THE AUTOMORPHISM GROUP OF A CYCLIC p-GONAL CURVE

By
Naonori Ismm and Katsuaki Yoshma

Abstract

Let M be a cyclic p-gonal curve with a positive prime number p, and let V be the automorphism of order p satisfying $M /\langle V\rangle \simeq \boldsymbol{P}^{1}$. It is well-known that finite subgroups H of $\operatorname{Aut}\left(\boldsymbol{P}^{1}\right)$ are classified into five types. In this paper, we determine the defining equation of M with $H \subset \operatorname{Aut}(M /\langle V\rangle)$ for each type of H, and we make a list of hyperelliptic curves of genus 2 and cyclic trigonal curves of genus 5, 7, 9 with $H=\operatorname{Aut}(M /\langle V\rangle)$.

1 Introduction

Let M be a compact Riemann surface defined by

$$
\begin{equation*}
y^{p}-\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{s}\right)^{r_{s}}=0 \tag{1}
\end{equation*}
$$

where p is a positive prime integer, a_{i} 's are distinct complex numbers, and r_{i} 's are integers satisfying $1 \leq r_{i}<p(i=1, \ldots, s)$. Put $\mathscr{S}:=\left\{a_{1}, \ldots, a_{s}\right\}$ (resp. $\left.\left\{a_{1}, \ldots, a_{s}, a_{s+1}=\infty\right\}\right)$ when $\sum_{i=1}^{s} r_{i} \equiv 0(\bmod p)\left(\operatorname{resp} . \sum_{i=1}^{s} r_{i} \not \equiv 0(\bmod p)\right)$. Then the genus g of M is $\frac{(\# \mathscr{S}-2)(p-1)}{2}$. Let $\boldsymbol{C}(M)$ denote the function field $\boldsymbol{C}(x, y)$ of M. For an automorphism $\sigma \in \operatorname{Aut}(M), \sigma^{*}$ represents the action on $\boldsymbol{C}(M)$ induced by σ. Let V be the automorphism on M defined by

$$
V^{*} x=x \quad \text { and } \quad V^{*} y=\zeta_{p} y
$$

with the primitive p-th root $\zeta_{p}=\exp 2 \pi i / p$ of unity. The inclusion $\boldsymbol{C}(x) \subset \boldsymbol{C}(M)$ corresponds to the cyclic normal covering $x: M \rightarrow \boldsymbol{P}^{1}(x)$ of degree p, and its covering group is $\langle V\rangle$. Then x is (totally) ramified over a point $a \in \boldsymbol{P}^{1}(x)$ if and only if $a \in \mathscr{S}$.

[^0]In general, a compact Riemann surface of genus g is called a n-gonal curve when M has a meromorphic function of degree n and does not have any nontrivial meromorphic functions whose degree is smaller than n. It is known that M becomes a p-gonal curve provided $(p-1)(p-2)<g$ with a prime number $p[10]$.

From now on, we always assume that M is a compact Riemann surface defined by (1). From the fact mentioned above, M becomes a p-gonal curve when $2 p-2<\# \mathscr{S}$.

Let g_{d}^{1} denote a linear system of degree d and dimension 1, then the linear system $\left|(x)_{\infty}\right|$ is g_{p}^{1}. Here $(x)_{\infty}$ is the pole divisor of x on M. We also assume that $\left|(x)_{\infty}\right|$ is unique as g_{p}^{1}. In fact the uniqueness of g_{p}^{1} is satisfied when $(p-1)^{2}<g$, i.e., $2 p<\# \mathscr{S}$ [10]. The uniqueness of g_{p}^{1} on a cyclic p-gonal curve M implies that $\langle V\rangle$ is normal in $\operatorname{Aut}(M)$. Moreover we will see that V is in the center of $\operatorname{Aut}(M)$. Therefore, for a subgroup G of $\operatorname{Aut}(M)$ containing V, we have an exact sequence

$$
\begin{equation*}
1 \rightarrow\langle V\rangle \rightarrow G \xrightarrow{\pi} H \rightarrow 1 \tag{*}
\end{equation*}
$$

where $H=G /\langle V\rangle$.
On the other hand, it is well known that a finite subgroup H of $\operatorname{Aut}\left(\boldsymbol{P}^{1}\right)$ is isomorphic to cyclic \mathbf{C}_{n}, dihedral $\mathbf{D}_{2 n}$, tetrahedral \mathbf{A}_{4}, octahedral \mathbf{S}_{4} or icosahedral \mathbf{A}_{5}. Then it can be said that the group G above is obtained as an extension of these five groups by a cyclic group $\langle V\rangle$ of order p. Consequently there exist special relations among a_{1}, \ldots, a_{s} of (1) depending on H.

First we will give a necessary and sufficient condition that the sequence ($*$) is split.

Next, by applying the concrete representations of finite subgroup H of $\operatorname{Aut}\left(\boldsymbol{P}^{1}(x)\right)$ given by Klein, we determine a defining equation of M which satisfies the condition $H \subset \operatorname{Aut}(M) /\langle V\rangle$ for a given H.

Finally, as applications, we give a classification of hyperelliptic curves M of genus 2 and cyclic tigonal curves of genus $g=5,7,9$ based on the types of H contained in $\operatorname{Aut}(M) /\langle V\rangle$.

2 A Necessary and Sufficient Condition in Which the Exact Sequence (*) is Split

Let M be a cyclic p-gonal curve defined by the equation (1), and the linear system $\left|(x)_{\infty}\right|$ is assumed to be unique as g_{p}^{1}. The symbols G, H, \mathscr{S} etc. are same as in the previous section. We prepare more notations.

Notation 1. Let denote \tilde{T} the element of $H=G /\langle V\rangle \subset \operatorname{Aut}\left(\boldsymbol{P}^{1}(x)\right)$ induced by some element $T \in G$. Let $F P(H)$ (resp. $F P(G)$) denote the set of points on
$M /\langle V\rangle \simeq \boldsymbol{P}^{1}(x)($ resp. $M)$ fixed by a non-trivial element of H (resp. G), and let $F G(a)$ denote the set of automorphisms of $\boldsymbol{P}^{1}(x)$ which fixes a point $a \in \boldsymbol{P}^{1}(x)$. By corresponding $A=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in S L(2, C)$ to $A(x):=\frac{\alpha x+\beta}{\gamma x+\delta}$, we have an isomorphism $S L(2, C) /\{ \pm 1\} \simeq \operatorname{Aut}\left(\boldsymbol{P}^{1}(x)\right)$. We use the same symbol " A " for both a matrix and an element of $\operatorname{Aut}\left(\boldsymbol{P}^{1}(x)\right)$. Let $\langle A\rangle$ a denote the orbit of $a \in \boldsymbol{P}^{1}(x)$ by the subgroup $\langle A\rangle$ generated by $A \in S L(2, C)$.

For $a \in F P(H), F G(a)$ is a cyclic group and $F P(F G(a))$ consists of two points a and a^{\prime} with $a \neq a^{\prime}$. If $F G(a)$ is generated by an element A of order n, then, by changing the coordinate x suitably, we may assume $A(x)=\zeta_{n} x$ and $F P(\langle A\rangle)=\{0, \infty\}$, where $\zeta_{n}=\exp \left(\frac{2 \pi i}{n}\right)$.

We start with the following lemma.

Lemma 2.1. (i) The group H acts on \mathscr{S}.
(ii) Let a_{i} and a_{j} be in \mathscr{S}. If there exists an element $T \in G$ satisfying $\tilde{T} a_{i}=a_{j}$, then we have $r_{i}=r_{j}$. Here we define r_{s+1} by $r_{s+1} \equiv$ $-\sum_{i=1}^{s} r_{i}(\bmod p)$ and $0<r_{s+1}<p$ when $\sum_{i=1}^{s} r_{i} \not \equiv 0(\bmod p)$.
(iii) The automorphism V is contained in the center of G.

Proof. (i) Let T be an arbitrary automorphism on M. From the uniqueness of g_{p}^{1}, we have a diagram

and this implies that \tilde{T} acts on S.
(ii) Refer to [6], [11].
(iii) Suppose ord $\tilde{T}=n$. Then we may assume that \tilde{T} is defined by $\tilde{T}^{*} x=\zeta_{n} x$, and then $F P(\langle T\rangle)=\{0, \infty\}$. For $a \in M /\langle V\rangle \simeq \boldsymbol{P}^{1}(x)$ with $a \notin\{0, \infty\}$, the orbit $\langle\tilde{T}\rangle a$ is $\left\{a, \zeta_{n} a, \ldots, \zeta_{n}^{p-1} a\right\}$. The set \mathscr{S} is decomposed into orbits of $\langle\tilde{T}\rangle$ depending on the order $\# \mathscr{S} \cap\{0, \infty\}$.
(a) $\#\{\mathscr{S} \cap\{0, \infty\}\}=2$
$\mathscr{S}=\{0\} \cup\{\infty\} \cup\langle\tilde{T}\rangle b_{1} \cup \cdots \cup\langle\tilde{T}\rangle b_{t}$,
(b) $\#\{\mathscr{S} \cap\{0, \infty\}\}=1$ (we may assume $\mathscr{S} \cap\{0, \infty\}=\{0\}$), $\mathscr{S}=\{0\} \cup$ $\langle\tilde{T}\rangle b_{1} \cup \cdots \cup\langle\tilde{T}\rangle b_{t}$,
(c) $\#\{\mathscr{S} \cap\{0, \infty\}\}=0 \quad \mathscr{S}=\langle\tilde{T}\rangle b_{1} \cup \cdots \cup\langle\tilde{T}\rangle b_{t}$,
where b_{1}, \ldots, b_{t} are non-zero elements in \mathscr{S} with $b_{i} \neq \infty$ and $\langle\tilde{T}\rangle b_{i} \cap\langle\tilde{T}\rangle b_{j}=\varnothing$ for $i \neq j$.

In case (a), from (i) of this lemma, M is defined by

$$
\begin{equation*}
y^{p}=x\left(x^{n}-b_{1}^{n}\right)^{u_{1}} \cdots\left(x^{n}-b_{t}^{n}\right)^{u_{t}}, \tag{2}
\end{equation*}
$$

with $n \sum_{i=1}^{t} u_{i}+2 \equiv 0(\bmod p)$. In case (b), M is also defined by (2) with $n \sum_{i=1}^{t} u_{i}+1 \equiv 0(\bmod p)$. In both cases (a) and (b), by acting T^{*} on (2), we have

$$
\left(T^{*} y\right)^{p}=\tilde{T}^{*}(x)\left(\tilde{T}^{*}(x)^{n}-b_{1}^{n}\right)^{u_{1}} \cdots\left(\tilde{T}^{*}(x)^{n}-b_{t}^{n}\right)^{u_{t}}=\zeta_{n} y^{p} .
$$

Then T is defined by $T^{*} x=\zeta_{n} x$ and $T^{*} y=\varepsilon y$, where ε satisfies $\varepsilon^{p}=\zeta_{n}$. Since $V^{*} x=x$ and $V^{*} y=\zeta_{p} y$, we have $V^{*} T^{*}=T^{*} V^{*}$.

In case (c), we can also prove as above.
Lemma 2.1 (i) and (ii) imply the following.
Lemma 2.2. Assume $\mathscr{S} \nexists \infty$. Let $\mathscr{S}=\bigcup_{i=1}^{u} H b_{i}^{(1)}$ (disjoint) be the decomposition of \mathscr{S} into orbits $H b_{i}^{(1)}=\left\{b_{i}^{(1)}, \ldots, b_{i}^{\left(s_{i}\right)}\right\}(\subset \boldsymbol{C})$. Then the equation (1) is transformed into

$$
\begin{equation*}
y^{p}=\prod_{i=1}^{u}\left\{\left(x-b_{i}^{(1)}\right) \cdots\left(x-b_{i}^{\left(s_{i}\right)}\right)\right\}^{r_{i}} \tag{3}
\end{equation*}
$$

with $1 \leq r_{i}<p$ and $\sum_{i=1}^{u} s_{i} r_{i} \equiv 0(\bmod p)$.
Let $\tilde{\pi}: \boldsymbol{P}^{1}(x) \rightarrow \boldsymbol{P}^{1}(u)$ be a normal covering defined by $u=f_{1}(x) / f_{0}(x)$ with a Galois group H, where $f_{0}(x)$ and $f_{1}(x)$ are polynomials relatively prime to each other. We write $\left(b_{0}: b_{1}\right)$ for a point of u-plane $\boldsymbol{P}^{1}(u)$ with $u=\frac{b_{1}}{b_{0}}$. Then we have the following theorem.

Theorem 2.1. Let M be defined by the equation (1). Then the exact sequence (*) is split if and only if
(A) $F P(H) \cap \mathscr{S}=\varnothing$, or
(B) for $a \in F P(H) \cap \mathscr{S}, \# F G(a)$ is not divisible by p.

Proof. Put $\# H=n$. Then $\# G=p n$. We may assume $\mathscr{S} \nRightarrow \infty$. Then M is defined by (3) in Lemma 2.2. We regard M / G as a u-plane $\boldsymbol{P}^{1}(u)$, and consider the normal covering

$$
M /\langle V\rangle \simeq P^{1}(x) \xrightarrow{\tilde{\pi}} M / G \simeq P^{1}(u)
$$

whose covering group is H. We assume $u=f_{1}(x) / f_{0}(x)$. We can also assume that the image $\tilde{\pi}(\mathscr{S})$ does not contain $\infty\left(\in \boldsymbol{P}^{1}(u)\right)$.

Now we assume that (*) is split. Then $G=\langle V\rangle \times H$. We have a commutative diagram and canonical isomorphisms
where $\operatorname{Gal}(\psi)$ means the covering group of a given normal covering $\psi: M_{1} \rightarrow M_{2}$ of compact Riemann surfaces M_{i}. Put $\tilde{\pi}(\mathscr{S})=\left\{\left(1: b_{1}\right), \ldots,\left(1: b_{u}\right)\right\}$, where $b_{i}(i=1 \cdots u)$ are distinct complex numbers. Then we may assume that M / H is defined by

$$
\begin{equation*}
y^{p}=\left(u-b_{1}\right)^{t_{1}} \cdots\left(u-b_{u}\right)^{t_{u}} \quad \text { with } \quad \sum_{i=1}^{u} t_{i} \equiv 0 \text { and } 0<t_{i}<p . \tag{4}
\end{equation*}
$$

The isomorphism $C(M) \simeq C(M / H) \underset{C(u)}{\otimes} \boldsymbol{C}(x)$ implies that x and y have a relation

$$
\begin{equation*}
y^{p}=\left(\frac{f_{1}(x)}{f_{0}(x)}-b_{1}\right)^{t_{1}} \cdots\left(\frac{f_{1}(x)}{f_{0}(x)}-b_{u}\right)^{t_{u}} . \tag{5}
\end{equation*}
$$

By replacing $f_{0}^{\left(\sum_{i=1}^{\mu} t_{i}\right) / p} y$ with y, we have

$$
\begin{equation*}
y^{p}=\left(f_{1}(x)-b_{1} f_{0}(x)\right)^{t_{1}} \cdots\left(f_{1}(x)-b_{u} f_{0}(x)\right)^{t_{u}} \tag{6}
\end{equation*}
$$

and this equation defines M. Let $\mathscr{S}_{i}=\left\{b_{i}^{(1)}, \ldots, b_{i}^{\left(s_{i}\right)}\right\}(i=1, \ldots, u)$ be the set of points b in $\boldsymbol{P}^{1}(x)$ satisfying $\tilde{\pi}(b)=b_{i}$. Then, by the assumptions $\infty \notin \mathscr{S}$ and $\infty \notin \tilde{\pi}(\mathscr{P})$, we have factorizations

$$
f_{1}(x)-b_{i} f_{0}(x)=C_{i}\left\{\left(x-b_{i}^{(1)}\right) \cdots\left(x-b_{i}^{\left(s_{i}\right)}\right)\right\}^{m_{i}} \quad \text { with } n=m_{i} s_{i} \text { and } C_{i} \neq 0 .
$$

The positive integers m_{i} are ramification indices of $\tilde{\pi}$ over ($1: b_{i}$) and $m_{i}=\# F G\left(b_{i}^{(k)}\right)$. So the equation (6) may assume to be transformed into

$$
\begin{equation*}
y^{p}=\prod_{i=1}^{u}\left\{\left(x-b_{i}^{(1)}\right) \cdots\left(x-b_{i}^{\left(s_{i}\right)}\right)\right\}^{m_{i} t_{i}} \tag{7}
\end{equation*}
$$

and we have $\mathscr{S} \subset \bigcup_{i=1}^{t} \mathscr{S}_{i}$. If some m_{i} is divisible by p, we can omit the term $\left\{\left(x-b_{i}^{(1)}\right) \cdots\left(x-b_{i}^{\left(s_{i}\right)}\right)\right\}^{m_{i} t_{i}}$ of (7) by replacing y with $y /\left\{\prod_{k=1}^{s_{i}}\left(x-b_{i}^{(k)}\right)\right\}^{m_{i} t_{i} / p}$.

Further we can delete the term $\left(u-b_{i}\right)^{t_{i}}$ from the equation (4). Finally we can get the equation (4) satisfying $\mathscr{S}=\bigcup_{i=1}^{t} \mathscr{S}_{i}$ and $\left(m_{i}, p\right)=1$.

Conversely assume that (A) or (B) is satisfied and M is be defined by the equation (3) in Lemma 2.2. Put $b_{i}=\tilde{\pi}\left(b_{i}^{(1)}\right)(i=1, \ldots, u)$. Then, for each b_{i}, we have $f_{1}(x)-b_{i} f_{0}(x)=C_{i}\left\{\left(x-b_{i}^{(1)}\right) \cdots\left(x-b_{i}^{\left(s_{i}\right)}\right)\right\}^{m_{i}}$ again. The assumption (A) or (B) implies $\left(m_{i}, p\right)=1$. Then, from $\left(r_{i}, p\right)=1$ and $\left(m_{i}, p\right)=1$, there exists an integer s_{i} satisfying $0<s_{i}<p$ and $s_{i} r_{i} \equiv m_{i}(\bmod p)$ for each i. Put $s=\prod_{i=1}^{u} s_{i}$. Then there exist two integers u_{i} and M_{i} satisfying $s r_{i}=u_{i} m_{i}+M_{i} p$. Raising both sides of (3) to s-th power and replacing $y^{s} /\left\{\prod_{i=1}^{u}\left\{\left(x-b_{i}^{(1)}\right) \cdots\left(x-b_{i}^{\left(s_{i}\right)}\right)\right\}^{M_{i}}\right\}$ with y again, we have

$$
y^{p}=\prod_{i=1}^{u}\left\{\left(x-b_{i}^{(1)}\right) \cdots\left(x-b_{i}^{\left(s_{i}\right)}\right)\right\}^{u_{i} m_{i}}=C \prod_{i=1}^{u}\left(f_{1}(x)-b_{i} f_{0}(x)\right)^{u_{i}},
$$

where C is a non-zero constant. Therefore we may assume that M is defined by $y^{p}=\prod_{i=1}^{u}\left(f_{1}(x)-b_{i} f_{0}(x)\right)^{u_{i}}$, and then $\boldsymbol{C}(M)=\boldsymbol{C}(M / H) \underset{C(u)}{\otimes} \boldsymbol{C}(x)$.

3 Defining Equations of p-gonal Curves M with an Exact Sequence (*)

In this section, we give defining equations of M and representations of G according to each type of finite subgroups H of $\operatorname{Aut}\left(\boldsymbol{P}^{1}\right)$ classified by Klein [8].

