{(b_0:b_1)}(x) = \prod_{i=1}^{l-1} (x - A^i(\infty)) \prod_{k=2}^r \prod_{i=1}^l (x - A^i(c_k)).$$

By acting A^* on both sides of this equation, we have

$$A^*(P_{(b_0:b_1)}(x)) = \underbrace{\prod_{i=1}^{l-1} \left(\frac{\alpha x + \beta}{\gamma x + \delta} - A^i(\infty) \right)}_{(A)} \underbrace{\prod_{k=2}^r \prod_{i=1}^l \left(\frac{\alpha x + \beta}{\gamma x + \delta} - A^i(c_k) \right)}_{(B)}.$$

Since $A(\infty) = \frac{\alpha}{\gamma}$ and $-\gamma A(\infty) + \alpha = 0$,

the term
$$(A) = j(A, x)^{-(l-1)} \prod_{i=1}^{l-1} \{(-\gamma A^{i}(\infty) + \alpha)x - (\delta A^{i}(\infty) - \beta)\}$$

 $= j(A, x)^{-(l-1)} \left(-\delta \frac{\alpha}{\gamma} + \beta\right) \prod_{i=2}^{l-1} \{(-\gamma A^{i}(\infty) + \alpha)x - (\delta A^{i}(\infty) - \beta)\}$
 $= j(A, x)^{-(l-1)} \left(-\delta \frac{\alpha}{\gamma} + \beta\right) \prod_{i=2}^{l} j(A^{-1}, A^{i}(\infty))$
 $\times \prod_{i=2}^{l-1} \left\{x - \frac{(\delta A^{i}(\infty) - \beta)}{(-\gamma A^{i}(\infty) + \alpha)}\right\}$
 $= j(A, x)^{-(l-1)} \left(-\delta \frac{\alpha}{\gamma} + \beta\right) (-j(A^{l}, x)) \prod_{i=2}^{l-1} \{x - A^{i-1}(\infty)\}.$ (*)

The last equality comes from Lemma 3.1 iv) (b). On the other hand, by Lemma 3.1 iv) (a),

the term
$$(B) = j(A, x)^{-l(r-1)} j(A^l, x)^{(r-1)} \prod_{k=2}^r \prod_{i=1}^l (x - A^{i-1}(c_k)).$$
 (**)

By multiplying (\star) and $(\star\star)$, we have

$$\begin{aligned} A^*(P_{(b_0:b_1)}(x)) &= j(A, x)^{-(t-1)} \left(-\delta \frac{\alpha}{\gamma} + \beta \right) (-j(A^l, x)^r) \\ &\times \prod_{i=2}^{l-1} (x - A^{i-1}(\infty)) \prod_{k=2}^r \prod_{i=1}^l (x - A^{i-1}(c_k)). \end{aligned}$$

Moreover, by $\alpha \delta - \beta \gamma = 1$ and $(x - A^{l-1}(\infty))^{-1} = \gamma j(A, x)^{-1}$, we have

$$\begin{aligned} A^*(P_{(b_0:b_1)}(x)) &= j(A, x)^{-(l-1)} \left(-\delta \frac{\alpha}{\gamma} + \beta \right) (-j(A^l, x)^r) (x - A^{l-1}(\infty))^{-1} \\ &\times \prod_{i=2}^l (x - A^{i-1}(\infty)) \prod_{k=2}^r \prod_{i=1}^l (x - A^{i-1}(c_k)) \\ &= j(A, x)^{-l} j(A^l, x)^r P_{(b_0:b_1)}. \end{aligned}$$

In case $\infty \notin \mathcal{U}$, the calculation is much easier than the case above.

(II) Let $\mathscr{U} = \{c\} \cup (\bigcup_{k=1}^{r} \langle A \rangle c_k)(t = lr + 1)$ be the decomposition of \mathscr{U} into the orbits of $\langle A \rangle$. There are three cases

i) $c \neq \infty$ and $c_k \neq \infty$ (k = 1, ..., r), ii) $c = \infty$, iii) $c_k = \infty$ for some k, to be considered respectively. But the calculations can be carried out by the same way as in (I), and then we omit the details.

(III) Let $\mathscr{U} = \{c\} \cup \{c'\} \cup (\bigcup_{k=1}^{r} \langle A \rangle c_k) (t = lr + 2)$ be the decomposition of \mathscr{U} into the orbits of $\langle A \rangle$. And we have

$$A^{*}(P_{(b_{0}:b_{1})}(x)) = j(A^{-1},c)j(A^{-1},c')j(A,x)^{-t}j(A^{l},x)^{(t-2)/l}P_{(b_{0}:b_{1})}(x).$$

By Lemma 3.1 (vi), we have the equality of III.

The following theorem is from these lemmas above. In this theorem we use the symbols $\prod_{i=m}^{m-1}$ and $\sum_{i=m}^{m-1}$ as

$$\prod_{i=m}^{m-1} * := 1 \quad \text{and} \quad \sum_{i=m}^{m-1} * := 0 \quad \text{for an positive integer } m.$$

THEOREM 3.1. Let H be one of the groups in Table 1. Let M be a cyclic p-gonal curve with $\#\mathcal{S} > 2p$. Assume $\operatorname{Aut}(M)/\langle V \rangle$ contains H. Then the defining equation of M and A^*y for the generators $A \in H$ of Table 1 are given as follows.

(Case $H = \mathbb{C}_n$). M is defined by

$$y^{p} = P_{(0:1)}^{u_{1}} P_{(1:0)}^{u_{2}} \prod_{i=3}^{d} P_{(1:b_{i})}^{u_{i}} = x^{u_{2}} \prod_{i=3}^{d} (x^{n} - b_{i})^{u_{i}},$$
(9)

$$#\mathscr{S} = \varepsilon_1 + \varepsilon_2 + n \sum_{i=3}^d 1, \quad u_1 + u_2 + n \sum_{i=3}^d u_i \equiv 0 \pmod{p},$$

where $0 \le u_1, u_2 < p$, $0 < u_i < p$ $(i \ge 3)$, $b_i \ne 0$, and put $\varepsilon_k = 1$ (resp. $\varepsilon_k = 0$) if $u_k > 0$ (resp. $u_k = 0$) (k = 1, 2). In this case $d \ge 3$ since $\#\mathcal{S} > 2p \ge 4$.

For the generator S_n of C_n ,

• $S_n^* y = \eta_{S_n} y$, where $(\eta_{S_n})^p = \zeta_n^{u_2}$.

(Case $H = \mathbf{D}_{2n}$). M is defined by

$$y^{p} = P_{(1:2)}^{u_{1}} P_{(1:-2)}^{u_{2}} P_{(0:1)}^{u_{3}} \prod_{i=4}^{d} P_{(1:b_{i})}^{u_{i}}$$
$$= (x^{n} - 1)^{u_{1}} (x^{n} + 1)^{u_{2}} x^{u_{3}} \prod_{i=4}^{d} (x^{2n} - b_{i} x^{n} + 1)^{u_{i}}, \qquad (10)$$

$$\#S = n\varepsilon_1 + n\varepsilon_2 + 2\varepsilon_3 + 2n\sum_{i=4}^d 1, \quad nu_1 + nu_2 + 2u_3 + 2n\sum_{i=4}^d u_i \equiv 0 \pmod{p},$$

where $d \ge 3$ (according to the notation above), $0 \le u_1, u_2, u_3 < p$, and $0 < u_i < p$ ($i \ge 4$), $b_i \ne \pm 2$, and put $\varepsilon_k = 1$ (resp. $\varepsilon_k = 0$) if $u_k > 0$ (resp. $u_k = 0$) (k = 1, 2, 3).

For the generators S_n and T of \mathbf{D}_{2n} ,

•
$$S_n^* y = \eta_{S_n} y$$
 where $(\eta_{S_n})^p = \zeta_n^{u_3}$
• $T^* y = \eta_T x^{-(nu_1 + nu_2 + 2u_3 + 2n\sum_{i=4}^d u_i)/p} y$, where $(\eta_T)^p = (-1)^{u_1}$

(Case $H = A_4$). M is defined by

$$y^{p} = P_{(1:0)}^{u_{1}} P_{(1:1)}^{u_{2}} P_{(0:1)}^{u_{3}} \prod_{i=4}^{d} P_{(1:b_{i})}^{u_{i}}$$

$$= (x^{4} - 2\sqrt{3}ix^{2} + 1)^{u_{1}} \{x(x^{4} - 1)\}^{u_{2}} (x^{4} + 2\sqrt{3}ix^{2} + 1)^{u_{3}}$$

$$\times \prod_{i=4}^{d} \frac{1}{1 - b_{i}} \{(x^{4} - 2\sqrt{3}ix^{2} + 1)^{3} - b_{i}(x^{4} + 2\sqrt{3}ix^{2} + 1)^{3}\}^{u_{i}}, \quad (11)$$

$$\#\mathcal{S} = 4\varepsilon_{1} + 6\varepsilon_{2} + 4\varepsilon_{3} + 12\sum_{i=4}^{d} 1, \quad 4u_{1} + 6u_{2} + 4u_{3} + 12\sum_{i=4}^{d} u_{i} \equiv 0 \pmod{p},$$

where $d \ge 3$, $0 \le u_1, u_2, u_3 < p$, $0 < u_i < p$ $(i \ge 4)$, $b_i \ne 0, 1$, and put $\varepsilon_k = 1$ (resp. $\varepsilon_k = 0$) if $u_k > 0$ (resp. $u_k = 0$) (k = 1, 2, 3).

For the generators U, W of A_4 ,

$$U^* y = \eta_U \left\{ \frac{1-i}{2} (x+1) \right\}^{(-4u_1 - 6u_2 - 4u_3 - 12\sum_{i=4}^d u_i)/p} y, \\ where \ (\eta_U)^p = (-1)^{u_2 + u_3} \exp\left(\frac{1}{3}\pi i\right)^{u_2} \exp\left(\frac{5}{3}\pi i\right)^{u_3}. \\ \cdot W^* y = \eta_W \left\{ \frac{1+i}{2} (x+i) \right\}^{(-4u_1 - 6u_2 - 4u_3 - 12\sum_{i=4}^d u_i)/p} y, \\ where \ (\eta_W)^p = \exp\left(\frac{2}{3}\pi i\right)^{u_2} \exp\left(\frac{4}{3}\pi i\right)^{u_3}.$$

(Case $H = S_4$). M is defined by

$$y^{p} = P_{(1:0)}^{u_{1}} P_{(1:1)}^{u_{2}} P_{(0:1)}^{u_{3}} \prod_{i=4}^{d} P_{(1:b_{i})}^{u_{i}}$$

= $(x^{8} + 14x^{4} + 1)^{u_{1}} (x^{12} - 33x^{8} - 33x^{4} + 1)^{u_{2}} \{x(x^{4} - 1)\}^{u_{3}}$
 $\times \prod_{i=4}^{d} \{(x^{8} + 14x^{4} + 1)^{3} - 108b_{i}(x^{4}(x^{4} - 1)^{4})\}^{u_{i}},$ (12)

 $\#\mathscr{S} = 8\varepsilon_1 + 12\varepsilon_2 + 6\varepsilon_3 + 24\sum_{i=4}^d 1, \quad 8u_1 + 12u_2 + 6u_3 + 24\sum_{i=4}^d u_i \equiv 0 \pmod{p},$

where $d \ge 3$, $0 \le u_1, u_2, u_3 < p$, $0 < u_i < p$ $(i \ge 4)$, $b_i \ne 0, 1$ and put $\varepsilon_k = 1$ (resp. $\varepsilon_k = 0$) if $u_k > 0$ (resp. $u_k = 0$) (k = 1, 2, 3).

For the generators W, R of S_4 ,

$$W^* y = \eta_W \left\{ \frac{1+i}{2} \right\}^{(-8u_1 - 12u_2 - 6u_3 - 24\sum_{i=4}^n u_i)/p} (x+i)^{(-8u_1 - 12u_2 - 6u_3 - 24\sum_{i=4}^n u_i)/p} y,$$
where $(\eta_W)^p = 1.$

$$R^* y = \eta_R x^{-(8u_1 + 12u_2 + 6u_3 + 24\sum_{i=4}^n u_i)/p} y,$$
where $(\eta_R)^p = i^{u_3}$.

(Case $H = A_5$). M is defined by

$$y^{p} = P_{(1:0)}^{u_{1}} P_{(0:1)}^{u_{2}} \prod_{i=4}^{d} P_{(1:b_{i})}^{u_{i}}$$

$$= \{x^{20} + 1 - 228(x^{15} - x^{5}) + 494x^{10}\}^{u_{1}}$$

$$\times \{x^{30} + 522x^{25} - 10005x^{20} - 10005x^{10} - 522x^{5} + 1\}^{u_{2}} \{x(x^{10} + 11x^{5} - 1)\}^{u_{3}}$$

$$\times \prod_{i=4}^{l} [\{x^{20} + 1 - 228(x^{15} - x^{5}) + 494x^{10}\}^{3}$$

$$+ 1728b_{i}x^{5}(x^{10} + 11x^{5} - 1)^{5}]^{u_{i}}, \qquad (13)$$

$$#\mathscr{S} = 20\varepsilon_1 + 30\varepsilon_2 + 12\varepsilon_3 + 60\sum_{i=4}^d 1, \quad 20u_1 + 30u_2 + 12u_3 + 60\sum_{i=4}^t u_i \equiv 0 \pmod{p},$$

where $d \ge 3$, $0 \le u_1, u_2, u_3 < p$, $0 < u_i < p$ $(i \ge 4)$, $b_i \ne 0, 1$, and put $\varepsilon_k = 1$ (resp. $\varepsilon_k = 0$) if $u_k > 0$ (resp. $u_k = 0$) (k = 1, 2, 3). For the generators K, Z of A₅

$$\mathbf{F}^* = \mathbf{F} \begin{bmatrix} 1 & (1 - r^2) \\ r + (r - r^2) \end{bmatrix}^{(-20u_1 - 30u_2 - 12u_3 - 60\sum_{i=4}^n u_i)/p}$$

•
$$K^* y = \eta_K \left[\frac{1}{\sqrt{5}} \left\{ (1 - \zeta_5^2) x + (\zeta_5 - \zeta_5^2) \right\} \right]$$

• $Z^* y = \eta_Z y,$
where $(\eta_K)^p = 1.$
where $(\eta_Z)^p = \zeta_5^{u_3}.$

PROOF. Here we only deal with several cases as examples.

