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THE AUTOMORPlllSM GROUP OF A CYCLIC 
p-GONAL CURVE 

By 

Naonori ISHII and Katsuaki YOSHIDA 

Abstract. Let M be a cyclic p-gonal curve with a positive prime 
number p, and let V be the automorphism of order p satisfying 
M/<V) ~ pl. It is well-known that finite subgroups H of Aut(pl) 

are classified into five types. In this paper, we determine the defining 
equation of M with He Aut(M/<V») for each type of H, and we 
make a list of hyperelliptic curves of genus 2 and cyclic trigonal 

curves of genus 5, 7, 9 with H = Aut(M/<V»). 

1 Introduction 

Let M be a compact Riemann surface defined by 

(1) 

where p is a posillve prime integer, a/s are distinct complex numbers, and 
r/s are integers satisfying 1 s rj < p (i = 1, ... ,s). Put [f/:= {al, ... ,as} (resp. 

{al, ... , as, as+1 = CX)}) when 2::=1 rj == 0 (mod p) (resp. 2:;~1 rj ¥ 0 (mod p)). 
Then the genus g of Mis (#.9'-~(P-I) . Let C(M) denote the function field C(x, y) 

of M. For an automorphism (J E Aut(M), (J* represents the action on C(M) 
induced by (J. Let V be the automorphism on M defined by 

V*x = x and V*y = (Py 

with the primitive p-th root (p = exp 2rr.i/p of unity. The inclusion C(x) c C(M) 
corresponds to the cyclic normal covering x: M --> pi (x) of degree p, and its 
covering group is < V). Then x is (totally) ramified over a point a E pI (x) if and 
only if a E [f/. 
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In general, a compact Riemann surface of genus 9 is called a n-gonal curve 
when M has a meromorphic function of degree n and does not have any non
trivial meromorphic functions whose degree is smaller than n. It is known that M 

becomes a p-gonal curve provided (p - l)(p - 2) < 9 with a prime number p [10]. 

From now on, we always assume that M is a compact Riemann surface 
defined by (1). From the fact mentioned above, M becomes a p-gonal curve 
when 2p - 2 < #[1>. 

Let gft denote a linear system of degree d and dimension 1, then the linear 
system I(x)ool is gJ,. Here (x)oo is the pole divisor of x on M. We also assume that 
I(x)ool is unique as gJ,. In fact the uniqueness of gJ, is satisfied when (p - 1)2 < g, 
i.e., 2p < #[1> [10]. The uniqueness of gJ, on a cyclic p-gonal curve M implies that 
<V) is normal in Aut(M). Moreover we will see that V is in the center of 
Aut(M). Therefore, for a subgroup G of Aut(M) containing V, we have an exact 
sequence 

1 --> < V) ---7 G !:.. H ---7 1, 

where H = G/<V). 
On the other hand, it is well known that a finite subgroup H of Aut(pl) is 

isomorphic to cyclic en, dihedral D2n, tetrahedral A4, octahedral S4 or icosa
hedral As. Then it can be said that the group G above is obtained as an extension 
of these five groups by a cyclic group <V) of order p. Consequently there exist 
special relations among al, ... , as of (1) depending on H. 

First we will give a necessary and sufficient condition that the .sequence (*) is 
split. 

Next, by applying the concrete representations of finite subgroup H of 
Aut(pl(x)) given by Klein, we determine a defining equation of M which satisfies 
the condition He Aut(M)/<V) for a given H. 

Finally, as applications, we give a classification of hyperelliptic curves M 

of genus 2 and cyclic tigonal curves of genus 9 = 5,7,9 based on the types of H 

contained in Aut(M)/<V). 

2 A Necessary and Sufficient Condition in Which the Exact Sequence (*) 
is Split 

Let M be a cyclic p-gonal curve defined by the equation (1), and the linear 
system I(x)ool is assumed to be unique as gJ,. The symbols G, H, [I> etc. are same 
as in the previous section. We prepare more notations. 

NOTATION 1. Let denote t the element of H = G/<V) c Aut(pl(x)) induced 

by some element T E G. Let FP(H) (resp. FP( G)) denote the set of points on 
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M/<V) ~ pI (x) (resp. M) fixed by a non-trivial element of H (resp. G), and let 
FG(a) denote the set of automorphisms of pI (x) which fixes a point a Epl(x). 
By corresponding A = (~ 1) E SL(2, C) to A(x) := :!~, we have an isomorphism 
SL(2, C)/{±l} ~ Aut(pl(X)). We use the same symbol "A" for both a matrix and 
an element of Aut(pl (x)). Let <A)a denote the orbit of a E pI (x) by the subgroup 
<A) generated by A E SL(2, C). 

For a E FP(H), FG(a) is a cyclic group and FP(FG(a)) consists of two 
points a and a' with a #= a'. If FG( a) is generated by an element A of order 
n, then, by changing the coordinate x suitably, we may assume A(x) = (nx and 
FP«A») = {O, oo}, where (n = exp(2:0. 

We start with the following lemma. 

LEMMA 2.1. (i) The group H acts on 9'. 
(ii) Let aj and aj be in 9'. If there exisis an element T E G satisfying 

ta; = aj, then we have rj = rj. Here we define rs+l by rs+l == 
- 2::=1 rj (mod p) and 0 < rs+l < p when 2::=1 rj ¥= 0 (mod p). 

(iii) The automorphism V is contained in the center of G. 

PROOF. (i) Let T be an arbitrary automorphism on M. From the uniqueness 
of g ~, we have a diagram 

M ~ M/<V) ~ pI (x) 

T1I lIt 
M -----+ M/<V) ~ pI (x), 

x 

and this implies that t acts on s. 
(ii) Refer to [6], [11]. 
(iii) Suppose ord t = n. Then we may assume that t is defined by t*x = (nx, 

and then FP«T») = {O, oo}. For a E M/<V) ~ pI (x) with a i {O, oo}, the orbit 
< t)a is {a, (na, ... , (~-1 a}. The set 9' is decomposed into orbits of < t) 
depending on the order #9' n {O, oo}. 

(a) #{9'n{o,oo}}=2 9'= {O}U{oo}U<t)blU ... U<t)bt , 

(b) #{9'n{O,oo}}=l (we may assume 9'n{o,oo} = {O}), 9'={O}U 
<t)bl U··· U <t)bt, 

(c) #{9' n {O, oo}} = 0 9' = <t)bl u··· u <t)bt, 
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where bl, ... , bl are non-zero elements in f/ with b; =1= 00 and < T)b j n < T)bj = 0 
for i =1= j. 

In case (a), from (i) of this lemma, M is defined by 

(2) 

with n L,;=I Uj + 2 == 0 (mod p). In case (b), M is also defined by (2) with 
n L,;=I Uj + 1 == 0 (mod p). In both cases (a) and (b), by acting T* on (2), we 
have 

Then T is defined by T*x = (nx and T*y = ey, where e satisfies eP = (n' Since 
V*x = x and V*y = (Py, we have V*T* = T*V*. 

In case (c), we can also prove as above. o 

Lemma 2.1 (i) and (ii) imply the following. 

LEMMA 2.2. Assume f/=/J 00. Let f/ = U~=I Hbpl (disjoint) be the decom-
. . if rp • b' ub(ll {b(ll b(s/l} ( C) 'T'h h . (1)' posztlOn 0 J znto or zts fl' j = i' ... , i C ..L' en t e equatlOn zs 

transformed into 

u 
yP = II {(x - bpl) ... (x - b}s/)n r / (3) 

;=1 

with 1 ~ rj < p and L,~=1 sjr; == 0 (mod p). 

Let ii: : pi (x) -+ pi (u) be a normal covering defined by U = It (x)jfo(x) with 
a Galois group H, where fo(x) and It (x) are polynomials relatively prime to each 

other. We write (bo : bI) for a point of u-plane Ptcu) with U = :1 . Then we have 
the following theorem. 0 

THEoREM 2.1. Let M be defined by the equation (1). Then the exact sequence 

(*) is split if and only if 

(A) FP(H) n f/ = 0, or 
(B) for a E FP(H) n f/, #FG(a) is not divisible by p. 

PROOF. Put #H = n. Then #G = pn. We may assume f/;p 00. Then M is 
defined by (3) in Lemma 2.2. We regard MjG as au-plane pl(U), and consider 
the normal covering 
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whose covering group is H. We assume u = fi (x)lfo(x). We can also assume that 
the image ii(fI') does not contain OO(E pi (u)). 

Now we assume that (*) is split. Then G = (V) x H. We have a com
mutative diagram and canonical isomorphisms 

M ~ MI(V) 

(q) rr 1 1 n 

MIH ------> MIG, 
u 

{

Gal(n) ~ Gal(ii) ~ H 
Gal(x) ~ Gal(u) ~ (V) 

C(M) ~ C(MIH) ® C(x), 
C(u) 

where Gal ( ljJ) means the covering group of a given normal covering ljJ : Ml -t M2 
of compact Riemann surfaces Mi. Put ii(fI') = {(I : bJ), ... , (1 : bun, where 
bi (i = 1 ... u) are distinct complex numbers. Then we may assume that M I H is 
defined by 

u 

yP = (u-bd ll .. ·(u- bu)lu with I> == 0 and 0 < ti < p. (4) 
i=1 

The isomorphism C(M) ~ C(M I H) ® C(x) implies that x and y have a re-
lation C(u) 

p = (fi (x) _ b )11 ... (fi (x) _ b )IU 
Y fo(x) I fo(x) u . (5) 

By replacing fo(I:=1 t;)/p y with y, we have 

yP = (fi (x) - blfo(x»tl ... (fi(x) - bufo(x» \ (6) 

and this equation defines M. Let 9'; = {b~I), ... , b~s;)} (i = 1, ... , u) be the set of 

points b in pi (x) satisfying ii( b) = bi . Then, by the assumptions 00 1= fI' and 
00 1= ii(fI'), we have factorizations 

fi (x) - bdo(x) = Ci{(x - b~I) ... (x - b~Si)n m; with n = miSi and Ci "" O. 

