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THE INTEGRATED DENSITY OF STATES OF ONE­
DIMENSIONAL RANDOM SCHRODINGER OPERATOR 

WITH WHITE NOISE POTENTIAL AND BACKGROUND 

By 

Katsumi NAGAI 

1. Introduction 

We consider the Integrated Density of States (IDS), N(J..) , J.. E R, of the 
fomally defined operator H, 

1 d (1 d) q(t) cB'(t) 
(1.1) H = - r(t) dt p(t) dt + r(t) +~, Os t < 00, 

i.e., the limit of the normalized distribution function of the eigenvalues of HI 
which is the restriction of H to L2((0, l) : r(t) dt) under the boundary conditions, 

(b.c) p { 
tp(O) cos IX - _(10) tp' (0) sin IX = 0, 

rJ.,p tp(l) cos P - ptl} tp' (I) sin p = 0, 

where (B(t))t~O is the standard Brownian motion and B'(t) is the derivative of 

its sample function, namely the white noise. (p(t))t~O' (q(t))t;a>:o and (r(t))t:<!:o are 
bounded semi-martingales which we shall call the background, and c is a coupling 
constant. 

N(J..) is defined by 

N(J..):= lim !ZN(l,J..,OJ), 
l-+ctJ 

where we denote by N (l, J.., OJ) the number of eigenvalues of HI which are less 
than or equal to J... 

The main purpose of this paper is to improve Theorem of [5] and Theorem 
(b) of [12] cited below, simplifying their proofs at the same time. 

PROPOSITION 1.1 ([5]). Suppose that p(t) == 1, q(t) == 0, r(t) == 1 and c = 1. 
Then 
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PROPOSITION 1.2 ([12]). Suppose that q(t) == 0, c = 1 and 
(i) (p(t)), (r(t)) are nonanticipating with respect to u(B(s): 0 ~ s ~ t), 
(ii) PI ~ pet) ~ P2, ro ~ ret) for some PI, P2 and ro E (0,00), 
(iii) There exists an ergodic homogeneous stochastic processes M(T,OJ), 

and a positive function rt(T) such that sUPrS:/S:T+27t(lp'(t) I + Ir'(t)1) ~ 
rt(T)M(T) and rt(T) -t 0 as T -t 00, 

(iv) p( t) -t p( (0) and r( t) -t r( (0) as t -t 00. 
Then 

N(A) = 0: u(x) dx r1 
, 

where u(x) is the bounded solution of the equation 

~ sin4 xu'(x) + b(x)u(x) = 1, 0 < x < n, 

where hex) = p( (0) cos2 X + Ar( (0) sin2 x + sin3 x cos x. 

We shall derive the IDS concretely when the background is continuous 
semi-martingales that have limit at 00. To state the main result, we assume the 

following conditions: let (p,:oCt))/~o, (qw(t))t~O' (rw(t))t~O be continuous semi­
martingales on a probability space (n, $i', P) with a filtration (fft)/~o, namely pet) 
is expressed as Pw(t) = pet) = p(O) + MP(t) + AP(t) where MP (M(O) = 0 a.s) is 
a continuous local (fft)-martingale and AP(t) (A(O) = 0 a.s) is a continuous (fft)­
adapted process whose sample functions (t 1-+ AP) are of bounded variation on 
any finite interval a.s., and p(O) is an $i'o-measurable random variable. (Bw(t))/~o 
is an (fft)-Brownian motion. Moreover pet), MP(t) and AP(t) satisfy following 
conditions. 

(A.l): there exist that MP( (0) := limHoo MP(t), AP( (0) := limHoo AP(t) a.s 
(A.2): For some 0 < Cl < C2, C3 E R, which are independent of OJ, CI ~ pet), 

ret) ~ C2, Iq(t)1 ~ C3· 
(A.3): f~ tldAPI = 0(1) as I -t 00, f~ t2d<MP) = OUO) for some 0 < J < 2 as 

I -t 00. 
When q(t) and ret) are expressed similarly, we suppose that each martingale part 
and each part of bounded variation part also satisfy the above conditions. 