Let $A=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in S L(2, C)$. As in the previous section, we also write A for the element $\{ \pm A\}$ in $S L(2, C) /\{ \pm 1\} \simeq \operatorname{Aut}\left(\boldsymbol{P}^{1}(x)\right)$ as long as there is no confusion. Although there are p distinct elements of G which induce $A \in H$, we also use the symbol A abusively for an element of G which induces $A \in H$. In order to determine the action of A^{*} on the function field $\boldsymbol{C}(x, y)$, it is sufficient to investigate $A^{*} y$.

Let $\tilde{\pi}: \boldsymbol{P}^{1}(x) \rightarrow \boldsymbol{P}^{1}(u)$ be a finite normal covering defined by a rational function $u=\frac{f_{1}(x)}{f_{0}(x)}$ with $\left(f_{0}, f_{1}\right)=1$, and let H be is its covering group. Put $\# H=s$. Take $\left(b_{0}: b_{1}\right) \in \boldsymbol{P}^{1}(u)$. Let $m \geq 1$ be the ramification index of $\tilde{\pi}$ over $\left(b_{0}: b_{1}\right)$. Then there are three types of factorizations of the polynomial

$$
\tilde{P}_{\left(b_{0}: b_{1}\right)}:=b_{0} f_{1}(x)-b_{1} f_{0}(x) .
$$

That is:

$$
\tilde{P}_{\left(b_{0}: b_{1}\right)}= \begin{cases}\left(\text { i) } C \prod_{i=1}^{t}\left(x-a_{i}\right)^{m}\right. & \text { with } t \geq 1 \text { and } m t=s \\ \text { (ii) } C \prod_{i=1}^{t-1}\left(x-a_{i}\right)^{m} & \text { with } t-1 \geq 1 \text { and } m t=s, \\ \text { (iii) } C, & \end{cases}
$$

where C is a non-zero constant. Type (i) (resp. (ii)) happens when $\tilde{\pi}(\infty) \neq\left(b_{0}: b_{1}\right)$ (resp. $\tilde{\pi}(\infty)=\left(b_{0}: b_{1}\right)$ and $\left.m<s\right)$. Type (iii) happens when $\tilde{\pi}(\infty)=\left(b_{0}: b_{1}\right)$ and $m=s$. Then H must be a cyclic group.

Define a polynomial $P_{\left(b_{0}: b_{1}\right)}$ and a positive integer $d_{\left(b_{0}: b_{1}\right)}$ as follows.
(i) $\quad P_{\left(b_{0}: b_{1}\right)}(x)=\prod_{i=1}^{t}\left(x-a_{i}\right), \quad d_{\left(b_{0}: b_{1}\right)}=t \quad$ if $\tilde{P}_{\left(b_{0}: b_{1}\right)}$ is of type (i),
(ii) $P_{\left(b_{0}: b_{1}\right)}(x)=\prod_{i=1}^{t-1}\left(x-a_{i}\right), \quad d_{\left(b_{0}: b_{1}\right)}=t \quad$ if $\tilde{P}_{\left(b_{0}: b_{1}\right)}$ is of type (ii),
(iii) $P_{\left(b_{0}: b_{1}\right)}(x)=1, \quad d_{\left(b_{0}: b_{1}\right)}=s$ if $\tilde{P}_{\left(b_{0}: b_{1}\right)}$ is of type (iii).

The following lemma comes form the consideration similar to that of the previous section.

Lemma 3.1. Let M be a cyclic p-gonal curve defined by (1) with $\# \mathscr{S}>2 p$ (therefore M has a unique g_{p}^{1}). Assume $\operatorname{Aut}(M) /\langle V\rangle$ contains the finite subgroup H above. Then there exists a finite set $\left\{\left(b_{0, i}: b_{1, i}\right) \mid 1 \leq i \leq r\right\}$ of distinct points in $\boldsymbol{P}^{1}(u)$, and M can be defined by

$$
\begin{gather*}
y^{p}=\prod_{i=1}^{r} P_{\left(b_{0, i}: b_{1, i}\right)}^{u_{i}}, \quad 1 \leq u_{i} \leq p-1, \tag{8}\\
\sum_{i=1}^{r} u_{i} d_{\left(b_{0, i}: b_{1, i}\right)} \equiv 0(\bmod p), \quad \# \mathscr{S}=\sum_{i=1}^{r} d_{\left(b_{0, i}: b_{1, i}\right)}>2 p .
\end{gather*}
$$

Moreover the number of $P_{\left(b_{0, i}, b_{1, i}\right)}$ of type (i) among $P_{\left(b_{0, i}, b_{1, i}\right)}(1 \leq i \leq r)$ is at least $(r-1)$. If there is a $P_{\left(b_{0, i}, b_{1, i}\right)}$ of type (iii), H is a cyclic group.

Next we introduce the results from F. Klein.

Lemma 3.2 ([8], [4]). Let $\tilde{\pi}: \boldsymbol{P}^{1}(x) \rightarrow \boldsymbol{P}^{1}(u)$ be a finite normal covering defined by a rational function $u=\frac{f_{1}(x)}{f_{0}(x)}$. Then the covering group H of $\tilde{\pi}$ is cyclic, dihedral, tetrahedral, octahedral or icosahedral. And, by choosing coordinates x and u suitably, $u=\frac{f_{1}(x)}{f_{0}(x)}$ and the generators of H can be represented as in Table 1 of Appendix.

Proposition 3.1. Let H be one of the groups in Table 1. Then the polynomials $P_{\left(b_{0}: b_{1}\right)}$ in each type of H are given in Table 2 of Appendix.

Proof. For example, when $H=\mathbf{A}_{4}$ and $u=\frac{\left(x^{4}-2 \sqrt{3} i x^{2}+1\right)^{3}}{\left(x^{4}+2 \sqrt{3} i x^{2}+1\right)^{3}}$,

$$
\tilde{P}_{(1: 1)}(x)=\left(x^{4}-2 \sqrt{3} i x^{2}+1\right)^{3}-\left(x^{4}+2 \sqrt{3} i x^{2}+1\right)^{3}=\left\{x\left(x^{4}-1\right)\right\}^{2}
$$

and $0, \pm 1, \pm i$ and ∞ are points over (1:1) with ramification index 2. Then $P_{(1: 1)}(x)=x\left(x^{4}-1\right)$ is of type (ii).

When $H=\mathbf{A}_{5}$ and $u=\frac{f_{1}(x)}{f_{0}(x)}=\frac{\left\{-x^{20}-1+228\left(x^{15}-x^{5}\right)-494 x^{10}\right\}^{3}}{1728 x^{5}\left(x^{10}+11 x^{5}-1\right)^{5}}$, we have

$$
\begin{aligned}
\tilde{P}_{(1: 1)} & \left.=\left\{-x^{20}-1+228\left(x^{15}-x^{5}\right)-494 x^{10}\right)\right\}^{3}-\left\{1728 x^{5}\left(x^{10}+11 x^{5}-1\right)\right\}^{5} \\
& =-\left(x^{30}+522 x^{25}-10005 x^{20}-10005 x^{10}-522 x^{5}+1\right)^{2},
\end{aligned}
$$

and $P_{(1: 1)}=x^{30}+522 x^{25}-10005 x^{20}-10005 x^{10}-522 x^{5}+1$ is of type (i). In any other cases, we can calculate by the same way as above.

By this proposition and Lemma 3.1, we can get defining equations of M with H of Table 1, and they are written in Theorem 3.1.

We can get the representation $A^{*} y$ for the generators A of H in Table 1, by letting A act on both sides of the defining equations of M directly. But, before practicing the calculation, we will make closer observations on the action of A.

Defintion 1. For $A=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in S L(2, C)$. Define $j(A, x):=\gamma x+\delta$ with a variable x on C. When $A \infty=\infty$ (i.e., $\gamma=0$), define $j(A, \infty):=j\left(D A D^{-1}, 0\right)=\alpha$, where $D=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. And when $A \infty \neq \infty$, define $j(A, \infty):=1$. Of course an automorphism of $\boldsymbol{P}^{1}(x)$ induced by a matrix A is also induced by $-A$, and $j(-A, x)=-j(A, x)$ for a variable x.

First we will write down several properties of $j(A, x)$.
Lemma 3.3. Let $A=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ and B be in $S L(2, C)$, and let x be a variable on C. Then
(i) $j(A B, x)=j(A, B x) j(B, x)$.
(ii) $\alpha-\gamma A(x)=j(A, x)^{-1}$.
(iii) $j(A, x) j\left(A^{-1}, A(x)\right)=1$.
(iv) Assume that the order of $A \in \operatorname{Aut}\left(\boldsymbol{P}^{1}\right)$ is l (i.e., l is the least positive integer satisfying $\left.A^{l}= \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)$. Take $a \in \boldsymbol{P}^{1}(x)$ such that $a \notin F P(\langle A\rangle)$.
(a) Assume $\infty \notin\langle A\rangle$ a. Then

$$
\prod_{i=1}^{l} j\left(A^{-1}, A^{i}(a)\right)=j\left(A^{l}, x\right)= \begin{cases}1 & \text { if } A^{l}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
-1 & \text { if } A^{l}=-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .\end{cases}
$$

(b) Assume $a=\infty$. Then $j\left(A^{-1}, A(a)\right)=0$ and

$$
\prod_{i=2}^{l} j\left(A^{-1}, A^{i}(a)\right)=-j\left(A^{l}, x\right)= \begin{cases}-1 & \text { if } A^{l}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
1 & \text { if } A^{l}=-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .\end{cases}
$$

(v) For $a \in F P(\langle A\rangle), j(A, a)=j\left(B A B^{-1}, B(a)\right)$.
(vi) Let $F P(\langle A\rangle)=\left\{a_{1}, a_{2}\right\}$. Then $j\left(A, a_{1}\right)$ and $j\left(A, a_{2}\right)$ are primitive l (resp. $2 l)$-th roots of 1 if $A^{l}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\right.$ resp. $-\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. And $j\left(A, a_{1}\right) j\left(A, a_{2}\right)=1$.

Proof. We can prove (i), (ii) and (iii) by simple calculations.
(iv) We will prove only (b). Assume $a=\infty$. As $\gamma \neq 0$ and $A(a)=\frac{\alpha}{\gamma}$, we have $j\left(A^{-2}, A(a)\right)=-1 \quad$ and $j\left(A^{-1}, A(a)\right)=0$. Since $j\left(A^{-1}, A^{i}(a)\right)=j\left(A^{i-2}, A(a)\right) /$ $j\left(A^{i-1}, A(a)\right)(2 \leq i \leq l-1)$ and $j\left(A^{-1}, A^{l}(a)\right)=j\left(A^{-1}, \infty\right)=1$ by the definition, we have

$$
\begin{aligned}
\prod_{i=2}^{l} j\left(A^{-1}, A^{i}(a)\right) & =\prod_{i=2}^{l-1} \frac{j\left(A^{i-2}, A(a)\right)}{j\left(A^{i-1}, A(a)\right)}=\frac{1}{j\left(A^{l-2}, A(a)\right)} \\
& =\frac{1}{j\left(A^{l}, A^{-2} A(a)\right) j\left(A^{-2}, A(a)\right)}=-\frac{1}{j\left(A^{l}, A^{-2}(a)\right)}=-j\left(A^{l}, x\right)
\end{aligned}
$$

(v) Since $A(a)=a$, the assertion comes from (i), (iii) and $j(A, \infty)=\alpha$.
(vi) By (v), we may assume $a_{1}=0, a_{2}=\infty$ and $A=\left(\begin{array}{cc}\varepsilon & 0 \\ 0 & e^{-1}\end{array}\right)$ where ε is a primitive l or $2 l$-th root of 1 . Then $j(A, 0)=\varepsilon^{-1}$ and $j(A, \infty)=\varepsilon$.

Let $A=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in H$. First we observe the action of A^{*} on polynomials $P_{\left(b_{0}: b_{1}\right)}$.
Lemma 3.4. Assume that $A \in \operatorname{Aut}\left(\boldsymbol{P}^{1}(x)\right)$ has an order l. Let $P_{\left(b_{0}: b_{1}\right)}$ be a polynomial of type (i) or (ii) above. Put $\mathscr{U}:=\left\{a_{1}, \ldots, a_{t}\right\}$ (resp. $\left\{a_{1}, \ldots, a_{t-1}, \infty\right\}$) when $P_{\left(b_{0}: b_{1}\right)}$ is of type (i) (resp. (ii)). Then A^{*} acts on $P_{\left(b_{0}: b_{1}\right)}$ in the following manner.
(I) If $\mathscr{U} \cap F P(\langle A\rangle)=\varnothing$, then $t \equiv 0(\bmod l)$ and

$$
A^{*}\left(P_{\left(b_{0}: b_{1}\right)}(x)\right)=P_{\left(b_{0}: b_{1}\right)}(A(x))=j(A, x)^{-t} j\left(A^{l}, x\right)^{t / l} P_{\left(b_{0}: b_{1}\right)}(x)
$$

(II) If $\mathscr{U} \cap F P(\langle A\rangle)$ consists of one fixed point $c \in \boldsymbol{P}^{1}(x)$ of A, then $t-1 \equiv 0(\bmod l)$ and

$$
A^{*}\left(P_{\left(b_{0}: b_{1}\right)}(x)\right)=j\left(A^{-1}, c\right) j(A, x)^{-t} j\left(A^{l}, x\right)^{(t-1) / l} P_{\left(b_{0}: b_{1}\right)}(x)
$$

(III) If $\mathscr{U} \cap F P(\langle A\rangle)$ consists of two points c, c^{\prime} of A, then $t-2 \equiv 0(\bmod l)$, and

$$
A^{*}\left(P_{\left(b_{0}: b_{1}\right)}(x)\right)=j(A, x)^{-t} j\left(A^{l}, x\right)^{(t-2) / l} P_{\left(b_{0}: b_{1}\right)}(x)
$$

These representations are independent from the choice of matrix A or $-A$.

Proof. (I) Assume $\mathscr{U} \ni \infty$ (i.e., $P_{\left(b_{0}: b_{1}\right)}$ is of type (ii)). Let

$$
\mathscr{U}=\left\{\infty, A(\infty), \ldots, A^{l-1}(\infty)\right\} \cup\left(\bigcup_{k=2}^{r}\langle A\rangle c_{k}\right)
$$

be the decomposition of \mathscr{U} into the orbits of $\langle A\rangle$. Then $\operatorname{lr}=t, \gamma \neq 0$ and

$$
P_{\left(b_{0}: b_{1}\right)}(x)=\prod_{i=1}^{l-1}\left(x-A^{i}(\infty)\right) \prod_{k=2}^{r} \prod_{i=1}^{l}\left(x-A^{i}\left(c_{k}\right)\right)
$$

By acting A^{*} on both sides of this equation, we have

$$
A^{*}\left(P_{\left(b_{0}: b_{1}\right)}(x)\right)=\underbrace{\prod_{i=1}^{l-1}\left(\frac{\alpha x+\beta}{\gamma x+\delta}-A^{i}(\infty)\right)}_{(A)} \underbrace{\prod_{k=2}^{r} \prod_{i=1}^{l}\left(\frac{\alpha x+\beta}{\gamma x+\delta}-A^{i}\left(c_{k}\right)\right)}_{(B)} .
$$

Since $A(\infty)=\frac{\alpha}{\gamma}$ and $-\gamma A(\infty)+\alpha=0$,
the $\operatorname{term}(A)=j(A, x)^{-(l-1)} \prod_{i=1}^{l-1}\left\{\left(-\gamma A^{i}(\infty)+\alpha\right) x-\left(\delta A^{i}(\infty)-\beta\right)\right\}$

$$
\begin{align*}
= & j(A, x)^{-(l-1)}\left(-\delta \frac{\alpha}{\gamma}+\beta\right) \prod_{i=2}^{l-1}\left\{\left(-\gamma A^{i}(\infty)+\alpha\right) x-\left(\delta A^{i}(\infty)-\beta\right)\right\} \\
= & j(A, x)^{-(l-1)}\left(-\delta \frac{\alpha}{\gamma}+\beta\right) \prod_{i=2}^{l} j\left(A^{-1}, A^{i}(\infty)\right) \\
& \times \prod_{i=2}^{l-1}\left\{x-\frac{\left(\delta A^{i}(\infty)-\beta\right)}{\left(-\gamma A^{i}(\infty)+\alpha\right)}\right\} \\
= & j(A, x)^{-(l-1)}\left(-\delta \frac{\alpha}{\gamma}+\beta\right)\left(-j\left(A^{l}, x\right)\right) \prod_{i=2}^{l-1}\left\{x-A^{i-1}(\infty)\right\} .
\end{align*}
$$

The last equality comes from Lemma 3.1 iv) (b). On the other hand, by Lemma 3.1 iv) (a),

$$
\begin{equation*}
\text { the term }(B)=j(A, x)^{-l(r-1)} j\left(A^{l}, x\right)^{(r-1)} \prod_{k=2}^{r} \prod_{i=1}^{l}\left(x-A^{i-1}\left(c_{k}\right)\right) \tag{**}
\end{equation*}
$$

By multiplying (\star) and ($\star \star$), we have

$$
\begin{aligned}
A^{*}\left(P_{\left(b_{0}: b_{1}\right)}(x)\right)= & j(A, x)^{-(t-1)}\left(-\delta \frac{\alpha}{\gamma}+\beta\right)\left(-j\left(A^{l}, x\right)^{r}\right) \\
& \times \prod_{i=2}^{l-1}\left(x-A^{i-1}(\infty)\right) \prod_{k=2}^{r} \prod_{i=1}^{l}\left(x-A^{i-1}\left(c_{k}\right)\right)
\end{aligned}
$$

Moreover, by $\alpha \delta-\beta \gamma=1$ and $\left(x-A^{l-1}(\infty)\right)^{-1}=\gamma j(A, x)^{-1}$, we have

$$
\begin{aligned}
A^{*}\left(P_{\left(b_{0}: b_{1}\right)}(x)\right)= & j(A, x)^{-(t-1)}\left(-\delta \frac{\alpha}{\gamma}+\beta\right)\left(-j\left(A^{l}, x\right)^{r}\right)\left(x-A^{l-1}(\infty)\right)^{-1} \\
& \times \prod_{i=2}^{l}\left(x-A^{i-1}(\infty)\right) \prod_{k=2}^{r} \prod_{i=1}^{l}\left(x-A^{i-1}\left(c_{k}\right)\right) \\
= & j(A, x)^{-t} j\left(A^{l}, x\right)^{r} P_{\left(b_{0}: b_{1}\right)} .
\end{aligned}
$$

In case $\infty \notin \mathscr{U}$, the calculation is much easier than the case above.
(II) Let $\mathscr{U}=\{c\} \cup\left(\bigcup_{k=1}^{r}\langle A\rangle c_{k}\right)(t=l r+1)$ be the decomposition of \mathscr{U} into the orbits of $\langle A\rangle$. There are three cases
i) $c \neq \infty$ and $c_{k} \neq \infty(k=1, \ldots, r)$, ii) $c=\infty$, iii) $c_{k}=\infty$ for some k, to be considered respectively. But the calculations can be carried out by the same way as in (I), and then we omit the details.
(III) Let $\mathscr{U}=\{c\} \cup\left\{c^{\prime}\right\} \cup\left(\bigcup_{k=1}^{r}\langle A\rangle c_{k}\right)(t=l r+2)$ be the decomposition of \mathscr{U} into the orbits of $\langle A\rangle$. And we have

$$
A^{*}\left(P_{\left(b_{0}: b_{1}\right)}(x)\right)=j\left(A^{-1}, c\right) j\left(A^{-1}, c^{\prime}\right) j(A, x)^{-t} j\left(A^{l}, x\right)^{(t-2) / l} P_{\left(b_{0}: b_{1}\right)}(x)
$$

By Lemma 3.1 (vi), we have the equality of III.