<u>Case $H = A_4$.</u> Let M be defined by $y^p = P_{(1:0)}^{u_1} P_{(0:1)}^{u_2} \prod_{i=4}^{d} P_{(1:b_i)}^{u_i}$, where $P_{(b_0:b_1)}$ are as in Table 2. Let A be $U = \frac{1-i}{2} \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}$ (resp. $W = \frac{1+i}{2} \begin{pmatrix} -1 & i \\ 1 & i \end{pmatrix}$). Then

$$\begin{cases} A^3 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \text{ (resp. } \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{),} \quad j(A^3, x) = -1 \text{ (resp. 1),} \\ j(A, x) = \frac{1-i}{2}(x+1) \text{ (resp. } \frac{1+i}{2}(x+i) \text{).} \end{cases}$$

Two fixed points a_1 , a_2 of A = U (resp. W) are

(b)
$$\begin{cases} a_1 = \frac{(-1+\sqrt{3})(1-i)}{2} \text{ (resp. } \frac{(-1-\sqrt{3})(1+i)}{2} \text{)}, \quad j(A^{-1}, a_1) = \exp(\frac{1}{3}\pi i) \\ \text{ (resp. } \exp(\frac{2}{3}\pi i) \text{)}, \\ a_2 = \frac{(-1-\sqrt{3})(1-i)}{2} \text{ (resp. } \frac{(-1+\sqrt{3})(1+i)}{2} \text{)}, \quad j(A^{-1}, a_2) = \exp(\frac{5}{3}\pi i) \\ \text{ (resp. } \exp(\frac{4}{3}\pi i) \text{)}. \end{cases}$$

and we have $P_{(1:0)}(a_1) = 0$ and $P_{(0:1)}(a_2) = 0$. In case A = U, by Lemma 3.2, we have

$$\begin{cases} U^* P_{(1:0)} = j(U^{-1}, a_1) j(U, x)^{-4} j(U^3, x) P_{(1:0)} \\ = \exp\left(\frac{1}{3}\pi i\right) \left\{\frac{1-i}{2}(x+1)\right\}^{-4}(-1) P_{(1:0)}, \\ U^* P_{(1:1)} = j(U, x)^{-6} j(U^{-3}, x)^2 P_{(1:1)} = \left\{\frac{1-i}{2}(x+1)\right\}^{-6}(-1)^2 P_{(1:1)}, \\ U^* P_{(0:1)} = j(U^{-1}, a_2) j(U, x)^{-4} j(U^3, x) P_{(0:1)} \\ = \exp\left(\frac{5}{3}\pi i\right) \left\{\frac{1-i}{2}(x+1)\right\}^{-4}(-1) P_{(0:1)}, \\ U^* P_{(1:b_i)} = j(U, x)^{-12} j(U^3, x)^4 P_{(1:b_i)} \\ = \left\{\frac{1-i}{2}(x+1)\right\}^{-12}(-1)^4 P_{(1:b_i)} \quad (b_i \neq 0, 1). \end{cases}$$

Then

$$U^{*}y^{p} = (-1)^{u_{1}+u_{3}} \exp\left(\frac{1}{3}\pi i\right)^{u_{1}} \exp\left(\frac{5}{3}\pi i\right)^{u_{3}} \times \left\{\frac{1-i}{2}(x+1)\right\}^{(-4u_{1}-6u_{2}-4u_{3}-12\sum_{i=4}^{n}u_{i})} y,$$
(14)

and

$$U^* y = \eta \left\{ \frac{1-i}{2} (x+1) \right\}^{(-4u_1 - 6u_2 - 4u_3 - 12\sum_{i=4}^n u_i)/p} y,$$

where η satisfies $\eta^{p} = (-1)^{u_{1}+u_{3}} \exp(\frac{1}{3}\pi i)^{u_{1}} \exp(\frac{5}{3}\pi i)^{u_{3}}$.

We can calculate W^*y by the same way as above.

<u>Case $H = S_4$ </u>. *H* is generated by *W* and *R*. The fixed points $\frac{(-1\pm\sqrt{3})(1+i)}{2}$ of *W* are zeros of $P_{(1:0)}$. Then, by Lemma 3.2 (III), we get the representation of W^*y . <u>Case $H = A_5$ </u>. We may assume that *M* is defined by $y^p = P_{(1:0)}^{u_1} P_{(0:1)}^{u_2} \prod_{i=4}^{n_3} P_{(1:b_i)}^{u_i}$, $20u_1 + 30u_2 + 12u_3 + 60 \sum_{i=2}^{d} u_i \equiv 0 \pmod{p}$. Assume A = K. Then $K^3 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ and $j(K^3, x) = -1$. Let a_1 and a_2 be fixed points of *K*. As deg $P_{(1:0)} = 20 \equiv 2 \pmod{3}$, a_1 and a_2 are roots of $P_{(1:0)}$. Then we can apply Lemma 3.2 (III) to $P_{(1:0)}$, and we have

$$\begin{split} K^* y^p &= j(K, x)^{(-20u_1 - 30u_2 - 12u_3 - 60\sum_{i=4}^n u_i)} j(K^3, x)^{(6u_1 + 10u_2 + 4u_3 + 20\sum_{i=4}^n u_i)} y^p \\ &= \left\{ \frac{1}{\sqrt{5}} ((1 - \zeta_5^2) x + (\zeta_5 - \zeta_5^2)) \right\}^{(-20u_1 - 30u_2 - 12u_3 - 60\sum_{i=4}^n u_i)} y^p. \end{split}$$

Here we give several examples of defining equations of cyclic p-gonal curves having a split exact sequence (*).

COROLLARY 3.1.1. Let M be a p-gonal curve defined by

$$y^{p} = (x^{n} - 1)^{u_{1}} (x^{n} + 1)^{u_{2}} x^{u_{3}} \prod_{i=4}^{d} (x^{2n} - b_{i} x^{n} + 1)^{u_{i}}$$
$$nu_{1} + nu_{2} + 2u_{3} + 2n \sum_{i=4}^{d} u_{i} \equiv 0 \pmod{p},$$

where $d \ge 3$ and $0 \le u_i < p$ $(1 \le i \le 3, b_i \ne \pm 2)$. Then $\operatorname{Aut}(M)/\langle V \rangle$ contains $H = \mathbf{D}_{2n}$. Moreover the exact sequence (*) is split if and only if the prime number p is taken according to the following way. That is; take a prime number p such that (p, 2) = 1 in case $u_3 \ne 0$, (p, n) = 1 in case $u_1 \ne 0$ or $u_2 \ne 0$ and any prime p in case $u_1 = u_2 = u_3 = 0$. And a map $\iota : H \rightarrow G$ defined by

$$S_n \mapsto \{S_n^* x = \zeta_n x, S_n^* y = \zeta_n^{nu_3} y\},$$
$$T \mapsto \{T^* x = 1/x, T^* y = (-1)^{u_1} x^{-(nu_1 + nu_2 + 2u_3 + 2n\sum_{i=4}^d u_i)/p} y\}$$

gives a section of (*), where r is an integer satisfying $rp \equiv 1 \pmod{n}$.

PROOF. The first half of our assertion is from Theorem 3.1 and Theorem 2.1.

Here we only check that the given map $\iota: H \to G$ is a section in case (2p, n) = 1 and $u_1 u_2 u_3 \neq 0$. In Theorem 3.1 (Case $H = \mathbf{D}_{2n}$), put $\eta_T = (-1)^{u_1}$ and $\eta_{S_n} = \zeta_n^{ru_3}$ with an integer r satisfying $rp \equiv 1 \pmod{n}$. Then $(\eta_{S_n})^p = (\zeta_n)^{u_3}$, $(\eta_T)^p = (-1)^{u_1}$. Meanwhile \mathbf{D}_{2n} is defined by relations $S_n^n = 1$, $T^2 = 1$ and $TS_n T = S_n^{-1}$. But $(S_n^*)^n y = \eta_{S_n}^n y = y$ and $(T^*)^2 y = \eta_T^2 y = y$ hold. Therefore if $T^*S_n^*T^*y = S_n^{*-1}y$ holds, then ι is a group homomorphism. In fact, by the definition of ι ,

$$T^*S_n^*T^*y = T^*S_n^*(\eta_T x^{-(nu_1+nu_2+2u_3+2n\sum_{i=4}^d u_i)/p}y)$$

= $T^*(\eta_T\eta_{S_n}(\zeta_n x)^{-(nu_1+nu_2+2u_3+2n\sum_{i=4}^d u_i)/p}y)$
= $(\eta_T)^2\eta_{S_n}(\zeta_n)^{-(nu_1+nu_2+2u_3+2n\sum_{i=4}^d u_i)/p}y$
= $((-1)^{u_1})^2\zeta_n^{ru_3}(\zeta_n)^{\{-(nu_1+nu_2+2u_3+2n\sum_{i=4}^d u_i)/p\}pr}y$
= $\zeta_n^{-ru_3}y.$

Then $T^*S_n^*T^*y = S_n^{*-1}y$ holds. The equation $\pi \circ \iota = id_H$ is trivial from the definiton.

COROLLARY 3.1.2. (1) The compact Riemann surface M defined by the following equations (14) or (15) has Aut(M) isomorphic to $A_5 \times \langle V \rangle$.

$$y^p = x^{20} + 1 - 228(x^{15} - x^5) + 494x^{10}$$
 (p = 2, 5). (15)

$$y^p = x(x^{10} + 11x^5 - 1)$$
 (p = 2, 3). (16)

(2) The compact Riemann surface M defined by

$$y^{p} = x^{30} + 522x^{25} - 10005x^{20} - 10005x^{10} - 522x^{5} + 1 \quad (p = 2, 3, 5), \quad (17)$$

satisfies $\operatorname{Aut}(M)/\langle V \rangle \simeq A_5$. Moreover $\operatorname{Aut}(M) \simeq A_5 \times \langle V \rangle$ provided p = 3, 5. But when p = 2, the exact sequence (*) is not split. PROOF. The right hand side of (14) is $P_{(1:0)}$ of A_5 in Table 2. Then, by Theorem 3.1, $\operatorname{Aut}(M)/\langle V \rangle \simeq A_5$ if $20 \equiv 0 \pmod{p}$. So p = 2 or 5. Moreover if *a* is a root of $P_{(1:0)} = 0$, then #FG(a) = 3. Therefore the exact sequence (*) is split by Theorem 2.1. The remains of the assertion can be proved by the same manner.

4 Hyperelliptic Curves of Genus 2 with an Exact Sequence (*)

In this section, we assume that M is a hyperelliptic curve (i.e., p = 2) of genus g = 2. By applying the results in the previous sections, we will determine all possible types of Aut $(M)/\langle V \rangle$ and their standard defining equations of M. We start with the following proposition.

PROPOSITION 4.1. Let M be a hyperelliptic curve of genus g = 2. Let H be a subgroup of $\operatorname{Aut}(M)/\langle V \rangle$, and we consider the exact sequence (*).

Then H is isomorphic to C_n (n = 2, 3, 4, 5, 6), D_{2n} (n = 2, 3, 4, 6), A_4 or S_4 . And according to each type of H, we can get a standard defining equation of M as in the following list.