The positive integers mi are ramification indices of ii over (1: bi) and 
mi = #FG(b~k). So the equation (6) may assume to be transformed into 

u 

yP = II {(x - bi!) ... (x - bis;)} m;t;, (7) 
i=1 

and we have fI' c U:=I 9';. If some mi is divisible by p, we can omit the term 
{(x - bil)) ... (x - b;s;)nm;l; of (7) by replacing y with YI{n~=l (x - b;k)nm;I;/p. 
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Further we can delete the term (u - bj)t' from the equation (4). Finally we can 

get the equation (4) satisfying f/ = U:=I!1i and (mi'p) = 1. 
Conversely assume that (A) or (B) is satisfied and M is be defined by the 

equation (3) in Lemma 2 .. 2. Put bi = n(bp)) (i = 1, ... , u). Then, for each bi, we 
have !I (x) - bjlo(x) = Cj{(x - bP)) ... (x - b~Si))} ml again. The assumption (A) 

or (B) implies (mj,p) = 1. Then, from (rj,p) = 1 and (m;,p) = 1, there exists an 
integer Sj satisfying 0 < Sj < P and Sir; == m; (mod p) for each i. Put S = rr;:"1 Sj. 
Then there exist two integers Uj and M j satisfying srj = Ujmj + Mjp. Raising both 
sides of (3) to s-th power and replacing ys/{rr;:"I{(x_bP))···(x_b~Si))}Mi} 
with y again, we have 

u u 
yP = II{(x_bP))···(x_b~si))}uimi = CII(!I(x) -bilo(x)ti, 

j=1 i=1 

where C is a non-zero constant. Therefore we may assume that M is defined by 

yp=rrr=I(!I(x)-bilo(x)t' , and then C{M)=C(M/H) ® C(x). 0 
C(u) 

3 Defining Equations of p-gonal Curves M with an Exact Sequence (*) 

In this section, we give defining equations of M and representations of G 
according to each type of finite subgroups H of Aut(pl) classified by Klein [8]. 

Let A = (; 1) E SL(2, C). As in the previous section, we also write A for the 
element {±A} in SL(2, C)/{±l} ~ Aut(pl(x)) as long as there is no confusion. 
Although there are p distinct elements of G which induce A E H, we also use 
the symbol A abusively for an element of G which induces A E H. In order to 
determine the action of A* on the function field C(x, y), it is sufficient to in
vestigate A*y. 

Let n: pl(x) -+ pl(u) be a finite normal covering defined by a rational 

function u = ~~;~ with (1o,!I) = 1, and let H be is its covering group. Put 
#H = s. Take (bo : bt) E pl(u). Let m ~ 1 be the ramification index of n over 
(bo : bt). Then there are three types of factorizations of the polynomial 

That is: 

{
(i) Crri=1 (x - ai)m with t ~ 1 and mt = S, 

P(bo:bd = (ii) CrrJ,:J(x - ai)m with t - 1 ~ 1 and mt = s, 
(iii) C, 
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where C is a non-zero constant. Type (i) (resp. (ii)) happens when ti( (0) :j::. (bo : bI ) 

(resp. n(oo) = (bo : b I) and m < s). Type (iii) happens when n(oo) = (bo : bI ) and 
m = s. Then H must be a cyclic group. 

Define a polynomial P(bo:b L) and a positive integer d(bo:bL) as follows. 

(i) PCbo:bl)(X) = n:=1 (x - ai), 
(ii) PCbo:bI)(X) = n:,:; (x - aj), 

(iii) P(bo:bd(x) = 1, 

d(bo:bl) = t if P(bo:bJ ) is of type (i), 
d(bo:bI) = t if P(bo:bl) is of type (ii), 
d(bo:bd = s if P(bo:bd is of type (iii). 

The following lemma comes form the consideration similar to that of the previous 

section. 

LEMMA 3.1. Let M be a cyclic p-gonal curve defined by (1) with #fI' > 2p 

(therefore M has a unique g~). Assume Aut(M)/(V) contains the finite subgroup 

H above. Then there exists a finite set {(bo,j: bI,;) 11 ~ i ~ r} of distinct points in 

pI(u), and M can be defined by 

r 
P - IIpu; y - (bo,;:bl,I)' 

i=I 

r 

L u;d(bo,;:bu) == 0 (mod p), 
i=I 

r 

#fI' = L d(bo.i:b L,;) > 2p. 
i=1 

(8) 

Moreover the number of PCbo,;,bl,l) of type (i) among PCbo,;,bl,;) (1 ~ i ~ r) is at least 

(r - 1). If there is a PCbo,i.bI,,) of type (iii), H is a cyclic group. 

Next we introduce the results from F. Klein. 

LEMMA 3.2 ([8], [4]). Let n: pI(x) ~ pl(u) be a finite normal covering 

defined by a rational function u = ~~~~. Then the covering group H of n is cyclic, 

dihedral, tetrahedral, octahedral or icosahedral. And, by choosing coordinates x and 

u suitably, u = ~~~~ and the generators of H can be represented as in Table 1 of 

Appendix. 

PROPOSITION 3.1. Let H be one of the groups in Table 1. Then the poly

nomials PCbo:bI) in each type of H are given in Table 2 of Appendix. 
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attd 0, ±1, ±i and 00 are points over (1 : 1) with ramification index 2. Then 
P(l:l)(X) = x(x4 - 1) is of type (ii). 

jj(x) {_xlo_l+228(XI5_x5)-494xlO}3 
When H = As and u = "( ) = 5( 10 5 )5 , we have JO x l728x x +llx-1 

P(l:l) = {_x20 - 1 + 228(X15 - x 5) - 494x10)}3 - {1728x5 (X I0 + llx5 _1)}5 

= _(x30 + 522x25 - 10005x2o - 10005xl0 - 522x5 + 1)2, 

and P(l:l) = x 30 + 522x25 - 10005x2o - 10005x10 - 522x5 + 1 is of type (i). In any 
other cases, we can calculate by the same way as above. 0 

By this proposition and Lemma 3.1, we can get defining equations of M with H 
of Table 1, and they are written in Theorem 3.1. 

We can get the representation A*y for the generators A of H in Table I, by 
letting A act on both sides of the defining equations of M directly. But, before 
practicing the calculation, we will make closer observations on the action of 
A. 

DEFINITION 1. For A = (~ 1) E SL(2, C). Define j(A,x):= yx +<5 with a 
variable x on C. When Aoo = 00 (i.e., y = 0), define j(A, (0) := j(DAD- I , 0) = (x, 

where D = (~(/). And when Aoo =I- 00, define j(A, (0) := 1. Of course an 
automorphism of pl(x) induced by a matrix A is also induced by -A, and 

j(-A,x) = -j(A,x) for a variable x. 

First we will write down several properties of j(A, x). 

LEMMA 3.3. Let A = (~ 1) and B be in SL(2, C), and let x be a variable 
on C. Then 

(i) j(AB, x) = j(A, Bx)j(B, x). 
(ii) (X - yA(x) = j(A, x)-l. 
(iii) j(A,x)j(A-l,A(x)) = 1. 
(iv) Assume that the order of A E Aut(pl) is I (i. e., I is the least positive 

integer satisfying AI = ±(~ n). Take aEpl(x) such that a 1= FP«A»). 
(a) Assume 00 1= <A)a. Then 

IIj(A-1,Ai(a)) = j(AI, x) = 0 1 ' 
I {I if AI = e 0) 

i=l -I if AI = -(~ n. 
(b) Assume a = 00. Then j(A- l ,A(a)) = 0 and 
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IIj(A-l,Ai(a)) = -j(AI,x) = 0 1 ' 
I {-I if Al = e 0) 

;=2 1 ifAl=-(~n. 

(v) For a E FP( <A»), j(A, a) = j(BAB-1, B(a)). 

(vi) Let FP«A») = {al,a2}. Then j(A,aJ) and j(A,a2) are primitive I (resp. 

2/)-th roots of 1 if A l = (b n (resp. - (~ n)· And j(A, at )j(A, a2) = 1. 

PROOF. We can prove (i), (ii) and (iii) by simple calculations. 

(iv) We will prove only (b). Assume a = 00. As y =F 0 and A (a) = ~, we have 
j(A-2,A(a)) = -1 and j(A- I ,A(a)) = O. Since j(A-1 ,Ai(a)) = j(Ai-2,A(a))j 

j(Ai-I,A(a)) (2 ~ i ~ I-I) and j(A-l,AI(a)) = j(A-I, 00) = 1 by the definition, 

we have 

I . -I; I-I j(Ai-2,A(a)) 1 
Jjl(A ,A (a)) = Jjj(Ai-l,A(a)) = j(AI-2,A(a)) 

1 1 . I ) 
j(Al,A-2(a)) = -leA ,x . j(A I,A-2 A(a))j(A-2, A(a)) 

(v) Since A(a) = a, the assertion comes from (i), (iii) and j(A, 00) = cx. 

(vi) By (v), we may assume al = 0, a2 = 00 and A = (g e~l) where e is a 
primitive I or 21-th root of 1. Then j(A,O) = 10-1 and j(A, 00) = c. 0 

Let A = (~ 1) E H. First we observe the action of A* on polynomials P(bo:bt ). 

LEMMA 3.4. Assume that A E Aut(pl (x)) has an order I. Let P(bo:btl be a 

polynomial of type (i) or (ii) above. Put OIJ := {al, . .. ,at} (resp. {al,"" at-I, oo}) 
when P(bo:btl is of type (i) (resp. (ii)). Then A* acts on P(bo:btl in the following 

manner. 

(I) If OIJ n FP( <A») = 0, then t == 0 (mod I) and 

A*(P(bo:bJ)(X)) = P(bo:bJ) (A(x)) = j(A,x)-tj(AI,x)I/lp(bo:btl(X). 

(II) If OIJ n FP( <A») consists of one fixed point c E pI (x) of A, then 

t - 1 == 0 (mod I) and 

A* (P(bo:b l ) (x)) = j(A-1 , c)j(A, X)-I j(AI, X)(l-I)/I P(bo:b ,) (x). 