Then the main result is the following. 
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THEOREM 1.1. Under the assumptions (A1), (A2) and (A3), we have 

N(A) = (J: u(x;p(oo),q(oo),r(oo)) dxyl, 

where, for each (p,q,r) ER3, the function u(x) =u(x;p,q,r), 0 <x< 00, is the 
bounded solution of the equation 

(l.2) ~(J2(X)UI(X) + b(x;p,q,r)u(x) = 1, 0 < x < n, 

(J(x) := C sin2 x and b(x; p, q, r) := p cos2 x + (-q + Ar) sin2 x + c2 sin3 x cos x. 

Actually, we can write down the bounded solution of (1.2) explicitly. Thus we 

obtain the following corollary. 

COROLLARY 1.1. Under the same assumption of Theorem 1.1, we have 

N(l) ~ (Je,:tooJ )x ex+ el, {P(~) x3 + 2(-q(oo) H(OO))X} 1 dx r 
PROOF. By the proof of Lemma 4.2, the bounded solution u of (1.2) is given 

explicitly as u(x) = 2S(x) S; dyj(J2(y)S(y), where S(x) = exp[-2 S:/2 b(y; p, q, r)j 
(J2 (y) dy]. From this expression, we obtain 

S(x) = S(x; p, q, r) = exp[(2j c2){ (pj3) cot3 x + (-q + Ar) cot x}]jsin2 x, 

and here we can compute, by making change of variable twice, 

J: u(v;p,q,r) dv 

= :2 f~oo eXP [:2 {~z3 + (-q+Ar)z}] dz 

x f~ exp [- :2 {~y3 + (-q + Ar)y }] dy 

2 Joo [1 {p }] foo {2PX ( X)2} = c2 0 exp - c2 6 x3 + 2(-q+Ar)x dxx -00 exp -7 z+2 dz 

2 foo [1 {p 3 }] ~C2 =- exp -- -x +2(-q+Ar)x -dx. 
c2 0 c2 6 2px o 
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REMARK 1.1. When p(t) = r(t) = 1, q(t) = ° and c = 1, we derive N(Je) as 
given by Proposition 1.1. Tbis is contained the above corollary. 

In the remainder of tbis section we give a brief outline of tbis paper. In 
Section 2, we define the operator HI rigorously. Tbis argument is necessary since 
the Brownian motion B(t) is not differentiable in t. We here follow Savchuk and 
Shkalikov [11) to define the Schrodinger operator 

H.= __ 1 ~ (_1_~) + q(t) + Q'(t) 
. r(t) dt p(t) dt r(t) r(t) 

in L2((0, /); r(t) dt) for any Q E Lfoc(R : R) and (p(t)), (q(t)) and (r(t)) E C(R; R). 
In fact introducing the quasi derivative ¢P](t) := rj/(t)/p(t) - Q(t)rjJ(t) as in [11), 
we can write 

HrjJ(t) = - r!t) (rjJ[1] , (t) + p(t) Q(t)rjJPJ (t) + p(t)Q2(t)rjJ(t) - q(t)rjJ(t)). 

Since Q is a real function, HI can be realized as a self-adjoint operator, whose 
domain is given by 