The following theorem is from these lemmas above. In this theorem we use the symbols $\prod_{i=m}^{m-1}$ and $\sum_{i=m}^{m-1}$ as

$$
\prod_{i=m}^{m-1} *:=1 \quad \text { and } \quad \sum_{i=m}^{m-1} *:=0 \quad \text { for an positive integer } m
$$

Theorem 3.1. Let H be one of the groups in Table 1. Let M be a cyclic p-gonal curve with $\# \mathscr{S}\rangle 2 p$. Assume $\operatorname{Aut}(M) /\langle V\rangle$ contains H. Then the defining equation of M and $A^{*} y$ for the generators $A \in H$ of Table 1 are given as follows.
(Case $\left.H=\mathbf{C}_{n}\right) . \quad M$ is defined by

$$
\begin{gather*}
y^{p}=P_{(0: 1)}^{u_{1}} P_{(1: 0)}^{u_{2}} \prod_{i=3}^{d} P_{\left(1: b_{i}\right)}^{u_{i}}=x^{u_{2}} \prod_{i=3}^{d}\left(x^{n}-b_{i}\right)^{u_{i}}, \tag{9}\\
\# \mathscr{S}=\varepsilon_{1}+\varepsilon_{2}+n \sum_{i=3}^{d} 1, \quad u_{1}+u_{2}+n \sum_{i=3}^{d} u_{i} \equiv 0(\bmod p),
\end{gather*}
$$

where $0 \leq u_{1}, u_{2}<p, 0<u_{i}<p(i \geq 3), b_{i} \neq 0$, and put $\varepsilon_{k}=1\left(\right.$ resp. $\left.\varepsilon_{k}=0\right)$ if $u_{k}>0\left(\right.$ resp. $\left.u_{k}=0\right)(k=1,2)$. In this case $d \geq 3$ since $\# \mathscr{S}>2 p \geq 4$.

For the generator S_{n} of \mathbf{C}_{n},

- $S_{n}^{*} y=\eta_{S_{n}} y$, where $\left(\eta_{S_{n}}\right)^{p}=\zeta_{n}^{u_{2}}$.
(Case $H=\mathbf{D}_{2 n}$). $\quad M$ is defined by

$$
\begin{gather*}
y^{p}=P_{(1: 2)}^{u_{1}} P_{(1:-2)}^{u_{2}} P_{(0: 1)}^{u_{3}} \prod_{i=4}^{d} P_{\left(1: b_{i}\right)}^{u_{i}} \\
=\left(x^{n}-1\right)^{u_{1}}\left(x^{n}+1\right)^{u_{2}} x^{u_{3}} \prod_{i=4}^{d}\left(x^{2 n}-b_{i} x^{n}+1\right)^{u_{i}} \tag{10}\\
\# S=n \varepsilon_{1}+n \varepsilon_{2}+2 \varepsilon_{3}+2 n \sum_{i=4}^{d} 1, \quad n u_{1}+n u_{2}+2 u_{3}+2 n \sum_{i=4}^{d} u_{i} \equiv 0(\bmod p)
\end{gather*}
$$

where $d \geq 3$ (according to the notation above), $0 \leq u_{1}, u_{2}, u_{3}<p$, and $0<u_{i}<p(i \geq 4), b_{i} \neq \pm 2$, and put $\varepsilon_{k}=1\left(\right.$ resp. $\left.\varepsilon_{k}=0\right)$ if $u_{k}>0\left(\right.$ resp. $\left.u_{k}=0\right)$ ($k=1,2,3$).

For the generators S_{n} and T of $\mathbf{D}_{2 n}$,

- $S_{n}^{*} y=\eta_{S_{n}} y \quad$ where $\left(\eta_{S_{n}}\right)^{p}=\zeta_{n}^{u_{3}}$
- $T^{*} y=\eta_{T} x^{-\left(n u_{1}+n u_{2}+2 u_{3}+2 n \sum_{i=4}^{d} u_{i}\right) / p} y$, where $\left(\eta_{T}\right)^{p}=(-1)^{u_{1}}$
(Case $H=\mathbf{A}_{4}$). $\quad M$ is defined by

$$
\begin{align*}
& y^{p}= P_{(1: 0)}^{u_{1}} P_{(1: 1)}^{u_{2}} P_{(0: 1)}^{u_{3}} \prod_{i=4}^{d} P_{\left(1: b_{i}\right)}^{u_{i}} \\
&=\left(x^{4}-2 \sqrt{3} i x^{2}+1\right)^{u_{1}}\left\{x\left(x^{4}-1\right)\right\}^{u_{2}}\left(x^{4}+2 \sqrt{3} i x^{2}+1\right)^{u_{3}} \\
& \times \prod_{i=4}^{d} \frac{1}{1-b_{i}}\left\{\left(x^{4}-2 \sqrt{3} i x^{2}+1\right)^{3}-b_{i}\left(x^{4}+2 \sqrt{3} i x^{2}+1\right)^{3}\right\}^{u_{i}}, \tag{11}\\
& \# \mathscr{S}=4 \varepsilon_{1}+6 \varepsilon_{2}+4 \varepsilon_{3}+12 \sum_{i=4}^{d} 1, \quad 4 u_{1}+6 u_{2}+4 u_{3}+12 \sum_{i=4}^{d} u_{i} \equiv 0(\bmod p),
\end{align*}
$$

where $d \geq 3,0 \leq u_{1}, u_{2}, u_{3}<p, 0<u_{i}<p(i \geq 4), b_{i} \neq 0,1$, and put $\varepsilon_{k}=1$ (resp. $\left.\varepsilon_{k}=0\right)$ if $u_{k}>0\left(r e s p . u_{k}=0\right)(k=1,2,3)$.

For the generators U, W of \mathbf{A}_{4},

$$
\begin{aligned}
& \cdot U^{*} y=\eta_{U}\left\{\frac{1-i}{2}(x+1)\right\}^{\left(-4 u_{1}-6 u_{2}-4 u_{3}-12 \sum_{i=4}^{d} u_{i} / p\right.} y, \\
& \text { where }\left(\eta_{U}\right)^{p}=(-1)^{u_{2}+u_{3}} \exp \left(\frac{1}{3} \pi i\right)^{u_{2}} \exp \left(\frac{5}{3} \pi i\right)^{u_{3}} .
\end{aligned}
$$

- $W^{*} y=\eta_{W}\left\{\frac{1+i}{2}(x+i)\right\}^{\left(-4 u_{1}-6 u_{2}-4 u_{3}-12 \sum_{i=4}^{d} u_{i}\right) / p} y$, where $\left(\eta_{W}\right)^{p}=\exp \left(\frac{2}{3} \pi i\right)^{u_{2}} \exp \left(\frac{4}{3} \pi i\right)^{u_{3}}$.
(Case $\left.H=\mathbf{S}_{4}\right) . \quad M$ is defined by

$$
\begin{gather*}
y^{p}=P_{(1: 0)}^{u_{1}} P_{(1: 1)}^{u_{2}} P_{(0: 1)}^{u_{3}} \prod_{i=4}^{d} P_{\left(1: b_{i}\right)}^{u_{i}} \\
= \\
\left(x^{8}+14 x^{4}+1\right)^{u_{1}}\left(x^{12}-33 x^{8}-33 x^{4}+1\right)^{u_{2}}\left\{x\left(x^{4}-1\right)\right\}^{u_{3}} \tag{12}\\
\\
\times \prod_{i=4}^{d}\left\{\left(x^{8}+14 x^{4}+1\right)^{3}-108 b_{i}\left(x^{4}\left(x^{4}-1\right)^{4}\right)\right\}^{u_{i}}, \\
\# \mathscr{S}=8 \varepsilon_{1}+12 \varepsilon_{2}+6 \varepsilon_{3}+24 \sum_{i=4}^{d} 1, \quad 8 u_{1}+12 u_{2}+6 u_{3}+24 \sum_{i=4}^{d} u_{i} \equiv 0(\bmod p)
\end{gather*}
$$

where $d \geq 3,0 \leq u_{1}, u_{2}, u_{3}<p, 0<u_{i}<p(i \geq 4), b_{i} \neq 0,1$ and put $\varepsilon_{k}=1$ (resp. $\left.\varepsilon_{k}=0\right)$ if $u_{k}>0\left(\right.$ resp. $\left.u_{k}=0\right)(k=1,2,3)$.

For the generators W, R of \mathbf{S}_{4},

$$
\begin{array}{ll}
\text { - } W^{*} y=\eta_{W}\left\{\frac{1+i}{2}\right\}^{\left(-8 u_{1}-12 u_{2}-6 u_{3}-24 \sum_{i=4}^{n} u_{i}\right) / p}(x+i)^{\left(-8 u_{1}-12 u_{2}-6 u_{3}-24 \sum_{i=4}^{n} u_{i}\right) / p} y, \\
\text { - } \quad R^{*} y=\eta_{R} x^{-\left(8 u_{1}+12 u_{2}+6 u_{3}+24 \sum_{i=4}^{n} u_{i}\right) / p} y, & \text { where }\left(\eta_{W}\right)^{p}=1 .
\end{array}
$$

(Case $\left.H=\mathbf{A}_{5}\right) . \quad M$ is defined by

$$
\begin{align*}
y^{p}= & P_{(1: 0)}^{u_{1}} P_{(1: 1)}^{u_{2}} P_{(0: 1)}^{u_{3}} \prod_{i=4}^{d} P_{\left(1: b_{i}\right)}^{u_{i}} \\
= & \left\{x^{20}+1-228\left(x^{15}-x^{5}\right)+494 x^{10}\right\}^{u_{1}} \\
& \times\left\{x^{30}+522 x^{25}-10005 x^{20}-10005 x^{10}-522 x^{5}+1\right\}^{u_{2}}\left\{x\left(x^{10}+11 x^{5}-1\right)\right\}^{u_{3}} \\
& \times \prod_{i=4}^{t}\left[\left\{x^{20}+1-228\left(x^{15}-x^{5}\right)+494 x^{10}\right\}^{3}\right. \\
& \left.\quad+1728 b_{i} x^{5}\left(x^{10}+11 x^{5}-1\right)^{5}\right]^{u_{i}} \tag{13}
\end{align*}
$$

$\# \mathscr{S}=20 \varepsilon_{1}+30 \varepsilon_{2}+12 \varepsilon_{3}+60 \sum_{i=4}^{d} 1, \quad 20 u_{1}+30 u_{2}+12 u_{3}+60 \sum_{i=4}^{t} u_{i} \equiv 0(\bmod p)$,
where $d \geq 3,0 \leq u_{1}, u_{2}, u_{3}<p, 0<u_{i}<p(i \geq 4), b_{i} \neq 0,1$, and put $\varepsilon_{k}=1$ (resp. $\left.\varepsilon_{k}=0\right)$ if $u_{k}>0$ (resp. $\left.u_{k}=0\right)(k=1,2,3)$.

For the generators K, Z of \mathbf{A}_{5},

$$
\begin{array}{lr}
\text { - } K^{*} y=\eta_{K}\left[\frac{1}{\sqrt{5}}\left\{\left(1-\zeta_{5}^{2}\right) x+\left(\zeta_{5}-\zeta_{5}^{2}\right)\right\}\right]^{\left(-20 u_{1}-30 u_{2}-12 u_{3}-60 \sum_{i=4}^{n} u_{i}\right) / p} y \\
\text { - } Z^{*} y=\eta_{Z} y, & \text { where }\left(\eta_{K}\right)^{p}=1 \\
\text { where }\left(\eta_{Z}\right)^{p}=\zeta_{5}^{u_{3}}
\end{array}
$$

Proof. Here we only deal with several cases as examples.
Case $H=\mathbf{A}_{4}$. Let M be defined by $y^{p}=P_{(1: 0)}^{u_{1}} P_{(1: 1)}^{u_{2}} P_{(0: 1)}^{u_{3}} \prod_{i=4}^{d} P_{\left(1: b_{i}\right)}^{u_{i_{i}}}$, where $P_{\left(b_{0}: b_{1}\right)}$ are as in Table 2. Let A be $U=\frac{1-i}{2}\left(\begin{array}{cc}i & -i \\ 1 & 1\end{array}\right)$ (resp. $W=\frac{1+i}{2}\left(\begin{array}{cc}-1 & i \\ 1 & i\end{array}\right)$. Then

$$
\left\{\begin{array}{l}
A^{3}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\left(\text { resp. }\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right), \quad j\left(A^{3}, x\right)=-1 \text { (resp. 1) } \\
j(A, x)=\frac{1-i}{2}(x+1)\left(\text { resp. } \frac{1+i}{2}(x+i)\right)
\end{array}\right.
$$

Two fixed points a_{1}, a_{2} of $A=U$ (resp. W) are
(h) $\left\{\begin{aligned} & a_{1}=\frac{(-1+\sqrt{3})(1-i)}{2}\left(\text { resp. } \frac{(-1-\sqrt{3})(1+i)}{2}\right), j\left(A^{-1}, a_{1}\right)=\exp \left(\frac{1}{3} \pi i\right) \\ &\left.\text { (resp. } \exp \left(\frac{2}{3} \pi i\right)\right), \\ & a_{2}=\frac{(-1-\sqrt{3})(1-i)}{2}\left(\text { resp. } \frac{(-1+\sqrt{3})(1+i)}{2}\right), j\left(A^{-1}, a_{2}\right)=\exp \left(\frac{5}{3} \pi i\right) \\ &\left.\text { (resp. } \exp \left(\frac{4}{3} \pi i\right)\right) .\end{aligned}\right.$
and we have $P_{(1: 0)}\left(a_{1}\right)=0$ and $P_{(0: 1)}\left(a_{2}\right)=0$.
In case $A=U$, by Lemma 3.2, we have

$$
\left\{\begin{aligned}
U^{*} P_{(1: 0)} & =j\left(U^{-1}, a_{1}\right) j(U, x)^{-4} j\left(U^{3}, x\right) P_{(1: 0)} \\
& =\exp \left(\frac{1}{3} \pi i\right)\left\{\frac{1-i}{2}(x+1)\right\}^{-4}(-1) P_{(1: 0)} \\
U^{*} P_{(1: 1)} & =j(U, x)^{-6} j\left(U^{-3}, x\right)^{2} P_{(1: 1)}=\left\{\frac{1-i}{2}(x+1)\right\}^{-6}(-1)^{2} P_{(1: 1)} \\
U^{*} P_{(0: 1)} & =j\left(U^{-1}, a_{2}\right) j(U, x)^{-4} j\left(U^{3}, x\right) P_{(0: 1)} \\
& =\exp \left(\frac{5}{3} \pi i\right)\left\{\frac{1-i}{2}(x+1)\right\}^{-4}(-1) P_{(0: 1)} \\
U^{*} P_{\left(1: b_{i}\right)} & =j(U, x)^{-12} j\left(U^{3}, x\right)^{4} P_{\left(1: b_{i}\right)} \\
& =\left\{\frac{1-i}{2}(x+1)\right\}^{-12}(-1)^{4} P_{\left(1: b_{i}\right)} \quad\left(b_{i} \neq 0,1\right)
\end{aligned}\right.
$$

Then

$$
\begin{align*}
U^{*} y^{p}= & (-1)^{u_{1}+u_{3}} \exp \left(\frac{1}{3} \pi i\right)^{u_{1}} \exp \left(\frac{5}{3} \pi i\right)^{u_{3}} \\
& \times\left\{\frac{1-i}{2}(x+1)\right\}^{\left(-4 u_{1}-6 u_{2}-4 u_{3}-12 \sum_{i=4}^{n} u_{i}\right)} y, \tag{14}
\end{align*}
$$

and

$$
U^{*} y=\eta\left\{\frac{1-i}{2}(x+1)\right\}^{\left(-4 u_{1}-6 u_{2}-4 u_{3}-12 \sum_{i=4}^{n} u_{i}\right) / p} y
$$

where η satisfies $\eta^{p}=(-1)^{u_{1}+u_{3}} \exp \left(\frac{1}{3} \pi i\right)^{u_{1}} \exp \left(\frac{5}{3} \pi i\right)^{u_{3}}$.
We can calculate $W^{*} y$ by the same way as above.
Case $H=\mathbf{S}_{4} . \quad H$ is generated by W and R. The fixed points $\frac{(-1 \pm \sqrt{3})(1+i)}{2}$ of W are zeros of $P_{(1: 0)}$. Then, by Lemma 3.2 (III), we get the representation of $W^{*} y$.

Case $H=\mathbf{A}_{5}$. We may assume that M is defined by $y^{p}=$ $P_{(1: 0)}^{u_{1}} P_{(1: 1)}^{u_{2}} P_{(0: 1)}^{n_{3}} \prod_{i=4}^{d} P_{\left(1: b_{i}\right)}^{u_{i}}, 20 u_{1}+30 u_{2}+12 u_{3}+60 \sum_{i=2}^{d} u_{i} \equiv 0(\bmod p)$. Assume $A=K$. Then $K^{3}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ and $j\left(K^{3}, x\right)=-1$. Let a_{1} and a_{2} be fixed points of K. As $\operatorname{deg} P_{(1: 0)}=20 \equiv 2(\bmod 3), a_{1}$ and a_{2} are roots of $P_{(1: 0)}$. Then we can apply Lemma 3.2 (III) to $P_{(1: 0)}$, and we have

$$
\begin{aligned}
K^{*} y^{p} & =j(K, x)^{\left(-20 u_{1}-30 u_{2}-12 u_{3}-60 \sum_{i=4}^{n} u_{i}\right)} j\left(K^{3}, x\right)^{\left(6 u_{1}+10 u_{2}+4 u_{3}+20 \sum_{i=4}^{n} u_{i}\right)} y^{p} \\
& =\left\{\frac{1}{\sqrt{5}}\left(\left(1-\zeta_{5}^{2}\right) x+\left(\zeta_{5}-\zeta_{5}^{2}\right)\right)\right\}^{\left(-20 u_{1}-30 u_{2}-12 u_{3}-60 \sum_{i=4}^{n} u_{i}\right)} y^{p}
\end{aligned}
$$

Here we give several examples of defining equations of cyclic p-gonal curves having a split exact sequence (*).

Corollary 3.1.1. Let M be a p-gonal curve defined by

$$
\begin{gathered}
y^{p}=\left(x^{n}-1\right)^{u_{1}}\left(x^{n}+1\right)^{u_{2}} x^{u_{3}} \prod_{i=4}^{d}\left(x^{2 n}-b_{i} x^{n}+1\right)^{u_{i}}, \\
n u_{1}+n u_{2}+2 u_{3}+2 n \sum_{i=4}^{d} u_{i} \equiv 0(\bmod p),
\end{gathered}
$$

where $d \geq 3$ and $0 \leq u_{i}<p\left(1 \leq i \leq 3, b_{i} \neq \pm 2\right)$. Then $\operatorname{Aut}(M) /\langle V\rangle$ contains $H=\mathbf{D}_{2 n}$. Moreover the exact sequence (*) is split if and only if the prime number p is taken according to the following way. That is; take a prime number p such that $(p, 2)=1$ in case $u_{3} \neq 0,(p, n)=1$ in case $u_{1} \neq 0$ or $u_{2} \neq 0$ and any prime p in case $u_{1}=u_{2}=u_{3}=0$. And a map $\imath: H \rightarrow G$ defined by

$$
\begin{gathered}
S_{n} \mapsto\left\{S_{n}^{*} x=\zeta_{n} x, S_{n}^{*} y=\zeta_{n}^{r u_{3}} y\right\}, \\
T \mapsto\left\{T^{*} x=1 / x, T^{*} y=(-\dot{1})^{u_{1}} x^{-\left(n u_{1}+n u_{2}+2 u_{3}+2 n \sum_{i=1}^{d} u_{i}\right) / p} y\right\}
\end{gathered}
$$

gives a section of (*), where r is an integer satisfying $r p \equiv 1(\bmod n)$.