(III) IfOlJnFP«A») consists of two points c, c' of A, then t- 2 == 0 (mod I), 
and 
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These representations are independent from the choice of matrix A or -A. 

PROOF. (I) Assume dJ1 3 00 (i.e., P(bo:bt) is of type (ii)). Let 

dJ1 = {oo, A( 00), ... ,A /-1 (oo)} U (U~=2 <A)Ck) 

be the decomposition of dJ1 into the orbits of <A). Then lr = t, Y =1= ° and 

/-1 r / 

P (bo:bt) (x) = IT (x - Ai ( 00 )) IT IT (x - Ai (Ck)). 
;=1 k=2 i=1 

By acting A* on both sides of this equation, we have 

Since A( 00) = ~ and -yA( 00) + IX = 0, 

/-1 

the term (A) = j(A,x)-(i-ll IT{(-yAi(oo) + IX)X - (JAi(oo) - f3)} 
;=1 

= j(A,x)-(l-ll ( -J~ + 13) ft {( _yA i ( 00) + IX)X - (JAi( 00) - f3)} 

=j(A,x)-(l-ll( -J~+f3) gj(A-I,Ai(oo)) 

Z-l{ (JAi(oo) - 13) } 
x g x- (_yAi(oo) + IX) 

The last equality comes from Lemma 3.1 iv) (b). On the other hand, by Lemma 
3.1 iv) (a), 

r I 

the term (B) = j(A,x)-I(r- l l j (A',x)(r-1)ITIT(x-Ai-I(Ck)). (**) 
k=2i=1 
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By multiplying (*) and (**), we have 

A*(P(bo:btJ(X)) = j(A, x)-(t-I) ( -O~ + p) (-j(A I , xf) 

I-I r I 

X II(x-A i- 1(00)) IIII(x-A i- 1(ck)). 
i=2 k=2 i=I 

Moreover, by !to - py = 1 and (x - A I - I(00)r1 = yj(A,X)-I, we have 

I r I 

X II(x-A i- I(00))IIII(x-A i- 1(Ck)) 
i=2 k=2 i=1 

In case 00 ¢ r1lt, the calculation is much easier than the case above. 

(II) Let r1lt = {c} U (U~=1 <A)cd(t = lr + 1) be the decomposition of r1lt into 
the orbits of <A). There are three cases 

i) c i= 00 and Ck i= 00 (k = 1, ... ,r), ii) c = 00, iii) Ck = 00 for some k, to 
be considered respectively. But the calculations can be carried out by the same 
way as in (I), and then we omit the details. 

(III) Let r1lt = {c} U {c'} U (U~=l <A)Ck)(t = lr + 2) be the decomposition of 
r1lt into the orbits of <A). And we have 

A* (P ()) - '(A- 1 ) '(A- 1 ') '(A )-t "(AI )(t-2)/lp () (bo:btJ X - ) ,c } ,c } , x } , x (bo:btJ x . 

By Lemma 3.1 (vi), we have the equality of III. o 

The following theorem is from these lemmas above. In this theorem we use the 
b I nm-l d ",m-l sym 0 S i=m an ui=m as 

m-1 m-1 

II *:= 1 and 2.:::: * := 0 for an positive integer m. 
i=m i=m 

THEOREM 3.1. Let H be one of the groups in Table 1. Let M be a cyclic 

p-gonal curve with #!/ > 2p. Assume Aut( M) / < V) contains H. Then the de

fining equation of M and A*y for the generators A E H of Table 1 are given as 
follows. 
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(Case H = Cn). M is defined by 

d d 
,,p - pUI p U2 IIpUi - U2 II( n b )Ui 
Y - (0:1) (1:0) (l:bi ) - X X - i , (9) 

i=3 i=3 

d d 

#!/=el+e2+nLl, Ul+U2+nLui==0 (modp), 
i=3 i=3 

where 0:::;; u}, U2 < p, 0 < Ui < p (i:2: 3), bi -# 0, and put ek = 1 (resp. ek = 0) if 
Uk> 0 (resp. Uk = 0) (k = 1,2). In this case d:2: 3 since #!/ > 2p:2: 4. 

For the generator Sn of Cn, 

• S* - h ( )P - YU2 nY - rJsoY, were 'ISo - 'on . 

(Case H = D2n)' M is defined by 

d 
,,p pUI p U2 p U3 IIpUi 
y = (1:2) (1:-2) (0:1) (l:bi ) 

i=4 

d 

= (Xn - Itl(xn + It2 x u3 II(x2n - bixn + 1)"', (10) 
i=4 

d d 

#S = nel + ne2 + 2e3 + 2n L 1, 
i=4 

nUl + nU2 + 2U3 + 2n L Ui == 0 (mod p), 
i=4 

where d:2: 3 (according to the notation above), 0:::;; U1, U2, U3 < p, and 
o < Ui < p (i:2: 4), bi -# ±2, and put ek = 1 (resp. ek = 0) if Uk > 0 (resp. Uk = 0) 
(k=I,2,3). 

For the generators Sn and T of D2n, 

• S;Y = rJsoY 
• T*y = rJTX-(nul+nu2+2u3+2nLi:4Ui)/Py, 

(Case H = A4). M is defined by 
d 

yP = p(i:O)P(f:I)P(6:I) II P(t:bi ) 

i=4 

where (rJsoY = 1;,:3 
where (rJTY = (-It I 

= (X4 - 2V3ix2 + Itl{x(x4 - I)}U2(x4 + 2V3ix2 + It3 

d 1 
x II 1 _ b. {(X4 - 2V3ix2 + 1)3 - bi (x4 + 2V3ix2 + I)3}Ui, (11) 

;==4 I 

d d 

#!/ = 4e1 + 6e2 + 4e3 + 12 L I, 4uI + 6U2 + 4U3 + 12 LUi == 0 (modp), 
i=4 i=4 
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where d 2: 3, 0 ::;;; UI, U2, U3 < p, 0 < Uj < P (i 2: 4), bi =1= 0, 1, and put £k = 1 (resp. 

£k = 0) if Uk > 0 (resp. Uk = 0) (k = 1,2,3). 
For the generators U, W of ~, 

U* - {I-i ( + I)}(-4U,-6U2-4U3-lir;"'ui)/p • y -7Ju ""2 x y, 
where (7JuY = (_I)U2+u3 exp(t1lit2 exp('i1lit 3. 

W * {I+i( .)}(-4UI-6U2-4u3-liLf-4Ui)/P 
• Y = 7Jw ""2 x + l y, 

where (7Jw)P = exp(~1lit2 exp(!1lit3. 

(Case H = S4). M is defined by 

d 
P pUI p U2 p U3 II pU; 

y = (1:0) (1:1) (0:1) (I:b;) 
i=4 

= (x8 + 14x4 + 1t'(xl2 - 33x8 - 33x4 + 1t2{x(x4 _I)}U3 

d 

X II{(x8 + 14x4 + 1)3 -108bi (x4(x4 _1)4)}Ui, 
j=4 

d d 

(12) 

#!/ = 8eI + 11£2 + 6e3 + 24 L 1, 8UI + I2u2 + 6U3 + 24 L Uj == 0 (mod p), 
i=4 i=4 

where d 2: 3, 0::;;; UI,U2,U3 < p, 0 < Ui < P (i 2: 4), bi =1= 0, 1 and put ek = 1 (resp. 

ek = 0) if Uk > 0 (resp. Uk = 0) (k = 1,2,3). 
For the generators W, R of S4, 

(Case H = As). M is defined by 

d 
,,p pUI p U2 p U3 II pU; 
Y - (1:0) (1:1) (0:1) (I:b;) 

i=4 

= {x20 + 1 _ 228(XIS _ XS) + 494xlO } Ul 

X {x30 + 522x2S - 10005x20 - I0005x IO - 522xS + 1}U2{x(xiO + llxS _ 1)}U3 

t 

X II[{x20 + 1 - 228(xiS - x S) + 494xlO} 3 

;=4 

(13) 



14 Naonori IsHn and Katsuaki YOSHIDA 

d t 

#9' = 2081 + 3082 + 1183 +60 L I, 20Ul +30U2 + 12u3 + 60 LUi == 0 (modp), 
i=4 i=4 

where d ~ 3, 0 ~ Ul,U2,U3 < p, 0 < Ui < p (i ~ 4), bi # 0, 1, andput 8k = 1 (resp. 
8k = 0) if Uk> 0 (resp. Uk = 0) (k = 1,2,3). 

For the generators X, Z of As, 

[ ] 
(-20ut-30U2-12u3-60L:.Uj)/p 

• X*y = 11K ts{(1 - C~)x + (C5 - C~)} y 
where (11KY = 1. 

• Z*y = 11zY, where (11zY = ,;3. 

PROOF. Here we only deal with several cases as examples. 

Case H = At. Let M be defined by yP = p{rO)p{l:1)P,6:1) n~ P{j,b;) , where 
P(bo:bt ) are as in Table 2. Let A be U = 12"i (; Ii) (resp. W = Iii (\1 D). Then 

{
A3 = (01 ~1: (resp. (~n), j(A\x) = -I (resp. I), 

j(A,x) = 12"I(x+l) (resp. Ii'(x+i». 