D(H) = {cp E AC(O, l) I cp[l] E AC(O, I), cp satisfies (b.c)",p}, 

where AC(O, I) is the set of all absolutely continuous functions on (0, I). The 
spectrum of HI is discrete since HI has a compact resolvent. Futhermore when Q 

is locally bounded, the self-adjoint operator is bounded from below. Two other 
definitions of the operator corresponding to the expression HI have been known: 
Fukusbima and Nakao [5] defined it as self-adjoint operators on L2(0, I) which 
is associated with a closed symmetric form. In [8), Minami defined it through 
formal integration by parts (1.1). One advantage of the method of introducing 
the quasi derivative is that it makes valid, with little modification, the classical 
proof of the Sturm-Liouville Oscillation theorem as given e.g. in [13), also for 
operators with singular potentials like our HI. Tbis will be verified in Section 3. 
In Section 4, we prove Theorem 1.1. As in [5), we introduce the phase function 
O(t) of the solution rjJ of HlrjJ = JerjJ, rjJ(O) = sin iX, rjJ'(O)/p(O) = cos iX by Priiffer 
transformation. The Sturm-Liouville Oscillation theorem implies N(Je,l, OJ) = 
[(0(1, Je) - fJ)/n) + 1. Therefore N(Je) = n-1 liml-4co 0(1)/1. Our proof follows the 
same line as in [12), but it is simplified in some technical points. 

2. Schodinger Operator with Singular Potential 

In tbis section, following [11), we define the Schrodinger operator of the type 
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H'- __ 1 !!.- (_1_!!.-) + q(t) + Q'(t) ° ~ t ~ I, 
.- r(t) dt p(t) dt r(t) r(t) , 

with Q E Lloc(R) and continuous functions p, q and r, on the Hilbert space 
L2((0, I); r(t) dt), and show its self-adjointness. Let Q E Lloc(R; R). For any 
absolutely continuous cp, we define the quasi derivative cp[!] of cp by 

cp[l] := ~g] -Q(t)cp(t), 

and we formally rewright H in the form, 

(2.1) 

We can express (2.1) without Q', so (2.1) is meaningful if cp and cp[l] are ab­
solutely continuous function. Let us define the maximal operator HM as follows: 

D(HM ) := {cp E L 2([0, I]; r(t) dt) I cp, cp[l] E AC(O, I), h(cp) E L 2([0,/]; r(t) dt)}, 

HMCP:= -~((cp[l])' + pQcp[1] + pQ2cp - qcp} for cp E D(HM)' 
r 

where AC(O, I) is the set of all absolutely continuous functions on (0, I). We also 
define the minimal operator Hm as the restriction of HM to the domain 

The following lemma is contained in Section 3.8 Problem 1 of [2] and 
Theorem 2.1 of [13]. 

LEMMA 2.1 (Savchuk and Shkalikov [11] Theorem 0). Let f be in 
LJoc(r(t) dt; en) and A be in L}oc(r(t) dt; en ® en). Then, for any s E [0, l] and 
e E en, an equation y'(t) = A(t)y(t) + f(t), y(s) = e has a unique solution in 
AC(O,I). 

PROOF. We can verify the claim by successive approximation as follows. 

{ yo(t) = e, 
Yk(t) = e + S: A (X)Yk-1 (x) dx + S: f(x) dx, k ~ 1. 

Then (Yk)k converges uniformly to the unique solution. D 

Using Lemma 2.1, we define the solution of the equation 

(2.2) 
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for any A E C, f E LToc(r(t) dt; C) in the following way. We rewrite (2.2) as 

follows. 

Since p, q and r are continuous and Q E LToc(R), each component of the co­

efficient matrix 

( pQ p ) 
_pQ2 _ Ar+ q _pQ 

is a locally integrable function. By Lemma 2.1, under a given initial condition the 

above normal system has a unique solution. 

DEFINITION 2.1 (Savchuk and Shkalikov [11] Definition 1). A square r(t)­

integrable function cp on R is said to be a solution of (2.2) under a given initial 

condition if cp coincides with the first component of the solution of the system (#) 
under the same initial condition. 

We characterize the se1f-adjointness of Hi. To do so, we quote several 

lemmas. 

LEMMA 2.2 (Lagrange formula [11] Lemma 1). For any cpED(HM ) and 

i/J E D(HM ), 

(2.3) 

where 

PROOF. See [11]. 0 

Using Lemma 2.2, we have the following lemma. 