$H = \langle generators \rangle$	defining equation of M	(*) is split (S) or not split (NS)
$\mathbf{C}_2 = \langle S_2 \rangle$	$y^2 = (x^2 - 1)(x^2 - a^2)(x^2 - b^2)$	S
$\mathbf{C}_2 = \langle S_2 \rangle$	$y^2 = x(x^2 - 1)(x^2 - a^2)$	NS
$\mathbf{D}_4 = \langle S_2, \overline{T} \rangle$	$y^2 = x(x^2 - 1)(x^2 - a^2)$	NS
$\mathbf{C}_3 = \langle S_3 \rangle$	$y^2 = (x^3 - 1)(x^3 - a^3)$	S
$\mathbf{D}_6 = \langle S_3, \overline{T} angle$	$y^2 = (x^3 - 1)(x^3 - a^3)$	S
$\mathbf{C}_4 = \langle S_4 \rangle$	$y^2 = x(x^4 - 1)$	NS
$\mathbf{D}_8 = \langle S_4, T \rangle$	$y^2 = x(x^4 - 1)$	NS
$\mathbf{A}_4 = \langle U, W angle$	$y^2 = x(x^4 - 1)$	NS
$\mathbf{S}_4 = \langle W, R angle$	$y^2 = x(x^4 - 1)$	NS
$\mathbf{C}_5 = \langle S_5 \rangle$	$y^2 = x(x^5 - 1) \underset{\text{birational}}{\sim} y^2 = x^5 - 1$	S
$\mathbf{C}_6 = \langle S_6 \rangle$	$y^2 = (x^6 - 1)^{\text{birational}}$	S
$\mathbf{D}_{12} = \langle S_6, T \rangle$	$y^2 = (x^6 - 1)$	NS

where the symbols S_n , T, U, W and R are defined in Appendix, and \overline{T} is defined by $\overline{T}(x) = \frac{a}{x}$. In particular

and

$$\begin{aligned}
\mathbf{C}_4 \subset \operatorname{Aut}(M)/\langle V \rangle & \text{if and only if} \quad \mathbf{S}_4 = \operatorname{Aut}(M)/\langle V \rangle, \\
\mathbf{C}_6 \subset \operatorname{Aut}(M)/\langle V \rangle & \text{if and only if} \quad \mathbf{D}_{12} = \operatorname{Aut}(M)/\langle V \rangle, \\
\mathbf{C}_3 \subset \operatorname{Aut}(M)/\langle V \rangle & \text{if and only if} \quad \mathbf{D}_6 \subset \operatorname{Aut}(M)/\langle V \rangle, \\
\begin{cases}
\mathbf{C}_2 \subset \operatorname{Aut}(M)/\langle V \rangle \\
\text{and} (*) \text{ is } NS
\end{aligned}$$

PROOF. *H* is isomorphic to C_n , D_{2n} , A_4 , S_4 or A_5 . But, for g = 2, *M* is defined by $y^2 = (x - a_1) \cdots (x - a_s)$ with s = 5 or 6, and then $H = S_4, A_4, D_{2n}, C_n$ ($n \le 6$) are the only groups which are possibly contained in $Aut(M)/\langle V \rangle$.

Assume $\operatorname{Aut}(M)/\langle V \rangle \supset H = \mathbb{C}_n$ with $n \leq 6$. We may assume that \mathbb{C}_n is generated by the automorphism S_n defined by $S_n^* x = \zeta_n x$ and the set \mathscr{S} defined in §1 contains 1. For example, assume $\operatorname{Aut}(M)/\langle V \rangle \supset \mathbb{C}_2$. Then the decomposition of \mathscr{S} into orbits by \mathbb{C}_2 may assume to be $\mathscr{S} = \{\pm 1\} \cup \{\pm a\} \cup \{\pm b\}$ or $\mathscr{S} = \{\infty\} \cup \{0\} \cup \{\pm 1\} \cup \{\pm a\}$. Therefore M is defined by $y^2 = (x^2 - 1)(x^2 - a^2)(x^2 - b^2)$ or $y^2 = x(x^2 - 1)(x^2 - a^2)$, where $a, b, 0, \pm 1$ are distinct. For n > 2, by the same manner as above, we find that M can be defined by one of the following equations when $\operatorname{Aut}(M)/\langle V \rangle$ contains $H = \mathbb{C}_n$.

(a)
$$H = C_2$$
, $y^2 = (x^2 - 1)(x^2 - a^2)(x^2 - b^2)$ (0, 1, a^2 , b^2 are distinct).
(b) $H = C_2$, $y^2 = x(x^2 - 1)(x^2 - a^2)$ ($a^2 \neq 0, 1$).
(c) $H = C_3$, $y^2 = (x^3 - 1)(x^3 - a^3)$ ($a^3 \neq 0, 1$).
(d) $H = C_4$, $y^2 = x(x^4 - 1)$.
(e) $H = C_5$, $y^2 = x(x^5 - 1)$.
(f) $H = C_6$, $y^2 = (x^6 - 1)$.

Assume that M is defined by (f). We can see that M has an automorphism T defined by $T^*x = 1/x$ and $T^*y = ix^3y$. Then T and S_6 generate \mathbf{D}_{12} . Moreover since $\mathbf{D}_{12} \not\subset \mathbf{A}_4$ and $\mathbf{D}_{12} \not\subset \mathbf{S}_4$, we have $\operatorname{Aut}(M)/\langle V \rangle = \mathbf{D}_{12}$. As $\pm 1 \in \mathbf{P}^1(x)$ are fixed points of T and the order of T is 2, the exact sequence (*) with $H = \operatorname{Aut}(M)/\langle V \rangle = \mathbf{D}_{12}$ is not split by Theorem 2.1.

Assume *M* is defined by (e). Among four types of groups S_4 , A_4 , D_{2n} , C_n $(n \le 6)$, C_5 and D_{10} are the only groups which contain C_5 . Therefore $Aut(M)/\langle V \rangle$ is isomorphic to C_5 or D_{10} . On the other hand the exponent u_1 (resp. u_3) of $(x^5 - 1)$ (resp. x) in (e) is equal to 1, and $5u_1 + 2u_3 = 7 \neq 0 \pmod{2}$. Then, from Theorem 3.1, $Aut(M)/\langle V \rangle$ does not contain D_{10} and $Aut(M)/\langle V \rangle = C_5$. As $\mathscr{G} \cap FP(\langle S_5 \rangle) = \{0\}$ and (5, 2) = 1, (*) is split from Theorem 2.1.

Assume M is defined by (d), then, from (13) in Theorem 3.1, $\operatorname{Aut}(M)/\langle V \rangle$

= S_4 and $H = C_4, D_8, A_4$ or S_4 . Moreover the exact sequence (*) is not split since H contains S_2 of order 2 and $FP(\langle S_2 \rangle) \cap \mathscr{S} = \{0, \infty\}$.

Assume M is defined by (c). Then M has an automorphism \overline{T} defined by $\overline{T}^*x = a/x$ and $\overline{T}^*y = a^{-3/2}x^3y$, and the group $H_1 = \langle S, \overline{T} \rangle$ is isomorphic to \mathbf{D}_6 . So we can say that $\operatorname{Aut}(M)/\langle V \rangle$ contains a subgroup \mathbf{D}_6 if and only if $\operatorname{Aut}(M)/\langle V \rangle$ contains \mathbf{C}_3 . Since $FP(H_1) \cap \mathscr{S} = \emptyset$, (*) is split with $H = \langle S, \overline{T} \rangle$.

Assume M is defined by (b). Then M also has an automorphism \overline{T} defined by $\overline{T}^*x = a/x$ and $\overline{T}^*y = a^{-3/2}x^3y$. Therefore $\mathbf{D}_4 \subset \operatorname{Aut}(M)/\langle V \rangle$ if and only if $\mathbf{C}_2 \subset \operatorname{Aut}(M)/\langle V \rangle$. Since $FP(\langle S_2 \rangle) \cap \mathscr{S} = \{0, \infty\}$ and the order of S_2 is 2, (*) is not split by Theorem 2.1.

By this proposition, we can get the list of $\operatorname{Aut}(M)/\langle V \rangle$ as follows.

THEOREM 4.1. Let M be a hyperelliptic curve of genus g = 2. Assume that $\operatorname{Aut}(M)/\langle V \rangle$ is non-trivial. Then $\operatorname{Aut}(M)/\langle V \rangle$ is isomorphic to C_2 , C_5 , D_4 , D_6 , D_{12} or S_4 . And according to each type of $\operatorname{Aut}(M)/\langle V \rangle$, we can get a standard equation of M as follows.

Case Aut
$$(M)/\langle V \rangle \simeq \mathbf{S}_4$$
.

M is defined by
$$y^2 = x(x^4 - 1)$$
. (18)

Case Aut(M)/
$$\langle V \rangle \simeq C_5$$
. $M: y^2 = x(x^5 - 1) \sim_{birational} y^2 = x^5 - 1$. (19)

Case Aut(M)/
$$\langle V \rangle \simeq \mathbf{D}_{12}$$
 $M: y^2 = (x^6 - 1).$ (20)

Case Aut(M)/
$$\langle V \rangle \simeq \mathbf{D}_4$$
. $M: y^2 = x(x^2 - 1)(x^2 - a^2)$ with $a^2 \neq 0, \pm 1$. (21)

#-1). The curve (21) has $\operatorname{Aut}(M)/\langle V \rangle \simeq S_4$ if and only if $a^2 = -1$.

<u>Case Aut(M)/ $\langle V \rangle \simeq \mathbf{D}_6$ </u>. $M: y^2 = (x^3 - 1)(x^3 - a^3)$ (22) with $a^3 \neq \pm 1$ and $a^3 \neq \left(\frac{1 \pm \sqrt{3}}{1 \mp \sqrt{3}}\right)^3$.

#-2). The curve (22) has $\operatorname{Aut}(M)/\langle V \rangle \simeq \mathbf{D}_{12}$ if and only if $a^3 = -1$. #-3). $\operatorname{Aut}(M)/\langle V \rangle \simeq \mathbf{S}_4$ if and if $a^3 = \left(\frac{1\pm\sqrt{3}}{1\pm\sqrt{3}}\right)^3$.

In fact we can give a birational map F from $M: y^2 = (x^3 - 1)(x^3 - a^3)$ to

$$M': y^2 = x(x^4 - 1)$$

by the following way.

Let
$$a_1 = \frac{(1+i)(-1-\sqrt{3})}{2}$$
 and $a_2 = \frac{(1+i)(-1+\sqrt{3})}{2}$ be fixed points of $W = \frac{1+i}{2} \begin{pmatrix} -1 & i \\ 1 & i \end{pmatrix}$.
If $a^3 = \left(\frac{a_1}{a_2}\right)^3 = \left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^3$ (resp. $a^3 = \left(\frac{a_2}{a_1}\right)^3 = \left(\frac{1-\sqrt{3}}{1+\sqrt{3}}\right)^3$), the equalities
 $F^*x = \frac{a_2x - a_1}{x - 1}, \quad F^*y = \{a_2(a_2^4 - 1)\}^{1/2} \frac{y}{(x - 1)^3}$ (23)
(resp. $F^*x = \frac{a_1x - a_2}{x - 1}, F^*y = \{a_1(a_1^4 - 1)\}^{1/2} \frac{y}{(x - 1)^3}$

define a birational map F from M to M'.

Consequently any birational map from M to M' has a form $F \circ \phi = \psi \circ F$ with some $\phi \in Aut(M)$, $\psi \in Aut(M')$.

Case Aut(M)/
$$\langle V \rangle \simeq C_2$$
. $M: y^2 = (x^2 - 1)(x^2 - a^2)(x^2 - b^2)$, (24)

where a and b satisfy the following three conditions (I), (II) and (III).

(I) For each $\{i, j, k\} = \{-1, 0, 1\}$, there is no pair (α, η) which satisfies

$$a^{2} = \left(\frac{\sqrt{\alpha} + \eta}{\sqrt{\alpha} - \eta}\right)^{2i} / \left(\frac{\sqrt{\alpha} + \eta}{\sqrt{\alpha} - \eta}\right)^{2k},$$

$$b^{2} = \left(\frac{\sqrt{\alpha} + \eta}{\sqrt{\alpha} - \eta}\right)^{2j} / \left(\frac{\sqrt{\alpha} + \eta}{\sqrt{\alpha} - \eta}\right)^{2k} \text{ and } \eta^{4} = 1.$$
(25)

(II) For each $\{i, j, k\} = \{0, 1, 2\}$, there is no pair (α, η) which satisfies

$$a^{2} = \left(\frac{\sqrt{\alpha} - \zeta_{3}^{i}\eta}{\sqrt{\alpha} + \zeta_{3}^{i}\eta}\right)^{2} / \left(\frac{\sqrt{\alpha} - \zeta_{3}^{k}\eta}{\sqrt{\alpha} + \zeta_{3}^{k}\eta}\right)^{2},$$

$$b^{2} = \left(\frac{\sqrt{\alpha} - \zeta_{3}^{j}\eta}{\sqrt{\alpha} + \zeta_{3}^{j}\eta}\right)^{2} / \left(\frac{\sqrt{\alpha} - \zeta_{3}^{k}\eta}{\sqrt{\alpha} + \zeta_{3}^{k}\eta}\right)^{2} \text{ and } \eta^{6} = 1.$$
(26)

(III) $\{1, a^2, b^2\} \neq \{1, \zeta_3, \zeta_3^2\}.$

#-4). Assume there exists α and η which satisfy (25) for some $\{i, j, k\} = \{-1, 0, 1\}$. Then $\alpha^2 \neq 0, 1$, and the equalities

$$F^*x = \frac{\eta\sqrt{\alpha}(x+\delta)}{-x+\delta}, \quad F^*y = (\eta\sqrt{\alpha})^{3/2}(\alpha-\eta^2)\frac{y}{(x-\delta)^3}$$
(27)

with $\delta^2 = \left(\frac{\sqrt{\alpha}+\eta}{\sqrt{\alpha}-\eta}\right)^{-2k}$ define a birational map F from M to $M': y^2 = x(x^2-1)(x^2-\alpha^2).$ Therefore, under the existence of (α, η) satisfying (25),

#-4-i) $\operatorname{Aut}(M)/\langle V \rangle \simeq \mathbf{D}_4$ if and only if $\alpha^2 \neq -1$, #-4-ii) $\operatorname{Aut}(M)/\langle V \rangle \simeq \mathbf{S}_4$ if and only if $\alpha^2 = -1$.