Two fixed points ai, a2 of A = U (resp. W) are 

al = (-1+1")(I-i) (resp. (-I-1")(I+i), j(A- I, ad = exp(tni) 

(resp. exp(~ni), 
(~) 

(-l-v'3)(l-i) ( (-1 +v'3)(l+i) 
a2 = 2 resp. 2 ' j(A-I, a2) = exp(ini) 

(resp. exp(j ni). 

and we have P(I:0)(al) = 0 and P(O:I)(a2) = O. 
In case A = U, by Lemma 3.2, we have 

U* P(1:0) = j(U- l , adj(U, x);(U3,X)P(I:O) 

( I ){I-i }-4 =exp "3 ni -2-(x+ I) (-I)P(l:O), 

U* P(I:1) = j( U, x)-6j ( U-3, x)2 P(1:1) = {I ~ i (x + I) } -6 (_1)2 P(l:l), 

U* P(O:l) = j( U-1, a2)j( U, x)-l'( U3, X)P(O:I) 

(5 ) {I- i }-4 =exp "3ni -2-(x+ I) (-I)P(O:l), 

U*P(1:b;) = j(U,x)-12j(U3,x)4p(l:bj ) 

= f ~ i (x + 1) r1
\ _1)4p(1:bj ) (bi # 0, I). 
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Then 

(14) 

and 

where 1'/ satisfies 1'/P = (_1)"1 +U3 exp (t nit exp G nir3 . 
We can calculate W* y by the same way as above. 
Case H = 84. H is generated by Wand R. The fixed points (-I±'7)(1+i) of W 

are zeros of P(I:O). Then, by Lemma 3.2 (III), we get the representation of W*y. 
Case H = As. We may assume that M is defined by yP = 

p(,rO)p(,tI)P(,J:I) n~ P('{,b;)' 20uI + 30U2 + 12u3 + 602::2 Ui == 0 (mod p). Assume 
A = K. Then K3 = ((/ ~I) and j(K3,x) = -1. Let al and a2 be fixed points of 
K. As deg P(I:O) = 20 == 2 (mod 3), al and a2 are roots of P(I:O). Then we can 
apply Lemma 3.2 (Ill) to P(1:0), and we have 

K*yP = j(K, x) (-20Ul-30U2-12u3-60I:'uI)j(K3 , x) (6Ul+IOUl+4U3+20L:"u;)yp 

o 

Here we give several eXl!Jllples of defining equations of cyclic p-gonal curves 
having a split exact sequence (*). 

COROLLARY 3.1.1. Let M be a p-gonal curve defined by 

d 

yP = (xn - 1)"1 (xn + 1)"lxu3 II (x2n - bixn + 1)"1, 
i=4 

d 

nUl + nU2 + 2U3 + 2n LUi == 0 (mod p), 
i=4 

where d ~ 3 and O:s;; Ui < P (1 :S;; i:S;; 3,bi =F ±2). Then Aut(M)/<V) contains 
H = D2n• Moreover the exact sequence (*) is split if and only if the prime number 
p is taken according to the following way. That is; take a prime number p such that 
(p,2) = 1 in case U3 =F 0, (p, n) = 1 in case UI =F 0 or U2 =F 0 and any prime p in 
case UI = U2 = U3 = O. And a map I : H -+ G defined by 
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Sn f-t {S;X = (nX, S;y = (,7'3 y }, 

T f-t {T*x = l/x, T*y = (-itl x-(nul+nu2+2u3+2nL:~u;)/Py} 

gives a section of (*), where r is an integer satisfying rp == 1 (mod n). 

PROOF. The first half of our assertion is from Theorem 3.1 and Theorem 
2.1. 

Here we only check that the given map 1: H --t G is a section in case 
(2p,n) = 1 and UIU2U3 =I O. In Theorem 3.1 (Case H = D2n), put rtT = (_1)UI and 
rtsn = (,7'3 with an integer r satisfying rp == 1 (mod n). Then (rtsJP = ((n)U\ 

(rt T Y = (-1 tl. Meanwhile D2n is defined by relations S; = 1, T2 = 1 and 
TSnT = S;;I. But (S;)ny = rtsnY = y and (T*)2y = rt}y = y hold. Therefore if 
T*S;T*y = S;-ly holds, then 1 is a group homomorphism. In fact, by the 
definiton of 1, 

_ ( )2 (r )-(nUl+nU2+2U3+2nL:4U;)/P 
- rtT rtSn"n y 

= (( -1 tl )2(,7'3 ((n){ -(nul +nu2+2u3+2nL:;~U;)/p}pr y 

Then T* S;T*y = S;-I y holds. The equation Tl 0 1 = idH IS trivial from the 
definiton. 0 

COROLLARY 3.1.2. (1) The compact Riemann surface M defined by the fol
lowing equations (14) or (15) has Aut(M) isomorphic to A5 x < V). 

yP = x 20 + 1 - 228(x15 - x5) + 494x lO (p = 2,5). 

(p = 2,3). 

(2) The compact Riemann surface M defined by 

(15) 

(16) 

yP = x 30 + 522x25 - lO005x2o - lO005x10 - 522x5 + 1 (p = 2,3,5), (17) 

satisfies Aut(M)/<V) ~ As. Moreover Aut(M) ~ As x <V) provided p = 3,5. 
But when p = 2, the exact sequence (*) is not split. 
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PROOF. The right hand side of (14) is P(l:O) of A5 in Table 2. Then, by 
Theorem 3.1, Aut(M)/<V) ~ A5 if 20 == ° (mod p). So p = 2 or 5. Moreover if 
a is a root of P(1:O) = 0, then #FG(a) = 3. Therefore the exact sequence (*) is 
split by Theorem 2.1. The remains of the assertion can be proved by the same 
manner. 0 

4 Hyperelliptic Curves of Genus 2 with an Exact Sequence (*) 

In this section, we assume that M is a hyperelliptic curve (i.e., p = 2) of 
genus g = 2. By applying the results in the previous sections, we will determine all 
possible types of Aut(M)/<V) and their standard defining equations of M. We 
start with the following proposition. 

PROPOSITION 4.1. Let M be a hyperelliptic curve of genus g = 2. Let H be a 

subgroup of Aut(M)/<V), and we consider the exact sequence (*). 
Then H is isomorphic to Cn (n=2,3,4,5,6), D2n (n=2,3,4,6), A4 or S4. 

And according to each type of H, we can get a standard defining equation of M as 

in the following list. 

(*) is split (S) 

H = <generators) defining equation of M or not split (NS) 

C2 = <S2) y2 = (x2 _ 1)(x2 _ a2)(x2 _ b2) S 
C2 = <S2) y2 = x(x2 _ 1)(x2 _ a2) NS 

D4 = <S2, T) y2 = x(x2 _ 1)(x2 _ a2) NS 

C3 = <S3) y2 = (x3 _ 1)(x3 _ a3) S 

D6 = <S3, T) y2 = (x 3 _ 1)(x3 _ a3) S 

C4 = <S4) y2 = x(x4 - 1) NS 

Ds = <S4, T) y2 = x(x4 - 1) NS 

A4 = <U, W) y2 = x(x4 - 1) NS 

S4 = <W,R) y2 = X(X4 - 1) NS 

C5 = <Ss) y2=x(xS-1) ~ y2=xs_1 S 

C6 = <S6) 
2 6 ) biralionai 

S y = (x - 1 

D12 = <S6, T) y2 = (x6 - 1) NS 

where the symbols Sn, T, U, Wand R are defined in Appendix, and T is defined 

- a 
by T(x) =-. 

x 
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In particular 

C4 c:Aut(M)/(V) if and only if 84 = Aut(M)/(V), 

C6 c: Aut(M)/(V) if and only if Dl2 = Aut(M)/(V), 
C3 c: Aut(M)/(V) if and only if D6 c: Aut(M)/(V), 

{ C2 c: Aut(M)/(V) 
if and only if D4 c: Aut(M)/(V). 

and (*) is NS 

PROOF. H is isomorphic to Cn, D2n, ~, 84 or As. But, for g = 2, M 
is defined by y2 = (x - al) ... (x - as) with s = 5 or 6, and then H = 

84,~,D2n,Cn (n:s; 6) are the only groups which are possibly contained in 
Aut(M)/(V). 

Assume Aut(M)/(V)::::> H = Cn with n:s; 6. We may assume that Cn is gen
erated by the automorphism Sn defined by S;x = Cnx and the set f/ defined in §I 
contains 1. For example, assume Aut(M)/(V) ::::> C2• Then the decomposition of 
f/ into orbits by C2 may assume to be f/ = {±I} U {±a} U {±b} or f/ = {ex)} U 
{O} U {±I} U {±a}. Therefore M is defined by y2 = (x2 - 1)(x2 - a2)(x2 - b2) or 
y2 = x(x2 - 1)(x2 - a2), where a, b, 0, ±1 are distinct. For n > 2, by the same 
manner as above, we find that M can be defined by one of the following 
equations when Aut(M)/(V) contains H = Cn. 

(a) H = C2, y2 = (x2 - 1)(x2 - a2)(x2 - b2) 
(b) H = C2, y2 = x(x2 - 1)(x2 - a2) 
(c) H = C3, y2 = (x3 - 1)(x3 - a3 ) 

(d) H = C4, y2 = x(x4 - I). 
(e) H = Cs, y2 = x(xS -I). 
(f) H = C6, y2 = (x6 - I). 

(0, I, a2 , b2 are distinct). 
(a2 # 0, 1). 
(a3 # 0,1). 

Assume that M is defined by (f). We can see that M has an automorphism T 
defined by T*x = l/x and T*y = ix3y. Then T and S6 generate Dl2 . Moreover 
since D12 ¢ A4 and Dl2 ¢ 84, we have Aut(M)/(V) = D12. As ±I E pI (x) are 
fixed points of T and the order of T is 2, the exact sequence (*) with H = 

Aut(M)/(V) = D12 is not split by Theorem 2.1. 
Assume M is defined by (e). Among four types of groups 84, A4, D2n , 

Cn (n:s; 6), Cs and DIO are the only groups which contain Cs. Therefore 
Aut(M)/(V) is isomorphic to C5 or D IO . On the other hand the exponent UI 

(resp. U3) of (x5 - I) (resp. x) in (e) is equal to 1, and SUI + 2U3 = 7 =1= 0 (mod 2). 
Then, from Theorem 3.1, Aut(M)/(V) does not contain DIO and Aut(M)/(V) 

= C5 . As f/nFP(S5») = {O} and (5,2) = 1, (*) is split from Theorem 2.1. 
Assume M is defined by (d), then, from (13) in Theorem 3.1, Aut(M)/(V) 
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= S4 and H = C4,D8,~ or S4. Moreover the exact sequence (*) is not split since 
H contains S2 of order 2 and FP( <S2») n.9' = {O, oo}. 