LEMMA 2.3 ([11] Lemmas 2, 3 and 4). (i) D(Hm) is dense in L2([0, 1]; ret) dt). 

(ii) HM = H:;' and HJ:a = Hm. 
(iii) For any A E C, dim Ker(HM - A) = 2. 

(iv) Ran(Hm)..l Ker(HM). 

PROOF. See [11]. 0 



The Integrated Density of Stated of One-Dimensional 389 

LEMMA 2.4. Let Q E LFoc(R; R) and H be a self-adjoint extension of Hm. Then 
there are WI and W2 E D(H)\D(Hm) such that they are linearly independent and the 
domain of H is expressed as follows: 

PROOF. See Reed and Simon [9) [Vol II Theorem X.2 (page 140)). 0 

LEMMA 2.5 ([4)). Let S be a subspace of D(H:') which includes D(Hm). Then 
the restriction of H:' to S is a self-adjoint extension of Hm if and only if S = S*, 

where S* := {y E D(H,~) I [y, ¢l~ = 0, V¢ E S}. 

PROOF. See [4) (XII.4.16, Lemma 16 (b) page 1231). 0 

Then we have the following. 

PROPOSITION 2.1 (Savchuk and Shkalikov [11) Theorem 2). Let Q E 

L7ac(R; R). Then a closed symmetric extension H of Hm is self-adjoint if and only 
if H has its domain as 

D(H) = {rp E D(H,;) I Bj(rp) = O,j = 1,2}, 

where 

for some ajk,bjk E C, (j,k = 1,2) such that 

ajlih2 - aj2(ikl = bjl bk2 - bj2bkl , (j,k = 1,2) 

and that rank A = 2. Here A is a matrix given by 

PROOF. We follow Ahiezer and Glazman [1] (APPENDIX 11.3) to prove the 

assertion. We suppose that H is a self-adjoint extension of Hm. Let rp E D(H:'). 
By Lemma 2.2 and Lemma 2.3, rp E D(H) is equivalent to saying (HI/J, rp) = 
(I/J,H:'rp) for any I/JED(H). This is, in turn, equivalent to saying [rp,I/J]~=O for 
any I/J E D(H). By Lemma 2.4, there are Wi, W2 E D(H)\D(Hm) which are linearly 
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independent, so that any element t/I of D(H) is of the form t/I = t/lo + (Xl WI + (X2W2, 

for some t/lo E D(Hm), and (Xl, (X2 E C. So, [tp,t/I]~ = ° for any t/I E D(H) is equiva­
lent to saying (Xl [tp, wd~ + (X2[tp, W2]~ = ° for any (Xl, (X2 E C, namely to saying 
[tp, wd~ = [tp, W2]~ = 0. If we set 

ajl := wY1(0), aj2:= -wAO), bjl := -wyl(Z), bj2 := wAl), j = 1,2, 

then BAtp):= -[tp, Wj]~ = 0, j = 1,2. Moreover ajliik2 - aj2iikl = bj1 bk2 - bj2bkl 
for j,k = 1,2 since [Wj, Wk]~ = ° for j,k = 1,2. Since WI is independent of W2, we 
have rank A = 2. 

Conversely suppose that the domain D of H is given as above. By (iii) of 
Lemma 2.3, we can take a basis {UI, U2} of Ker(HM)' Let Vj, j = 1,2, be the 
solutions of HMVj = Uj such that Vj(l) = vyl(l) = 0, j = 1,2. If we assume that 
(VI(O),v~ll(O)) and (v2(0),v~1(0)) are not linearly independent, there exists aI, a2 
such that (al,a2) # (0,0) and alVI +a2v2 ED(Hm). Then Hm(alvl +a2v2) = 

alUI + a2U2. The left hand side is an element of Ran(Hm) and not zero. On the 
other hand the right hand side belongs to Ker(HM)' This contradicts (iv) of 
Lemma 2.3. Thus we can take the suitable basis of Ker(HM ) such that VI and V2 
satisfy (VI(O),V~1](O)) = (1,0), (v2(0),v~1(0)) = (0,1). Similarly there exists V3 and 

