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SUBSPACES OF THE SORGENFREY LINE 
AND THEIR PRODUCTS 

By 

Vitalij A. CHATYRKO 

Abstract. In this article we study the products of subspaces of the 
Sorgenfrey line 9. Using an idea by D. K. Burke and J. T. Moore 
[2] we prove in particular the following: 

Let Xi, i = 1, ... ,n, n;::: 1, be subs paces of 9, where each Xi is 

uncountable. Then Xl x ... X Xn x !2 can be embedded in 9 n+1 but 

can not be embedded in 9", where !2 is the space of rational numbers 

with the natural topology. 

This statement strengthens [2, Theorem 2.1]. 

1 Introduction 

All spaces considered here are assumed to be completely regular. Recall (see 
for example [4]) that the Sorgenfrey line 9 is the real line E!lt with the topology 
whose base is the family {[a, b) : a, b E E!lt with a < b}. It is well known that 9 
is a first-countable, hereditarily Lindelof, hereditarily separable, Baire space such 
that the product 9 2 is not normal. The space 9 has different nice properties (see 
for example [1], [2], [3], [8]). In particular, D. K. Burke and J. T. Moore proved 
the following [2, Theorem 2.1]. 

If Xo,···, Xn, n;::: 1, are uncountable subspaces of 9 then the product 

Xo x ... X Xn can not be embedded in 9 n. 

This result shows that 
(a) for any uncountable subspace X of 9, xn is homeomorphic to X in iff 

n = m where n, m are positive integers; 
(b) for a subspace X of 9 if the subspace xn of 9" can be embedded in 

9"-1 then X is countable. 
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Using an idea of their proof we shall prove the following. 
Define .9'-1 = {0} and .9'0 = fl, where fl is the space of rational numbers with 

the natural topology. Put also q(m, n, p) = m + 1 if n, m > 0, and q(m, n, p) = m 
otherwise, where m, n, p are integers ~ 0. 

THEOREM 1.1. Let ff be a finite family of non-empty subsets of .9' which are 
either uncountable, or homeomorphic to fl or discrete. Let also m be the number of 
uncountable elements of ff, n the number of elements of ff homeomorphic to fl, p 
the number of discrete elements of ff and 1 :::;; n + m + p. Then the product IT ff of 
all elements of ff can be embedded in .9'q and can not be embedded in .9'q-l, where 

q = q(m,n,p). 

Observe that Theorem 1.1 strengthens the mentioned above [2, Theorem 2.1] 

because any uncountable subspace of .9' contains a copy of fl as we will see in 
Lemma 2.2. 

Note also that any subspace of .9' is either uncountable, or countable with 
at least one limit point, or discrete (and of course countable). 

The next result is not complete as we wanted. 

THEOREM 1.2. Let ff be any finite family of non-empty subsets of .9'. Let m 
be the number of uncountable elements of ff, n the number of countable elements 
of ff with at least one limit point, p the number of discrete elements of ff and 

I :::;; n + m + p. If m :::;; 2 then the product IT ff of all elements of ff can be 
embedded in .9'q and can not be embedded in .9'q-l, where q = q(m, n, p). 

In particular, 

THEOREM 1.3. (i) Let Xl and X2 be subspaces of.9'. Then XI x X2 can be 
embedded in .9' iff XI, X2 are both countable or one of them is discrete. 

(ii) Let Xi, i = 1,2,3, be subs paces of.9'. Then Xl x X2 X X3 can be embedded 
in .9' iff all Xi, i = 1,2,3, are countable or two of them are discrete. 

XI x X2 X X3 can be embedded in [/2 iff at least two of Xi, i = 1,2,3, are 
countable, or one of them is discrete. 

PROBLEM 1.1. Can one remove the condition m :::;; 2 in Theorem 1.2? 