#-5). Assume there exists α which satisfies (26) for some $\{i, j, k\} = \{0, 1, 2\}$. Then $\alpha^3 \neq 0, 1$, and the equalities

$$F^*x = \frac{\eta\sqrt{\alpha}(x+\delta)}{-x+\delta}, \quad F^*y = (\eta\sqrt{\alpha})^{3/2}(\eta^3 + \sqrt{\alpha}^3)\frac{y}{(x-\delta)^3}$$
(28)

with $\delta^2 = \left(\frac{\sqrt{\alpha} - \eta\zeta_3^\kappa}{\sqrt{\alpha} + \eta\zeta_3^\kappa}\right)$ define a birational map F from M to $M': y^2 = (x^3 - 1)(x^3 - \alpha^3).$

Therefore, under the existence of α satisfying (26),

#-5-i) Aut
$$(M)/\langle V \rangle \simeq \mathbf{D}_6$$
 if and only if $\alpha^3 \neq -1$ and $\alpha^3 \neq \frac{(1\pm\sqrt{3})^3}{(1\mp\sqrt{3})^3}$
#-5-ii) Aut $(M)/\langle V \rangle \simeq \mathbf{D}_{12}$ if and only if $\alpha^3 = -1$,
#-5-iii) Aut $(M)/\langle V \rangle \simeq \mathbf{S}_4$ if and only if $\alpha^3 = \frac{(1\pm\sqrt{3})^3}{(1\mp\sqrt{3})^3}$.
#-6). If $\{1, a^2, b^2\} = \{1, \zeta_3, \zeta_3^2\}$, then Aut $(M)/\langle V \rangle \simeq \mathbf{D}_{12}$.

PROOF. Let \mathscr{A} denote $\operatorname{Aut}(M)/\langle V \rangle$.

<u>Cases $\mathscr{A} \simeq S_4$, C₅ and D₁₂.</u> The equations (18), (19), (20) come from Proposition 4.1.

<u>Case $\mathscr{A} \simeq \mathbf{D}_4$ </u>. By Proposition 4.1, a curve

$$M: y^{2} = x(x^{2} - 1)(x^{2} - a^{2}) \quad (a^{2} \neq 0, 1)$$

satisfies $\mathbf{D}_4 = \langle S_2, \overline{T} \rangle \subset \mathscr{A}$, where $\overline{T}^* x = a/x$.

If $\mathbf{D}_4 \subseteq \mathscr{A}$, then, also by Proposition 4.1, \mathscr{A} must be isomorphic to \mathbf{S}_4 . Now take an element $D \in \mathscr{A}$ of order 4. Then D acts on $\mathscr{S} = \{0, \infty, \pm 1, \pm a\}$ and has two fixed points in \mathscr{S} .

First assume D(a) = a and D(-a) = -a. Put $J = \begin{pmatrix} 1 & -a \\ 1 & a \end{pmatrix}$. Then JDJ^{-1} fixes x = 0 and ∞ , we have $(JDJ^{-1})^*x = \pm \sqrt{-1}x$. As JDJ^{-1} acts on $J(\{0, \infty, +1, -1\}) = \left\{ \pm 1, \frac{1-a}{1+a}, \left(\frac{1-a}{1+a}\right)^{-1} \right\}$, we have $\sqrt{-1} = \frac{1-a}{1+a}$ or $\left(\frac{1-a}{1+a}\right)^{-1}$ and $a^2 = -1$. Therefore $y^2 = x(x^2 - 1)(x^2 - a^2)$ coincides with (18).

Next assume D(0) = 0 and D(1) = 1. Put $J = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$. Then $(JDJ^{-1})^*x = \pm \sqrt{-1}x$ and JDJ^{-1} acts on $J(\{\infty, -1, a, -a\}) = \left\{1, \frac{1}{2}, \frac{a}{a-1}, \frac{a}{a+1}\right\}$. This does not happen.

By checking any other possibilities of fixed points of D in \mathcal{S} , we can see that $\mathcal{A} = S_4$ if and only if $a^2 = -1$.

Case $\mathscr{A} \simeq \mathbf{D}_6$. From Proposition 4.1, the curve

$$M: y^2 = (x^3 - 1)(x^3 - a^3) \quad (a^3 \neq 0, 1)$$

satisfies $\mathbf{D}_6 = \langle S_3, \overline{T} \rangle \subset \mathscr{A}$. If $\mathbf{D}_6 \subsetneq \mathscr{A}$, then $\mathscr{A} \simeq \mathbf{D}_{12}$ or $\mathscr{A} \simeq \mathbf{S}_4$.

Assume $\mathscr{A} \simeq \mathbf{D}_{12}$. By the structure of \mathbf{D}_{12} there exists an element S' of order 6 in \mathscr{A} such that S'^2 coincides with the element $S_3 \in \mathscr{A}$. For $S_3^* x = \zeta_3 x$, $S'^* x = \eta x$ with $\eta^2 = \zeta_3$. As S' acts on $\mathscr{S} = \{1, \zeta_3, \zeta_3^2, a, \zeta_3 a, \zeta_3^2 a\}$, a must be a primitive 6-th root of unity and $\mathscr{S} = \{1, \eta, \dots, \eta^5\}$. So we arrive at #-2).

Assume $\mathscr{A} \simeq S_4$. Then there is a birational map F from M to

$$M': y^2 = x(x^4 - 1)$$

Let $\tilde{F}: M/\langle V \rangle \to M'/\langle V \rangle$ be the morphism induced by F. Put $D = \tilde{F} \circ S_3 \circ \tilde{F}^{-1} \in \operatorname{Aut}(M')/\langle V \rangle$. From the structure of S_4 , there are 8 elements of order 3 in S_4 , and they are represented by matrices $R^t W^s R^{-t}$ (s = 1, 2, t = 0, 1, 2, 3) in $\operatorname{Aut}(M')/\langle V \rangle$ (see Table 1). Assume $D = R^t W^s R^{-t}$. Then D fixes $a_1 \cdot i^t$, and $a_2 \cdot i^t$ with $a_1 = \frac{(1+i)(-1-\sqrt{3})}{2}$ and $a_2 = \frac{(1+i)(-1+\sqrt{3})}{2}$. As \tilde{F} sends fixed points of S_3 to those of D, we have $\tilde{F}(\{0, \infty\}) = \{a_1 \cdot i^t, a_2 \cdot i^t\}$ and then $F^*x = Ax$ with a matrix $A = \begin{pmatrix} a_2 \cdot i^t & \delta \cdot a_1 \cdot i^t \\ 1 & \delta \end{pmatrix}$ or $\begin{pmatrix} a_1 \cdot i^t & \delta \cdot a_2 \cdot i^t \\ \delta & \delta \end{pmatrix}$ (δ is a suitable number).

matrix $A = \begin{pmatrix} a_2 \cdot i^t & \delta \cdot a_1 \cdot i^t \end{pmatrix}$ or $\begin{pmatrix} a_1 \cdot i^t & \delta \cdot a_2 \cdot i^t \\ 1 & \delta \end{pmatrix}$ (δ is a suitable number). First we assume $F^*x = Ax = \frac{i^t \cdot a_2 x + \delta i^t \cdot a_1}{x + \delta}$. From $y^2 = x(x^4 - 1)$, we have $(F^*y)^2 = F^*x((F^*x)^4 - 1)$. By further calculations, we have

$$F^*x((F^*x)^4 - 1) = i^t a_2(a_2^4 - 1)(x+\delta)^{-6}$$
$$\times \left\{ \left(x+\delta\frac{a_1}{a_2}\right) \left(x+\delta\frac{a_1-1}{a_2-1}\right) \left(x+\delta\frac{a_1-i}{a_2-i}\right) \right\}$$
$$\times \left\{ (x+\delta) \left(x+\delta\frac{a_1+1}{a_2+1}\right) \left(x+\delta\frac{a_1+i}{a_2+i}\right) \right\}.$$

On the other hand, by direct calculations, we have

$$\frac{a_1-1}{a_2-1} = \frac{a_1}{a_2}\zeta_3^2, \quad \frac{a_1+1}{a_2+1} = \zeta_3^2, \quad \frac{a_1-i}{a_2-i} = \frac{a_1}{a_2}\zeta_3, \quad \frac{a_1+i}{a_2+i} = \zeta_3.$$

Thus the equation $(F^*y)^2 = F^*x((F^*x)^4 - 1)$ is transformed into

$$\{C(x+\delta)^{3}(F^{*}y)\}^{2} = (x^{3}+\delta^{3})\left(x^{3}+\delta^{3}\cdot\left(\frac{a_{1}}{a_{2}}\right)^{3}\right),$$
(29)

where $C^2 = [(i^t a_2) \{(a_2)^4 - 1\}]^{-1}$.

Put $Y := C(x + \delta)^3 (F^*y)$, X := x. Then $X, Y \in C(M)$ and (29) becomes

$$Y^{2} = (X^{3} + \delta^{3}) \left(X^{3} + \delta^{3} \left(\frac{a_{1}}{a_{2}} \right)^{3} \right).$$
(30)

Since $\mathscr{S} = \{1, \zeta_3, \zeta_3^2, a, a\zeta_3, a\zeta_3^2\}$ consists of branch points of the function $X = x \in C(M)$, (30) implies

$$\mathscr{S} = \left\{-\delta, -\delta\zeta_3, -\delta\zeta_3^2, -\delta\left(\frac{a_1}{a_2}\right), -\delta\left(\frac{a_1}{a_2}\right)\zeta_3, -\delta\left(\frac{a_1}{a_2}\right)\zeta_3^2\right\}$$

Then " $\delta^3 = -1$ and $\delta^3 \left(\frac{a_1}{a_2}\right)^3 = -a^3$ " or " $\delta^3 = -a^3$ and $\delta^3 \left(\frac{a_1}{a_2}\right)^3 = -1$ ". Therefore $a^3 = \left(\frac{1\pm\sqrt{3}}{1\mp\sqrt{3}}\right)^3$. Using $\begin{pmatrix}a_1,i' & \delta \cdot a_2 \cdot i' \\ 1 & \delta & \delta \end{pmatrix}$ for A, we can get the same result. Therefore $\mathscr{A} \simeq \mathbf{D}_6$ implies $a^3 \neq \left(\frac{1\pm\sqrt{3}}{1\mp\sqrt{3}}\right)^3$.

Conversely, by the same argument as above, we can also see that (23) define a birational morphism when $a^3 = \left(\frac{1\pm\sqrt{3}}{1\mp\sqrt{3}}\right)^3$. Thus we get #-3).

 $\underline{\mathscr{A}} \simeq \underline{C}_2$. From Proposition 4.1, the curve

$$M: y^{2} = (x^{2} - 1)(x^{2} - a^{2})(x^{2} - b^{2})$$
(31)

satisfies $\mathscr{A} \supset \langle S_2 \rangle \simeq C_2$. If $C_2 \subsetneq \mathscr{A}$, then $\mathscr{A} = D_4, D_6, D_{12}$ or S_4 .

Assume $\mathscr{A} \simeq \mathbf{D}_4 \supset \langle S_2 \rangle$. There is a birational morphism F from M to

$$M': y^2 = x(x^2 - 1)(x^2 - \alpha^2) \quad (\alpha^2 \neq 0, \pm 1).$$

By Proposition 4.1, $\operatorname{Aut}(M')/\langle V \rangle = \langle S_2, \overline{T} \rangle$ with $\overline{T}^*x = \alpha/x$. Let $\tilde{F} : M/\langle V \rangle \to M'/\langle V \rangle$ be the morphism induced by F. Put $J := \tilde{F} \circ S_2 \circ \tilde{F}^{-1} (\in \operatorname{Aut}(M')/\langle V \rangle)$. Then $\tilde{F}(\mathscr{S}) = \{0, \infty, \pm 1, \pm \alpha\}$ ($\mathscr{S} = \{\pm 1, \pm a, \pm b\}$), and \tilde{F} sends a fixed point of S_2 (on $M/\langle V \rangle$) to a fixed point of J (on $M'/\langle V \rangle$). From the fact that S_2 (on $M/\langle V \rangle$) has no fixed point in \mathscr{S} but S_2 (on $M'/\langle V \rangle$) fixes 0 and ∞ in $\tilde{F}(\mathscr{S})$, we can see $J \neq S_2$ (on $M'/\langle V \rangle$). Therefore $J^*x = \pm \alpha/x$, and $\tilde{F}(\{0, \infty\}) = \{\pm \sqrt{\alpha}\}$ (resp. $\{\pm \sqrt{-1}\sqrt{\alpha}\}$) provided $J^*x = \alpha/x$ (resp. $J^*x = -\alpha/x$). So

$$F^*x = A(x) = rac{\eta\sqrt{\alpha}x + \delta\eta\sqrt{\alpha}}{-x + \delta}, \quad A := egin{pmatrix} \eta\sqrt{\alpha} & \delta\eta\sqrt{\alpha} \\ -1 & \delta \end{pmatrix},$$

with suitable numbers δ and η satisfying $\eta^4 = 1$.