Assume M is defined by (c). Then M has an automorphism T defined by 
T*x = a/x and T*y = a-3/ 2x 3y, and the group HI = <S, T) is isomorphic to 
06. So we can say that Aut(M)/<V) contains a subgroup 06 if and only if 
Aut(M)/<V) contains C3. Since FP(H1) n.9' = 0, H is split with H = <S, T). 

Assume M is defined by (b). Then M also has an automorphism T defined 
by T*x = a/x and T*y = a-3/2x 3y . Therefore D4 c Aut(M)/<V) if and only if 

C2 c Aut(M)/<V). Since FP( <S2») n Y = {O, oo} and the order of S2 is 2, H 
is not split by Theorem 2.1. 0 

By this proposition, we can get the list of Aut(M)/<V) as follows. 

THEOREM 4.1. Let M be a hyperelliptic curve of genus g = 2 Assume that 

Aut(M)/<V) is non-trivial. Then Aut(M)/<V) is isomorphic to C2, C5, 0 4 , 06, 
0 12 or S4. And according to each type of Aut(M)/<V), we can get a standard 

equation of M as follows. 

Case Aut(M)/<V) ~ S4. 

M is defined by y2 = x(x4 - 1). 

Case Aut(M)/<V) ~ Cs. M: y2 = x(x5 - 1) ~ y2 = x S - l. 
birational 

Case Aut(M)/<V) ~ D12. M: y2 = (x6 - 1). 

(18) 

(19) 

(20) 

Case Aut(M)/<V) ~ D4 . M: y2 = x(x2 - 1)(x2 - a2) with a2 oF 0, ±l. (21) 

#-1). The curve (21) has Aut(M)/<V) ~ S4 if and only if a2 =-1. 

Case Aut(M)/<V) ~ D6. M: y2 = (x3 - 1)(x3 - a3 ) (22) 

( 1+)3\3 
with a3 oF ± 1 and a3 oF 1 ~'73) . 

#-2). The curve (22) has Aut(M)/<V) ~ D12 if and only if a3 = -l. 

#-3). Aut(M)/<V) ~ S4 if and if a3 = G*~Y. 

In fact we can give a birational map F from M: y2 = (x 3 - 1)(x3 - a3 ) to 

M' : y2 = x(x4 - 1) 

by the following way. 
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L t - (1+i)(-1-v3) d - (1+i)(-l+v'3) b :fix d . t f W - l+i (-1 .) e al - 2 an a2 - 2 e e porn s 0 - ""2 I :. 

If a3 = (!!!.)3 = (1+v'3)3 (resp. a3 = (!!1.)3 = (1_v'3)3) the equalities 
a2 I-v'3 a, 1+v'3' 

F * = a2x - al F* = { (4 _ I)}1/2 Y Xl' Y a2 a2 3 x- (x-I) 
(23) 

(resp. F*x=a1x-t,F*y={a1(ai-1)}1/2 y 3) 
x- (x-I) 

define a birational map F from M to M'. 
Consequently any birational map from M to M' has a form F 0 <p = ljJ 0 F 

with some <p E Aut(M), ljJ E Aut(M'). 

Case Aut(M)/<V) ~ C1 . M: y2 = (x2 - 1)(x2 - a2)(x2 - b1 ), (24) 

where a and b satisfy the following three conditions (I), (II) and (III). 

(I) For each {i,j,k}={-I,O,I}, there is no pair (IX,rJ) which satisfies 

a2 = (~~~yj(~~~yk, 
b2 = (va + rJ)21j· ( va + rJ)2k and '14 = l. 

va-rJ va-rJ 

(25) 

(II) For each {i,j,k} = {O,l,2}, there is no pair (1)'.,'1) which satisfies 

(26) 

#-4). Assume there exists I)'. and 'I which satisfy (25) for some {i,j,k} = 
{-I, 0, I}. Then 1)'.2 #- 0, 1, and the equalities 

F*x = rJva(x + a) F* = ( 'a) 3/2(1)'. _ 2) Y (27) 
-x+a' y rJv<J. 'I (x-a)3 

with a2 = (~~~r2k define a birational map F from M to 

M' : y2 = x(x2 _ I)(x2 _ 1)'.2). 
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Therefore, under the existence of ((1.,11) satisfying (25), 

#-4-i) Aut(M)/<V) ~ D4 if and only if (1.2 # -1, 
#-4-ii) Aut( M) / < V) ~ S4 if and only if (1.2 = -1. 

21 

#-5). Assume there exists (1. which satisfies (26) for some {i,j,k} = {O, I,2}. 
Then (1.3 # 0, 1, and the equalities 

F * - l1Va(X + 15) F* _ ( r::;)3/2( 3 r::;3) Y 
X - ~, Y - l1v (1. 1'/ + v (1. 3 

-x+u (x -15) 

with 152 = (~_'1ct)-2 define a birational map F from M to 
v GH'1C3 

M' : y2 = (x3 _ I)(x3 _ (1.3). 

Therefore, under the existence of (1. satisfying (26), 

#-5-i) Aut(M) / < V) ~ D6 if and only if (1.3 # -1 and (1.3 # (I ±~):, 
#-5-ii) Aut(M)/<V) ~ Dl2 if and only if (1.3 = -1, (l=t= 3) 

#-5-iii) Aut(M)/<V) ~ S4 if and only if <:(3 = (I±V;):. 
(I =t=v3) 

#-6). If {1,a 2 ,b2 } = {l,(3,(n, then Aut(M)/<V) ~ Dl2 . 

PROOF. Let d denote Aut(M)/<V). 

(28) 

Cases d ~ S4, C5 and Dl2 . The equations (18), (19), (20) come from Propo
sition 4.1. 

Case d ~ D4 . By Proposition 4.1, a curve 

M: y2 = x(x2 - I)(x2 - a2) (a 2 # 0,1) 

satisfies D4 = <S2, T) c d, where T*x = a/x. 

If D4 ?E d, then, also by Proposition 4.1, d must be isomorphic to S4. Now 
take an element DE d of order 4. Then D acts on !/ = {O, 00, ±I, ±a} and has 
two fixed points in !/. 

First assume D(a) = a and D(-a) = -a. Put J = n 7). Then JDJ-1 

fixes x=o and 00, we have (JDJ-1rx=±Hx. As JDJ- 1 acts on 

J({O,oo,+I,-I}) = {±I'l:;:~' (t:~rl}, we have H = l:;:~ or (l:;:~rl and 

a2 = -1. Therefore y2 = x(x2 - I)(x2 - a2 ) coincides with (18). 
Next assume D(O) = 0 and D(I) = 1. Put J = n ~J Then (JDJ-1)*x = 

±Hx and JDJ- 1 acts on J( {oo, -1, a, -a}) = { 1, 4, a~l ' a~l}. This does not 
happen. 
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By checking any other possibilities of fixed points of Ding, we can see that 

.91 = 84 if and only if a2 = -1. 

Case .91 ~ D6. From Proposition 4.1, the curve 

M: y2 = (x3 - 1)(x3 - a3) (a3 :f. 0,1) 

satisfies D6 = <S3, r) cd. If D6 £ .91, then .91 ~ D12 or .91 ~ 84 . 

Assume .91 ~ D12. By the structure of D12 there exists an element S' of 
order 6 in .91 such that St2 coincides with the element S3 Ed. For S;x = (3X, 

S'*x=~x with ~2=(3. As S' acts on g={I'(3,(~,a'(3a,(~a}, a must be a 
primitive 6-th root of unity and g = {1,~, ... , ~5}. So we arrive at #-2). 

Assume .91 ~ 84 . Then there is a birational map F from M to 

M' : y2 = x(x4 - 1). 

Let i : M / < V) -t M' / < V) be the morphism induced by F. Put D = i 0 S3 0 

i-I E Aut(M')/<V). From the structure of 84, there are 8 elements of order 3 
in 84, and they are represented by matrices RtwsR-t (s= 1,2,t=0,1,2,3) in 
Aut(M')/<V) (see Table 1). Assume D = RtwsR-I. Then D fixes al . iI, and 

'1 • h (l+i)(-I-v'3) d (1+i)(-I+V3) A F- d fix d . f S a2 . l WIt al = 2 an a2 = 2 . S sen s e pomts 0 3 

to those of D, we have i({O, oo}) = {al . i l ,a2' i/} and then F*x = Ax with a 
matrix A = (a{ o.at') or (at/, c5.at') (15 is a suitable number). 

First we assume F*x = Ax = i'·a2x+c5i '·al From y2 = x(x4 - 1) we have x+o . , 
(F*y)2 = F*x((F*x)4 - 1). By further calculations, we have 

F*x((F*x)4 -1) = i ta2(ai -1)(x+J)-6 

{ ( al + 1) ( al + i) } x (x + 15) x + 15 a2 + 1 x + 15 a2 + i . 

On the other hand, by direct calculations, we have 

Thus the equation (F*y)2 = F*x((F*x)4 - 1) is transformed into 

{C(x+J)3(F*y)}2 = (x3 +J3)(X3 +153 . (:~y), 
where C2 = [(i1a2){(a2)4 -1}r1. 

(29) 
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Put Y:= C(X + 15)3 (F*y) , X:= x. Then X, Y E C(M) and (29) becomes 

y2 = (X3 +153) (X3 +153 (::Y). (30) 

Since f/ = {1'(3,(~,a,a(3,a(j} consists of branch points of the function X = 
x E C(M), (30) implies 

f/ = { -15, -15(3, -15(~, -15(::), -15(::) (3, -15(::) (f }. 

Then "153 =;-1 and 153(~y = -a3" or "153 = -a3 and 153(~y = -I". Therefore 

a3 = G~~D . Using (a1/ J.af i ') [or A, we can get the same result. There-

fore .91 ~ D6 implies a3 =p C~1) . 
Conversely, by the same argument as above, we can also see that (23) define 

a birational morphism when a3 = G~1Y. Thus we get #-3) . 

.91 ~ C2• From Proposition 4.1, the curve 

(31) 

satisfies .91::::) (S2) ~ C2. If C2 ~ .91, then .91 = D4, D6, D12 or 84. 