A positive answer on this question would also evidently strengthen Theorem 
1.1. 
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REMARK 1.1. There is an analog of Theorem 1.2 for the space g£ of real 
numbers with the natural topology. Really, define 91!-1 = {0} and g£O = f1JJ, 

where f1JJ is the space of irrational numbers with the natural topology. Note that 
any subspace of g£ is either one-dimensional (and so contains an interval), or 
zero-dimensional with at least one limit point, or discrete. Using in particular 
Brouwer theorem about the invariance of internal points and the theorem about 
the universality of f1JJ for zero-dimensional spaces with countable bases one can 
prove the following: 

Let ff be any finite family of non-empty subsets of g£. Let m be the number 
of one-dimensional elements of ff, n the number of zero-dimensional elements of 
ff with at least one limit point, p the number of discrete elements of ff and 
1 ::;; n + m + p. Then the product IT ff of all elements of ff can be embedded in 
g£q and can not be embedded in g£q-l, where q = q(m, n, p). 

2 Preliminaries 

A subset A c 91! with the topology induced from .7 will be denoted by Ay. 

The notation X ~ Y means that the spaces X and Yare homeomorphic. Our 
terminology follows [4]. 

We will continue with some properties of subspaces of .7. 
Countable subspaces properties: 
(1) Every countable subspace of .7\ k ~ 1, has a countable base (readily); 
(2) Every countable space with a countable base can be embedded in !2 (see 

for example [6, Theorem 2, page 296]); 
(3) Every countable space with a countable base and which has no isolated 

points is homeomorphic to !2 (see for example [7, Theorem 1.9.6]); 

LEMMA 2.1. (i)!2 ~ !2y ; 

(ii) For every open non-empty subspace U of !2, we have U ~!2; 

(iii) If!2 = QI U ... U Qn, n ~ I, then there is an index m and a subspace P of 

Qm such that P ~ !2; 
(iv) If Xl,··· ,Xn, n ~ I, are countable subs paces of.7 then Xl x ... X Xn can 

be embedded in !2 (and hence in fly and in .7). 

PROOF. Observe that the points (i) and (ii) are simple corollaries of the 
properties (1) and (3). The point (iv) is a corollary of the properties (1) and (2). 
In order to prove the point (iii) it is enough to show that if fl = AU B then either 
A contains a subspace C ~ fl or there is an open interval (a, b) c g£ such that 
(a, b) n!2 c B. Really, on the first step consider the system VI of open intervals 
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(n, n + 1), n E!l'. Either there is an element E of Vl disjoint from A and we have 
done by the point (ii) or we can choose from each interval of the system VI a point 
from A. Denote the chosen set by AI. On the second step consider the system V2 

of open intervals (a, a + ir), (a + ir ' b), (a, b) E v,. Either there is an element E 
of V2 disjoint from A and we have done by the point (ii) or we can choose from 
each interval of the system V2 a point from A. Denote the chosen set by A2. 

Continue by this way we either will find an open interval disjoint from A or 
construct a countable sequence A" A2 , ... of subsets of A. Observe that the system 

V;+, consists of the open intervals (a, a + :b), (a +:b, b), (a, b) E Vi. Denote 

C = U:, Ai. Observe that the set C c A is countable and without isolated 
points. So C ~ fl by the property (3). The lemma is proved. 

Uncountable subspaces properties: 
(4) Every uncountable subspace A of yk, k ~ 1, has the weight wA > ~o 

(readily); 
(5) For every uncountable subspace A of Y there is a subspace Be A such 

that each open non-empty subspace of B is uncountable (see for example 
[8, Lemma 6.1)); 

(6) Every uncountable subspace A of Y contains an infinite, closed in Y, 
discrete subspace. So A is not compact ([5, Corollary 1]). 

LEMMA 2.2. Every uncountable subspace A of Y contains a subspace home­
omorphic to fl. 