The equation $(F^*y)^2 = F^*x((F^*x)^2 - 1)((F^*x)^2 - \alpha^2)$ is transformed as follows.

$$(F^*y)^2 = A(x)(A(x)^2 - 1)(A(x)^2 - \alpha^2)$$

= $(\eta\sqrt{\alpha})^3(\alpha - \eta^2)^2(x - \delta)^{-6}(x - \delta)(x + \delta)$
 $\times \left(x + \delta\left(\frac{\eta\sqrt{\alpha} + 1}{\eta\sqrt{\alpha} - 1}\right)\right)\left(x + \delta\left(\frac{\eta\sqrt{\alpha} - 1}{\eta\sqrt{\alpha} + 1}\right)\right)$
 $\times \left(x - \delta\left(\frac{\sqrt{\alpha} + \eta}{\sqrt{\alpha} - \eta}\right)\right)\left(x - \delta\left(\frac{\sqrt{\alpha} - \eta}{\sqrt{\alpha} + \eta}\right)\right)$
= $(\eta\sqrt{\alpha})^3(\alpha - \eta^2)^2(x - \delta)^{-6}(x^2 - \delta^2)$
 $\times \left(x^2 - \delta^2\left(\frac{\sqrt{\alpha} + \eta}{\sqrt{\alpha} - \eta}\right)^2\right)\left(x^2 - \delta^2\left(\frac{\sqrt{\alpha} - \eta}{\sqrt{\alpha} + \eta}\right)^2\right).$

As \mathcal{S} consists of the branch points of x, we have

$$\{1, a^2, b^2\} = \left\{\delta^2, \delta^2 \left(\frac{\sqrt{\alpha} + \eta}{\sqrt{\alpha} - \eta}\right)^2, \delta^2 \left(\frac{\sqrt{\alpha} + \eta}{\sqrt{\alpha} - \eta}\right)^{-2}\right\},\$$

and the pair (α, η) satisfies (25). Thus $\mathscr{A} \neq \mathbf{D}_4$ implies the condition (I).

Conversely assume that there is a pair (α, η) satisfies (25). Since a^2 , b^2 , 1 are distinct, we can see $\alpha^2 \neq 0, 1$. And (27) gives a birational morphism from M to M' even if $\alpha^2 = -1$. So we get #-4) from (21) and #-1).

Assume $\mathscr{A} \simeq \mathbf{D}_6$. There is a birational map F from M to

$$M': y^2 = (x^3 - 1)(x^3 - \alpha^3), \quad \left(\alpha^3 \neq -1, \left(\frac{1 \pm \sqrt{3}}{1 \mp \sqrt{3}}\right)^3\right).$$

Let \tilde{F} be as before. Put $J := \tilde{F} \circ S_2 \circ \tilde{F}^{-1}$. On the other hand, as $\operatorname{Aut}(M')/\langle V \rangle = \langle S_3, \overline{T} \rangle$, $J^*x = \zeta_3^s \alpha/x$ for some $0 \le s \le 2$. Since the fixed points of J are $\pm \zeta_3^{2s} \sqrt{\alpha}$, we have $\tilde{F}(\{0, \infty\}) = \{\zeta_3^{2s} \sqrt{\alpha}, -\zeta_3^{2s} \sqrt{\alpha}\}$ and

$$F^*x = B(x) = rac{\eta\sqrt{lpha}x + \delta\eta\sqrt{lpha}}{-x + \delta}, \quad B := egin{pmatrix} \eta\sqrt{lpha} & \delta\eta\sqrt{lpha} \\ -1 & \delta \end{pmatrix},$$

where $\eta = \pm \zeta_3^{2s}$.

The equation $(F^*y)^2 = ((F^*x)^3 - 1)((F^*x)^3 - \alpha^3)$ is transformed as follows.

$$(F^*y)^2 = (-x+\delta)^{-6}\eta^3 \sqrt{\alpha}^3 \{\sqrt{\alpha}^3 (x+\delta)^3 - \eta^3 (-x+\delta)^3\} \times \{(\eta^3 (x+\delta)^3 - \sqrt{\alpha}^3 (-x+\delta)^3)\}$$

$$= (-x+\delta)^{-6}\eta^{3}\sqrt{\alpha}^{3}$$

$$\times \prod_{i=0}^{2} \{\sqrt{\alpha}(x+\delta) - \zeta_{3}^{i}\eta(-x+\delta)\} \prod_{i=0}^{2} \{-\sqrt{\alpha}(-x+\delta) + \zeta_{3}^{i}\eta(x+\delta)\}$$

$$= (-x+\delta)^{-6}\eta^{3}\sqrt{\alpha}^{3}$$

$$\times \prod_{i=0}^{2} (\sqrt{\alpha} + \zeta_{3}^{i}\eta) \left\{ x + \delta \left(\frac{\sqrt{\alpha} - \zeta_{3}^{i}\eta}{\sqrt{\alpha} + \zeta_{3}^{i}\eta}\right) \right\} \prod_{i=0}^{2} (\sqrt{\alpha} + \zeta_{3}^{i}\eta) \left\{ x - \delta \left(\frac{\sqrt{\alpha} - \zeta_{3}^{i}\eta}{\sqrt{\alpha} + \zeta_{3}^{i}\eta}\right) \right\}$$

$$= (-x+\delta)^{-6}\eta^{3}\sqrt{\alpha}^{3}(\eta^{3} + \sqrt{\alpha}^{3})^{2}$$

$$\times \left(x^{2} - \delta^{2} \left(\frac{\sqrt{\alpha} - \eta}{\sqrt{\alpha} + \eta}\right)^{2} \right) \left(x^{2} - \delta^{2} \left(\frac{\sqrt{\alpha} - \zeta_{3}\eta}{\sqrt{\alpha} + \zeta_{3}\eta}\right)^{2} \right)$$

$$\times \left(x^{2} - \delta^{2} \left(\frac{\sqrt{\alpha} - \zeta_{3}^{2}\eta}{\sqrt{\alpha} + \zeta_{3}^{2}\eta}\right)^{2} \right).$$

Then we have

$$\{1, a^2, b^2\} = \left\{\delta^2 \left(\frac{\sqrt{\alpha} - \eta}{\sqrt{\alpha} + \eta}\right)^2, \delta^2 \left(\frac{\sqrt{\alpha} - \zeta_3 \eta}{\sqrt{\alpha} + \zeta_3 \eta}\right)^2, \delta^2 \left(\frac{\sqrt{\alpha} - \zeta_3^2 \eta}{\sqrt{\alpha} + \zeta_3^2 \eta}\right)^2\right\}$$

and the pair (α, η) satisfies (26). Thus $\mathscr{A} \neq \mathbf{D}_6$ implies the condition (II).

Conversely if there exists α^3 satisfying (26) for some $\{i, j, k\} = \{0, 1, 2\}$, then $\alpha^3 \neq 0, 1$ and the equalities (28) defines a birational map even if $\alpha^3 = -1$ or $\left(\frac{1\pm\sqrt{3}}{1\pm\sqrt{3}}\right)$. Thus we get #-5) from (22), #-2) and #-3). Next assume $\mathscr{A} \simeq \mathbf{D}_{12}$. There is a birational map F from M to

$$M': y^2 = (x^6 - 1).$$

Put $J := \tilde{F} \circ S_2 \circ \tilde{F}^{-1}$ as above. Then $J^*x = \frac{\zeta_s^2}{x}$ $(0 \le s \le 5)$ or $J^*x = -x$ on M'. But when $J^*x = \zeta_6^k/x$, we can follow the same argument in the case of $\mathscr{A} \simeq \mathbf{D}_6$, and we can get the relation (26) with $\alpha^3 = -1$. (28) gives a birational map from M to M' again.

When $J^*x = -x$, the set of fixed points of J is $\{0, \infty\}$. Since \tilde{F} sends $\{0, \infty\}$ (the set of fixed points of S_2) to $\{0, \infty\}$ (the fixed points of J), we have $F^*x = \delta x$ or $F^*x = \delta/x$ for some number δ . At the same time \tilde{F} sends $\{\pm 1, \pm a, \pm b\}$ to $\{\pm 1, \pm \zeta_3, \pm \zeta_3^2\}$, so we know that $\delta = \zeta_3^k$ and $\{1, a^2, b^2\} = \{1, \zeta_3, \zeta_3^2\}$. Thus we get #-6). Overall, we know that $\mathscr{A} \simeq C_2$ if and only if the three conditions (I), (II) and (III) are satisfied at the same time.

5 Cyclic Trigonal Curves of Genus 5, 7, 9

Let M be a cyclic trigonal curve defined by

$$y^{3} - (x - a_{1})^{r_{1}} \cdots (x - a_{s})^{r_{s}} = 0$$
 ($1 \le r_{i} \le 2, a_{i}$'s are distinct). (32)

The genus g of M is $\#\mathcal{G} - 2$. We also assume $g \ge 5$ (i.e., M has unique g_3^1).

In this section we study M with odd g. In particular we will determine all possible types of $\operatorname{Aut}(M)/\langle V \rangle$ and their standard defining equations of M for g = 5,7,9. We start with the following lemma.

LEMMA 5.1. Assume that the genus g of M is odd. Then (i) $\operatorname{Aut}(M)/\langle V \rangle$ is isomorphic to a cyclic group or a dihedral group, (ii) If $\operatorname{Aut}(M)/\langle V \rangle \simeq \mathbf{D}_{2n}$, then n is odd.

PROOF. (i) Assume $\mathbf{A}_4 \subset \operatorname{Aut}(M)/\langle V \rangle$. The equation $\#\mathscr{S} = 4\varepsilon_1 + 6\varepsilon_2 + 4\varepsilon_3 + 12\sum 1$ for $H = \mathbf{A}_4$ in Theorem 3.1 indicates that $\#\mathscr{S}$ and g are even. This is a contradiction. So $\mathbf{A}_4 \not\subset \operatorname{Aut}(M)/\langle V \rangle$, and then $\mathbf{A}_5, \mathbf{S}_4 \not\subset \operatorname{Aut}(M)/\langle V \rangle$.

(ii) The equality $\#\mathscr{G} = n\varepsilon_1 + n\varepsilon_2 + 2\varepsilon_3 + 2n\sum_{i=4}^d 1$ for $H = \mathbf{D}_{2n}$ in Theorem 3.1 implies that odd g does not happen for even n.

Next we will investigate cyclic trigonal curves with g = 5, 7, 9.

THEOREM 5.1. Let M be a cyclic trigonal curve (32) with g = 5,7 or 9. Assume that $\mathcal{A} := \operatorname{Aut}(M)/\langle V \rangle$ is non-trivial. Then the type of \mathcal{A} and a standard defining equation of M are as follows.

I. g = 9.

 $\underline{\mathscr{A}} \simeq \mathbf{C}_{10}$. *M* is defined by

$$y^{3} = x(x^{10} - 1)^{2}$$
, the exact sequence (*) is split. (33)

$$\underline{\mathscr{A}} \simeq \underline{\mathbf{C}}_{9}, \quad y^{3} = x(x^{9} - 1)^{r} \quad (r = 1, 2), \quad (*) \text{ is non-split.}$$
(34)

$$\underline{\mathscr{A}} \simeq \mathbf{C}_{5.} \quad y^{3} = x(x^{5} - 1)^{2}(x^{5} - a^{5})^{2} \quad (a^{5} \neq 0, \pm 1), \quad (*) \text{ is split.}$$
(35)

b-1) The curve (35) has $\mathscr{A} \simeq C_{10}$ if and only if $a^5 = -1$.

$$\underline{\mathscr{A}} \simeq \mathbf{C}_3. \quad y^3 = x(x^3 - 1)^{u_3}(x^3 - a^3)^{u_4}(x^3 - b^3)^{u_5}, \quad (*) \text{ is non-split}, \tag{36}$$

where 0, 1, a^3 , b^3 are distinct, and a, b, u_3 , u_4 , u_5 satisfy one of the following two conditions a), b).

a)
$$u_i \neq u_j$$
 for some $i, j \in \{3, 4, 5\}$.
b) b-i) $u_3 = u_4 = u_5$ and b-ii) $\{a^3, b^3\} \neq \{\zeta_3, \zeta_3^2\}$

b-2) $\mathscr{A} \simeq C_9$ if and only if $\{a^3, b^3\} = \{\zeta_3, \zeta_3^2\}$ and $u_3 = u_4 = u_5$ hold. In this case (36) coincides with (34).

 $\mathscr{A} \simeq \mathbf{C}_2$. *M* is defined by

$$y^{3} = x(x^{2} - 1)^{u_{3}}(x^{2} - a^{2})^{u_{4}}(x^{2} - b^{2})^{u_{5}}(x^{2} - c^{2})^{u_{6}}(x^{2} - d^{2})^{u_{7}}, \quad (*) \text{ is split}, \quad (37)$$

where 0, 1, a^2 , b^2 , c^2 , d^2 are distinct, and a, b, c, d, u_3, \ldots, u_7 satisfy one of the following two conditions a), b).

a) a-i)
$$u_3 = \cdots = u_7 = 2$$
 and a-ii) $\{1, a^2, b^2, c^2, d^2\} \neq \{\zeta_5^k \mid 0 \le k \le 4\}$.
b) $u_i = u_j = u_k = 1$, $u_l = u_m = 2$ for some $\{i, j, k, l, m\} = \{3, 4, 5, 6, 7\}$.

b-3) $\mathscr{A} \simeq \mathbf{C}_{10}$ if and only if $u_3 = \cdots = u_7 = 2$ and $\{1, a^2, b^2, c^2, d^2\} = \{\zeta_5^k \mid 0 \le k \le 4\}$ hold. In this case (37) coincides with (33).