Assume .91 ~ D4 ::::) (S2). There is a birational morphism F from M to 

M' : y2 = x(x2 - 1)(x2 - ( 2) (a2 =p 0, ±1). 

By Proposition 4.1, Aut(M')/(V) = (S2, T) with T*x = a/x. Let F: M/(V) --t 

M'/(V) be the morphism induced by F. Put J:= F 0 S2 0 F-I(E Aut(M')/(V»). 
Then F(f/) = {O,oo,±I,±a} (f/={±I,±a,±b}), and F sends a fixed point 
of S2 (on M / (V») to a fixed point of J (on M' / (V»). From the fact that S2 

(on M / (V») has no fixed point in f/ but S2 (on M' / (V») fixes 0 and 00 in 
F(f/), we can see J =p S2 (on M'/(V»). Therefore J*x = ±a/x, and F({O, oo}) = 

{±yIa} (resp. {±HyIa}) provided J*x = a/x (resp. J*x = -a/x). So 

F*x = A(x) = rJylaX + 15rJyIa, A:= (rJyIa 15rJyIa) 
-x+15 -1 15 ' 

with suitable numbers 15 and 'I satisfying '14 = 1. 
The equation (F*y)2 = F*x«F*x)2 - 1)«F*x)2 - ( 2) is transformed as 

follows. 
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(F*y)2 = A(x) (A(X)2 - 1) (A (x) 2 _ 0:2) 

= (1]y'a) 3 (0: _1]2)2(X - J)-6(x - J)(x + J) 

As Sf' consists of the branch points of x, we have 

and the pair (0:,1]) satisfies (25). Thus sd *- D4 implies the condition (I). 
Conversely assume that there is a pair (0:,1]) satisfies (25). Since a2, b2, 1 are 

distinct, we can see 0:2 #- 0, 1. And (27) gives a birational morphism from M to 
M' even if 0:2 = -1. So we get #-4) from (21) and #-1). 

Assume sd ~ D6. There is a birational map P from M to 

( __ 3 ..J. -1, (11 +± ~3)3). M' : y2 = (x3 - 1)(x3 - 0: 3 ), <.< -r y.J 

Let i be as before. Put J:= i 0 S2 0 i-I. On the other hand, as Aut(M')/(V) 

= (S3, T), J*x = (~o:/x for some ° ~ s ~ 2. Since the fixed points of J are 
±(jsy'a, we have i({O, oo}) = {(~VcX, -(~VcX} and 

P*x=B(x)=1]VcXx+J1JVcX, B:=(1JVcX J1JVcX) 
-x+J -1 J ' 

where 1J = ±(f· 
The equation (F*y)2 = «F*x)3 - 1)«P*x)3 - (l3) is transformed as follows. 

(F*y)2 = (-x +J)-61]3y'a3 {y'a3(X +J)3 _1J3( -x +J)3} 

X {(1J3(x+J)3 - y'a3(_x+J)3} 



The automorphism group of a cyclic p-gonal curve 25 

2 2 

X II {y'a(x +15) - (j1](-x +J)} II {-y'a(-x +15) + (jll(x+J)} 
/=0 t=O 

= (-x + J)-61l3y'a3 

X g (y'a + (jll) { x + J(~ ~ f~~) } g (y'a + (jll) { x - J(~ ~ fi~) } 
= (-x + 15)-61]3 y'a3 (1]3 + y'a3)2 

and the pair (r:x,1]) satisfies (26). Thus d '$. D6 implies the condition (II). 
Conversely if there exists r:x3 satisfying (26) for some {i,j,k} = {O, I,2}, then 

r:x 3 =I 0, 1 and the equalities (28) defines a birational map even if r:x 3 = -lor 

G ~~). Thus we get #-5) from (22), #-2) and #-3). 
Next assume d ~ Dl2. There is a birational map F from M to 

M' : y2 = (x6 - I). 

Put J:= i 0 S2 0 i-I as above. Then J*x = ~ (0 ~ s ~ 5) or J*x = -x on M'. 

But when J*x = (~jx, we can follow the same argument in the case of d ~ D6, 

and we can get the relation (26) with r:x 3 = -1. (28) gives a birational map from 
M to M' again. 

When J*x = -x, the set of fixed points of J is {O, co}. Since i sends {O, co} 
(the set of fixed points of S2) to {O, co} (the fixed points of J), we have F*x = Jx 

or F*x=Jjx for some number J. At the same time i sends {±I,±a,±b} to 
{±1, ±(3, ±(~}, so we know that 15 = (~ and {1,a2 ,b2 } = {1,(3,(n. Thus we get 
#-6). Overall, we know that d ~ C2 if and only if the three conditions (I), (II) 
and (III) are satisfied at the same time. 0 
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5 Cyclic Trigonal Curves of Genus 5, 7, 9 

Let M be a cyclic trigonal curve defined by 

y3 _ (x - ar)'! ... (x - as)" = ° (1 ~ ri ~ 2, a/s are distinct). (32) 

The genus g of M is #Y - 2. We also assume g ~ 5 (i.e., M has unique g~). 
In this section we study M with odd g. In particular we will determine all 

possible types of Aut(M)/(V) and their standard defining equations of M for 
g = 5, 7, 9. We start with the following lemma. 

LEMMA 5.1. Assume that the genus g of M is odd Then 

(i) Aut(M)/(V) is isomorphic to a cyclic group or a dihedral group, 

(ii) If Aut(M)/(V) ~ D2n , then n is odd 

PROOF. (i) Assume A4 c Aut(M)/(V). The equation #Y = 4el + 6e2 + 
4e3 + 12 L 1 for H = ~ in Theorem 3.1 indicates that #Y and g are even. This 
is a contradiction. So A4 ¢ Aut(M)/(V), and then AS,S4 ¢ Aut(M)/(V). 

(ii) The equality #Y = nel + ne2 + 2e3 + 2n L~ 1 for H = D2n in Theorem 
3.1 implies that odd g does not happen for even n. D 

Next we will investigate cyclic trigonal curves with g = 5,7,9. 

THEOREM 5.1. Let M be a cyclic trigonal curve (32) with g = 5,7 or 9. 

Assume that d := Aut(M)/(V) is non-trivial. Then the type of d and a standard 

defining equation of M are as follows. 

I. g = 9. 

d c:= C 10. M is defined by 

y3 = x(xlO _ 1)2, the exact sequence (*) is split. 

(*) is non-split. 

0-1) The curve (35) has d c:= CIO if and only if as = -1. 

(33) 

(34) 

(35) 

d c:= C3 • y3 = x(x3 - I)U3 (x3 - a3)"4(x3 - b3t s, (*) is non-split, (36) 

where 0, 1, a3 , b3 are distinct, and a, b, U3, U4, Us satisfy one of the following two 
conditions a), b). 
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a) Ui =F Uj for some i,j E {3,4, 5}. 
b) b-i) U3 = 14 = Us and b-ii) {a3,b3} =F {e3,en· 

11-2) d ~ C9 if and only if {a3,b3} = (e3,en and U3 = 14 = Us hold. In this 
case (36) coincides with (34). 

d ~ C l . M is defined by 

y3 = x(xl _ Itl(xl - al )l4(xl _ bl )US(x2 - e2)U6(x2 - d2)U\ (*) is split, (37) 

where 0, I, al , b2, e2, d2 are distinct, and a, b, c, d, U3, ... , U7 satisfy one of the 
following two conditions a), b). 

a) a-i) U3="'=U7=2 and a-ii) {1,a2,b2,c2,d2}=F{e~IO:S:k:S:4}. 
b) ui=uj=uk=l, u/=um =2 for some {i,j,k,l,m} = {3,4,5,6,7}. 

11-3) d~ClO if and only if U3="'=U7=2 and {1,a2,bl ,cl ,d2}= 
{e~ 10 :s: k :s: 4} hold. In this case (37) coincides with (33). 

II. g = 7. 

M is defined by 

y3 = (x9 - I), ( *) is split. (38) 

y3 = x(x8 - 1), (*) is split. (39) 

y3 = x(x7 - 1), ( *) is split. (40) 

d~C4. y3 = x(x4 _ 1)(x4 _ a4) (a4 =F 0, ±1), ( *) is split. (41) 

11-4) d ~ C8 if and only if a4 = -1. In this case (41) coincides with (39). 

d~D6. 

y3 = (x3 - 1)(x6 - bx3 + It ("b =F ±2" and "u =F 1 or b =F -I"), (*) is split. 
(42) 

11-5) d ~ DI8 if and only if U = 1 and b = -I hold. And (42) coincides with 
(38). 

(43) 

Here 1, ai, ai are distinct, and aI, al, VI, Vl satisfy the following three 
conditions a), b) and c) at once. 

a) aiai =F 1 or VI =F Vl, b) ai =F a~ or VI =F 1, c) a~ =F ai or V2 =F 1. 
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11-6) Assume atal = 1 and VI = V2. Then (43) becomes 

y3 = (x3 -1){x6 - (ar +ai}x3 + I}V'. 

Therefore 
11-6-i) .!II ~ D6 if and only if at + ai i= -lor VI i= 1 (in this case (43) 

becomes (42) with b = at + ai), and 
11-6-ii) .!II ~ DI8 if and only if ai + al = -1 and VI = 1 hold (in this case 

(43) coincides with (38)). 
11-7) Assume ai = aJ and Vi = 1 for {i,j} = {1,2}. Then there is a birational 

morphism F from M to 

M': y3 = {x6 - (a] + aj3)x3 + l}(x3 _1)Vi. 

defined by 
I -2-v· F* X = aj x, F* = aj J x. 

Therefore 
11-7-i) .!II ~ D6 if and only if aJ i= (fl or Vj i= 1 (in this case (43) is 

birational to (42) with b = aJ +ai3(i= -1)), and 
11-7-ii) .!II ~ DIS if and only if aJ = (fl and Vj = 1 hold ((43) is birational 

to (38)) . 

.!II~C2. 