Proof. The first half of our assertion is from Theorem 3.1 and Theorem 2.1.

Here we only check that the given map $t: H \rightarrow G$ is a section in case $(2 p, n)=1$ and $u_{1} u_{2} u_{3} \neq 0$. In Theorem 3.1 (Case $H=\mathbf{D}_{2 n}$), put $\eta_{T}=(-1)^{u_{1}}$ and $\eta_{S_{n}}=\zeta_{n}^{r u_{3}}$ with an integer r satisfying $r p \equiv 1(\bmod n)$. Then $\left(\eta_{S_{n}}\right)^{p}=\left(\zeta_{n}\right)^{u_{3}}$, $\left(\eta_{T}\right)^{p}=(-1)^{u_{1}}$. Meanwhile $\mathbf{D}_{2 n}$ is defined by relations $S_{n}^{n}=1, T^{2}=1$ and $T S_{n} T=S_{n}^{-1}$. But $\left(S_{n}^{*}\right)^{n} y=\eta_{S_{n}}^{n} y=y$ and $\left(T^{*}\right)^{2} y=\eta_{T}^{2} y=y$ hold. Therefore if $T^{*} S_{n}^{*} T^{*} y=S_{n}^{*-1} y$ holds, then l is a group homomorphism. In fact, by the definiton of l,

$$
\begin{aligned}
T^{*} S_{n}^{*} T^{*} y & =T^{*} S_{n}^{*}\left(\eta_{T} x^{-\left(n u_{1}+n u_{2}+2 u_{3}+2 n \sum_{i=4}^{d} u_{i}\right) / p} y\right) \\
& =T^{*}\left(\eta_{T} \eta_{S_{n}}\left(\zeta_{n} x\right)^{-\left(n u_{1}+n u_{2}+2 u_{3}+2 n \sum_{i=4}^{d} u_{i}\right) / p} y\right) \\
& =\left(\eta_{T}\right)^{2} \eta_{S_{n}}\left(\zeta_{n}\right)^{-\left(n u_{1}+n u_{2}+2 u_{3}+2 n \sum_{i=4}^{d} u_{i}\right) / p} y \\
& =\left((-1)^{u_{1}}\right)^{2} \zeta_{n}^{r u_{3}}\left(\zeta_{n}\right)^{\left\{-\left(n u_{1}+n u_{2}+2 u_{3}+2 n \sum_{i=4}^{d} u_{i}\right) / p\right\} p r} y \\
& =\zeta_{n}^{-r u_{3}} y .
\end{aligned}
$$

Then $T^{*} S_{n}^{*} T^{*} y=S_{n}^{*-1} y$ holds. The equation $\pi \circ \imath=i d_{H}$ is trivial from the definiton.

Corollary 3.1.2. (1) The compact Riemann surface M defined by the following equations (14) or (15) has $\operatorname{Aut}(M)$ isomorphic to $\mathbf{A}_{5} \times\langle V\rangle$.

$$
\begin{array}{ll}
y^{p}=x^{20}+1-228\left(x^{15}-x^{5}\right)+494 x^{10} & (p=2,5) . \\
y^{p}=x\left(x^{10}+11 x^{5}-1\right) & (p=2,3) \tag{16}
\end{array}
$$

(2) The compact Riemann surface M defined by

$$
\begin{equation*}
y^{p}=x^{30}+522 x^{25}-10005 x^{20}-10005 x^{10}-522 x^{5}+1 \quad(p=2,3,5) \tag{17}
\end{equation*}
$$

satisfies $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{A}_{5}$. Moreover $\operatorname{Aut}(M) \simeq \mathbf{A}_{5} \times\langle V\rangle$ provided $p=3,5$. But when $p=2$, the exact sequence (*) is not split.

Proof. The right hand side of (14) is $P_{(1: 0)}$ of A_{5} in Table 2. Then, by Theorem 3.1, $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{A}_{5}$ if $20 \equiv 0(\bmod p)$. So $p=2$ or 5 . Moreover if a is a root of $P_{(1: 0)}=0$, then $\# F G(a)=3$. Therefore the exact sequence $(*)$ is split by Theorem 2.1. The remains of the assertion can be proved by the same manner.

4 Hyperelliptic Curves of Genus 2 with an Exact Sequence (*)

In this section, we assume that M is a hyperelliptic curve (i.e., $p=2$) of genus $g=2$. By applying the results in the previous sections, we will determine all possible types of $\operatorname{Aut}(M) /\langle V\rangle$ and their standard defining equations of M. We start with the following proposition.

Proposition 4.1. Let M be a hyperelliptic curve of genus $g=2$. Let H be a subgroup of $\operatorname{Aut}(M) /\langle V\rangle$, and we consider the exact sequence (*).

Then H is isomorphic to $\mathbf{C}_{n}(n=2,3,4,5,6), \mathbf{D}_{2 n}(n=2,3,4,6), \mathbf{A}_{4}$ or \mathbf{S}_{4}. And according to each type of H, we can get a standard defining equation of M as in the following list.

$H=\langle$ generators \rangle	defining equation of M	$(*)$ is split (S) or not split $(N S)$
$\mathbf{C}_{2}=\left\langle S_{2}\right\rangle$	$y^{2}=\left(x^{2}-1\right)\left(x^{2}-a^{2}\right)\left(x^{2}-b^{2}\right)$	S
$\mathbf{C}_{2}=\left\langle S_{2}\right\rangle$	$y^{2}=x\left(x^{2}-1\right)\left(x^{2}-a^{2}\right)$	$N S$
$\mathbf{D}_{4}=\left\langle S_{2}, \bar{T}\right\rangle$	$y^{2}=x\left(x^{2}-1\right)\left(x^{2}-a^{2}\right)$	$N S$
$\mathbf{C}_{3}=\left\langle S_{3}\right\rangle$	$y^{2}=\left(x^{3}-1\right)\left(x^{3}-a^{3}\right)$	S
$\mathbf{D}_{6}=\left\langle S_{3}, \bar{T}\right\rangle$	$y^{2}=\left(x^{3}-1\right)\left(x^{3}-a^{3}\right)$	S
$\mathbf{C}_{4}=\left\langle S_{4}\right\rangle$	$y^{2}=x\left(x^{4}-1\right)$	$N S$
$\mathbf{D}_{8}=\left\langle S_{4}, T\right\rangle$	$y^{2}=x\left(x^{4}-1\right)$	$N S$
$\mathbf{A}_{4}=\langle U, W\rangle$	$y^{2}=x\left(x^{4}-1\right)$	$N S$
$\mathbf{S}_{4}=\langle W, R\rangle$	$y^{2}=x\left(x^{4}-1\right)$	$N S$
$\mathbf{C}_{5}=\left\langle S_{5}\right\rangle$	$y^{2}=x\left(x^{5}-1\right)$	
$\mathbf{C}_{6}=\left\langle S_{6}\right\rangle$	$y^{2}=\left(x^{6}-1\right)$	birational $y^{2}=x^{5}-1$
$\mathbf{D}_{12}=\left\langle S_{6}, T\right\rangle$	$y^{2}=\left(x^{6}-1\right)$	S

where the symbols S_{n}, T, U, W and R are defined in Appendix, and \bar{T} is defined by $\bar{T}(x)=\frac{a}{x}$.

In particular
and

$$
\begin{array}{llll}
\mathbf{C}_{4} \subset \operatorname{Aut}(M) /\langle V\rangle & \text { if and only if } & \mathbf{S}_{4}=\operatorname{Aut}(M) /\langle V\rangle, \\
\mathbf{C}_{6} \subset \operatorname{Aut}(M) /\langle V\rangle & \text { if and only if } & \mathbf{D}_{12}=\operatorname{Aut}(M) /\langle V\rangle, \\
\mathbf{C}_{3} \subset \operatorname{Aut}(M) /\langle V\rangle & \text { if and only if } & \mathbf{D}_{6} \subset \operatorname{Aut}(M) /\langle V\rangle, \\
\left\{\begin{array}{lll}
\mathbf{C}_{2} \subset \operatorname{Aut}(M) /\langle V\rangle \\
\text { and }(*) \text { is NS } & \text { if and only if } & \mathbf{D}_{4} \subset \operatorname{Aut}(M) /\langle V\rangle .
\end{array}\right.
\end{array}
$$

Proof. H is isomorphic to $\mathbf{C}_{n}, \mathbf{D}_{2 n}, \mathbf{A}_{4}, \mathbf{S}_{4}$ or \mathbf{A}_{5}. But, for $g=2, M$ is defined by $y^{2}=\left(x-a_{1}\right) \cdots\left(x-a_{s}\right)$ with $s=5$ or 6 , and then $H=$ $\mathbf{S}_{4}, \mathbf{A}_{4}, \mathbf{D}_{2 n}, \mathbf{C}_{n}(n \leq 6)$ are the only groups which are possibly contained in $\operatorname{Aut}(M) /\langle V\rangle$.

Assume $\operatorname{Aut}(M) /\langle V\rangle \supset H=\mathbf{C}_{n}$ with $n \leq 6$. We may assume that \mathbf{C}_{n} is generated by the automorphism S_{n} defined by $S_{n}^{*} x=\zeta_{n} x$ and the set \mathscr{S} defined in $\S 1$ contains 1. For example, assume $\operatorname{Aut}(M) /\langle V\rangle \supset \mathbf{C}_{2}$. Then the decomposition of \mathscr{S} into orbits by \mathbf{C}_{2} may assume to be $\mathscr{S}=\{ \pm 1\} \cup\{ \pm a\} \cup\{ \pm b\}$ or $\mathscr{S}=\{\infty\} \cup$ $\{0\} \cup\{ \pm 1\} \cup\{ \pm a\}$. Therefore M is defined by $y^{2}=\left(x^{2}-1\right)\left(x^{2}-a^{2}\right)\left(x^{2}-b^{2}\right)$ or $y^{2}=x\left(x^{2}-1\right)\left(x^{2}-a^{2}\right)$, where $a, b, 0, \pm 1$ are distinct. For $n>2$, by the same manner as above, we find that M can be defined by one of the following equations when $\operatorname{Aut}(M) /\langle V\rangle$ contains $H=\mathbf{C}_{n}$.
(a) $H=\mathbf{C}_{2}, \quad y^{2}=\left(x^{2}-1\right)\left(x^{2}-a^{2}\right)\left(x^{2}-b^{2}\right) \quad\left(0,1, a^{2}, b^{2}\right.$ are distinct).
(b) $H=\mathbf{C}_{2}, \quad y^{2}=x\left(x^{2}-1\right)\left(x^{2}-a^{2}\right)$ $\left(a^{2} \neq 0,1\right)$.
(c) $H=\mathbf{C}_{3}, \quad y^{2}=\left(x^{3}-1\right)\left(x^{3}-a^{3}\right)$ $\left(a^{3} \neq 0,1\right)$.
(d) $H=\mathbf{C}_{4}, \quad y^{2}=x\left(x^{4}-1\right)$.
(e) $H=\mathbf{C}_{5}, \quad y^{2}=x\left(x^{5}-1\right)$.
(f) $H=\mathbf{C}_{6}, \quad y^{2}=\left(x^{6}-1\right)$.

Assume that M is defined by (f). We can see that M has an automorphism T defined by $T^{*} x=1 / x$ and $T^{*} y=i x^{3} y$. Then T and S_{6} generate \mathbf{D}_{12}. Moreover since $\mathbf{D}_{12} \not \subset \mathbf{A}_{4}$ and $\mathbf{D}_{12} \not \subset \mathbf{S}_{4}$, we have $\operatorname{Aut}(M) /\langle V\rangle=\mathbf{D}_{12}$. As $\pm 1 \in \boldsymbol{P}^{1}(x)$ are fixed points of T and the order of T is 2 , the exact sequence ($*$) with $H=$ $\operatorname{Aut}(M) /\langle V\rangle=\mathbf{D}_{12}$ is not split by Theorem 2.1.

Assume M is defined by (e). Among four types of groups $\mathbf{S}_{4}, \mathbf{A}_{4}, \mathbf{D}_{2 n}$, $\mathbf{C}_{n}(n \leq 6), \mathbf{C}_{5}$ and \mathbf{D}_{10} are the only groups which contain \mathbf{C}_{5}. Therefore $\operatorname{Aut}(M) /\langle V\rangle$ is isomorphic to \mathbf{C}_{5} or \mathbf{D}_{10}. On the other hand the exponent u_{1} (resp. u_{3}) of $\left(x^{5}-1\right)($ resp. $x)$ in (e) is equal to 1 , and $5 u_{1}+2 u_{3}=7 \not \equiv 0(\bmod 2)$. Then, from Theorem 3.1, $\operatorname{Aut}(M) /\langle V\rangle$ does not contain \mathbf{D}_{10} and $\operatorname{Aut}(M) /\langle V\rangle$ $=\mathbf{C}_{5}$. As $\mathscr{S} \cap F P\left(\left\langle S_{5}\right\rangle\right)=\{0\}$ and $(5,2)=1,(*)$ is split from Theorem 2.1.

Assume M is defined by (d), then, from (13) in Theorem 3.1, $\operatorname{Aut}(M) /\langle V\rangle$
$=\mathbf{S}_{4}$ and $H=\mathbf{C}_{4}, \mathbf{D}_{8}, \mathbf{A}_{4}$ or \mathbf{S}_{4}. Moreover the exact sequence ($*$) is not split since H contains S_{2} of order 2 and $F P\left(\left\langle S_{2}\right\rangle\right) \cap \mathscr{S}=\{0, \infty\}$.

Assume M is defined by (c). Then M has an automorphism \bar{T} defined by $\bar{T}^{*} x=a / x$ and $\bar{T}^{*} y=a^{-3 / 2} x^{3} y$, and the group $H_{1}=\langle S, \bar{T}\rangle$ is isomorphic to \mathbf{D}_{6}. So we can say that $\operatorname{Aut}(M) /\langle V\rangle$ contains a subgroup \mathbf{D}_{6} if and only if $\operatorname{Aut}(M) /\langle V\rangle$ contains \mathbf{C}_{3}. Since $F P\left(H_{1}\right) \cap \mathscr{S}=\varnothing,(*)$ is split with $H=\langle S, \bar{T}\rangle$.

Assume M is defined by (b). Then M also has an automorphism \bar{T} defined by $\bar{T}^{*} x=a / x$ and $\bar{T}^{*} y=a^{-3 / 2} x^{3} y$. Therefore $\mathbf{D}_{4} \subset \operatorname{Aut}(M) /\langle V\rangle$ if and only if $\mathbf{C}_{2} \subset \operatorname{Aut}(M) /\langle V\rangle$. Since $F P\left(\left\langle S_{2}\right\rangle\right) \cap \mathscr{S}=\{0, \infty\}$ and the order of S_{2} is 2, (*) is not split by Theorem 2.1.

By this proposition, we can get the list of $\operatorname{Aut}(M) /\langle V\rangle$ as follows.
Theorem 4.1. Let M be a hyperelliptic curve of genus $g=2$. Assume that $\operatorname{Aut}(M) /\langle V\rangle$ is non-trivial. Then $\operatorname{Aut}(M) /\langle V\rangle$ is isomorphic to $\mathbf{C}_{2}, \mathbf{C}_{5}, \mathbf{D}_{4}, \mathbf{D}_{6}$, \mathbf{D}_{12} or \mathbf{S}_{4}. And according to each type of $\operatorname{Aut}(M) /\langle V\rangle$, we can get a standard equation of M as follows.

Case $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{S}_{4}$.
M is defined by $\quad y^{2}=x\left(x^{4}-1\right)$.
$\underline{\text { Case } \operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{C}_{5}} \quad M: y^{2}=x\left(x^{5}-1\right) \underset{\text { birational }}{\sim} y^{2}=x^{5}-1$.
Case $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{D}_{12} . \quad M: y^{2}=\left(x^{6}-1\right)$.
Case $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{D}_{4} . \quad M: y^{2}=x\left(x^{2}-1\right)\left(x^{2}-a^{2}\right) \quad$ with $a^{2} \neq 0, \pm 1$.
\#-1). The curve (21) has $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{S}_{4}$ if and only if $a^{2}=-1$.
Case $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{D}_{6} . \quad M: y^{2}=\left(x^{3}-1\right)\left(x^{3}-a^{3}\right)$
with $a^{3} \neq \pm 1$ and $a^{3} \neq\left(\frac{1 \pm \sqrt{3}}{1 \mp \sqrt{3}}\right)^{3}$.
\#-2). The curve (22) has $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{D}_{12}$ if and only if $a^{3}=-1$.
\#-3). $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{S}_{4}$ if and if $a^{3}=\left(\frac{1 \pm \sqrt{3}}{1+\sqrt{3}}\right)^{3}$.
In fact we can give a birational map F from $M: y^{2}=\left(x^{3}-1\right)\left(x^{3}-a^{3}\right)$ to

$$
M^{\prime}: y^{2}=x\left(x^{4}-1\right)
$$

by the following way.

Let $a_{1}=\frac{(1+i)(-1-\sqrt{3})}{2}$ and $a_{2}=\frac{(1+i)(-1+\sqrt{3})}{2}$ be fixed points of $W=\frac{1+i}{2}\left(\begin{array}{cc}-1 & i \\ 1 & i\end{array}\right)$. If $a^{3}=\left(\frac{a_{1}}{a_{2}}\right)^{3}=\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{3}$ (resp. $\left.a^{3}=\left(\frac{a_{2}}{a_{1}}\right)^{3}=\left(\frac{1-\sqrt{3}}{1+\sqrt{3}}\right)^{3}\right)$, the equalities

$$
\begin{equation*}
F^{*} x=\frac{a_{2} x-a_{1}}{x-1}, \quad F^{*} y=\left\{a_{2}\left(a_{2}^{4}-1\right)\right\}^{1 / 2} \frac{y}{(x-1)^{3}} \tag{23}
\end{equation*}
$$

$$
\left(\text { resp. } F^{*} x=\frac{a_{1} x-a_{2}}{x-1}, F^{*} y=\left\{a_{1}\left(a_{1}^{4}-1\right)\right\}^{1 / 2} \frac{y}{(x-1)^{3}}\right)
$$

define a birational map F from M to M^{\prime}.
Consequently any birational map from M to M^{\prime} has a form $F \circ \phi=\psi \circ F$ with some $\phi \in \operatorname{Aut}(M), \psi \in \operatorname{Aut}\left(M^{\prime}\right)$.