II. g = 7.

 $\mathscr{A} \simeq \mathbf{D}_{18}$. *M* is defined by

$$y^3 = (x^9 - 1),$$
 (*) is split. (38)

$$\underline{\mathscr{A}} \simeq \underline{\mathbf{C}}_{8.}$$
 $y^3 = x(x^8 - 1),$ (*) is split. (39)

$$\underline{\mathscr{A}} \simeq \mathbf{D}_{14.}$$
 $y^3 = x(x^7 - 1),$ (*) is split. (40)

$$\underline{\mathscr{A}} \simeq \underline{\mathbf{C}}_4.$$
 $y^3 = x(x^4 - 1)(x^4 - a^4) \ (a^4 \neq 0, \pm 1),$ (*) is split. (41)

b-4) $\mathscr{A} \simeq C_8$ if and only if $a^4 = -1$. In this case (41) coincides with (39).

$$\frac{\mathscr{A} \simeq \mathbf{D}_{6.}}{y^{3}} = (x^{3} - 1)(x^{6} - bx^{3} + 1)^{u} \quad (``b \neq \pm 2'' \text{ and } ``u \neq 1 \text{ or } b \neq -1''), \quad (*) \text{ is split.}$$
(42)

b-5) $\mathscr{A} \simeq \mathbf{D}_{18}$ if and only if u = 1 and b = -1 hold. And (42) coincides with (38).

$$\underline{\mathscr{A}} \simeq \underline{\mathbf{C}}_{3.} \quad y^3 = (x^3 - 1)(x^3 - a_1^3)^{\nu_1}(x^3 - a_2^3)^{\nu_2}, \quad (*) \text{ is split.}$$
(43)

Here 1, a_1^3 , a_2^3 are distinct, and a_1 , a_2 , v_1 , v_2 satisfy the following three conditions a), b) and c) at once.

a) $a_1^3 a_2^3 \neq 1$ or $v_1 \neq v_2$, b) $a_1^3 \neq a_2^6$ or $v_1 \neq 1$, c) $a_1^6 \neq a_2^3$ or $v_2 \neq 1$.

b-6) Assume $a_1^3 a_2^3 = 1$ and $v_1 = v_2$. Then (43) becomes

 $y^3 = (x^3 - 1)\{x^6 - (a_1^3 + a_2^3)x^3 + 1\}^{\nu_1}.$

Therefore

b-6-i) $\mathscr{A} \simeq \mathbf{D}_6$ if and only if $a_1^3 + a_2^3 \neq -1$ or $v_1 \neq 1$ (in this case (43) becomes (42) with $b = a_1^3 + a_2^3$), and

b-6-ii) $\mathscr{A} \simeq \mathbf{D}_{18}$ if and only if $a_1^3 + a_2^3 = -1$ and $v_1 = 1$ hold (in this case (43) coincides with (38)).

b-7) Assume $a_i^3 = a_j^6$ and $v_i = 1$ for $\{i, j\} = \{1, 2\}$. Then there is a birational morphism F from M to

$$M': y^{3} = \{x^{6} - (a_{j}^{3} + a_{j}^{-3})x^{3} + 1\}(x^{3} - 1)^{v_{j}}$$

defined by

$$F^*x = a_j^{-1}x, \quad F^* = a_j^{-2-\nu_j}x$$

Therefore

b-7-i) $\mathscr{A} \simeq \mathbf{D}_6$ if and only if $a_j^3 \neq \zeta_3^{\pm 1}$ or $v_j \neq 1$ (in this case (43) is birational to (42) with $b = a_j^3 + a_j^{-3} (\neq -1)$), and

b-7-ii) $\mathscr{A} \simeq \mathbf{D}_{18}$ if and only if $a_j^3 = \zeta_3^{\pm 1}$ and $v_j = 1$ hold ((43) is birational to (38)).

 $\mathscr{A}\simeq \mathbf{C}_{2}.$

$$M: y^{3} = x(x^{2} - 1)^{u_{3}}(x^{2} - c_{4}^{2})^{u_{4}}(x^{2} - c_{5}^{2})^{u_{5}}(x^{2} - c_{6}^{2})^{u_{6}}, \quad (*) \text{ is split}, \quad (44)$$

where 1, c_4^2 , c_5^2 , c_6^2 are distinct, and u_3 , u_4 , u_5 , u_6 , c_4 , c_5 , c_6 satisfy one of the following conditions a) or b). Here we put $c_3 := 1$.

a)
$$\begin{cases} a-i) & u_3 = u_4 = u_5 = u_6 = 1, \\ a-ii) & \text{there is no number } \alpha \text{ satisfying} \\ & \{c_4^2, c_5^2, c_6^2\} = \{-1, \alpha^2, -\alpha^2\}, \\ \text{and} \\ a-iii) & \text{for each } \{i, j, k, l\} = \{3, 4, 5, 6\}, \text{ there is no number } \alpha \\ & \text{satisfying} \\ 2 - 2 - 2 - 2 - 2 - 2 - (\alpha - 1)^2 - (\zeta_3 \alpha - 1)^2 - (\zeta_3^2 \alpha - 1)^2 \\ & (\zeta_3^2 \alpha - 1)^2 - (\zeta_3^2 \alpha - 1)^2 - (\zeta_3^2 \alpha - 1)^2 \\ & (\zeta_3^2 \alpha - 1)^2 - (\zeta_3^2 \alpha - 1)^2 \\ & (\zeta_3^2 \alpha - 1)^2 - (\zeta_3^2 \alpha - 1)^2 \\ & (\zeta_3^2 \alpha - 1)^2 - (\zeta_3^2 \alpha - 1)^2 \\ & (\zeta_3^2 \alpha - 1)^2 \\ &$$

$$\sum_{k=1}^{n} c_i^2 : c_j^2 : c_k^2 : c_l^2 = 3 : -\left(\frac{\alpha - 1}{\alpha + 1}\right)^2 : -\left(\frac{\zeta_3 \alpha - 1}{\zeta_3 \alpha + 1}\right)^2 : -\left(\frac{\zeta_3^2 \alpha - 1}{\zeta_3^3 \alpha + 1}\right)^2. \quad (\star\star)$$

b)
$$\begin{cases} b-i \\ b-ii \end{cases} u_i = 1, u_j = u_k = u_l = 2 \text{ with } \{i, j, k, l\} = \{3, 4, 5, 6\}, \text{ and} \\ b-ii \end{cases}$$
 there is no number α satisfying (**) for the same i, j, k, l in b-i).

b-8) Assume a-i) and there is α satisfying (*). Then b-8-i) $\mathscr{A} \simeq C_4$ if and only if $\alpha^4 \neq -1$, b-8-ii) $\mathscr{A} \simeq C_8$ if and only if $\alpha^4 = -1$.

b-9) Assume a-i) and there is α satisfying (**) for some $\{i, j, k, l\} =$ $\{3, 4, 5, 6\}$. Then (44) is birational to

$$M': y^{3} = (x^{3} - 1)\{x^{6} - (\alpha^{3} + \alpha^{-3})x^{3} + 1\}.$$

In fact the equalities

$$F^*x = \frac{x+\gamma}{-x+\gamma}, \quad F^*y = 2^{1/3}\alpha^{-1}(1+\alpha^3)^{2/3}y(-x+\gamma)^{-3} \quad \text{with } \gamma = c_i/\sqrt{-3}$$
 (45)

give a birational morphism from M to M'. And then

b-9-i) $\mathscr{A} \simeq \mathbf{D}_6$ if and only if $\alpha^3 \neq \zeta_3^{\pm 1}$, b-9-ii) $\mathscr{A} \simeq \mathbf{D}_{18}$ if and only if $\alpha^3 = \zeta_3^{\pm 1}$.

b-10) Assume b-i) for some $\{i, j, k, l\} = \{3, 4, 5, 6\}$.

Then $\mathscr{A} = \mathbf{D}_6$ if and only if there is a number α satisfying $(\star\star)$ for the *i*, *j*, *k*, l in b-i). And (44) becomes birational to

$$y^{3} = x(x^{3} - 1)\{x^{6} - (\alpha^{3} + \alpha^{-3})x^{3} + 1\}^{2}.$$

In fact the equalities

$$F^*x = \frac{x+\gamma}{-x+\gamma}, \quad F^*y = 2^{1/3}\alpha^{-2}(1+\alpha^3)^{4/3}y(-x+\gamma)^{-5} \quad \text{with } \gamma = c_i/\sqrt{-3}$$
(46)

give a birational morphism from M to M'.

III. q = 5

 $\mathscr{A} \simeq \mathbf{D}_{10}$.

$$M: y^3 = x^2(x^5 - 1),$$
 (*) is split.

 $\mathscr{A} \simeq \mathbf{C}_2$.

$$M: y^3 = x(x^2 - 1)^{u_3}(x^2 - c_4^2)^{u_4}(x^2 - c_5^2)^{u_5}, \quad (*) \text{ is split},$$

where $u_i = 2$, $u_j = u_k = 1$ for $\{i, j, k\} = \{3, 4, 5\}$, and $\{c_j^2, c_k^2\} \neq \left\{c_i^2 \left(\frac{1-\zeta_5}{1+\zeta_5}\right)^2, c_i^2 \left(\frac{1-\zeta_5}{1+\zeta_5}\right)^2\right\}$. Here we denote $c_3 = 1$. b-11) If $u_i = 2$, $u_j = u_k = 1$ and $\{c_j^2, c_k^2\} = \left\{c_i^2 \left(\frac{1-\zeta_5}{1+\zeta_5}\right)^2, c_i^2 \left(\frac{1-\zeta_5}{1+\zeta_5}\right)^2\right\}$, then M is birational to $M': y^3 = x^2(x^5 - 1)$ and $\mathscr{A} \simeq \mathbf{D}_{10}$.

In fact

$$F^*x = \frac{x + c_i}{-x + c_i}, \quad F^*y = \sqrt{2}y(-x + c_i)^{-3}$$
(47)

give a birational morphism from M to M'.

PROOF. Assume $\mathscr{A} \supset \mathbb{C}_n$ with $n \ge 2$. Then, from Theorem 3.1, M can be defined by

$$y^{3} = 1^{u_{1}} x^{u_{2}} \prod_{i=3}^{d} (x^{n} - b_{i})^{u_{i}}, \quad \mathscr{A} \supset \mathbf{C}_{n} = \langle S_{n} \rangle,$$

$$\begin{cases} (48-\mathrm{I}) \quad \#\mathscr{S} = \varepsilon_{1} + \varepsilon_{2} + n \sum_{i=3}^{d} 1, \\ (48-\mathrm{II}) \quad u_{1} + u_{2} + n \sum_{i=3}^{d} u_{i} \equiv 0 \pmod{3}, \end{cases}$$

$$(48)$$

where 0 and b_i $(3 \le i \le d)$ are distinct, $0 \le u_1, u_2 < 3$, $u_i = 1, 2$ $(i \ge 3)$, and $\varepsilon_k = 1$ (resp. $\varepsilon_k = 0$) if $u_k > 0$ (resp. $u_k = 0$) (k = 1, 2).

g = 9.

Then $\#\mathscr{S} = 11$. For n = 8, 7, 6, 4 and $n \ge 12$, there are no ε_i (i = 1, 2) or d, which satisfy (48-I) with $\#\mathscr{S} = 11$. When n = 11, $\varepsilon_1 = \varepsilon_2 = 0$ and d = 3 satisfy (48-I) with $\#\mathscr{S} = 11$. Therefore $u_1 = u_2 = 0$ and $u_3 = 1$ or 2. But they do not satisfy (48-II). Thus a number n satisfying $\mathscr{A} \supset \mathbb{C}_n$ is among 10, 9, 5, 3, 2. Moreover Lemma 5.1 implies that only \mathbb{D}_6 , \mathbb{D}_{10} , \mathbb{D}_{18} are candidates for \mathscr{A} among dihedral groups.

<u>Case $\mathscr{A} \supset C_{10}$ </u>. From (48-I), we have d = 3 and $\varepsilon_1 + \varepsilon_2 = 1$. And then (48-II) holds if and only if " $u_1 = 2$, $u_2 = 0$, $u_3 = 1$ ", " $u_1 = 0$, $u_2 = 2$, $u_3 = 1$ ", " $u_1 = 1$, $u_2 = 0$, $u_3 = 2$ " or " $u_1 = 0$, $u_2 = 1$, $u_3 = 2$ ". These solutions define one curve up to birational morphisms. That is

$$y^3 = x(x^{10}-1)^2, \quad \mathscr{A} \supset \mathbf{C}_{10} = \langle S_{10} \rangle.$$

By Lemma 5.1, we have $\mathscr{A} \simeq C_{10}$.

<u>Case $\mathscr{A} \supset \mathbb{C}_9$ </u>. We have d = 3 and $\varepsilon_1 = \varepsilon_2 = 1$. (48-II) holds if and only if " $u_1 = 1, u_2 = 2$ " or " $u_1 = 2, u_2 = 1$ ". Then *M* is defined by

$$y^3 = x(x^9 - 1)^r, \quad \mathscr{A} \supset \mathbb{C}_9 = \langle S_9 \rangle, \quad \text{with } r = 1, 2$$
 (49)

up to birational morphisms. From Lemma 5.1, we have $\mathscr{A} \simeq C_9$ or D_{18} .

Assume $\mathscr{A} \simeq \mathbf{D}_{18}$. Let $\mathscr{A} = \langle S_9, T' \rangle$ with $T'^2 = 1$ and $T'S_9T'^{-1} = S_9^{-1}$. Then $T'(0) = \infty$ and $T'^*x = \alpha/x$ with some number α . But, since $2 + 9r \neq 0 \pmod{3}$, there does not exist an automorphism of M which induces T'. Thus $\mathscr{A} \supset \mathbf{C}_9$ means $\mathscr{A} \simeq \mathbf{C}_9$.