V4 in D(H;') such that (V3(0), v~1](O), v3(l), v~ll(l)) = (0,0,1,0) and (V4(0), viI1(0), 
v4(l), vUl(l)) = (0,0,0,1). We set Wj := -aj2vI + ajl V2 + bj2V3 - bjl V4, j = 1,2, then 

Wj(O) = -aj2, wY1(0) = ajl, wAl) = bj2, wJ1](l) = -bjl , j = 1,2. Since rank A = 2 
and VI, V2, V3 and V4 are linearly independent, WI and W2 are linearly independent. 
Moreover rank A = 2 implies that WI and W2 ¢ D(Hm). Then D = {¢ E D(H/:') I 
BA¢) = O,j = 1,2} and D = D*. Hence the restriction of H;' to D is a self­
adjoint extension of Hm by Lemma 2.5. 0 

REMARK 2.1. 1. Savchuk and Shkalikov [11] did not state the condition 
rank A = 2. But H is not a self-adjoint operator unless rank A = 2 in Proposi­
tion 2.1. 

2. When the boundary condition that realizes a self-adjoint extention is 
(b.c)(J.,p, the corresponding matrix A in Proposition 2.1 is expressed as follows: 

0. ) ° sin fJ ' 
cos fJ - Q(l) sin fJ 

and actually rank A = 2. 
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COROLLARY 2.1. (i) Let Q E Lfoc(RjR) be a locally bounded function. Then 
the self-adjoint extensions of Hm are bounded from below. 

(ii) ([11] Theorem 3) The spectrum of each self-adjoint extension of Hm is 
purely discrete. 

(iii) For the sequence {An; n ~ I} of the eigenvalues of the self-adjoint ex­
tension of Hm, An ~ 00 as n ~ 00. 

PROOF OF (i). Since p, q, rand Q are bounded on [0,1], it is easily seen that 
Hm is bounded from below. In fact 

(Hmcp,cp) = tp(cp[l])2 dt- tpQ2cp2 dt+ J: qcp2 dt 

~ -JI !!.. Q2cp2r dt - JI Mcp2r dt. 
oro r 

Therefore it follows from [9] (Vol II, X.3, Proposition, page 179) that any self­
adjoint extension of Hm is also bounded from below since the deficiency indices 
of Hill are equal to {2,2} by Lemma 2.3. 

PROOF OF (ii), (iii). The deficiency indices of Hm are equal to {2,2}. Hence 
by [10] (Vol IV, page 117, Example 5), it suffices to show the assertion when the 

boundary condition which realizes self-adjoint extension is (b.c)rt.,p' In this case, 
it is well known that the H has compact resolvent (cf. see [1] APPENDIX 
II.6, THEOREM 2, page 182). Thus, by [10] (Theorem XIII.64, page 245), when 
the sequence of the eigenvalues of H is denoted by {An j n ~ I}, An ~ 00 as 
n ~ 00. 0 

REMARK 2.2. (ii) of Corollary 2.1 is same as Theorem 3 in [11], but the 
proof of (ii) of Corollary 2.1 is simpler than that of Theorem 3 in [11]. 

3. Oscillation Theorem 

Using the quasi derivative, we can show the Sturm-Liouville Oscillation 
theorem for singular potentials by a minor modification of the classical argument 
([13] Theorem 13.2, page 199). Let Q be a real valued bounded measurable 
function. Then from what we showed in Section 2, the associated self-adjoint 
operator H = HI with the boundary conditions 

{ 
cp(o) cos ~ - cp[!] (0) sin ~ = 0, 

cp(l) cos f3 - cp[!] (I) sin f3 = ° 
has eigenvalues Al < ,12 < A3 < .. , < An ~ 00. Then we have the following: 
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PROPOSITION 3.1 ((13]). Let Q be a real valued continuous function on [0, co). 
Then the eigenfunction rpn = rp( *, An) corresponding to An has exactly n - 1 zeros in 
(0, I). 