PROOF. By property (5) there is a subspace B of A such that each open non­
empty subspace of B is uncountable. We will construct a subspace of B which 
is homeomorphic to fl. Consider the open cover v, of Y consisting of half-open 
intervals [n, n + 1), n E !l'. From each element E of VI such that En B i= 0 
choose a point from B. Denote the chosen set by B 1• For every i ~ 1 consider the 

open cover Vi+l of Y consisting of half-open intervals [a, a + :b), ([a + :b ' b) , 
(a, b) E Vi. From each element E of Vi+ I such that En B i= 0 choose a point 
from B\(BI U·· ·B;). Denote the chosen set by Bi+l. Construct the sequence of 
countable disjoint subsets BI , B2 , ... of B. Denote C = U:I Bi. Observe that Cis 
countable and has no isolated points. So the subspace C of A is homeomorphic 
to fl by the properties (1) and (3). The lemma is proved. 

REMARK 2.1. Observe that every subset of Y is either uncountable (and 
hence containing according to Lemma 2.2 a lot of limit points), or countable with 
at least one limit point, or discrete. 
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It is convenient to follow some notations and facts from [2]. An element 
x E [lJn is viewed as a finite sequence x = (Xi)iSn' For 0 ~ k ~ n, x E [/n and 
V c [/n let 

This will be used when V is a basic open nbd of x of the form Bn [x, e) = . 
Ilsn[Xj,Xj + e) for e> O. Observe that for such V, {c5Z(V,x) : 0 ~ k ~ n} is a 
partition of V such that U;=kc5f(V,x) is open in [/n for any k ~ n. In addition, 
for 1 ~ k ~ n, c5Z(V,x) is the topological sum of finitely many subspaces of [/k 
and so it can be embedded in [/k (observe also that c5g(V,x) = {x}). 

3 Products of Subspaces of [/ 

We continue with a statement whose proof follows the base step of induction 
from [2, Theorem 2.1]. 

THEOREM 3.1. Let B be an uncountable subspace of [/ and for each bE B 
let A(b) be a subspace of [/ with a limit point pCb). Then the subspace C = 
UbEB(A(b) x {b}) of [/2 can not be embedded in [/. 

PROOF. Assume that there is an embedding f : C -+ [/ of C into [/. Then 
the mapping g = f x id : C x [/ -+ [/2 is also an embedding. Define 

E = UbEBA(b) x {(b,-b)} c ex [/ c [/3. 

Observe that E is the topological sum of subspaces E(b) = A(b) x {(b, -b)} 
~ A(b), bE B, of [/3, each of which embeds in [/2 by g. Let F = geE) c [/2. 

Observe that F is the topological sum of F(b) = g(E(b)) ~ A(b), b E B. For each 
bE B, put x(b) = g( {pCb)} x {(b, -b)}) E F(b) (observe that this point is a limit 
point for F(b)) and choose e(b) > 0 such that V(b) = B2[x(b),e(b)) is disjoint 
from F(b*) for all b* =F b, b* E B. 

Recall that the space [/ x PA is hereditarily Linde1of. For j = 1,2, let (Jj 

denote the topology on the product ZI x Z2, where Zj = [/ and Zi = PA for i =F j. 
These two spaces are of course homeomorphic and hereditarily Linde1of. Ob­
serve that for every j = 1,2, the hereditarily LindelOf topology (Jj tells us that 
(intUj V(b)) n F(b) = 0 for all but at most countably many bE B. So, we can 
find bE B such that F(b) is disjoint from the union (intul V(b)) U (intu2 V(b)). 
Observe also that 

V(b)\((intUl V(b)) U (intu2 V(b))) = c5~(V(b), x(b)). 
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But x(b) E V(b)nF(b) cg~(V(b),x(b)) =x(b). So the point x(b) = V(b)nF(b) 

is an open subset of F(b). This is a contradiction because x(b) is a limit point of 
F(b). The theorem is proved. 

COROLLARY 3.1. Let B be an uncountable subspace of 1/ and A a subspace of 

1/ with a limit point p. Then the subspace C = A x B of 1/2 can not be embedded 

in 1/. Moreover, there is an uncountable subset E of B such that for each point 

q E {p} x E, every open nbd of q in A x E can not be embedded in 1/. 