<u>Case $\mathscr{A} \supset \mathbb{C}_5$.</u> Then d = 4 and $\varepsilon_1 + \varepsilon_2 = 1$. (48-II) holds if and only if " $u_1 = 2$ (resp. 0), $u_2 = 0$ (resp. 2) and $u_3 = u_4 = 1$ " or " $u_1 = 1$ (resp. 0), $u_2 = 0$ (resp. 1) and $u_3 = u_4 = 2$ ". Then M is defined by

$$y^{3} = x(x^{5}-1)^{2}(x^{5}-a^{5})^{2}, \quad \mathscr{A} \supset \mathbb{C}_{5} = \langle S_{5} \rangle$$
 (50)

up to birational morphisms. If $\mathscr{A} \supseteq C_5$, then $\mathscr{A} \simeq C_{10}$ or D_{10} .

When $\mathscr{A} \simeq C_{10}$, there is an element $S' \in \mathscr{A}$ such that $S'^2 = S_5$. Necessarily $S'^*x = \eta x$ holds with a primitive 10-th root η of 1, and then $a^5 = -1$.

When $\mathscr{A} \simeq \mathbf{D}_{10}$, $\mathscr{A} = \langle S_5, T' \rangle$ with $T'^2 = 1$ and $T'S_5T'^{-1} = S_5^{-1}$. By the same argument as in Case $\mathscr{A} \supset \mathbb{C}_9$, we can deduce a contradiction from $2 \cdot 1 + 2 \cdot 5 + 2 \cdot 5 \not\equiv 0 \pmod{3}$. So $\mathscr{A} \simeq \mathbf{D}_{10}$ does not happen. Thus we get b-1).

<u>Case $\mathscr{A} \supset \mathbb{C}_3$.</u> Then d = 5 and $\varepsilon_1 = \varepsilon_2 = 1$. (48-II) holds if and only if " $u_1 + u_2 = 3$ ". Therefore *M* is defined by

$$y^{3} = x(x^{3}-1)^{u_{3}}(x^{3}-a^{3})^{u_{4}}(x^{3}-b^{3})^{u_{5}}, \quad \mathscr{A} \supset \mathbb{C}_{3} = \langle S_{3} \rangle.$$
(51)

If $\mathscr{A} \supseteq C_3$, then $\mathscr{A} \simeq C_9$, D_6 or D_{18} . The case $\mathscr{A} \simeq D_{18}$ has already been eliminated when we considered the case $\mathscr{A} \supset C_9$.

Assume $\mathscr{A} \simeq \mathbb{D}_6$. Let $\mathscr{A} = \langle S_3, T' \rangle$ with $T'^2 = 1$, and $T'S_3T'^{-1} = S_3^2$. Then, by the same argument as in Case $\mathscr{A} \supset \mathbb{C}_9$, we can deduce a contradiction.

Assume $\mathscr{A} \simeq \mathbb{C}_9$. There exists $S' \in \mathscr{A}$ such that $S'^3 = S_3$. Then $S'^* x = \eta x$ with a primitive 9-th root of 1, and we can see that $u_3 = u_4 = u_5$ and $\{a^3, b^3\} = \{\zeta_3, \zeta_3^2\}$. Then (51) coincides with (34). Thus we get \flat -2).

Case $\mathcal{A} \supset \mathbb{C}_2$. Then d = 7 and $\varepsilon_1 + \varepsilon_2 = 1$. (48-II) holds if and only if

 $\begin{cases} 1) \ u_1 = 0 \ (\text{resp. 1}), \ u_2 = 1 \ (\text{resp. 0}), \ u_3 = \dots = u_7 = 2, \\ 2) \ u_1 = 0 \ (\text{resp. 2}), \ u_2 = 2 \ (\text{resp. 0}), \ u_3 = \dots = u_7 = 1, \\ 3) \ u_1 = 0 \ (\text{resp. 1}), \ u_2 = 1 \ (\text{resp. 0}), \ u_i = u_j = u_k = 1, \ u_l = u_m = 2 \ \text{with} \\ \{i, j, k, l, m\} = \{3, 4, 5, 6, 7\}, \\ \text{or} \\ 4) \ u_1 = 0 \ (\text{resp. 2}), \ u_2 = 2 \ (\text{resp. 0}), \ u_i = u_j = u_k = 2, \ u_l = u_m = 1 \ \text{with} \\ \{i, j, k, l, m\} = \{3, 4, 5, 6, 7\}. \end{cases}$

Therefore, up to birational isomorphisms, we have two types of equations with $\mathscr{A} \supset \mathbb{C}_2 = \langle \zeta_2 \rangle$. That is:

$$y^{3} = x(x^{2} - 1)^{2}(x^{2} - a)^{2}(x^{2} - b)^{2}(x^{2} - c)^{2}(x^{2} - d)^{2} \text{ (from 1) and 2)})$$

$$y^{3} = x(x^{2} - 1)^{u_{3}}(x^{2} - a^{2})^{u_{4}}(x^{2} - b^{2})^{u_{5}}(x^{2} - c^{2})^{u_{6}}(x^{2} - d^{2})^{u_{7}}$$

with $u_{i} = u_{j} = u_{k} = 1$, $u_{l} = u_{m} = 2$ for $\{i, j, k, l, m\} = \{3, 4, 5, 6, 7\}.$

(from 3) and 4).

Assume $\mathscr{A} \supseteq \mathbb{C}_2$. The possibility of $\mathscr{A} \simeq \mathbb{D}_6, \mathbb{D}_{10}$ or \mathbb{D}_{18} has already been eliminated when we considered $\mathscr{A} \supseteq \mathbb{C}_3, \mathbb{C}_5$. Then $\mathscr{A} \simeq \mathbb{C}_{10}$. By the same way as in Case $\mathscr{A} \supset \mathbb{C}_9$, we know $\{1, a^2, b^2, c^2, d^2\} = \{\zeta_5^k \mid 1 \le k \le 5\}$ and $u_3 = \cdots = u_7$. Thus we get \flat -3).

Then $\#\mathscr{G} = 9$. For n = 6, 5 and $n \ge 10$, there are no ε_i (i = 1, 2) or d, which satisfy (48-I) with $\#\mathscr{G} = 9$. Thus a number n satisfying $\mathscr{A} \supset \mathbb{C}_n$ is among 9, 8, 7, 4, 3, 2. Moreover, by Lemma 5.1, only \mathbb{D}_{18} , \mathbb{D}_{14} , \mathbb{D}_6 , among dihedral groups, are candidates for \mathscr{A} .

Case
$$\mathscr{A} \supset \mathbb{C}_9$$
. Then $M: y^3 = (x^9 - 1)$ and $\mathscr{A} \simeq \mathbb{D}_{18}$.

<u>Case $\mathscr{A} \supset \mathbb{C}_8$ </u>. Then $M: y^3 = x(x^8 - 1)$ and $\mathscr{A} \simeq \mathbb{C}_8$.

<u>Case $\mathscr{A} \supset \mathbb{C}_{7}$ </u>. Then $M: y^3 = x(x^7 - 1)$ and $\mathscr{A} \simeq \mathbb{D}_{14}$.

<u>Case $\mathscr{A} \supset \mathbb{C}_4$ </u>. Then $M: y^3 = x(x^4 - 1)(x^4 - a^4)$. If $\mathscr{A} \supseteq \mathbb{C}_4$, we have $\mathscr{A} \simeq \mathbb{C}_8$. By the same way as in Case $\mathscr{A} \supset \mathbb{C}_5$ of g = 9, we have $a^4 = -1$. Then we get b-4).

Case $\mathscr{A} \supset \mathbf{D}_6$. Then, from (10) in Theorem 3.1, *M* can be defined by

$$y^3 = (x^3 - 1)(x^6 - bx^3 + 1)^u \ (b \neq \pm 2), \quad \mathscr{A} \supset \mathbf{D}_6 = \langle S_3, T \rangle$$

If $\mathscr{A} \supseteq \mathbf{D}_6$, $\mathscr{A} \simeq \mathbf{D}_{18}$. There is an element $S' \in \mathscr{A}$ satisfying $S'^3 = S_3$. Then $S'^*x = \eta x$ with a primitive 9-th root η of 1. Thus $\mathscr{S} = \{\zeta_9^k \mid 0 \le k \le 8\}, b = -1$ and u = 1. Then we get \flat -5).

<u>Case $\mathscr{A} \supset \mathbb{C}_3$ </u>. We have

$$y^{3} = (x^{3} - 1)(x^{3} - a_{1}^{3})^{\nu_{1}}(x^{3} - a_{2}^{3})^{\nu_{2}}, \quad \mathscr{A} \supset \mathbf{C}_{3} = \langle S_{3} \rangle.$$
 (52)

If $\mathscr{A} \supseteq \mathbf{C}_3$, then $\mathscr{A} \simeq \mathbf{D}_6$ or $\mathscr{A} \simeq \mathbf{D}_{18}$.

Assume $\mathscr{A} \supset \mathbf{D}_6 = \langle S_3, T' \rangle$ with $T'^2 = 1$ and $T'S_3T'^{-1} = S_3^2$.

Put $H = \{\zeta_3^k \mid 0 \le k \le 2\}$, $H_1 = \{a_1\zeta_3^k \mid 0 \le k \le 2\}$, $H_2 = \{a_2\zeta_3^k \mid 0 \le k \le 2\}$ and $\mathscr{H} = \{H, H_1, H_2\}$. Then T' acts on \mathscr{H} , and T' fixes exactly one element in \mathscr{H} because T' is of order 2 and it has just two fixed points. For example, $T'H = H_i$ and $T'H_j = H_j$ with $\{i, j\} = \{1, 2\}$. From $T'H = H_i$ and $T'(0) = \infty$, $T'^*x = (\zeta_3^k a_i)/x$ ($0 \le k \le 2$) and $v_i = 1$. $T'H_j = H_j$ implies that T' has a fixed point in H_j , and then we need $a_i^3 = a_j^6$. Thus (52) becomes

$$M: y^{3} = \{x^{6} - (a_{i}^{3} + 1)x^{3} + a_{i}^{3}\}(x^{3} - a_{j}^{3})^{v_{j}} \text{ with } a_{i}^{3} = a_{j}^{6}.$$
 (53)

Moreover $F^*x = a_j^{-1}x$ and $F^*y = a_j^{-2-\nu_j}y$ define a birational morphism from M to

$$M': y^{3} = \{x^{6} - (a_{j}^{3} + a_{j}^{-3})x^{3} + 1\}(x^{3} - 1)^{v_{j}}$$

From (42) and b-5), we get b-7).

In case T'H = H we obtain \flat -6).

<u>Case $\mathscr{A} \supset \mathbb{C}_2$ </u>. *M* is defined by

$$y^{3} = x(x^{2} - 1)^{u_{3}}(x^{2} - c_{4}^{2})^{u_{4}}(x^{2} - c_{5}^{2})^{u_{5}}(x^{2} - c_{6}^{2})^{u_{6}}, \quad \mathscr{A} \supset \mathbb{C}_{2} = \langle S_{2} \rangle$$

with
$$\begin{cases} a-i \ u_{3} = u_{4} = u_{5} = u_{6} = 1, \text{ or} \\ b-i \ u_{i} = 1, u_{j} = u_{k} = u_{l} = 2 \quad \text{for } \{i, j, k, l\} = \{3, 4, 5, 6\}. \end{cases}$$

If $\mathscr{A} \supseteq C_2$, then $\mathscr{A} \simeq C_4, C_8, D_6, D_{14}$ or D_{18} . But the possibility of D_{18} has been eliminated.

Assume that $\mathscr{A} \simeq \mathbb{C}_4$ (resp. \mathbb{C}_8). By the same argument as in Case $\mathscr{A} \supset \mathbb{C}_5$ of g = 9, we can see $\mathscr{A} = \langle S_4 \rangle$ (resp. $\langle S_8 \rangle$). Thus we get \flat -8).

Assume $\mathscr{A} \simeq \mathbf{D}_6$. From (42), there exists a birational map F from M to

$$M': y^3 = (x^3 - 1)(x^6 - bx^3 + 1)^u$$
 $(b \neq \pm 2 \text{ and } ``u \neq 1 \text{ or } b \neq -1").$ (54)

Let \tilde{F} denote the induced morphism as before, and put $T' = \tilde{F} \circ S_2 \circ \tilde{F}^{-1} \in \operatorname{Aut}(M')/\langle V \rangle = \langle T, S_3 \rangle$. Then $T'^*x = \zeta_3^e/x$ for some $0 \le e \le 2$. Let

$$\mathscr{S}' := \{1, \zeta_3, \zeta_3^2, \alpha, \alpha\zeta_3, \alpha\zeta_3^2, \alpha^{-1}, \alpha^{-1}\zeta_3, \alpha^{-1}\zeta_3^2\}$$

with a root α of the equation $x^6 - bx^3 + 1 = 0$. As $b \neq \pm 2$ and then $\alpha^3 \neq \pm 1$, T' has only one fixed point ζ_3^{2e} $(0 \le e \le 2)$ in \mathscr{S}' . On the other hand S_2 has only one fixed point 0 in \mathscr{S} on M. Since \tilde{F} sends $\{0, \infty\}$ (fixed points of S_2) and \mathscr{S} to $\{\pm \zeta_3^{2e}\}$ (fixed points of T') and \mathscr{S}' respectively, we have $\tilde{F}(0) = \zeta_3^{2e}$, $\tilde{F}(\infty) = -\zeta_3^{2e}$ and

$$F^*x = Ax$$
 with $A = \begin{pmatrix} \zeta_3^{2e} & \gamma \zeta_3^{2e} \\ -1 & \gamma \end{pmatrix}$ (γ : a suitable number).