M: y3 = x(x2 - It3 (x2 - cl)U4(x2 - c~t5(x2 - c~t6, (*) is split, (44) 

where 1, cl, c~, c~ are distinct, and U3, U4, Us, U6, C4, CS, C6 satisfy one of the 
following conditions a) or b). Here we put C3 := 1. 

a-i) U3 = U4 = Us = U6 = 1, 
a-ii) there is no number a satisfying 

{cl,c~,cn = {-1,a2,-a2}, 
and 

a) 
a-iii) for each {i,j,k,l} = {3,4,5,6}, there is no number a 

2. 2. 2. 2 _. a-I . (3 a - 1 . (3 a - 1 
satisfying 2 2 ( 2 )2 

cj .cj .Ck .CI -3·-(a+1) ·-((3a + 1) .- (ja+1 . 

b {b-i) Uj = 1, Uj = Uk = Uz = 2 with {i,j,k,l} = {3,4,5,6}, and 
) b-ii) there is no number a satisfying (**) for the same' i,j,k, I in b-i). 

11-8) Assume a-i) and there is a satisfying (*). Then 
11-8-i) .!II ~ C4 if and only if a4 i= -1, 
11-8-ii) .!II ~ Cs if and only if a4 = -1. 
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~-9) Assume a-i) and there is ct. satisfying (**) for some {i, j, k, I} = 

{3, 4,5, 6}. Then (44) is birational to 

M' : y3 = (x3 - 1){x6 - (ct.3 + ct.-3)x3 + I}. 

In fact the equalities 

* x+y Fx=--, 
-x+y 

give a birational morphism from M to MI. And then 
o-9-i) d ~ D6 if and only if ct.3 #- ,~I , 
~-9-ii) d ~ DI8 if and only if ct.3 = ~I. 

b-1O) Assume b-i) for some {i,j,k,l} = {3,4,5,6}. 

(45) 

Then d = D6 if and only if there is a number a. satisfying (**) for the i, j, k, 
1 in b-i). And (44) becomes birational to 

y3 = x(x3 _ 1){x6 _ (a.3 + ct.-3)x3 + 1}2. 

In fact the equalities 

give a birational morphism from M to M'. 

III. g = 5 

M: y3 = x(x2 -lt3(x2 - clt4(x2 - e~t5, (*) is split, 

where ui=2, uj=uk=l for {i,j,k} = {3,4,5}, and {ej,eD#{e?C-25Y, 
e?G:~D}· Here we denote e3 = 1. 2 2 + 5 

~-11) If Ui = 2, Uj = Uk = 1 and {ej, cD = {e? C~~J ' e? G:~~) }, then M is 
birational to M' : y3 = x2(x5 - 1) and d ~ D IO . 

In fact 

(47) 

give a birational morphism from M to M'. 
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PROOF. Assume d:::> Cn with n ~ 2. Then, from Theorem 3.1, M can be 
defined by 

d 

y3 = 1 U1 XU2 II(xn - bi)"l, d:::> Cn = (Sn), 
i=3 

d 

(48-1) #1/ = 81 + 82 + n I: 1, 
i=3 

d 

(48-11) UI + U2 + n I:Ui == 0 (mod 3), 
i=3 

(48) 

where 0 and bi (3 sis d) are distinct, 0 s UI,U2 < 3, Ui = 1,2 (i ~ 3), and 
8k = 1 (resp. 8k = 0) if Uk> 0 (resp. Uk = 0) (k = 1,2). 

g=9. 
Then #1/ = 11. For n = 8,7,6,4 and n ~ 12, there are no 8i (i = 1,2) or d, 

which satisfy (48-1) with #1/ = 11. When n = 11, 81 = 82 = 0 and d = 3 satisfy 
(48-1) with #1/ = 11. Therefore UI = U2 = 0 and U3 = 1 or 2. But they do not 
satisfy (48-11). Thus a number n satisfying d:::> Cn is among 10, 9, 5, 3, 2. 
Moreover Lemma 5.1 implies that only D6, Dw, DI8 are candidates for d among 
dihedral groups. 

Case d :::> Cw. From (48-1), we have d = 3 and 81 + 82 = 1. And then (48-11) 
holds if and only if "UI = 2, U2 = 0, U3 = I", "UI = 0, U2 = 2, U3 = I", "Ul = 1, 
U2 = 0, U3 = 2" or "UI = 0, U2 = 1, U3 = 2". These solutions define one curve up 
to birational morphisms. That is 

By Lemma 5.1, we have d ~ Cw. 

Case d:::> C9. We have d = 3 and 81 = 82 = 1. (48-II) holds if and only if 
"Ul = 1, U2 = 2" or "Ul = 2, U2 = 1". Then M is defined by 

(49) 

up to birational morphisms. From Lemma 5.1, we have d ~ C9 or DIS. 

Assume d ~ DI8 . Let d = (S9, T') with TJ2 = 1 and T'S9T'-1 = S9"I. Then 
T'(O) = 00 and T'*x = IX/X with some number IX. But, since 2 + 9r =1= 0 (mod 3), 
there does not exist an automorphism of M which induces T'. Thus d:::> C9 

means d ~C9. 
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Case .PI ::::> Cs. Then d = 4 and 81 + 82 = 1. (48-II) holds if and only if "UI = 2 
(resp. 0), U2 = 0 (resp. 2) and U3 = U4 = I" or "UI = 1 (resp. 0), U2 = 0 (resp. 1) 
and U3 = U4 = 2". Then M is defined by 

(50) 

up to birational morphisms. If .PI:2 Cs, then .PI ~ CIO or DIO. 
When .PI ~ ClO, there is an element 8' E.PI such that 8'2 = 85. Necessarily 

8'*x =."x holds with a primitive 10-th root." of 1, and then as = -1. 
When .PI ~ DlO, .PI = <Ss, T') with T,2 = 1 and T'8sT,-1 = SSI. By the 

same argument as in Case .PI::::> C9, we can deduce a contradiction from 
2·1 + 2·5 + 2·5 t= 0 (mod 3). So .PI ~ DlO does not happen. Thus we get 
1>-1). 

Case .PI::::> C3. Then d = 5 and 81 = 82 = 1. (48-II) holds if and only if 
"UI + U2 = 3". Therefore M is defined by 

If .PI ~ C3, then .PI ~ C9, D6 or DIS. The case .PI ~ DIS has already been 
eliminated when we considered the case .PI ::::> C9. 

Assume .PI ~ D6. Let.PI = <S3, T') with T,2 = 1, and T'S3T,-1 = 81. Then, 
by the same argument as in Case .PI ::::> C9, we can deduce a contradiction. 

Assume .PI ~ C9. There exists S' E.PI such that S,3 = S3. Then S'·x = '1x 
with a primitive 9-th root of 1, and we can see that U3 = U4 = Us and 
{a 3 ,b3 } = {C3,(i}. Then (51) coincides with (34). Thus we get 1>-2). 

Case .PI::::> C2. Then d = 7 and 81 + 82 = 1. (48-II) holds if and only if 

or 

1) Ul = 0 (resp. 1), U2 = 1 (resp. 0), U3 = ... = U7 = 2, 
2) Ul = 0 (resp. 2), U2 = 2 (resp. 0), U3 = ... = U7 = 1, 

3) Ul = 0 (resp. 1), U2 = 1 (resp. 0), Uj = Uj = Uk = 1, U/ = Urn = 2 with 
{i,j,k,l,m} = {3,4,5,6, 7}, 

4) Ul = 0 (resp. 2), U2 = 2 (resp. 0), Uj = Uj = Uk = 2, U/ = Urn = 1 with 
{i,j,k,l,m} = {3,4,5,6, 7}. 

Therefore, up to birational isomorphisms, we have two types of equations with 
.PI::::> C2 = «2). That is: 
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y3 = x(x2 _ 1)2(~ _ a)2(~ _ b)2(~ - C)2(~ - d)2 (from I) and 2)) 

y3 = x(x2 _ 1),,3(X2 _ a2t4(~ _ b2)U5(X2 _ C2)II6(X2 _ d2)"7 

with Uj = Uj = Uk = I, U/ = Urn = 2 for {i,j,k,l,m} = {3,4,5,6, 7}. 

(from 3) and 4)). 

Assume d ~ C2. The possibility of d ~ D6, DlO or DIs has already been elim
inated when we considered d ~ C3 , C5. Then d ~ Cw. By the same way as in 
Case d ~ C9, we know {1,a2,b2,c2,d2} = g; 11::;; k::;; 5} and U3 = ... = U7. 

Thus we get 0-3). 

g=7. 
Then #!/ = 9. For n = 6,5 and n ~ 10, there are no ei (i = 1,2) or d, which 

satisfy (48-1) with #!/ = 9. Thus a number n satisfying d ~ Cn is among 9, 8, 7, 
4, 3, 2. Moreover, by Lemma 5.1, only DIS, D14, D6, among dihedral groups, are 
candidates for d. 

Case d ~ C9. Then M: y3 = (x9 - 1) and d ~ DIs. 

Case d ~ Cg. Then M: y3 = x(xg - 1) and d ~ Cg. 

Case d ~ C7• Then M: y3 = x(x7 - 1) and d ~ D14 • 

Case d ~ C4 . Then M: y3 = x(x4 - 1)(x4 - a4). If d ~ C4, we have d ~ Cg. 

By the same way as in Case d ~ C5 of g = 9, we have a4 = -1. Then we get 
0-4). 

Case d ~ D6. Then, from (10) in Theorem 3.1, M can be defined by 

y3 = (x3 - 1)(x6 - bx3 + 1)" (b # ±2), d ~ D6 = <S3, T). 

If d ~ D6, d ~ DIS. There is an element S' E d satisfying S'3 = S3. Then 
S'*x = Y/X with a primitive 9-th root Y/ of 1. Thus !/ = {(; I 0::;; k::;; 8}, b = -1 

and U = 1. Then we get 17-5). 

Case d ~ C3 . We have 

y3 = (x3 - 1)(x3 - ai)VI (x3 - ai)V\ d ~ C3 = <S3). (52) 

If d ~ C3 , then d ~ D6 or d ~ DIS. 
Assume d ~ D6 = <S3, T') with T'2 = 1 and T'S3T'-1 = Sl. 