PROOF. Observe that any open nbd of p in A has p as a limit point. Apply 
now the property (5). 

COROLLARY 3.2. Let B be an uncountable subspace of 1/ and A a subspace of 1/ 
homeomorphic to .Pl. Then the subspace C = A x B of 1/2 can not be embedded in 1/. 
Moreover, if every open non-empty subspace of B is uncountable then no open non­

empty subspace of A x B can be embedded in 1/. In general, there is a subspace E 

of B such that no open non-empty subspace of Ax E can be embedded in 1/. 

PROOF. Lemma 2.1 (ii) together with the property (5) and Corollary 3.1 
prove the statement. 

PROPOSITION 3.1. Let A be a discrete subspace of 1/ and B a subspace of 1/. 
Then A x B can be embedded in 1/. 

PROOF. Observe first that A is countable. Recall that for any n E !Z, 
[n,n+1)g>~I/. Note now that 1/ is the topological sum of [n,n+l)g>, nE!Z, 
which is homeomorphic to 1/ x!Z. From this fact the statement follows. 

PROOF OF THEOREM 1.3 (i). By Remark 2.1 there is a decomposition of the 
class of all subspaces of 1/ in the three disjoint subclasses. According to that there 
are six different types of products. Now Lemma 2.1, Corollary 3.1 and Proposition 
3.1 prove the statement. 

Let Pi : 1/2 --+ 1/, i = 1,2, be the projections of 1/2 onto i-th factor or the 
restrictions of these projections on certain subsets of 1/2• We continue with a 
couple of examples following Proposition 3.1. 

EXAMPLE 3.1. Let A = ({O} U {t : i = 1,2, ... }) xl/ c 1/2• Recall that A 
can not be embedded in 1/ by Corollary 3.1. But A is the union Al U A2 of two 
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subspaces such that each Ai can be embedded in [/. In fact, put AI = {O} X [/ (a 
closed subspace of A) and A2 = {t: i = 1,2, ... } x S (an open subspace of A). 
(Observe that fl x [/ can not be written as a finite union of subspaces which can 
be embedded in [/ as we will see in Lemma 4.1.) 

EXAMPLE 3.2. Fix an embedding of fl = {ql,q2, ... } into [/. Define 

A = U:I([n,n+ 1) x {qn}) C [/2. 

Observe that A is the topological sum of the subspaces [n, n + I) x {qn}, 
n = 1,2, ... where each term [n, n + 1) x {qn} is homeomorphic to [/. So A ':::j [/. 

But PI (A) = [/ and P2(A) = fl. Moreover, for every point q E fl we have 
p'2iq ':::j [/. This example shows that the uncountability of B in Theorem 3.1 is 
extremely essential. Compare also this example with Corollary 3.2. 

We have more example concerning Theorem 3.1. 

EXAMPLE 3.3. Let A be any uncountable subspace of [/. Then the subspace 
B = {(a, -a) : a E A} of [/2, being non-LindeI6f, can not be embedded in [/. 

Observe that PI (B) = A and P2(B) = -A = {-a: a E A}. Moreover, Ipl i (a)1 = 

Ip'2 i ( -a) I = I for any a EA. A generalization of this example: Let E be a 
subspace of [/2 which contains the graph of a strictly decreasing function from 
Fe [/ to [/, where F is an uncountable subset of [/. Then E can not be 
embedded in [/. 

Theorem 1.3 (i) arises the following 

PROBLEM 3.1. Determine what subsets of [/2 can be embedded in [/. 

The proof of the following statement follows also the idea of the proof from 
[2, Theorem 2.1]. 

THEOREM 3.2. Let B be an uncountable subspace of [/ and for each b E B let 
A(b) be a subspace of [/n, n ~ 2, such that no open non-empty subspace of A(b) 
can be embedded in [/n-i. Then the subspace C = UbEB(A(b) x {b}) of [/n+l can 
not be embedded in [/n. 