Case $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{C}_{2} . \quad M: y^{2}=\left(x^{2}-1\right)\left(x^{2}-a^{2}\right)\left(x^{2}-b^{2}\right)$,
where a and b satisfy the following three conditions (I), (II) and (III).
(I) For each $\{i, j, k\}=\{-1,0,1\}$, there is no pair (α, η) which satisfies

$$
\begin{align*}
& a^{2}=\left(\frac{\sqrt{\alpha}+\eta}{\sqrt{\alpha}-\eta}\right)^{2 i} /\left(\frac{\sqrt{\alpha}+\eta}{\sqrt{\alpha}-\eta}\right)^{2 k} \tag{25}\\
& b^{2}=\left(\frac{\sqrt{\alpha}+\eta}{\sqrt{\alpha}-\eta}\right)^{2 j} /\left(\frac{\sqrt{\alpha}+\eta}{\sqrt{\alpha}-\eta}\right)^{2 k} \quad \text { and } \quad \eta^{4}=1
\end{align*}
$$

(II) For each $\{i, j, k\}=\{0,1,2\}$, there is no pair (α, η) which satisfies

$$
\begin{align*}
& a^{2}=\left(\frac{\sqrt{\alpha}-\zeta_{3}^{i} \eta}{\sqrt{\alpha}+\zeta_{3}^{i} \eta}\right)^{2} /\left(\frac{\sqrt{\alpha}-\zeta_{3}^{k} \eta}{\sqrt{\alpha}+\zeta_{3}^{k} \eta}\right)^{2} \tag{26}\\
& b^{2}=\left(\frac{\sqrt{\alpha}-\zeta_{3}^{j} \eta}{\sqrt{\alpha}+\zeta_{3}^{j} \eta}\right)^{2} /\left(\frac{\sqrt{\alpha}-\zeta_{3}^{k} \eta}{\sqrt{\alpha}+\zeta_{3}^{k} \eta}\right)^{2} \quad \text { and } \quad \eta^{6}=1
\end{align*}
$$

(III) $\left\{1, a^{2}, b^{2}\right\} \neq\left\{1, \zeta_{3}, \zeta_{3}^{2}\right\}$.
\#-4). Assume there exists α and η which satisfy (25) for some $\{i, j, k\}=$ $\{-1,0,1\}$. Then $\alpha^{2} \neq 0,1$, and the equalities

$$
\begin{equation*}
F^{*} x=\frac{\eta \sqrt{\alpha}(x+\delta)}{-x+\delta}, \quad F^{*} y=(\eta \sqrt{\alpha})^{3 / 2}\left(\alpha-\eta^{2}\right) \frac{y}{(x-\delta)^{3}} \tag{27}
\end{equation*}
$$

with $\delta^{2}=\left(\frac{\sqrt{\alpha}+\eta}{\sqrt{\alpha}-\eta}\right)^{-2 k}$ define a birational map F from M to

$$
M^{\prime}: y^{2}=x\left(x^{2}-1\right)\left(x^{2}-\alpha^{2}\right)
$$

Therefore, under the existence of (α, η) satisfying (25),
\#-4-i) $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{D}_{4}$ if and only if $\alpha^{2} \neq-1$,
\#-4-ii) $\operatorname{Aut}(M) /\langle V\rangle \simeq S_{4}$ if and only if $\alpha^{2}=-1$.
\#-5). Assume there exists α which satisfies (26) for some $\{i, j, k\}=\{0,1,2\}$. Then $\alpha^{3} \neq 0,1$, and the equalities

$$
\begin{equation*}
F^{*} x=\frac{\eta \sqrt{\alpha}(x+\delta)}{-x+\delta}, \quad F^{*} y=(\eta \sqrt{\alpha})^{3 / 2}\left(\eta^{3}+\sqrt{\alpha}^{3}\right) \frac{y}{(x-\delta)^{3}} \tag{28}
\end{equation*}
$$

with $\delta^{2}=\left(\frac{\sqrt{\alpha}-\eta \zeta_{3}^{k}}{\sqrt{\alpha}+\eta \zeta_{3}^{k}}\right)^{-2}$ define a birational map F from M to

$$
M^{\prime}: y^{2}=\left(x^{3}-1\right)\left(x^{3}-\alpha^{3}\right)
$$

Therefore, under the existence of α satisfying (26),
\#-5-i) $\quad \operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{D}_{6}$ if and only if $\alpha^{3} \neq-1$ and $\alpha^{3} \neq \frac{(1 \pm \sqrt{3})^{3}}{(1 \mp \sqrt{3})^{3}}$,
\#-5-ii) $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{D}_{12}$ if and only if $\alpha^{3}=-1$,
\#-5-iii) $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{S}_{4}$ if and only if $\alpha^{3}=\frac{(1 \pm \sqrt{3})^{3}}{(1 \mp \sqrt{3})^{3}}$.
\#-6). If $\left\{1, a^{2}, b^{2}\right\}=\left\{1, \zeta_{3}, \zeta_{3}^{2}\right\}$, then $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{D}_{12}$.

Proof. Let \mathscr{A} denote $\operatorname{Aut}(M) /\langle V\rangle$.
Cases $\mathscr{A} \simeq \mathbf{S}_{4}, \mathbf{C}_{5}$ and \mathbf{D}_{12}. The equations (18), (19), (20) come from Proposition 4.1.

Case $\mathscr{A} \simeq \mathbf{D}_{4}$. By Proposition 4.1, a curve

$$
M: y^{2}=x\left(x^{2}-1\right)\left(x^{2}-a^{2}\right) \quad\left(a^{2} \neq 0,1\right)
$$

satisfies $\mathbf{D}_{4}=\left\langle S_{2}, \bar{T}\right\rangle \subset \mathscr{A}$, where $\bar{T}^{*} x=a / x$.
If $\mathbf{D}_{4} \varsubsetneqq \mathscr{A}$, then, also by Proposition 4.1, \mathscr{A} must be isomorphic to \mathbf{S}_{4}. Now take an element $D \in \mathscr{A}$ of order 4. Then D acts on $\mathscr{S}=\{0, \infty, \pm 1, \pm a\}$ and has two fixed points in \mathscr{S}.

First assume $D(a)=a$ and $D(-a)=-a$. Put $J=\left(\begin{array}{cc}1 & -a \\ 1 & a\end{array}\right)$. Then $J D J^{-1}$ fixes $x=0$ and ∞, we have $\left(J D J^{-1}\right)^{*} x= \pm \sqrt{-1} x$. As $J D J^{-1}$ acts on $J(\{0, \infty,+1,-1\})=\left\{ \pm 1, \frac{1-a}{1+a},\left(\frac{1-a}{1+a}\right)^{-1}\right\}$, we have $\sqrt{-1}=\frac{1-a}{1+a}$ or $\left(\frac{1-a}{1+a}\right)^{-1}$ and $a^{2}=-1$. Therefore $y^{2}=x\left(x^{2}-1\right)\left(x^{2}-a^{2}\right)$ coincides with (18).

Next assume $D(0)=0$ and $D(1)=1$. Put $J=\left(\begin{array}{cc}1 & 0 \\ 1 & -1\end{array}\right)$. Then $\left(J D J^{-1}\right)^{*} x=$ $\pm \sqrt{-1} x$ and $J D J^{-1}$ acts on $J(\{\infty,-1, a,-a\})=\left\{1, \frac{1}{2}, \frac{a}{a-1}, \frac{a}{a+1}\right\}$. This does not happen.

By checking any other possibilities of fixed points of D in \mathscr{S}, we can see that $\mathscr{A}=\mathrm{S}_{4}$ if and only if $a^{2}=-1$.

Case $\mathscr{A} \simeq \mathbf{D}_{6}$. From Proposition 4.1, the curve

$$
M: y^{2}=\left(x^{3}-1\right)\left(x^{3}-a^{3}\right) \quad\left(a^{3} \neq 0,1\right)
$$

satisfies $\mathbf{D}_{6}=\left\langle S_{3}, \bar{T}\right\rangle \subset \mathscr{A}$. If $\mathbf{D}_{6} \varsubsetneqq \mathscr{A}$, then $\mathscr{A} \simeq \mathbf{D}_{12}$ or $\mathscr{A} \simeq \mathbf{S}_{4}$.
Assume $\mathscr{A} \simeq \mathbf{D}_{12}$. By the structure of \mathbf{D}_{12} there exists an element S^{\prime} of order 6 in \mathscr{A} such that S^{2} coincides with the element $S_{3} \in \mathscr{A}$. For $S_{3}^{*} x=\zeta_{3} x$, $S^{\prime *} x=\eta x$ with $\eta^{2}=\zeta_{3}$. As S^{\prime} acts on $\mathscr{S}=\left\{1, \zeta_{3}, \zeta_{3}^{2}, a, \zeta_{3} a, \zeta_{3}^{2} a\right\}$, a must be a primitive 6-th root of unity and $\mathscr{S}=\left\{1, \eta, \ldots, \eta^{5}\right\}$. So we arrive at \#-2).

Assume $\mathscr{A} \simeq \mathbf{S}_{4}$. Then there is a birational map F from M to

$$
M^{\prime}: y^{2}=x\left(x^{4}-1\right)
$$

Let $\tilde{F}: M /\langle V\rangle \rightarrow M^{\prime} /\langle V\rangle$ be the morphism induced by F. Put $D=\tilde{F} \circ S_{3} \circ$ $\tilde{F}^{-1} \in \operatorname{Aut}\left(M^{\prime}\right) /\langle V\rangle$. From the structure of \mathbf{S}_{4}, there are 8 elements of order 3 in \mathbf{S}_{4}, and they are represented by matrices $R^{t} W^{s} R^{-t}(s=1,2, t=0,1,2,3)$ in $\operatorname{Aut}\left(M^{\prime}\right) /\langle V\rangle$ (see Table 1). Assume $D=R^{t} W^{s} R^{-t}$. Then D fixes $a_{1} \cdot i^{t}$, and $a_{2} \cdot i^{t}$ with $a_{1}=\frac{(1+i)(-1-\sqrt{3})}{2}$ and $a_{2}=\frac{(1+i)(-1+\sqrt{3})}{2}$. As \tilde{F} sends fixed points of S_{3} to those of D, we have $\tilde{F}(\{0, \infty\})=\left\{a_{1} \cdot i^{t}, a_{2} \cdot i^{t}\right\}$ and then $F^{*} x=A x$ with a matrix $A=\left(\begin{array}{c}a_{2} \cdot i^{t} \cdot \\ 1 \\ \delta \cdot a_{1} \cdot i^{t} \\ \delta\end{array}\right)$ or $\left(\begin{array}{c}a_{1} \cdot i^{i} \\ 1\end{array} \delta \cdot a_{\delta} \cdot i^{t}\right)(\delta$ is a suitable number).

First we assume $F^{*} x=A x=\frac{i^{\cdot} \cdot a_{2} x+\delta \delta^{i} \cdot a_{1}}{x+\delta}$. From $y^{2}=x\left(x^{4}-1\right)$, we have $\left(F^{*} y\right)^{2}=F^{*} x\left(\left(F^{*} x\right)^{4}-1\right)$. By further calculations, we have

$$
\begin{aligned}
F^{*} x\left(\left(F^{*} x\right)^{4}-1\right)= & i^{t} a_{2}\left(a_{2}^{4}-1\right)(x+\delta)^{-6} \\
& \times\left\{\left(x+\delta \frac{a_{1}}{a_{2}}\right)\left(x+\delta \frac{a_{1}-1}{a_{2}-1}\right)\left(x+\delta \frac{a_{1}-i}{a_{2}-i}\right)\right\} \\
& \times\left\{(x+\delta)\left(x+\delta \frac{a_{1}+1}{a_{2}+1}\right)\left(x+\delta \frac{a_{1}+i}{a_{2}+i}\right)\right\} .
\end{aligned}
$$

On the other hand, by direct calculations, we have

$$
\frac{a_{1}-1}{a_{2}-1}=\frac{a_{1}}{a_{2}} \zeta_{3}^{2}, \quad \frac{a_{1}+1}{a_{2}+1}=\zeta_{3}^{2}, \quad \frac{a_{1}-i}{a_{2}-i}=\frac{a_{1}}{a_{2}} \zeta_{3}, \quad \frac{a_{1}+i}{a_{2}+i}=\zeta_{3} .
$$

Thus the equation $\left(F^{*} y\right)^{2}=F^{*} x\left(\left(F^{*} x\right)^{4}-1\right)$ is transformed into

$$
\begin{equation*}
\left\{\mathrm{C}(x+\delta)^{3}\left(F^{*} y\right)\right\}^{2}=\left(x^{3}+\delta^{3}\right)\left(x^{3}+\delta^{3} \cdot\left(\frac{a_{1}}{a_{2}}\right)^{3}\right) \tag{29}
\end{equation*}
$$

where $C^{2}=\left[\left(i^{t} a_{2}\right)\left\{\left(a_{2}\right)^{4}-1\right\}\right]^{-1}$.

Put $Y:=\mathrm{C}(x+\delta)^{3}\left(F^{*} y\right), X:=x$. Then $X, Y \in C(M)$ and (29) becomes

$$
\begin{equation*}
Y^{2}=\left(X^{3}+\delta^{3}\right)\left(X^{3}+\delta^{3}\left(\frac{a_{1}}{a_{2}}\right)^{3}\right) \tag{30}
\end{equation*}
$$

Since $\mathscr{S}=\left\{1, \zeta_{3}, \zeta_{3}^{2}, a, a \zeta_{3}, a \zeta_{3}^{2}\right\}$ consists of branch points of the function $X=$ $x \in \boldsymbol{C}(M)$, (30) implies

$$
\mathscr{S}=\left\{-\delta,-\delta \zeta_{3},-\delta \zeta_{3}^{2},-\delta\left(\frac{a_{1}}{a_{2}}\right),-\delta\left(\frac{a_{1}}{a_{2}}\right) \zeta_{3},-\delta\left(\frac{a_{1}}{a_{2}}\right) \zeta_{3}^{2}\right\} .
$$

 $a^{3}=\left(\frac{1 \pm \sqrt{3}}{1 \mp \sqrt{3}}\right)^{3}$. Using $\left(\begin{array}{c}a_{1} \cdot i^{\prime} \\ 1\end{array} \delta \cdot a_{\delta} \cdot i^{\prime}\right)$ for A, we can get the same result. Therefore $\mathscr{A} \simeq \mathbf{D}_{6}$ implies $a^{3} \neq\left(\frac{1 \pm \sqrt{3}}{1 \mp \sqrt{3}}\right)^{3}$.

Conversely, by the same argument as above, we can also see that (23) define a birational morphism when $a^{3}=\left(\frac{1 \pm \sqrt{3}}{1 \mp \sqrt{3}}\right)^{3}$. Thus we get \#-3).
$\mathscr{A} \simeq \mathbf{C}_{2}$. From Proposition 4.1, the curve

$$
\begin{equation*}
M: y^{2}=\left(x^{2}-1\right)\left(x^{2}-a^{2}\right)\left(x^{2}-b^{2}\right) \tag{31}
\end{equation*}
$$

satisfies $\mathscr{A} \supset\left\langle S_{2}\right\rangle \simeq \mathbf{C}_{2}$. If $\mathbf{C}_{2} \varsubsetneqq \mathscr{A}$, then $\mathscr{A}=\mathbf{D}_{4}, \mathbf{D}_{6}, \mathbf{D}_{12}$ or \mathbf{S}_{4}.
Assume $\mathscr{A} \simeq \mathbf{D}_{4} \supset\left\langle S_{2}\right\rangle$. There is a birational morphism F from M to

$$
M^{\prime}: y^{2}=x\left(x^{2}-1\right)\left(x^{2}-\alpha^{2}\right) \quad\left(\alpha^{2} \neq 0, \pm 1\right)
$$

By Proposition 4.1, $\operatorname{Aut}\left(M^{\prime}\right) /\langle V\rangle=\left\langle S_{2}, \bar{T}\right\rangle$ with $\bar{T}^{*} x=\alpha / x$. Let $\tilde{F}: M /\langle V\rangle \rightarrow$ $M^{\prime} /\langle V\rangle$ be the morphism induced by F. Put $J:=\tilde{F} \circ S_{2} \circ \tilde{F}^{-1}\left(\in \operatorname{Aut}\left(M^{\prime}\right) /\langle V\rangle\right)$. Then $\tilde{F}(\mathscr{S})=\{0, \infty, \pm 1, \pm \alpha\} \quad(\mathscr{S}=\{ \pm 1, \pm a, \pm b\})$, and \tilde{F} sends a fixed point of S_{2} (on $M /\langle V\rangle$) to a fixed point of J (on $M^{\prime} /\langle V\rangle$). From the fact that S_{2} (on $M /\langle V\rangle$) has no fixed point in \mathscr{S} but S_{2} (on $M^{\prime} /\langle V\rangle$) fixes 0 and ∞ in $\tilde{F}(\mathscr{P})$, we can see $J \neq S_{2}$ (on $\left.M^{\prime} /\langle V\rangle\right)$. Therefore $J^{*} x= \pm \alpha / x$, and $\tilde{F}(\{0, \infty\})=$ $\{ \pm \sqrt{\alpha}\}$ (resp. $\{ \pm \sqrt{-1} \sqrt{\alpha}\}$) provided $J^{*} x=\alpha / x$ (resp. $J^{*} x=-\alpha / x$). So

$$
F^{*} x=A(x)=\frac{\eta \sqrt{\alpha} x+\delta \eta \sqrt{\alpha}}{-x+\delta}, \quad A:=\left(\begin{array}{cc}
\eta \sqrt{\alpha} & \delta \eta \sqrt{\alpha} \\
-1 & \delta
\end{array}\right)
$$

with suitable numbers δ and η satisfying $\eta^{4}=1$.
The equation $\left(F^{*} y\right)^{2}=F^{*} x\left(\left(F^{*} x\right)^{2}-1\right)\left(\left(F^{*} x\right)^{2}-\alpha^{2}\right)$ is transformed as follows.

$$
\begin{aligned}
\left(F^{*} y\right)^{2}= & A(x)\left(A(x)^{2}-1\right)\left(A(x)^{2}-\alpha^{2}\right) \\
= & (\eta \sqrt{\alpha})^{3}\left(\alpha-\eta^{2}\right)^{2}(x-\delta)^{-6}(x-\delta)(x+\delta) \\
& \times\left(x+\delta\left(\frac{\eta \sqrt{\alpha}+1}{\eta \sqrt{\alpha}-1}\right)\right)\left(x+\delta\left(\frac{\eta \sqrt{\alpha}-1}{\eta \sqrt{\alpha}+1}\right)\right) \\
& \times\left(x-\delta\left(\frac{\sqrt{\alpha}+\eta}{\sqrt{\alpha}-\eta}\right)\right)\left(x-\delta\left(\frac{\sqrt{\alpha}-\eta}{\sqrt{\alpha}+\eta}\right)\right) \\
= & (\eta \sqrt{\alpha})^{3}\left(\alpha-\eta^{2}\right)^{2}(x-\delta)^{-6}\left(x^{2}-\delta^{2}\right) \\
& \times\left(x^{2}-\delta^{2}\left(\frac{\sqrt{\alpha}+\eta}{\sqrt{\alpha}-\eta}\right)^{2}\right)\left(x^{2}-\delta^{2}\left(\frac{\sqrt{\alpha}-\eta}{\sqrt{\alpha}+\eta}\right)^{2}\right) .
\end{aligned}
$$

As \mathscr{S} consists of the branch points of x, we have

$$
\left\{1, a^{2}, b^{2}\right\}=\left\{\delta^{2}, \delta^{2}\left(\frac{\sqrt{\alpha}+\eta}{\sqrt{\alpha}-\eta}\right)^{2}, \delta^{2}\left(\frac{\sqrt{\alpha}+\eta}{\sqrt{\alpha}-\eta}\right)^{-2}\right\}
$$

and the pair (α, η) satisfies (25). Thus $\mathscr{A} \not \neq \mathbf{D}_{4}$ implies the condition (I).
Conversely assume that there is a pair (α, η) satisfies (25). Since $a^{2}, b^{2}, 1$ are distinct, we can see $\alpha^{2} \neq 0,1$. And (27) gives a birational morphism from M to M^{\prime} even if $\alpha^{2}=-1$. So we get \#-4) from (21) and \#-1).