OUTLINE OF PROOF. For A E R, let rp(t,A) be the (real) solution of the 

equations 

Hlrp = Arp, rp(O) = sin a, rp[1] (0) = cos a. 

We introduce the variables c; and Yf through the following Priiffer transformation: 

{
rp(t'A) = Yf(t,A) sin c;(t, A), 

(P.t)a rp[1](t, A) = Yf(t, A) cos C;(t, A), 
C;(O, A) = a, 

where C;(t, A) can be defined as a cotinuous function in t. We may restrict to 
o ::; a < n, 0 < jJ ::; n without loss of generality. (P.t)a implies that C;(t, A) satisfies 
the equation 

that is 

(3.1) :t C;(t, A) = pQ sin 2C;(t, A) + p(t) + (-p + pQ2 + Ar - q) sin? C;(t, A). 

Since the equation (3.1) and Corollary 2.1 hold, we can verify the following 
assertions: 

(i) if there exists i E N, to > 0 such that C;(to, A) = in then C;(t, A) ?: in for 

t ?: to, 
(ii) the function C;(t,A) is increasing in A, and lim"l-oo c;(t, A) = 0, 

limAioo C;(t, A) = co. (0 < t::; l). 
Thus the remainder of the proof is same as Weidmann [13]. D 

4. Proof of the Main Result 

In this section, we prove Theorem 1.1. We define the IDS, N(A) as follows: 

N(A) := lim N(l, lA, w) , 
1->00 

where N(l, A, w) = Nap(l, A, w) is the number of eigenvalues which are less than or 
equal to A of the operator HI with the boundary conditions (b,c)a,p' To find this, 



The Integrated Density of Stated of One-Dimensional 393 

let cp be the solution of the equation fi[cp = ACP, {l/(O) = sin 0:, cp'(O)jp(O) = cos 0:. 

Then we introduce the new functions 8(t, A), p(t, A) which are defined by 

p {CP(t, A) = p(t, A) sin 8(t, A), 
(.t) cp'(t,A) = p(t)p(t, A) cos 8(t,A). 

O(t) satisfies the following stochastic differential equation; 

(4.1) dO(t) = -a(O(t)) dB(t) +b(8(t);p(t),q(t),r(t)) dt, 

where a(x) := c sin2 x and b(x; p, q, r) := p cos2 x + (-q + Ar) sin2 x + 
c2 sin3 x cos x. 

Proposition 3.1 (the Oscillation theorem) and its proof imply the following 
Lemma. 

LEMMA 4.1. 

N. (l A cu) - [8(l, A) - fJ] + I rxp ,,- n ' 

where [x] denotes the integer part of x E R. 

PROOF. By the definition of Nrxp(l,A,CU), Nrxp(l,A,CU) =n if and only if 
An :::;; A < An+!. The proof of Proposition 3.1 implies that e(l, Am) = (m - I)n + p, 
for mEN, and e(l, A) is increasing in A. Hence An :::;; A < An+! is equivalent to 
(n-l)n+p:::;;e(l,A) <nn+p. Since 8(t) satisfies (4.1) and O(t) =0, (modn), 
O(t) is differentiable in t at the zeros of cp and dO(t)jdt is positive there. Moreover 
de(t)jdt is also positive at zeros of cp by the proof of Propositon 3.1. Thus if 
mn:::;; e(l,An) < (m + I)n, for each mEN, then mn:::;; 8(l,An) < (m + I)n. 