PROOF. Assume that there is an embedding f : C -+ [/n of C into [/n. Then 
the mapping g = f x id: ex [/ -+ [/n+l is also an embedding. Define 
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E = UbEBA(b) x {(b, -b)} c C x [I' c [l'n+2. 

Observe that E is the topological sum of subspaces E(b) = A(b) x {(b, -b)} 
~A(b), bEB, of [l'n+2, where each E(b) can be embedded in [l'n+1 by g. Let 
F = geE) c [l'n+l. Observe that F is the topological sum of F(b) = g(E(b)) ~ 
A(b), bE B. For each bE B, pick a point x(b) E F(b) and choose e(b) > 0 such 
that V(b) = Bn+dx(b),e(b)) is disjoint from F(b*) for all b* -=1= b, b* E B. 

Recall that for any n E.AI the space [I' x !Yin is hereditarily LindelOf. For 

j = 1, ... , n + I, let (Jj denote the topology on the product rr~l Zi where Zj = [I' 

and Zi = !Yi for i -=1= j. These (n + 1) spaces are of course pairwise homeomorphic 
and hereditarily Lindelof. Observe that for every j = 1, ... ,n + 1, the hereditarily 
LindelOf topology (Jj tells us that (int(Jj V(b)) nF(b) = 0 for all but at most 
countably many bE B. So, we can find bE B such that F(b) is disjoint from the 
union U;~I(int(Jj V(b)). Observe also that 

V(b) \ (U;~J (int(Jj V(b))) c U::-o1 6;+1 (V(b), x(b)). 

So 

x(b) E V(b) nF(b) c U;==-OI6;+1(V(b),x(b)). 

Now, for this b, pick the largest k < n such that F(b) n6~+1 (V(b), x(b)) -=1= 0. 
Since 

F(b) n U;:kI6;+I(V(b),x(b)) = F(b) n6~+1(V(b),x(b)) 

is open in F(b) we see that 

W = g-I[F(b) n6~+1(V(b),x(b))] ~F(b) n6~+1(V(b),x(b)) 

is open in g-I[F(b)] = E(b). Recall that W can not be embedded in [l'n-l by 

assumption. In the same time the space F(b) n6~+1(V(b),x(b)), which is home­
omorphic to W, can be embedded in [l'n-l by the construction (recall that 

k < n). This is a contradiction. The theorem is proved. 

COROLLARY 3.3. Let Xi, i = 1, ... ,n, n;;:: 2, be subspaces of [I' such that 
Xl ~ fl and for every Xi, i;;:: 2, each open non-empty subspace of Xi is uncount­
able. Then Xl x ... X Xn can not be embedded in [l'n-l. 

PROOF. Apply an obvious induction. The basis of the induction is Corollary 
3.2. 

COROLLARY 3.4. Let Xi, i = 1, ... ,n, n ;;:: 2, be subs paces of [I' such that one 
of them is homeomorphic to fl and the others are uncountable. Then Xl x ... X %" 
can not be embedded in [l'n-l. 
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PROOF. Apply the property (5) and Corollary 3.3. 

COROLLARY 3.5 ([2, Theorem 2.1]). Let Xi, i = 1, ... ,n, n;;:: 2, be uncount­

able subs paces of Y. Then Xl x ... X Xn can not be embedded in yn-I. 

PROOF. Apply Corollary 3.4 and Lemma 2.2. 

PROOF OF THEOREM 1.1. Lemma 2.1, Proposition 3.1 and Corollary 3.4 prove 
the statement. 

Theorems 1.1 arises 

PROBLEM 3.2. Determine what subsets of yn can be embedded in yk for 

1 ~ k < n. 