Put H=g}IO::;;k::;;2}, HI = {al(}IO::;;k::;;2}, H 2 ={a2(}IO::;;k::;;2} 

and Yi' = {H,HI ,H2}. Then T' acts on Yi', and T' fixes exactly one element in 
Yi' because T' is of order 2 and it has just two fixed points. For example, 
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T'H = Hi and T'Hj = IIj with {i,j} = {1,2}. From T'H = H; and T'(O) = 00, 

T'*x = ((;ai)/x (0 ~ k ~ 2) and Vi = 1. T'IIj = IIj implies that T' has a fixed 
point in IIj, and then we need aj = af. Thus (52) becomes 

M: y3 = {x6 - (a; + 1)x3 + a;}(x3 - aJ)vJ with a; = ar (53) 

Moreover F*x = a;lx and F*y = a;2-vjy define a birational morphism from M 

to 

M': y3 = {x6 - (aJ +aj- 3)x3 + 1}(x3 _l)Vi. 

From (42) and b-5), we get b-7). 
In case T' H = H we obtain b-6). 

Case s#::;) C2. M is defined by 

y3 = x(x2 _1),,3(x2 - d)""(X2 - c~)"S(x2 - C~)"6, s#::;) C2 = <S2) 

. {a-i) U3 = U4 = U5 = U6 = 1, or 
WIth b-i) U; = 1, Uj = Uk = U/ = 2 for {i,j,k,l} = {3,4,5,6}. 

If s# ;: C2, then s# ~ C4, Cs, D6, DI4 or DIS. But the possibility of DI8 has been 
eliminated. 

Assume that s# ~ C4 (resp. Cs). By the same argument as in Case s# ::;) Cs of 
g = 9, we can see s# = (S4) (resp. (Ss»). Thus we get b-8). 

Assume s# ~ D6. From (42), there exists a birational map F from M to 

M' : y3 = (x3 - 1)(x6 - bx3 + 1)" (b #- ±2 and "u #- 1 or b #- -1"). (54) 

Let F denote the induced morphism as before, and put T' = F 0 S2 0 F- I E 

Aut(M')/(V) = (T, S3)' Then T'*x = (;/x for some O:s: e:S: 2. Let 

[;7':= {1'(3,(~,a,a(3,a(~,a-l,a-I(3,a-l(n 

with a root a of the equation x 6 - bx3 + 1 = O. As b #- ±2 and then a3 #- ±1, 
T' has only one fixed point (~e (O:s: e :s: 2) in [;7'. On the other hand S2 has 
only one fixed point 0 in [;7 on M. Since F sends {O, oo} (fixed points of S2) and 
[;7 to {±(~e} (fixed points of T') and [;7' respectively, we have F(O) = (~, 
- 2e F( 00) = -(3 and 

F* x = Ax with A = ((~e y(~e) (y: a suitable number). 
-1 y 

Since F also sends the orbit decomposition of [;7 by (S2) to that of [;7' by (T'), 
we have 
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{A-l (CY),A-I (cign = {Cj, -Cj}, {A-la, A-I (a-In = {Cj, -Cj}, 

{A-1 (C3a),A-1 (Cia-I)) = {Ck, -Ck}, {A(C3a),A(Cia-1)} = {C[, -cd, 

where {f,g} = {0,1,2}-{e}, {i,j,k,I}={3,4,5,6}, and we denote C3=1. 

(
,(--9)+1)2 

From these relations, we have y2 = d--9)-1 cf = -cf/3 and 

2. 2. 2. 2 _ . (a - c~)2. (C3a _ c~)2. (Cicx _ c~)2 
Cj • Cj . Ck . c[ - 3 . - a + C~ . - C3 CX + C~ . - cicx + cie • 

By permuting j, k, I suitably, we get the relation (**). 
Conversely we assume that there exists cx satisfying (**) for some 

{i,j,k,l} = {1,2,3,4}. 
When a-i) is satisfied, a3 i: crl or a3 = crl, we can see that (45) defines 

birational morphism from M to 

M' : y3 = (x3 _ l}{x6 - (a3 + cx-3 )X3 + I} 

by direct calculations. Then, from (42) and 11-5), d ~ D6 (resp. d ~ D18) 
provided a3 i: Cri (resp. cx3 = crl). Thus we get 11-9). 

When b-i) is satisfied with the same i, j, k, I in the relation (**), we can 
check that (46) gives a birational morphism from M to 

M' : y3 = (x3 -1}{x6 _ (cx 3 + CX- I )X3 + 1}2. 

Thus we get 11-10). 

g=5. 
Then #!/ = 7. For n = 4,3 and n ~ 6, there are no 8j (i = 1,2) and d 

satisfying (48-I, II) with #!/ = 7. Thus non-trivial d is possibly isomorphic to 
C2, Cs or D IO . 

Case d::::> Cs = (S5). Then M is defined by y3 = x2(X5 - I). Moreover we can 
see d = DIO = {Ss, T}. 

Case d::::> C2 = (S2). Then M is defined by 

M: y3 = x(x2 - It3(X2 - cit4 (X2 - cit5 , 

where Uj = 2, Uj = Uk = 1 for {i,j,k} = {3,4, 5}. 
Assume d ~ C2. Then .s# ~ D IO • Let F be a birational morphism from M to 

M' : y3 = x2 (xS - I). 

Put J:= Po S2 0 p-I as before. Then J*x = C~/x (0 ~ k ~ 4) and J fixes ±cJk . 

Only 0 is fixed by S2 in !/ = {O, ±C3, ±C4, ±cs}, and only cJk is fixed by J in 
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4 - 3k - 3k //' = {O, 00, 1, (3,' .. , (3}' Therefore F(O) = (5 , F( (0) = -(5 and 

(3kx +~(3k 
F*x = 5 5 (with a suitable number ~). 

-x+~ 

By the same calculations as before, we have 

(F*x)2((F*x)5 -1) = 2(~(-x+~r9x(x2 _~2)2 

X {x2 _ ~2 (1 -(5)2} {x2 _ ~2 (1 -(;)2}. (55) 
1 +(5 . 1 +(~ 

Then {e~,eJ,en = {~2,~2G~~:t,~2G:~D2}. As Ui = 2 and Uj = Uk = 1, we can 

see ~2 = ei and {el, en = {elG~~:t,etG:~jy} from (55). 

Conversely we can check that (47) defines a birational morphism from M to 
M'. Overall we proved b-ll). 0 

Appendix 

Here Sn, T, U, W, R, K, Z are elements of SL2(C) defined by Sn = ('ij" ~1)' 
T=(O i) U=l-i(i -i) W=l+i(-l i) R=(71 0) z=r-1(,s 0) K= 

i 0 ' 2 1 1 ' 2 1 i' 0 lJi ' "'10 0 1 ' 

( (4 (3 (3 1) { nl n2 ... } Ts t~d (:~~; . ~d. the symbol (Xl (X2 • • • means that it is ramified over 
(Xi With ranuficatIOn mdex ni. 

Table 1: Finite subgroups of Aut(pl). 

generators 

{ramification indeces} A = (~ ~) 
group H [#H] fi (x)/fo(x), branch points (e SL(2, C)/{±l}) 

cyclic C., [n] x' {~ :} s. 
T' 

dihedral Dl., [2n] xl. + I 
{~2 

2 :} S., T --, 
x' 2 

tetrahedral A4, [12] 
(x4 _ 2V3ix2 + 1)3 

{~ 
2 !} u, W 

(x4 + 2V3ix2 + 1)3' I 

octahedral S4, [24] 
(x 8 + 14x4 + 1)3 g 3 

~} W,R 
108x4(x4 - 1/ ' I 

icosahedral As, [60] 
{_x20 _ 1 + 228(x IS _ xS) _ 494x10 } 3 g 2 

~} K, Z 
1728xS(x IO + llxs _1)5 

, 
1 
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Table 2: Types of P(bo:h,). 

ramification 
index over type of 

group (bo ; bl ) epl(u) (bo ; bl ) P(bo:b,) P(!Jo:b,) 

Cn (0 ; I) n P(O:I) = I (iii) 

(l ; 0) n P(I:O) =X (ii) 

(I ; b) (b # 0) 1 P(I:b) = x" - b (i) 

D2n (I : 2) 2 P(I:2) = x" - I (i) 

(I : -2) 2 P(I:-2) = x" + 1 (i) 

(0 : I) n P(O:I) =X (ii) 

(l : b) (b # ±2) 1 P(l:h) = x2n - bx" + 1 (i) 

At (I : 0) 3 P(I:O) = (X4 - 2V3ix2 + 1) (i) 

(I : I) 2 P(I:I) = x(x4 - I) (ii) 

(0 : 1) 3 P(O:I) = (x4 + 2V3ix2 + I) (i) 

(I : b) (b#O,I) 1 
P(I:b) = I~b {(x4 - 2V3ix2 + 1)3 

- b(x4 + 2V3ix2 + 1)3} 
(i) 

84 (1 : 0) 3 P(I:O) = x 8 + 14x4 + 1 (i) 

(1 : I) 2 P(I:I) = xl2 - 33x8 - 33x4 + 1 (i) 

(0 : 1) 4 P(O:I) = x(x4 - 1) (ii) 

(1 : b) (b#O,I) 1 P(i:b) = (x8 + 14x4 + 1)3 - I08b{x(x4 - I)} 4 (i) 

A5 (1 : 0) 3 P(I:O) = x 20 + 1 + 228(x 15 - x 5) + 494x lO (i) 

(1 : 1) 2 
P(i:l) = x 30 + 522x25 - 10005x2o - 10005x lO 

(i) 
- 522x5 + 1 

(0 : 1) 5 P(O:l) = x(x lO+ llx5 - I) (ii) 

(1 : b) (b#O,I) 1 
P(i:b) = {x20 + 1 - 228(X l5 - x 5) + 494xID} 3 

- 1728b{ x(xID + llx5 _ I)} 5 
(i) 
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