Assume $\mathscr{A} \simeq \mathbf{D}_{6}$. There is a birational map F from M to

$$
M^{\prime}: y^{2}=\left(x^{3}-1\right)\left(x^{3}-\alpha^{3}\right), \quad\left(\alpha^{3} \neq-1,\left(\frac{1 \pm \sqrt{3}}{1 \mp \sqrt{3}}\right)^{3}\right) .
$$

Let \tilde{F} be as before. Put $J:=\tilde{F} \circ S_{2} \circ \tilde{F}^{-1}$. On the other hand, as $\operatorname{Aut}\left(M^{\prime}\right) /\langle V\rangle$ $=\left\langle S_{3}, \bar{T}\right\rangle, J^{*} x=\zeta_{3}^{s} \alpha / x$ for some $0 \leq s \leq 2$. Since the fixed points of J are $\pm \zeta_{3}^{2 s} \sqrt{\alpha}$, we have $\tilde{F}(\{0, \infty\})=\left\{\zeta_{3}^{2 s} \sqrt{\alpha},-\zeta_{3}^{2 s} \sqrt{\alpha}\right\}$ and

$$
F^{*} x=B(x)=\frac{\eta \sqrt{\alpha} x+\delta \eta \sqrt{\alpha}}{-x+\delta}, \quad B:=\left(\begin{array}{cc}
\eta \sqrt{\alpha} & \delta \eta \sqrt{\alpha} \\
-1 & \delta
\end{array}\right),
$$

where $\eta= \pm \zeta_{3}^{2 s}$.
The equation $\left(F^{*} y\right)^{2}=\left(\left(F^{*} x\right)^{3}-1\right)\left(\left(F^{*} x\right)^{3}-\alpha^{3}\right)$ is transformed as follows.

$$
\begin{aligned}
\left(F^{*} y\right)^{2}= & (-x+\delta)^{-6} \eta^{3} \sqrt{\alpha}^{3}\left\{\sqrt{\alpha}^{3}(x+\delta)^{3}-\eta^{3}(-x+\delta)^{3}\right\} \\
& \times\left\{\left(\eta^{3}(x+\delta)^{3}-\sqrt{\alpha}^{3}(-x+\delta)^{3}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
= & (-x+\delta)^{-6} \eta^{3} \sqrt{\alpha} \\
& \times \prod_{t=0}^{2}\left\{\sqrt{\alpha}(x+\delta)-\zeta_{3}^{t} \eta(-x+\delta)\right\} \prod_{t=0}^{2}\left\{-\sqrt{\alpha}(-x+\delta)+\zeta_{3}^{t} \eta(x+\delta)\right\} \\
= & (-x+\delta)^{-6} \eta^{3} \sqrt{\alpha} \\
& \times \prod_{t=0}^{2}\left(\sqrt{\alpha}+\zeta_{3}^{t} \eta\right)\left\{x+\delta\left(\frac{\sqrt{\alpha}-\zeta_{3}^{t} \eta}{\sqrt{\alpha}+\zeta_{3}^{t} \eta}\right)\right\} \prod_{t=0}^{2}\left(\sqrt{\alpha}+\zeta_{3}^{t} \eta\right)\left\{x-\delta\left(\frac{\sqrt{\alpha}-\zeta_{3}^{t} \eta}{\sqrt{\alpha}+\zeta_{3}^{t} \eta}\right)\right\} \\
= & (-x+\delta)^{-6} \eta^{3} \sqrt{\alpha}\left(\eta^{3}+\sqrt{\alpha}^{3}\right)^{2} \\
& \times\left(x^{2}-\delta^{2}\left(\frac{\sqrt{\alpha}-\eta}{\sqrt{\alpha}+\eta}\right)^{2}\right)\left(x^{2}-\delta^{2}\left(\frac{\sqrt{\alpha}-\zeta_{3} \eta}{\sqrt{\alpha}+\zeta_{3} \eta}\right)^{2}\right) \\
& \times\left(x^{2}-\delta^{2}\left(\frac{\sqrt{\alpha}-\zeta_{3}^{2} \eta}{\sqrt{\alpha}+\zeta_{3}^{2} \eta}\right)^{2}\right) .
\end{aligned}
$$

Then we have

$$
\left\{1, a^{2}, b^{2}\right\}=\left\{\delta^{2}\left(\frac{\sqrt{\alpha}-\eta}{\sqrt{\alpha}+\eta}\right)^{2}, \delta^{2}\left(\frac{\sqrt{\alpha}-\zeta_{3} \eta}{\sqrt{\alpha}+\zeta_{3} \eta}\right)^{2}, \delta^{2}\left(\frac{\sqrt{\alpha}-\zeta_{3}^{2} \eta}{\sqrt{\alpha}+\zeta_{3}^{2} \eta}\right)^{2}\right\}
$$

and the pair (α, η) satisfies (26). Thus $\mathscr{A} \not \neq \mathbf{D}_{6}$ implies the condition (II).
Conversely if there exists α^{3} satisfying (26) for some $\{i, j, k\}=\{0,1,2\}$, then $\alpha^{3} \neq 0,1$ and the equalities (28) defines a birational map even if $\alpha^{3}=-1$ or $\left(\frac{1 \pm \sqrt{3}}{1 \mp \sqrt{3}}\right)$. Thus we get \#-5) from (22), \#-2) and \#-3).

Next assume $\mathscr{A} \simeq \mathbf{D}_{12}$. There is a birational map F from M to

$$
M^{\prime}: y^{2}=\left(x^{6}-1\right)
$$

Put $J:=\tilde{F} \circ S_{2} \circ \tilde{F}^{-1}$ as above. Then $J^{*} x=\frac{\zeta_{6}^{s}}{x}(0 \leq s \leq 5)$ or $J^{*} x=-x$ on M^{\prime}. But when $J^{*} x=\zeta_{6}^{k} / x$, we can follow the same argument in the case of $\mathscr{A} \simeq \mathbf{D}_{6}$, and we can get the relation (26) with $\alpha^{3}=-1$. (28) gives a birational map from M to M^{\prime} again.

When $J^{*} x=-x$, the set of fixed points of J is $\{0, \infty\}$. Since \tilde{F} sends $\{0, \infty\}$ (the set of fixed points of S_{2}) to $\{0, \infty\}$ (the fixed points of J), we have $F^{*} x=\delta x$ or $F^{*} x=\delta / x$ for some number δ. At the same time \tilde{F} sends $\{ \pm 1, \pm a, \pm b\}$ to $\left\{ \pm 1, \pm \zeta_{3}, \pm \zeta_{3}^{2}\right\}$, so we know that $\delta=\zeta_{3}^{k}$ and $\left\{1, a^{2}, b^{2}\right\}=\left\{1, \zeta_{3}, \zeta_{3}^{2}\right\}$. Thus we get \#-6). Overall, we know that $\mathscr{A} \simeq \mathbf{C}_{2}$ if and only if the three conditions (I), (II) and (III) are satisfied at the same time.

5 Cyclic Trigonal Curves of Genus 5, 7, 9

Let M be a cyclic trigonal curve defined by

$$
\begin{equation*}
y^{3}-\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{s}\right)^{r_{s}}=0 \quad\left(1 \leq r_{i} \leq 2, a_{i} \text { 's are distinct }\right) \tag{32}
\end{equation*}
$$

The genus g of M is $\# \mathscr{S}-2$. We also assume $g \geq 5$ (i.e., M has unique g_{3}^{1}).
In this section we study M with odd g. In particular we will determine all possible types of $\operatorname{Aut}(M) /\langle V\rangle$ and their standard defining equations of M for $g=5,7,9$. We start with the following lemma.

Lemma 5.1. Assume that the genus g of M is odd. Then
(i) $\operatorname{Aut}(M) /\langle V\rangle$ is isomorphic to a cyclic group or a dihedral group,
(ii) If $\operatorname{Aut}(M) /\langle V\rangle \simeq \mathbf{D}_{2 n}$, then n is odd.

Proof. (i) Assume $\mathbf{A}_{4} \subset \operatorname{Aut}(M) /\langle V\rangle$. The equation $\# \mathscr{S}=4 \varepsilon_{1}+6 \varepsilon_{2}+$ $4 \varepsilon_{3}+12 \sum 1$ for $H=\mathbf{A}_{4}$ in Theorem 3.1 indicates that $\# \mathscr{S}$ and g are even. This is a contradiction. So $\mathbf{A}_{4} \not \subset \operatorname{Aut}(M) /\langle V\rangle$, and then $\mathbf{A}_{5}, \mathbf{S}_{4} \not \subset \operatorname{Aut}(M) /\langle V\rangle$.
(ii) The equality $\# \mathscr{S}=n \varepsilon_{1}+n \varepsilon_{2}+2 \varepsilon_{3}+2 n \sum_{i=4}^{d} 1$ for $H=\mathbf{D}_{2 n}$ in Theorem 3.1 implies that odd g does not happen for even n.

Next we will investigate cyclic trigonal curves with $g=5,7,9$.

Theorem 5.1. Let M be a cyclic trigonal curve (32) with $g=5,7$ or 9 . Assume that $\mathscr{A}:=\operatorname{Aut}(M) /\langle V\rangle$ is non-trivial. Then the type of \mathscr{A} and a standard defining equation of M are as follows.
I. $g=9$.
$\mathscr{A} \simeq \mathbf{C}_{10} . \quad M$ is defined by
$y^{3}=x\left(x^{10}-1\right)^{2}, \quad$ the exact sequence $(*)$ is split.
$\mathscr{A} \simeq \mathbf{C}_{9} . \quad y^{3}=x\left(x^{9}-1\right)^{r}(r=1,2), \quad(*)$ is non-split.
$\mathscr{A} \simeq \mathbf{C}_{5} . \quad y^{3}=x\left(x^{5}-1\right)^{2}\left(x^{5}-a^{5}\right)^{2}\left(a^{5} \neq 0, \pm 1\right), \quad(*)$ is split.
b-1) The curve (35) has $\mathscr{A} \simeq \mathbf{C}_{10}$ if and only if $a^{5}=-1$.
$\mathscr{A} \simeq \mathbf{C}_{3} . \quad y^{3}=x\left(x^{3}-1\right)^{u_{3}}\left(x^{3}-a^{3}\right)^{u_{4}}\left(x^{3}-b^{3}\right)^{u_{5}}, \quad(*)$ is non-split,
where $0,1, a^{3}, b^{3}$ are distinct, and $a, b, u_{3}, u_{4}, u_{5}$ satisfy one of the following two conditions a), b).
a) $u_{i} \neq u_{j}$ for some $i, j \in\{3,4,5\}$.
b) b-i) $u_{3}=u_{4}=u_{5}$ and b-ii) $\left\{a^{3}, b^{3}\right\} \neq\left\{\zeta_{3}, \zeta_{3}^{2}\right\}$.
b-2) $\mathscr{A} \simeq \mathbf{C}_{9}$ if and only if $\left\{a^{3}, b^{3}\right\}=\left\{\zeta_{3}, \zeta_{3}^{2}\right\}$ and $u_{3}=u_{4}=u_{5}$ hold. In this case (36) coincides with (34).
$\mathscr{A} \simeq \mathbf{C}_{2} . \quad M$ is defined by
$y^{3}=x\left(x^{2}-1\right)^{u_{3}}\left(x^{2}-a^{2}\right)^{u_{4}}\left(x^{2}-b^{2}\right)^{u_{5}}\left(x^{2}-c^{2}\right)^{u_{6}}\left(x^{2}-d^{2}\right)^{u_{7}}, \quad(*)$ is split,
where $0,1, a^{2}, b^{2}, c^{2}, d^{2}$ are distinct, and $a, b, c, d, u_{3}, \ldots, u_{7}$ satisfy one of the following two conditions a), b).
a) a-i) $u_{3}=\cdots=u_{7}=2$ and a-ii) $\left\{1, a^{2}, b^{2}, c^{2}, d^{2}\right\} \neq\left\{\zeta_{5}^{k} \mid 0 \leq k \leq 4\right\}$.
b) $u_{i}=u_{j}=u_{k}=1, u_{l}=u_{m}=2$ for some $\{i, j, k, l, m\}=\{3,4,5,6,7\}$.
b-3) $\mathscr{A} \simeq \mathbf{C}_{10}$ if and only if $u_{3}=\cdots=u_{7}=2$ and $\left\{1, a^{2}, b^{2}, c^{2}, d^{2}\right\}=$ $\left\{\zeta_{5}^{k} \mid 0 \leq k \leq 4\right\}$ hold. In this case (37) coincides with (33).
II. $g=7$.
$\mathscr{A} \simeq \mathbf{D}_{18} . \quad M$ is defined by

$$
\begin{equation*}
y^{3}=\left(x^{9}-1\right), \quad(*) \text { is split. } \tag{38}
\end{equation*}
$$

$\mathscr{A} \simeq \mathbf{C}_{8} . \quad y^{3}=x\left(x^{8}-1\right)$,
$(*)$ is split.
$\mathscr{A} \simeq \mathbf{D}_{14} . \quad y^{3}=x\left(x^{7}-1\right)$,
(*) is split.
$\mathscr{A} \simeq \mathbf{C}_{4} . \quad y^{3}=x\left(x^{4}-1\right)\left(x^{4}-a^{4}\right)\left(a^{4} \neq 0, \pm 1\right), \quad(*)$ is split.
$b-4) \mathscr{A} \simeq \mathrm{C}_{8}$ if and only if $a^{4}=-1$. In this case (41) coincides with (39). $\mathscr{A} \simeq D_{6}$.
$y^{3}=\left(x^{3}-1\right)\left(x^{6}-b x^{3}+1\right)^{u} \quad(" b \neq \pm 2$ " and " $u \neq 1$ or $b \neq-1$ "), (*) is split.
b-5) $\mathscr{A} \simeq \mathbf{D}_{18}$ if and only if $u=1$ and $b=-1$ hold. And (42) coincides with (38).
$\mathscr{A} \simeq \mathbf{C}_{3} . \quad y^{3}=\left(x^{3}-1\right)\left(x^{3}-a_{1}^{3}\right)^{v_{1}}\left(x^{3}-a_{2}^{3}\right)^{v_{2}}, \quad(*)$ is split.
Here $1, a_{1}^{3}, a_{2}^{3}$ are distinct, and $a_{1}, a_{2}, v_{1}, v_{2}$ satisfy the following three conditions a), b) and c) at once.
a) $a_{1}^{3} a_{2}^{3} \neq 1$ or $v_{1} \neq v_{2}$, b) $a_{1}^{3} \neq a_{2}^{6}$ or $v_{1} \neq 1$, c) $a_{1}^{6} \neq a_{2}^{3}$ or $v_{2} \neq 1$.
b-6) Assume $a_{1}^{3} a_{2}^{3}=1$ and $v_{1}=v_{2}$. Then (43) becomes

$$
y^{3}=\left(x^{3}-1\right)\left\{x^{6}-\left(a_{1}^{3}+a_{2}^{3}\right) x^{3}+1\right\}^{v_{1}} .
$$

Therefore
b-6-i) $\mathscr{A} \simeq \mathbf{D}_{6}$ if and only if $a_{1}^{3}+a_{2}^{3} \neq-1$ or $v_{1} \neq 1$ (in this case (43) becomes (42) with $b=a_{1}^{3}+a_{2}^{3}$), and
b-6-ii) $\mathscr{A} \simeq \mathbf{D}_{18}$ if and only if $a_{1}^{3}+a_{2}^{3}=-1$ and $v_{1}=1$ hold (in this case (43) coincides with (38)).
$b-7$) Assume $a_{i}^{3}=a_{j}^{6}$ and $v_{i}=1$ for $\{i, j\}=\{1,2\}$. Then there is a birational morphism F from M to

$$
M^{\prime}: y^{3}=\left\{x^{6}-\left(a_{j}^{3}+a_{j}^{-3}\right) x^{3}+1\right\}\left(x^{3}-1\right)^{v_{j}}
$$

defined by

$$
F^{*} x=a_{j}^{-1} x, \quad F^{*}=a_{j}^{-2-v_{j}} x
$$

Therefore
b-7-i) $\mathscr{A} \simeq \mathbf{D}_{6}$ if and only if $a_{j}^{3} \neq \zeta_{3}^{ \pm 1}$ or $v_{j} \neq 1$ (in this case (43) is birational to (42) with $b=a_{j}^{3}+a_{j}^{-3}(\neq-1)$), and
$b-7-$ ii) $\mathscr{A} \simeq \mathbf{D}_{18}$ if and only if $a_{j}^{3}=\zeta_{3}^{ \pm 1}$ and $v_{j}=1$ hold ((43) is birational to (38)).
$\mathscr{A} \simeq \mathrm{C}_{2}$.
$M: y^{3}=x\left(x^{2}-1\right)^{u_{3}}\left(x^{2}-c_{4}^{2}\right)^{u_{4}}\left(x^{2}-c_{5}^{2}\right)^{u_{5}}\left(x^{2}-c_{6}^{2}\right)^{u_{6}}, \quad(*)$ is split,
where $1, c_{4}^{2}, c_{5}^{2}, c_{6}^{2}$ are distinct, and $u_{3}, u_{4}, u_{5}, u_{6}, c_{4}, c_{5}, c_{6}$ satisfy one of the following conditions a) or b). Here we put $c_{3}:=1$.
$\begin{cases}\text { a-i) } & u_{3}=u_{4}=u_{5}=u_{6}=1, \\ \text { a-ii) } & \text { there is no number } \alpha \text { satisfying }\end{cases}$

$$
\left\{c_{4}^{2}, c_{5}^{2}, c_{6}^{2}\right\}=\left\{-1, \alpha^{2},-\alpha^{2}\right\}
$$

a)
$\left\{\begin{array}{l}\text { and } \\ \quad \begin{array}{l}\text { a-iii) for each }\{i, j, k, l\}=\{3,4,5,6\} \text {, there is no number } \alpha \\ \\ \quad \text { satisfying }\end{array} \\ c_{i}^{2}: c_{j}^{2}: c_{k}^{2}: c_{l}^{2}=3:-\left(\frac{\alpha-1}{\alpha+1}\right)^{2}:-\left(\frac{\zeta_{3} \alpha-1}{\zeta_{3} \alpha+1}\right)^{2}:-\left(\frac{\zeta_{3}^{2} \alpha-1}{\zeta_{3}^{3} \alpha+1}\right)^{2} .\end{array}\right.$
b) $\left\{\begin{array}{l}\mathrm{b}-\mathrm{i}) \\ \mathrm{b}-\mathrm{ii}) \text { there is no number } \alpha \text { satisfying (}(\star \star) \text { for the same } i, j, k, l \text { in b-i). }\end{array}\right.$
$b-8)$ Assume a-i) and there is α satisfying (\star). Then
b-8-i) $\mathscr{A} \simeq \mathbf{C}_{4}$ if and only if $\alpha^{4} \neq-1$, b-8-ii) $\mathscr{A} \simeq \mathbf{C}_{8}$ if and only if $\alpha^{4}=-1$.
b-9) Assume $\mathrm{a}-\mathrm{i}$) and there is α satisfying ($\star \star$) for some $\{i, j, k, l\}=$ $\{3,4,5,6\}$. Then (44) is birational to

$$
M^{\prime}: y^{3}=\left(x^{3}-1\right)\left\{x^{6}-\left(\alpha^{3}+\alpha^{-3}\right) x^{3}+1\right\}
$$

In fact the equalities

$$
\begin{equation*}
F^{*} x=\frac{x+\gamma}{-x+\gamma}, \quad F^{*} y=2^{1 / 3} \alpha^{-1}\left(1+\alpha^{3}\right)^{2 / 3} y(-x+\gamma)^{-3} \quad \text { with } \gamma=c_{i} / \sqrt{-3} \tag{45}
\end{equation*}
$$

give a birational morphism from M to M^{\prime}. And then
b-9-i) $\mathscr{A} \simeq \mathbf{D}_{6}$ if and only if $\alpha^{3} \neq \zeta_{3}^{ \pm 1}$,
b-9-ii) $\mathscr{A} \simeq \mathbf{D}_{18}$ if and only if $\alpha^{3}=\zeta_{3}^{ \pm 1}$.
$b-10)$ Assume $\mathrm{b}-\mathrm{i}$) for some $\{i, j, k, l\}=\{3,4,5,6\}$.
Then $\mathscr{A}=\mathbf{D}_{6}$ if and only if there is a number α satisfying ($* *$) for the i, j, k, l in $\mathrm{b}-\mathrm{i}$). And (44) becomes birational to

$$
y^{3}=x\left(x^{3}-1\right)\left\{x^{6}-\left(\alpha^{3}+\alpha^{-3}\right) x^{3}+1\right\}^{2} .
$$

In fact the equalities

$$
\begin{equation*}
F^{*} x=\frac{x+\gamma}{-x+\gamma}, \quad F^{*} y=2^{1 / 3} \alpha^{-2}\left(1+\alpha^{3}\right)^{4 / 3} y(-x+\gamma)^{-5} \quad \text { with } \gamma=c_{i} / \sqrt{-3} \tag{46}
\end{equation*}
$$

give a birational morphism from M to M^{\prime}.
III. $g=5$
$\mathscr{A} \simeq \mathrm{D}_{10}$.

$$
M: y^{3}=x^{2}\left(x^{5}-1\right), \quad(*) \text { is split. }
$$

$\mathscr{A} \simeq C_{2}$.

$$
M: y^{3}=x\left(x^{2}-1\right)^{u_{3}}\left(x^{2}-c_{4}^{2}\right)^{u_{4}}\left(x^{2}-c_{5}^{2}\right)^{u_{5}}, \quad(*) \text { is split, }
$$

where $u_{i}=2, u_{j}=u_{k}=1$ for $\{i, j, k\}=\{3,4,5\}$, and $\left\{c_{j}^{2}, c_{k}^{2}\right\} \neq\left\{c_{i}^{2}\left(\frac{1-\zeta_{5}}{1+\zeta_{5}}\right)^{2}\right.$, $\left.c_{i}^{2}\left(\frac{1-\zeta_{s}^{2}}{1+\zeta_{5}^{2}}\right)\right\}$. Here we denote $c_{3}=1$.
b-11) If $u_{i}=2, u_{j}=u_{k}=1$ and $\left\{c_{j}^{2}, c_{k}^{2}\right\}=\left\{c_{i}^{2}\left(\frac{1-\zeta_{5}}{1+\zeta_{5}}\right)^{2}, c_{i}^{2}\left(\frac{1-\zeta_{5}^{2}}{1+\zeta_{5}^{2}}\right)\right\}$, then M is birational to $M^{\prime}: y^{3}=x^{2}\left(x^{5}-1\right)$ and $\mathscr{A} \simeq \mathbf{D}_{10}$.