Since \tilde{F} also sends the orbit decomposition of \mathscr{G} by $\langle S_2 \rangle$ to that of \mathscr{G}' by $\langle T' \rangle$, we have

$$\{A^{-1}(\zeta_3^{2f}), A^{-1}(\zeta_3^{2g})\} = \{c_i, -c_i\}, \quad \{A^{-1}\alpha, A^{-1}(\alpha^{-1})\} = \{c_j, -c_j\}, \\ \{A^{-1}(\zeta_3\alpha), A^{-1}(\zeta_3^2\alpha^{-1})\} = \{c_k, -c_k\}, \quad \{A(\zeta_3\alpha), A(\zeta_3^2\alpha^{-1})\} = \{c_l, -c_l\},$$

where $\{f,g\} = \{0,1,2\} - \{e\}, \ \{i,j,k,l\} = \{3,4,5,6\}, \text{ and we denote } c_3 = 1.$ From these relations, we have $\gamma^2 = \left(\frac{\zeta_3^{(e-g)}+1}{\zeta_3^{(e-g)}-1}\right)^2 c_i^2 = -c_i^2/3$ and

$$c_i^2: c_j^2: c_k^2: c_l^2 = 3: -\left(\frac{\alpha - \zeta_3^{2e}}{\alpha + \zeta_3^{2e}}\right)^2: -\left(\frac{\zeta_3 \alpha - \zeta_3^{2e}}{\zeta_3 \alpha + \zeta_3^{2e}}\right)^2: -\left(\frac{\zeta_3^2 \alpha - \zeta_3^{2e}}{\zeta_3^2 \alpha + \zeta_3^{2e}}\right)^2$$

By permuting j, k, l suitably, we get the relation $(\star\star)$.

Conversely we assume that there exists α satisfying (**) for some $\{i, j, k, l\} = \{1, 2, 3, 4\}$.

When a-i) is satisfied, $\alpha^3 \neq \zeta_3^{\pm 1}$ or $\alpha^3 = \zeta_3^{\pm 1}$, we can see that (45) defines birational morphism from M to

$$M': y^3 = (x^3 - 1)\{x^6 - (\alpha^3 + \alpha^{-3})x^3 + 1\}$$

by direct calculations. Then, from (42) and \flat -5), $\mathscr{A} \simeq \mathbf{D}_6$ (resp. $\mathscr{A} \simeq \mathbf{D}_{18}$) provided $\alpha^3 \neq \zeta_3^{\pm 1}$ (resp. $\alpha^3 = \zeta_3^{\pm 1}$). Thus we get \flat -9).

When b-i) is satisfied with the same i, j, k, l in the relation (**), we can check that (46) gives a birational morphism from M to

$$M': y^{3} = (x^{3} - 1)\{x^{6} - (\alpha^{3} + \alpha^{-1})x^{3} + 1\}^{2}.$$

Thus we get \flat -10).

g = 5.

Then $\#\mathscr{G} = 7$. For n = 4, 3 and $n \ge 6$, there are no ε_i (i = 1, 2) and d satisfying (48-I, II) with $\#\mathscr{G} = 7$. Thus non-trivial \mathscr{A} is possibly isomorphic to C_2 , C_5 or D_{10} .

Case $\mathscr{A} \supset \mathbb{C}_5 = \langle S_5 \rangle$. Then *M* is defined by $y^3 = x^2(x^5 - 1)$. Moreover we can see $\mathscr{A} = \mathbb{D}_{10} = \{S_5, T\}$.

Case $\mathscr{A} \supset \mathbb{C}_2 = \langle S_2 \rangle$. Then *M* is defined by

$$M: y^{3} = x(x^{2}-1)^{u_{3}}(x^{2}-c_{3}^{2})^{u_{4}}(x^{2}-c_{2}^{2})^{u_{5}},$$

where $u_i = 2$, $u_j = u_k = 1$ for $\{i, j, k\} = \{3, 4, 5\}$.

Assume $\mathscr{A} \supseteq \mathbb{C}_2$. Then $\mathscr{A} \simeq \mathbb{D}_{10}$. Let F be a birational morphism from M to

$$M': y^3 = x^2(x^5 - 1).$$

Put $J := \tilde{F} \circ S_2 \circ \tilde{F}^{-1}$ as before. Then $J^*x = \zeta_5^k/x$ $(0 \le k \le 4)$ and J fixes $\pm \zeta_5^{3k}$. Only 0 is fixed by S_2 in $\mathscr{S} = \{0, \pm c_3, \pm c_4, \pm c_5\}$, and only ζ_5^{3k} is fixed by J in

$$\mathcal{S}' = \{0, \infty, 1, \zeta_3, \dots, \zeta_3^4\}. \text{ Therefore } \tilde{F}(0) = \zeta_5^{3k}, \ \tilde{F}(\infty) = -\zeta_5^{3k} \text{ and}$$
$$F^* x = \frac{\zeta_5^{3k} x + \delta\zeta_5^{3k}}{-x + \delta} \quad (\text{with a suitable number } \delta).$$

By the same calculations as before, we have

$$(F^*x)^2((F^*x)^5 - 1) = 2\zeta_5^k(-x + \delta)^{-9}x(x^2 - \delta^2)^2 \\ \times \left\{ x^2 - \delta^2 \left(\frac{1 - \zeta_5}{1 + \zeta_5}\right)^2 \right\} \left\{ x^2 - \delta^2 \left(\frac{1 - \zeta_5^2}{1 + \zeta_5^2}\right)^2 \right\}.$$
 (55)

Then $\{c_3^2, c_4^2, c_5^2\} = \left\{\delta^2, \delta^2 \left(\frac{1-\zeta_5}{1+\zeta_5}\right)^2, \delta^2 \left(\frac{1-\zeta_5^2}{1+\zeta_5^2}\right)^2\right\}$. As $u_i = 2$ and $u_j = u_k = 1$, we can see $\delta^2 = c_i$ and $\{c_j^2, c_k^2\} = \left\{c_i^2 \left(\frac{1-\zeta_5}{1+\zeta_5}\right)^2, c_i^2 \left(\frac{1-\zeta_5^2}{1+\zeta_5}\right)^2\right\}$ from (55).

Conversely we can check that (47) defines a birational morphism from M to M'. Overall we proved \flat -11).

Appendix

Here S_n , T, U, W, R, K, Z are elements of $SL_2(C)$ defined by $S_n = \begin{pmatrix} \zeta_{2n} & 0 \\ 0 & \zeta_{2n}^{-1} \end{pmatrix}$, $T = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, $U = \frac{1-i}{2} \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}$, $W = \frac{1+i}{2} \begin{pmatrix} -1 & i \\ 1 & i \end{pmatrix}$, $R = \begin{pmatrix} \frac{1+i}{\sqrt{2}} & 0 \\ 0 & \frac{1-i}{\sqrt{2}} \end{pmatrix}$, $Z = \zeta_{10}^{-1} \begin{pmatrix} \zeta_5 & 0 \\ 0 & 1 \end{pmatrix}$, $K = \frac{1}{\sqrt{5}} \begin{pmatrix} \zeta_5^4 - \zeta_5^3 & \zeta_5^3 - 1 \\ 1 - \zeta_5^2 & \zeta_5 - \zeta_5^2 \end{pmatrix}$. And the symbol $\begin{cases} n_1 & n_2 & \cdots \\ \alpha_1 & \alpha_2 & \cdots \end{cases}$ means that $\tilde{\pi}$ is ramified over α_i with ramification index n_i .

group H [#H]		ification indeces } ranch points }	generators $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $(\in SL(2, \mathbb{C})/\{\pm 1\})$
cyclic C_n , $[n]$	$\frac{x^n}{1}$,	$ \left\{\begin{array}{rr}n&n\\0&\infty\end{array}\right\} $	Sn
dihedral \mathbf{D}_{2n} , $[2n]$	$\frac{x^{2n}+1}{x^n},$	$\left\{\begin{array}{rrr} 2 & 2 & n \\ -2 & 2 & \infty\end{array}\right\}$	S _n , T
tetrahedral A_4 , [12]	$\frac{(x^4 - 2\sqrt{3}ix^2 + 1)^3}{(x^4 + 2\sqrt{3}ix^2 + 1)^3},$	$ \left\{ \begin{matrix} 3 & 2 & 3 \\ 0 & 1 & \infty \end{matrix} \right\} $	U, W
octahedral S ₄ , [24]	$\frac{(x^8+14x^4+1)^3}{108x^4(x^4-1)^4},$	$ \left\{ \begin{array}{rrr} 3 & 3 & 4 \\ 0 & 1 & \infty \end{array} \right\} $	W, R
icosahedral A5, [60]	$\frac{\{-x^{20}-1+228(x^{15}-x^5)-494x^{10}\}}{1728x^5(x^{10}+11x^5-1)^5}$	$\begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix}, \begin{bmatrix} 3 & 2 & 5 \\ 0 & 1 & \infty \end{bmatrix}$	K, Z

Table 1: Finite subgroups of $Aut(\mathbf{P}^1)$.

group	$(b_0:b_1)\in P^1(u)$	ramification index over $(b_0:b_1)$	$P_{(b_0:b_1)}$	type of $P_{(b_0:b_1)}$
C _n	(0:1)	n	$P_{(0:1)} = 1$	(iii)
	(1:0)	n	$P_{(1:0)} = x$	(ii)
	$(1:b) (b\neq 0)$	1	$P_{(1:b)} = x^n - b$	(i)
D _{2n}	(1:2)	2	$P_{(1:2)} = x^n - 1$	(i)
	(1:-2)	2	$P_{(1:-2)} = x^n + 1$	(i)
	(0 : 1)	n	$P_{(0:1)} = x$	(ii)
	$(1:b) (b \neq \pm 2)$	1	$P_{(1:b)} = x^{2n} - bx^n + 1$	(i)
A 4	(1:0)	3	$P_{(1:0)} = (x^4 - 2\sqrt{3}ix^2 + 1)$	(i)
	(1 : 1)	2	$P_{(1:1)} = x(x^4 - 1)$	(ii)
	(0:1)	3	$P_{(0:1)} = (x^4 + 2\sqrt{3}ix^2 + 1)$	(i)
	$(1:b) (b \neq 0,1)$	1	$P_{(1:b)} = \frac{1}{1-b} \left\{ \left(x^4 - 2\sqrt{3}ix^2 + 1 \right)^3 - b\left(x^4 + 2\sqrt{3}ix^2 + 1 \right)^3 \right\}$	(i)
S ₄	(1:0)	3	$P_{(1:0)} = x^8 + 14x^4 + 1$	(i)
	(1 : 1)	2	$P_{(1:1)} = x^{12} - 33x^8 - 33x^4 + 1$	(i)
	(0:1)	4	$P_{(0:1)} = x(x^4 - 1)$	(ii)
	$(1:b) \ (b \neq 0,1)$	1	$P_{(1:b)} = (x^8 + 14x^4 + 1)^3 - 108b\{x(x^4 - 1)\}^4$	(i)
A 5	(1:0)	3	$P_{(1:0)} = x^{20} + 1 + 228(x^{15} - x^5) + 494x^{10}$	(i)
	(1 : 1)	2	$P_{(1:1)} = x^{30} + 522x^{25} - 10005x^{20} - 10005x^{10} - 522x^5 + 1$	(i)
	(0:1)	5	$P_{(0:1)} = x(x^{10} + 11x^5 - 1)$	(ii)
	$(1:b) (b \neq 0,1)$	1	$P_{(1:b)} = \{x^{20} + 1 - 228(x^{15} - x^5) + 494x^{10}\}^3 - 1728b\{x(x^{10} + 11x^5 - 1)\}^5$	(i)

Table 2: Types of $P_{(b_0:b_1)}$.

References

- Accola, R. D. M., Strongly branched coverings of closed Riemann Surfaces, Proc. Amer. Soc. 26 (1970), 315-322.
- [2] Arbarello, E., Cormallba, M., Griffiths, P. A. and Harris, J., Geometry of Algebraic Curves Vol. I Springer-Verlag (1985).
- [3] Farkas, H. M. and Kra, I., Riemann Surfaces, Graduate Texts in Mathematics 71, Springer-Verlag (1980).
- [4] Horiuchi, R., Normal coverings of hyperelliptic Riemann surfaces, J. Math. Kyoto Univ. 19-3 (1979), 497-523.
- [5] Ishii, N., Covering over d-gonal curves, Tsukuba J. Math. Vol. 16, No. 1 (1992), 173-189.

- [6] Ishii, N., Remarks on d-gonal curves, Tsukuba J. Math. Vol. 19, No. 2 (1995), 329-345.
- [7] Kato, T., Conformal equivalence of compact Riemann surfaces, Japan J. Math. 7-2 (1981), 281-289.
- [8] Klein, F., Lectures on the icosahedron and the solution of equations of fifth degree, Dover (1956), (translation).
- [9] Machlachlan, C., Smooth coverings of hyperelliptic surfaces, Qurt. J. Math. Oxford (2), 22 (1971), 117-123.
- [10] Namba, M., Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Math. 767 (1979), Springer-Verlag.
- [11] Namba, M., Equivalence problem and automorphism groups of certain compact Riemann surfaces, Tsukuba J. Math. Vol. 5, No. 2 (1981), 319–338.

Mathematical Division of General Education College of Science and Technology Nihon University, Narashinodai 7-24-1 Funabashi-shi, Chiba 274-8501 Japan ishii@penta.ge.cst.nihon-u.ac.jp yoshida@penta.ge.cst.nihon-u.ac.jp.