Some examples of subsets of yn concerning Problem 3.2: 

EXAMPLE 3.4. Recall that Y:::d ((0,1))S":::d ([0, 1))S":::dX = ({O}U 
U:I(ai,bi))S", where 0 < bi+l < ai < bi for every i and ai --4 O. Using this fact it 
is easy to establish that 

(i) The subspace 

A = ([0,1) x {O} x {O}) U ({O} x [0,1) x {O}) U ({O} x {O} x [0,1)) 

of y3 is homeomorphic to y. Really, A = Al U A2 U A 3, where 

For each k = 1, 2, 3 define a mapping !k: Ak --4 X as follows. Put 

!k(0) = 0, and for each i ~ 1 let fkl([1/{i+I),I/i))S' be any homemorphism 
between ([ill' t) ) and (a3(i-I)+b b3(i-I)+k)S". Put f(x) = !k(x) for any 
point x E Ak. Th{ mapping f is a homeomorphism between A and 
X:::d y. Observe also that 

(**) A = Ui~obl(V,(O,O,O)), 

where V = B3[(0,0,0), 1). 
(ii) The subspace 

B = ({O} x [0,1) x [0,1)) U ([0, l)x {O} x {O}) 

of y3 can be embedded in y2 but can not (readily) be embedded in y. 
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Now we are ready to prove two statements necessary for Theorems 1.2 and 
1.3 (ii). 

THEOREM 3.3. Let B be an uncountable subspace of g andfor each bE B let 

A(b) be a subspace of g2 with a point pCb) such that no open nbd of pCb) in A(b) 

can be embedded in g. Then the subspace C = UbeB(A(b) X {b}) of g3 can not 
be embedded in g2. 

PROOF. Follow the proof of Theorem 3.2 but the points x(b) let us pick up 
as in the proof of Theorem 3.1. Use then the inclusion (*) from the proof of 
Theorem 3.2 and the equality (**) from Example 3.4 (i). 

COROLLARY 3.6. Let BI, B2 be uncountable subs paces of g and A a sub­
space of g with a limit point p. Then the subspace C = A X BI X B2 of g3 can 

not be embedded in g2. Moreover, there are uncountable subsets EI, E2 of BI, 

B2 respectively such that for each point q E {p} X EI X E2, no open nbd of q in 
A x EI X E2 can be embedded in g2. 

PROOF. Observe that any open nbd of p in A has p as a limit point. Apply 
now the property (5) and Corollary 3.1. 

PROOF OF THEOREM 1.3 (ii). Let us again use the decomposition from Remark 
2.1 of the class of all subspaces of g in the three disjoint subclasses. According 
to that there are ten different types of products. Lemma 2.1, Corollary 3.6 and 
Proposition 3.1 prove the statement. 

PROOF OF THEOREM 1.2. Lemma 2.1, Proposition 3.1, Corollary 3.1 and 
Corollary 3.6 prove the statement. 

A positive answer to the next question would give a positive answer to 
Problem 1.1. 

QUESTION 3.1. Let n ~ 4, x E gn and V = Bn[x,e). Can the set 
U;':020;(V,X) be embedded in gn-2? 

Recall that for n = 2, 3 this is right. 
Now in order to get a complete picture it is time to make some obvious 

comments concerning infinite products of subspaces of the Sorgenfrey line. 
Denote by f!) the discrete two points space. 
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PROPOSITION 3.2. Let X be an uncountable space with wX = ~o. Then X can 

not be embedded in !/n for any n E.Ai. In particular, the Cantor space ~ = ~No 
and any its uncountable subspace can not be embedded in !/n for any n E .Ai. 

PROOF. Recall from (4) that any uncountable subspace A of !/n, n ~ I, has 
wA > ~o. 

Observe that from Proposition 3.2 we have also that the Cantor space can 
not be embedded in any countable union of subspaces of !/k for each k ~ 1. 

PROPOSITION 3.3. Let., v be two infinite cardinals and. < v. Then ~v can not 
be embedded in !/~. 