In fact

$$
\begin{equation*}
F^{*} x=\frac{x+c_{i}}{-x+c_{i}}, \quad F^{*} y=\sqrt{2} y\left(-x+c_{i}\right)^{-3} \tag{47}
\end{equation*}
$$

give a birational morphism from M to M^{\prime}.

Proof. Assume $\mathscr{A} \supset \mathbf{C}_{n}$ with $n \geq 2$. Then, from Theorem 3.1, M can be defined by

$$
\begin{gather*}
y^{3}=1^{u_{1}} x^{u_{2}} \prod_{i=3}^{d}\left(x^{n}-b_{i}\right)^{u_{i}}, \quad \mathscr{A} \supset \mathbf{C}_{n}=\left\langle S_{n}\right\rangle, \tag{48}\\
(48-\mathrm{I}) \nexists \mathscr{S}=\varepsilon_{1}+\varepsilon_{2}+n \sum_{i=3}^{d} 1, \\
(48-\mathrm{II}) u_{1}+u_{2}+n \sum_{i=3}^{d} u_{i} \equiv 0(\bmod 3),
\end{gather*}
$$

where 0 and $b_{i}(3 \leq i \leq d)$ are distinct, $0 \leq u_{1}, u_{2}<3, u_{i}=1,2(i \geq 3)$, and $\varepsilon_{k}=1\left(\right.$ resp. $\left.\varepsilon_{k}=0\right)$ if $u_{k}>0\left(\right.$ resp. $\left.u_{k}=0\right)(k=1,2)$.
$\mathrm{g}=9$.
Then $\# \mathscr{S}=11$. For $n=8,7,6,4$ and $n \geq 12$, there are no $\varepsilon_{i}(i=1,2)$ or d, which satisfy (48-I) with $\# \mathscr{S}=11$. When $n=11, \varepsilon_{1}=\varepsilon_{2}=0$ and $d=3$ satisfy (48-I) with $\# \mathscr{S}=11$. Therefore $u_{1}=u_{2}=0$ and $u_{3}=1$ or 2 . But they do not satisfy (48-II). Thus a number n satisfying $\mathscr{A} \supset \mathbf{C}_{n}$ is among $10,9,5,3,2$. Moreover Lemma 5.1 implies that only $\mathbf{D}_{6}, \mathbf{D}_{10}, \mathbf{D}_{18}$ are candidates for \mathscr{A} among dihedral groups.

Case $\mathscr{A} \supset \mathbf{C}_{10}$. From (48-I), we have $d=3$ and $\varepsilon_{1}+\varepsilon_{2}=1$. And then (48-II) holds if and only if " $u_{1}=2, u_{2}=0, u_{3}=1$ ", " $u_{1}=0, u_{2}=2, u_{3}=1$ ", " $u_{1}=1$, $u_{2}=0, u_{3}=2$ " or " $u_{1}=0, u_{2}=1, u_{3}=2$ ". These solutions define one curve up to birational morphisms. That is

$$
y^{3}=x\left(x^{10}-1\right)^{2}, \quad \mathscr{A} \supset \mathbf{C}_{10}=\left\langle S_{10}\right\rangle .
$$

By Lemma 5.1, we have $\mathscr{A} \simeq \mathbf{C}_{10}$.
Case $\mathscr{A} \supset \mathbf{C}_{9}$. We have $d=3$ and $\varepsilon_{1}=\varepsilon_{2}=1$. (48-II) holds if and only if " $u_{1}=1, u_{2}=2$ " or " $u_{1}=2, u_{2}=1$ ". Then M is defined by

$$
\begin{equation*}
y^{3}=x\left(x^{9}-1\right)^{r}, \quad \mathscr{A} \supset \mathbf{C}_{9}=\left\langle S_{9}\right\rangle, \quad \text { with } r=1,2 \tag{49}
\end{equation*}
$$

up to birational morphisms. From Lemma 5.1, we have $\mathscr{A} \simeq \mathbf{C}_{9}$ or \mathbf{D}_{18}.
Assume $\mathscr{A} \simeq \mathbf{D}_{18}$. Let $\mathscr{A}=\left\langle S_{9}, T^{\prime}\right\rangle$ with $T^{\prime 2}=1$ and $T^{\prime} S_{9} T^{\prime-1}=S_{9}^{-1}$. Then $T^{\prime}(0)=\infty$ and $T^{\prime *} x=\alpha / x$ with some number α. But, since $2+9 r \not \equiv 0(\bmod 3)$, there does not exist an automorphism of M which induces T^{\prime}. Thus $\mathscr{A} \supset \mathbf{C}_{9}$ means $\mathscr{A} \simeq \mathbf{C}_{9}$.

Case $\mathscr{A} \supset \mathbf{C}_{5}$. Then $d=4$ and $\varepsilon_{1}+\varepsilon_{2}=1$. (48-II) holds if and only if " $u_{1}=2$ (resp. 0), $u_{2}=0$ (resp. 2) and $u_{3}=u_{4}=1$ " or " $u_{1}=1$ (resp. 0), $u_{2}=0$ (resp. 1) and $u_{3}=u_{4}=2$ ". Then M is defined by

$$
\begin{equation*}
y^{3}=x\left(x^{5}-1\right)^{2}\left(x^{5}-a^{5}\right)^{2}, \quad \mathscr{A} \supset \mathbf{C}_{5}=\left\langle S_{5}\right\rangle \tag{50}
\end{equation*}
$$

up to birational morphisms. If $\mathscr{A} \supsetneq \mathbf{C}_{5}$, then $\mathscr{A} \simeq \mathbf{C}_{10}$ or \mathbf{D}_{10}.
When $\mathscr{A} \simeq \mathrm{C}_{10}$, there is an element $S^{\prime} \in \mathscr{A}$ such that $S^{\prime 2}=S_{5}$. Necessarily $S^{* *} x=\eta x$ holds with a primitive 10 -th root η of 1 , and then $a^{5}=-1$.

When $\mathscr{A} \simeq \mathbb{D}_{10}, \mathscr{A}=\left\langle S_{5}, T^{\prime}\right\rangle$ with $T^{\prime 2}=1$ and $T^{\prime} S_{5} T^{\prime-1}=S_{5}^{-1}$. By the same argument as in Case $\mathscr{A} \supset \mathbf{C}_{9}$, we can deduce a contradiction from $2 \cdot 1+2 \cdot 5+2 \cdot 5 \not \equiv 0(\bmod 3)$. So $\mathscr{A} \simeq \mathbb{D}_{10}$ does not happen. Thus we get b-1).

Case $\mathscr{A} \supset \mathbf{C}_{3}$. Then $d=5$ and $\varepsilon_{1}=\varepsilon_{2}=1$. (48-II) holds if and only if " $u_{1}+u_{2}=3$ ". Therefore M is defined by

$$
\begin{equation*}
y^{3}=x\left(x^{3}-1\right)^{u_{3}}\left(x^{3}-a^{3}\right)^{u_{4}}\left(x^{3}-b^{3}\right)^{u_{5}}, \quad \mathscr{A} \supset \mathbf{C}_{3}=\left\langle S_{3}\right\rangle . \tag{51}
\end{equation*}
$$

If $\mathscr{A} \supsetneqq \mathbf{C}_{3}$, then $\mathscr{A} \simeq \mathbf{C}_{9}, \mathbf{D}_{6}$ or \mathbb{D}_{18}. The case $\mathscr{A} \simeq \mathbb{D}_{18}$ has already been eliminated when we considered the case $\mathscr{A} \supset \mathrm{C}_{9}$.

Assume $\mathscr{A} \simeq \mathbb{D}_{6}$. Let $\mathscr{A}=\left\langle S_{3}, T^{\prime}\right\rangle$ with $T^{\prime 2}=1$, and $T^{\prime} S_{3} T^{\prime-1}=S_{3}^{2}$. Then, by the same argument as in Case $\mathscr{A} \supset \mathbf{C}_{9}$, we can deduce a contradiction.

Assume $\mathscr{A} \simeq \mathbb{C}_{9}$. There exists $S^{\prime} \in \mathscr{A}$ such that $S^{\prime 3}=S_{3}$. Then $S^{\prime *} x=\eta x$ with a primitive 9 -th root of 1 , and we can see that $u_{3}=u_{4}=u_{5}$ and $\left\{a^{3}, b^{3}\right\}=\left\{\zeta_{3}, \zeta_{3}^{2}\right\}$. Then (51) coincides with (34). Thus we get $b-2$).

Case $\mathscr{A} \supset \mathbf{C}_{2}$. Then $d=7$ and $\varepsilon_{1}+\varepsilon_{2}=1$. (48-II) holds if and only if

$$
\left\{\begin{aligned}
\text { 1) } & \left.u_{1}=0 \text { (resp. 1), } u_{2}=1 \text { (resp. } 0\right), u_{3}=\cdots=u_{7}=2, \\
\text { 2) } & u_{1}=0 \text { (resp. 2), } u_{2}=2 \text { (resp. 0), } u_{3}=\cdots=u_{7}=1, \\
\text { 3) } & u_{1}=0 \text { (resp. 1), } u_{2}=1 \text { (resp. 0), } u_{i}=u_{j}=u_{k}=1, u_{l}=u_{m}=2 \text { with } \\
& \{i, j, k, l, m\}=\{3,4,5,6,7\}, \\
\text { or } & \\
\text { 4) } & \left.u_{1}=0 \text { (resp. 2), } u_{2}=2 \text { (resp. } 0\right), u_{i}=u_{j}=u_{k}=2, u_{l}=u_{m}=1 \text { with } \\
& \{i, j, k, l, m\}=\{3,4,5,6,7\} .
\end{aligned}\right.
$$

Therefore, up to birational isomorphisms, we have two types of equations with $\mathscr{A} \supset \mathbf{C}_{2}=\left\langle\zeta_{2}\right\rangle$. That is:
$y^{3}=x\left(x^{2}-1\right)^{2}\left(x^{2}-a\right)^{2}\left(x^{2}-b\right)^{2}\left(x^{2}-c\right)^{2}\left(x^{2}-d\right)^{2}($ from 1) and 2))
$y^{3}=x\left(x^{2}-1\right)^{u_{3}}\left(x^{2}-a^{2}\right)^{u_{4}}\left(x^{2}-b^{2}\right)^{u_{5}}\left(x^{2}-c^{2}\right)^{u_{6}}\left(x^{2}-d^{2}\right)^{u_{7}}$
with $u_{i}=u_{j}=u_{k}=1, u_{l}=u_{m}=2$ for $\{i, j, k, l, m\}=\{3,4,5,6,7\}$.
(from 3) and 4)).
Assume $\mathscr{A} \supsetneq \mathbf{C}_{2}$. The possibility of $\mathscr{A} \simeq \mathbf{D}_{6}, \mathbf{D}_{10}$ or \mathbf{D}_{18} has already been eliminated when we considered $\mathscr{A} \supsetneq \mathbf{C}_{3}, \mathbf{C}_{5}$. Then $\mathscr{A} \simeq \mathbf{C}_{10}$. By the same way as in Case $\mathscr{A} \supset \mathbf{C}_{9}$, we know $\left\{1, a^{2}, b^{2}, c^{2}, d^{2}\right\}=\left\{\zeta_{5}^{k} \mid 1 \leq k \leq 5\right\}$ and $u_{3}=\cdots=u_{7}$. Thus we get b-3).
$\mathrm{g}=7$.
Then $\# \mathscr{S}=9$. For $n=6,5$ and $n \geq 10$, there are no $\varepsilon_{i}(i=1,2)$ or d, which satisfy (48-I) with $\# \mathscr{S}=9$. Thus a number n satisfying $\mathscr{A} \supset \mathbf{C}_{n}$ is among $9,8,7$, 4, 3, 2. Moreover, by Lemma 5.1, only $\mathbf{D}_{18}, \mathbf{D}_{14}, \mathbf{D}_{6}$, among dihedral groups, are candidates for \mathscr{A}.

Case $\mathscr{A} \supset \mathbf{C}_{9}$. Then $M: y^{3}=\left(x^{9}-1\right)$ and $\mathscr{A} \simeq \mathbf{D}_{18}$.
Case $\mathscr{A} \supset \mathbf{C}_{8}$. Then $M: y^{3}=x\left(x^{8}-1\right)$ and $\mathscr{A} \simeq \mathbf{C}_{8}$.
Case $\mathscr{A} \supset \mathbf{C}_{7}$. Then $M: y^{3}=x\left(x^{7}-1\right)$ and $\mathscr{A} \simeq \mathbf{D}_{14}$.
Case $\mathscr{A} \supset \mathbf{C}_{4}$. Then $M: y^{3}=x\left(x^{4}-1\right)\left(x^{4}-a^{4}\right)$. If $\mathscr{A} \supsetneq \mathbf{C}_{4}$, we have $\mathscr{A} \simeq \mathbf{C}_{8}$. By the same way as in Case $\mathscr{A} \supset \mathbf{C}_{5}$ of $g=9$, we have $a^{4}=-1$. Then we get $b-4$).

Case $\mathscr{A} \supset \mathbf{D}_{6}$. Then, from (10) in Theorem 3.1, M can be defined by

$$
y^{3}=\left(x^{3}-1\right)\left(x^{6}-b x^{3}+1\right)^{u} \quad(b \neq \pm 2), \quad \mathscr{A} \supset \mathbf{D}_{6}=\left\langle S_{3}, T\right\rangle .
$$

If $\mathscr{A} \supsetneq \mathbf{D}_{6}, \mathscr{A} \simeq \mathbf{D}_{18}$. There is an element $S^{\prime} \in \mathscr{A}$ satisfying $S^{\prime 3}=S_{3}$. Then $S^{\prime *} x=\eta x$ with a primitive 9 -th root η of 1 . Thus $\mathscr{S}=\left\{\zeta_{9}^{k} \mid 0 \leq k \leq 8\right\}, b=-1$ and $u=1$. Then we get $b-5$).

Case $\mathscr{A} \supset \mathbf{C}_{3}$. We have

$$
\begin{equation*}
y^{3}=\left(x^{3}-1\right)\left(x^{3}-a_{1}^{3}\right)^{v_{1}}\left(x^{3}-a_{2}^{3}\right)^{v_{2}}, \quad \mathscr{A} \supset \mathbf{C}_{3}=\left\langle S_{3}\right\rangle . \tag{52}
\end{equation*}
$$

If $\mathscr{A} \supsetneq \mathbf{C}_{3}$, then $\mathscr{A} \simeq \mathbf{D}_{6}$ or $\mathscr{A} \simeq \mathbf{D}_{18}$.
Assume $\mathscr{A} \supset \mathbf{D}_{6}=\left\langle S_{3}, T^{\prime}\right\rangle$ with $T^{\prime 2}=1$ and $T^{\prime} S_{3} T^{\prime-1}=S_{3}^{2}$.
Put $H=\left\{\zeta_{3}^{k} \mid 0 \leq k \leq 2\right\}, \quad H_{1}=\left\{a_{1} \zeta_{3}^{k} \mid 0 \leq k \leq 2\right\}, \quad H_{2}=\left\{a_{2} \zeta_{3}^{k} \mid 0 \leq k \leq 2\right\}$ and $\mathscr{H}=\left\{H, H_{1}, H_{2}\right\}$. Then T^{\prime} acts on \mathscr{H}, and T^{\prime} fixes exactly one element in \mathscr{H} because T^{\prime} is of order 2 and it has just two fixed points. For example,
$T^{\prime} H=H_{i}$ and $T^{\prime} H_{j}=H_{j}$ with $\{i, j\}=\{1,2\}$. From $T^{\prime} H=H_{i}$ and $T^{\prime}(0)=\infty$, $T^{* *} x=\left(\zeta_{3}^{k} a_{i}\right) / x(0 \leq k \leq 2)$ and $v_{i}=1 . T^{\prime} H_{j}=H_{j}$ implies that T^{\prime} has a fixed point in H_{j}, and then we need $a_{i}^{3}=a_{j}^{6}$. Thus (52) becomes

$$
\begin{equation*}
M: y^{3}=\left\{x^{6}-\left(a_{i}^{3}+1\right) x^{3}+a_{i}^{3}\right\}\left(x^{3}-a_{j}^{3}\right)^{v_{j}} \quad \text { with } a_{i}^{3}=a_{j}^{6} \tag{53}
\end{equation*}
$$

Moreover $F^{*} x=a_{j}^{-1} x$ and $F^{*} y=a_{j}^{-2-v_{j}} y$ define a birational morphism from M to

$$
M^{\prime}: y^{3}=\left\{x^{6}-\left(a_{j}^{3}+a_{j}^{-3}\right) x^{3}+1\right\}\left(x^{3}-1\right)^{v_{j}}
$$

From (42) and $b-5$), we get $b-7$).
In case $T^{\prime} H=H$ we obtain b-6).
Case $\mathscr{A} \supset \mathbf{C}_{2} . \quad M$ is defined by

$$
\begin{aligned}
& y^{3}=x\left(x^{2}-1\right)^{u_{3}}\left(x^{2}-c_{4}^{2}\right)^{u_{4}}\left(x^{2}-c_{5}^{2}\right)^{u_{5}}\left(x^{2}-c_{6}^{2}\right)^{u_{6}}, \quad \mathscr{A} \supset \mathbf{C}_{2}=\left\langle S_{2}\right\rangle \\
& \text { with }\left\{\begin{array}{l}
\text { a-i) } u_{3}=u_{4}=u_{5}=u_{6}=1, \text { or } \\
\text { b-i) } u_{i}=1, u_{j}=u_{k}=u_{l}=2 \text { for }\{i, j, k, l\}=\{3,4,5,6\} .
\end{array}\right.
\end{aligned}
$$

If $\mathscr{A} \rightleftharpoons \mathbf{C}_{2}$, then $\mathscr{A} \simeq \mathbf{C}_{4}, \mathbf{C}_{8}, \mathbf{D}_{6}, \mathbf{D}_{14}$ or \mathbf{D}_{18}. But the possibility of \mathbf{D}_{18} has been eliminated.