PROOF. Really, assume that there is an embedding f: ~v -t !/~. Then 
f(~V) ~ £i)v is compact and w(f(~V)) = w(£i)V) = v ([E, p. 84]). By the property 

(6) there are countable subspaces Y"" a E., of !/ such that f(£i)V) c TI"'E1" Y",. 
Recall that by Lemma 2.1 each Y"" a E., has a countable base. Hence, 
W(TI"'E~ Y",) ~ • < v (see for example [4, Theorem 2.3.23]). This is a contradiction. 

PROPOSITION 3.4. Let. be an infinite cardinal ~ c. Then !/~ can be embedded 
in £i)~. 

PROOF. Observe that w(!/) = c. So !/ can be embedded in £i)c and hence 
!/~ can be embedded in (£i)cr ~ £i)~. 

4 Unions of Subspaces of !/k and Their Products 

Recall that two arrows space, shortly T AS, (see for example [4, Exercise 
3.1O.C]) defined by Alexandroff and Urysohn, is the union X = Co U Cl c !!Jt2, 

where Co = {(x, 0) : 0 < x ~ I} and C1 = {(x, 1) : 0.::; X < I}, and the topology 
on X generated by the base consisting of sets of the form 

{(x, i) EX: Xo - i < x < Xo and i = 0, I} U {(xo, On, 
where 0 < Xo .::; 1 and k = 1,2, ... , and of sets of the form 

{(X,i)EX:XO<x<xo+i and i=O,I}U{(xo,ln, 

where 0 ~ Xo < 1 and k = 1, 2, ... 
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It is easy to see that the TAS is compact and ITASI = c. So by the property 
(6) the T AS cannot be embedded in yk for any k ~ 1. Observe that the T AS is 
the union of two copies of Sorgenfrey line. This motivates the following. 

Define two sequences of classes of topological spaces as follows. 

Atn = {unions of finitely many subspaces of yk} and 

Ak = {unions of countably many subspaces of yk}) where k ~ 1. 

Put also Aoo = {unions of countably many subspaces of y) y2 ) y3 , ... }. 
We start with obvious remarks about these classes. 

PROPOSITION 4.1. (a) TAS EAt"; 

(b) Any space X from Atn (or AI) is hereditarily Lindelof and hereditarily 

separable; 

(c) Atn c Ak c Aoo for any k ~ 1; 

(d) If X E Atn(Ak) and Y E A~n(Am) then X x Y E At~m(Ak+n,). 

The following lemma is one more corollary of Theorem 3.1. 

LEMMA 4.1. Let B be an uncountable subspace of Y and for each b E B let 

A(b) be a subspace of y. Let also C = UbEB(A(b) x {b}). 

(a) If for every bE B we have A(b) ::::! f2 and C = U:I Yi for some n ~ 1 then 

there is k ::;; n such that Yk can not be embedded in y; 

(b) If for every bE B we have A(b) is uncountable and C = U:l Yi then there 

is k ~ 1 such that Yk can not be embedded in y. 

PROOF. (a) For each bE B by Lemma 2.1 (iii) there are i(b)::;; nand 
subspace E(b) of A(b) such that E(b) x {b} c Yi(b) and E(b)::::! 2. Since B is 
uncountable then there are k ::;; n and an uncountable subspace BI of B such that 
for each bEBI we have i(b) =k. By Theorem 3.1, UbEB1(E(b) x {b}) c Yi(b) 
can not be embedded in y. 

(b) This point is proved in the same manner as (a). 

By Lemma 4.1 we have readily 

THEOREM 4.1. (a) Let X E At" and X be uncountable. Then X x f2 ¢ At" 

but X x f2 E AI. 

(b) Let X, Y E AI and X, Y be uncountable. Then X x Y ¢ AI but 

X x YEA2. 
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What could be done else? Well, I think that it could be interesting to look 
what theorems from the previous section are valid for the T AS. 

I would like to thank the referee for her (his) big help in the preparation of 
this article. 
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