Assume that $\mathscr{A} \simeq \mathbf{C}_{4}$ (resp. \mathbf{C}_{8}). By the same argument as in Case $\mathscr{A} \supset \mathbf{C}_{5}$ of $g=9$, we can see $\mathscr{A}=\left\langle S_{4}\right\rangle$ (resp. $\left\langle S_{8}\right\rangle$). Thus we get b-8).

Assume $\mathscr{A} \simeq \mathbf{D}_{6}$. From (42), there exists a birational map F from M to

$$
\begin{equation*}
M^{\prime}: y^{3}=\left(x^{3}-1\right)\left(x^{6}-b x^{3}+1\right)^{u} \quad(b \neq \pm 2 \text { and } " u \neq 1 \text { or } b \neq-1 ") \tag{54}
\end{equation*}
$$

Let \tilde{F} denote the induced morphism as before, and put $T^{\prime}=\tilde{F} \circ S_{2} \circ \tilde{F}^{-1} \in$ $\operatorname{Aut}\left(M^{\prime}\right) /\langle V\rangle=\left\langle T, S_{3}\right\rangle$. Then $T^{*} x=\zeta_{3}^{e} / x$ for some $0 \leq e \leq 2$. Let

$$
\mathscr{S}^{\prime}:=\left\{1, \zeta_{3}, \zeta_{3}^{2}, \alpha, \alpha \zeta_{3}, \alpha \zeta_{3}^{2}, \alpha^{-1}, \alpha^{-1} \zeta_{3}, \alpha^{-1} \zeta_{3}^{2}\right\}
$$

with a root α of the equation $x^{6}-b x^{3}+1=0$. As $b \neq \pm 2$ and then $\alpha^{3} \neq \pm 1$, T^{\prime} has only one fixed point $\zeta_{3}^{2 e}(0 \leq e \leq 2)$ in \mathscr{S}^{\prime}. On the other hand S_{2} has only one fixed point 0 in \mathscr{S} on M. Since \tilde{F} sends $\{0, \infty\}$ (fixed points of S_{2}) and \mathscr{S} to $\left\{ \pm \zeta_{3}^{2 e}\right\}$ (fixed points of T^{\prime}) and \mathscr{S}^{\prime} respectively, we have $\tilde{F}(0)=\zeta_{3}^{2 e}$, $\tilde{F}(\infty)=-\zeta_{3}^{2 e}$ and

$$
F^{*} x=A x \quad \text { with } A=\left(\begin{array}{cc}
\zeta_{3}^{2 e} & \gamma \zeta_{3}^{2 e} \\
-1 & \gamma
\end{array}\right) \quad(\gamma: \text { a suitable number })
$$

Since \tilde{F} also sends the orbit decomposition of \mathscr{S} by $\left\langle S_{2}\right\rangle$ to that of \mathscr{S}^{\prime} by $\left\langle T^{\prime}\right\rangle$, we have

$$
\begin{aligned}
& \left\{A^{-1}\left(\zeta_{3}^{2 f}\right), A^{-1}\left(\zeta_{3}^{2 g}\right)\right\}=\left\{c_{i},-c_{i}\right\}, \quad\left\{A^{-1} \alpha, A^{-1}\left(\alpha^{-1}\right)\right\}=\left\{c_{j},-c_{j}\right\} \\
& \left\{A^{-1}\left(\zeta_{3} \alpha\right), A^{-1}\left(\zeta_{3}^{2} \alpha^{-1}\right)\right\}=\left\{c_{k},-c_{k}\right\}, \quad\left\{A\left(\zeta_{3} \alpha\right), A\left(\zeta_{3}^{2} \alpha^{-1}\right)\right\}=\left\{c_{l},-c_{l}\right\}
\end{aligned}
$$

where $\{f, g\}=\{0,1,2\}-\{e\},\{i, j, k, l\}=\{3,4,5,6\}$, and we denote $c_{3}=1$. From these relations, we have $\gamma^{2}=\left(\frac{\zeta_{3}^{(e-g)}+1}{\zeta_{3}^{(e-g)}-1}\right)^{2} c_{i}^{2}=-c_{i}^{2} / 3$ and

$$
c_{i}^{2}: c_{j}^{2}: c_{k}^{2}: c_{l}^{2}=3:-\left(\frac{\alpha-\zeta_{3}^{2 e}}{\alpha+\zeta_{3}^{2 e}}\right)^{2}:-\left(\frac{\zeta_{3} \alpha-\zeta_{3}^{2 e}}{\zeta_{3} \alpha+\zeta_{3}^{2 e}}\right)^{2}:-\left(\frac{\zeta_{3}^{2} \alpha-\zeta_{3}^{2 e}}{\zeta_{3}^{2} \alpha+\zeta_{3}^{2 e}}\right)^{2} .
$$

By permuting j, k, l suitably, we get the relation ($\star \star$).
Conversely we assume that there exists α satisfying ($\star \star$) for some $\{i, j, k, l\}=\{1,2,3,4\}$.

When $a-\mathrm{i}$) is satisfied, $\alpha^{3} \neq \zeta_{3}^{ \pm 1}$ or $\alpha^{3}=\zeta_{3}^{ \pm 1}$, we can see that (45) defines birational morphism from M to

$$
M^{\prime}: y^{3}=\left(x^{3}-1\right)\left\{x^{6}-\left(\alpha^{3}+\alpha^{-3}\right) x^{3}+1\right\}
$$

by direct calculations. Then, from (42) and b-5), $\mathscr{A} \simeq \mathbf{D}_{6}$ (resp. $\mathscr{A} \simeq \mathbf{D}_{18}$) provided $\alpha^{3} \neq \zeta_{3}^{ \pm 1}$ (resp. $\alpha^{3}=\zeta_{3}^{ \pm 1}$). Thus we get b-9).

When $\mathrm{b}-\mathrm{i}$) is satisfied with the same i, j, k, l in the relation ($\star \star$), we can check that (46) gives a birational morphism from M to

$$
M^{\prime}: y^{3}=\left(x^{3}-1\right)\left\{x^{6}-\left(\alpha^{3}+\alpha^{-1}\right) x^{3}+1\right\}^{2} .
$$

Thus we get $b-10$).
$g=5$.
Then $\# \mathscr{P}=7$. For $n=4,3$ and $n \geq 6$, there are no $\varepsilon_{i}(i=1,2)$ and d satisfying (48-I, II) with $\# \mathscr{S}=7$. Thus non-trivial \mathscr{A} is possibly isomorphic to $\mathbf{C}_{2}, \mathbf{C}_{5}$ or \mathbf{D}_{10}.

Case $\mathscr{A} \supset \mathbf{C}_{5}=\left\langle S_{5}\right\rangle$. Then M is defined by $y^{3}=x^{2}\left(x^{5}-1\right)$. Moreover we can see $\mathscr{A}=\mathbf{D}_{10}=\left\{S_{5}, T\right\}$.

Case $\mathscr{A} \supset \mathbf{C}_{2}=\left\langle S_{2}\right\rangle$. Then M is defined by

$$
M: y^{3}=x\left(x^{2}-1\right)^{u_{3}}\left(x^{2}-c_{3}^{2}\right)^{u_{4}}\left(x^{2}-c_{2}^{2}\right)^{u_{5}}
$$

where $u_{i}=2, u_{j}=u_{k}=1$ for $\{i, j, k\}=\{3,4,5\}$.
Assume $\mathscr{A} \supsetneqq \mathbf{C}_{2}$. Then $\mathscr{A} \simeq \mathbf{D}_{10}$. Let F be a birational morphism from M to

$$
M^{\prime}: y^{3}=x^{2}\left(x^{5}-1\right)
$$

Put $J:=\tilde{F} \circ S_{2} \circ \tilde{F}^{-1}$ as before. Then $J^{*} x=\zeta_{5}^{k} / x(0 \leq k \leq 4)$ and J fixes $\pm \zeta_{5}^{3 k}$. Only 0 is fixed by S_{2} in $\mathscr{S}=\left\{0, \pm c_{3}, \pm c_{4}, \pm c_{5}\right\}$, and only $\zeta_{5}^{3 k}$ is fixed by J in
$\mathscr{S}^{\prime}=\left\{0, \infty, 1, \zeta_{3}, \ldots, \zeta_{3}^{4}\right\}$. Therefore $\tilde{F}(0)=\zeta_{5}^{3 k}, \tilde{F}(\infty)=-\zeta_{5}^{3 k}$ and

$$
F^{*} x=\frac{\zeta_{5}^{3 k} x+\delta \zeta_{5}^{3 k}}{-x+\delta} \quad \text { (with a suitable number } \delta \text {). }
$$

By the same calculations as before, we have

$$
\begin{align*}
\left(F^{*} x\right)^{2}\left(\left(F^{*} x\right)^{5}-1\right)= & 2 \zeta_{5}^{k}(-x+\delta)^{-9} x\left(x^{2}-\delta^{2}\right)^{2} \\
& \times\left\{x^{2}-\delta^{2}\left(\frac{1-\zeta_{5}}{1+\zeta_{5}}\right)^{2}\right\}\left\{x^{2}-\delta^{2}\left(\frac{1-\zeta_{5}^{2}}{1+\zeta_{5}^{2}}\right)^{2}\right\} \tag{55}
\end{align*}
$$

Then $\left\{c_{3}^{2}, c_{4}^{2}, c_{5}^{2}\right\}=\left\{\delta^{2}, \delta^{2}\left(\frac{1-\zeta_{5}}{1+\zeta_{5}}\right)^{2}, \delta^{2}\left(\frac{1-\zeta_{5}^{2}}{1+\zeta_{5}^{2}}\right)^{2}\right\}$. As $u_{i}=2$ and $u_{j}=u_{k}=1$, we can see $\delta^{2}=c_{i}$ and $\left\{c_{j}^{2}, c_{k}^{2}\right\}=\left\{c_{i}^{2}\left(\frac{1-\zeta_{5}}{1+\zeta_{5}}\right)^{2}, c_{i}^{2}\left(\frac{1-\zeta_{5}^{2}}{1+\zeta_{5}^{2}}\right)^{2}\right\}$ from (55).

Conversely we can check that (47) defines a birational morphism from M to M^{\prime}. Overall we proved b-11).

Appendix

Here S_{n}, T, U, W, R, K, Z are elements of $S L_{2}(\boldsymbol{C})$ defined by $S_{n}=\left(\begin{array}{cc}\zeta_{2 n} & 0 \\ 0 & \zeta_{2 n}^{12}\end{array}\right)$, $T=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right), \quad U=\frac{1-i}{2}\left(\begin{array}{cc}i & -i \\ 1 & 1\end{array}\right), \quad W=\frac{1+i}{2}\left(\begin{array}{cc}-1 & i \\ 1 & i\end{array}\right), \quad R=\left(\begin{array}{cc}\frac{1+i}{\sqrt{2}} & 0 \\ 0 & \frac{1-i}{\sqrt{2}}\end{array}\right), \quad Z=\zeta_{10}^{-1}\left(\begin{array}{cc}\zeta_{5} & 0 \\ 0 & 1\end{array}\right), \quad K=$
 α_{i} with ramification index n_{i}.

Table 1: Finite subgroups of $\operatorname{Aut}\left(\boldsymbol{P}^{1}\right)$.

group H [\#H]	$f_{1}(x) / f_{0}(x), \quad\left\{\begin{array}{c}\text { ramification indeces } \\ \text { branch points }\end{array}\right\}$	$\begin{aligned} & \text { generators } \\ & A=\left(\begin{array}{c} a \\ c \\ c \\ c \end{array}\right) \\ & (\in S L(2, C) /\{ \pm 1\}) \end{aligned}$
cyclic $\mathbf{C}_{n},[n]$	$\frac{x^{n}}{1}, \quad\left\{\begin{array}{cc}n & n \\ 0 & \infty\end{array}\right\}$	S_{n}
dihedral $\mathbf{D}_{2 n},[2 n]$	$\frac{x^{2 n}+1}{x^{n}}, \quad\left\{\begin{array}{ccc}2 & 2 & n \\ -2 & 2 & \infty\end{array}\right\}$	S_{n}, T
tetrahedral \mathbf{A}_{4}, [12]	$\frac{\left(x^{4}-2 \sqrt{3} i x^{2}+1\right)^{3}}{\left(x^{4}+2 \sqrt{3} i x^{2}+1\right)^{3}}, \quad\left\{\begin{array}{ccc}3 & 2 & 3 \\ 0 & 1 & \infty\end{array}\right\}$	U, W
octahedral \mathbf{S}_{4}, [24]	$\frac{\left(x^{8}+14 x^{4}+1\right)^{3}}{108 x^{4}\left(x^{4}-1\right)^{4}}, \quad\left\{\begin{array}{ccc}3 & 3 & 4 \\ 0 & 1 & \infty\end{array}\right\}$	W, R
icosahedral As, [60]	$\frac{\left\{-x^{20}-1+228\left(x^{15}-x^{5}\right)-494 x^{10}\right\}^{3}}{1728 x^{5}\left(x^{10}+11 x^{5}-1\right)^{5}},\left\{\begin{array}{ccc}3 & 2 & 5 \\ 0 & 1 & \infty\end{array}\right\}$	K, Z

Table 2: Types of $P_{\left(b_{0}: b_{1}\right)}$.

group	$\left(b_{0}: b_{1}\right) \in \boldsymbol{P}^{1}(u)$	ramification index over $\left(b_{0}: b_{1}\right)$	$P_{\left(b_{0}: b_{1}\right)}$	type of $P_{\left(b_{0}: b_{1}\right)}$
C_{n}	(0:1)	n	$P_{(0: 1)}=1$	(iii)
	($1: 0)$	n	$P_{(1: 0)}=x$	(ii)
	$(1: b) \quad(b \neq 0)$	1	$P_{(1: b)}=x^{n}-b$	(i)
$\mathbf{D}_{2 n}$	(1:2)	2	$P_{(1: 2)}=x^{n}-1$	(i)
	(1: -2)	2	$P_{(1:-2)}=x^{n}+1$	(i)
	(0:1)	n	$P_{(0: 1)}=x$	(ii)
	$(1: b) \quad(b \neq \pm 2)$	1	$P_{(1: b)}=x^{2 n}-b x^{n}+1$	(i)
A_{4}	$(1: 0)$	3	$P_{(1: 0)}=\left(x^{4}-2 \sqrt{3} i x^{2}+1\right)$	(i)
	(1:1)	2	$P_{(1: 1)}=x\left(x^{4}-1\right)$	(ii)
	(0:1)	3	$P_{(0: 1)}=\left(x^{4}+2 \sqrt{3} i x^{2}+1\right)$	(i)
	$(1: b) \quad(b \neq 0,1)$	1	$\begin{aligned} & P_{(1: b)}=\frac{1}{1-b}\left\{\left(x^{4}-2 \sqrt{3} i x^{2}+1\right)^{3}\right. \\ &\left.-b\left(x^{4}+2 \sqrt{3} i x^{2}+1\right)^{3}\right\} \end{aligned}$	(i)
S 4	(1:0)	3	$P_{(1: 0)}=x^{8}+14 x^{4}+1$	(i)
	(1:1)	2	$P_{(1: 1)}=x^{12}-33 x^{8}-33 x^{4}+1$	(i)
	(0: 1)	4	$P_{(0: 1)}=x\left(x^{4}-1\right)$	(ii)
	$(1: b) \quad(b \neq 0,1)$	1	$P_{(1: b)}=\left(x^{8}+14 x^{4}+1\right)^{3}-108 b\left\{x\left(x^{4}-1\right)\right\}^{4}$	(i)
A_{5}	(1:0)	3	$P_{(1: 0)}=x^{20}+1+228\left(x^{15}-x^{5}\right)+494 x^{10}$	(i)
	(1:1)	2	$\begin{aligned} P_{(1: 1)}= & x^{30}+522 x^{25}-10005 x^{20}-10005 x^{10} \\ & -522 x^{5}+1 \end{aligned}$	(i)
	(0: 1)	5	$P_{(0: 1)}=x\left(x^{10}+11 x^{5}-1\right)$	(ii)
	$(1: b) \quad(b \neq 0,1)$	1	$\begin{aligned} P_{(1: b)}= & \left\{x^{20}+1-228\left(x^{15}-x^{5}\right)+494 x^{10}\right\}^{3} \\ & -1728 b\left\{x\left(x^{10}+11 x^{5}-1\right)\right\}^{5} \end{aligned}$	(i)

References

[1] Accola, R. D. M., Strongly branched coverings of closed Riemann Surfaces, Proc. Amer. Soc. 26 (1970), 315-322.
[2] Arbarello, E., Cormallba, M., Griffiths, P. A. and Harris, J., Geometry of Algebraic Curves Vol. I Springer-Verlag (1985).
[3] Farkas, H. M. and Kra, I., Riemann Surfaces, Graduate Texts in Mathematics 71, SpringerVerlag (1980).
[4] Horiuchi, R., Normal coverings of hyperelliptic Riemann surfaces, J. Math. Kyoto Univ. 19-3 (1979), 497-523.
[5] Ishii, N., Covering over d-gonal curves, Tsukuba J. Math. Vol. 16, No. 1 (1992), 173-189.
[6] Ishii, N., Remarks on d-gonal curves, Tsukuba J. Math. Vol. 19, No. 2 (1995), 329-345.
[7] Kato, T., Conformal equivalence of compact Riemann surfaces, Japan J. Math. 7-2 (1981), 281289.
[8] Klein, F., Lectures on the icosahedron and the solution of equations of fifth degree, Dover (1956), (translation).
[9] Machlachlan, C., Smooth coverings of hyperelliptic surfaces, Qurt. J. Math. Oxford (2), 22 (1971), 117-123.
[10] Namba, M., Families of meromorphic functioins on compact Riemann surfaces, Lecture Notes in Math. 767 (1979), Springer-Verlag.
[11] Namba, M., Equivalence problem and automorphism groups of certain compact Riemann surfaces, Tsukuba J. Math. Vol. 5, No. 2 (1981), 319-338.

Mathematical Division of General Education
College of Science and Technology
Nihon University, Narashinodai 7-24-1
Funabashi-shi, Chiba 274-8501
Japan
ishii@penta.ge.cst.nihon-u.ac.jp
yoshida@penta.ge.cst.nihon-u.ac.jp.

[^0]: 2000 Mathematical Subject Classification: 14H05, 14H30, 14H37.
 Key words: Compact Riemann surface, Automorophisms, Coverings.
 Received June 6, 2005.
 Revised May 9, 2006.