By the comparison theorem ([6]), O(t, A) is also increasing in A. For the 
eigenvalues Am, mEN, of HI, 8(l, Am) = fJ (mod n). So, (n - I)n + P :::;; e(l, A) < 
nn + p is equivalent to saying (n - I)n + fJ :::;; 8(l, A) < nn + fJ, namely to saying 
[(O(l, A) - fJ)jn] = n - 1. 0 

Therefore it suffices to prove the existence of 

N(A) =! lim 8(l, A) . 
n 1-00 I 

We prepare several lemmas to prove Theorem 1.1. 

LEMMA 4.2. The function u in the Theorem 1.1 is extended as a continuous 
periodic function on R with period n. 
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PROOF. Since the function u is the bounded solution of the first order 
differetial equation, u is represented explicitly as follows: 

Jx dy 
U(xip,q,r) = 2S(x) 0 (j2(y)S(y) ' 0< x < n, 

where 

S() S( ) { 2Jx b(Yip,q,r) d } 
x = xip,q,r = exp - nl2 (j2(y) y. 

By de l' Hopital theorem, it can be verified u(O+) = u(n-) = lip. Therefore we 
can extend u as a continuous periodic function on R with period n. D 

LEMMA 4.3. Let b(Xi p, q, r) be b(Xi p, q, r) or b(Xi p, q, r) + 2c2 sin3 x cos x. 
Let h(Xi p, q, r) be bounded, periodic in x with period n, and Lipschitz continuous in 
(p, q, r) with a Lipschitz constant independent of x. Then a bounded solution v of 
the equation 

1 2 I -2(j (x)v (x) +b(xip,q,r)v(x) = h(xip,q,r) 

is also a Lipschitz continuous function of (p, q, r) and its Lipschitz constant is 
independent of x. Moreover v is jointly continuous at (0, p, q, r). 

PROOF. Suppose (p,q,r) =1= (pl,ql,rl) and let v(x) := V(xip,q,r) - V(Xipl,ql, 
rl). Then v satisfies the equation 

~(j2(X)VI(X) +b(xip,q,r)v(x) 

= {b(Xi pi, ql, rl) - b(Xi p, q, r)}v(xi pi, ql, rl) + h(Xi p, q, r) - h(Xi pi, ql, rl) 

=: H(x). 

We can solve this equation explicitly as follows. 

- JX H(~ 
v(x) = 2S(Xi p, q, r) 2( )S( . ) dy, o (j Y y,p,q,r 

where S(Xi p, q, r) is given in Lemma 4.2 with b instead of b. By the assumption, 

IH(x)1 ::;; C(lp - pll + Iq - qll + Ir - rll) 

for some constant C independent of x. 
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Hence v is a Lipschitz continuous function in (p, q, r). Then 

(4.2) Iv(xn;Pn,qn,rn) - v(O;p,q,r)1 

::; Iv(xn;Pn,qn,rn) - v(xn;p,q,r)1 + Iv(xn;p,q,r) - v(O;p,q,r)1 

::; c(IPn - pi + Iqn - ql + Irn - rl) + Iv(xn;p,q,r) - v(O;p,q,r)l· 

Since v is continuous at x = 0, v is continuous at (0, p, q, r) as a four-variable 
function. 0 

LEMMA 4.4. We set 

g(B,p,q,r):= J: u(x;p,q,r) dx. 

Then g is a C2-classfunction in (B,p,q,r). 

PROOF. It is sufficient to prove that g(B,p,q,r) is a C2-class function on 
[O,n] x (Cj,C2) x (-C3,C3) x (Cj,C2) since u(x;p,q,r) is periodic in x with period 
n. Here the constants Cj, C2 and C3 appeared in the assumption (A.2). Lemma 4.3 
implies u is bounded and periodic in x with period n. Moreover u is Lipschitz 
continuous in (p, q, r) and its Lipschitz constant is independent of x by Lemma 
4.3. By differentiating the equation (1.2) in Theorem 1.1 with respect to p, opu 
satisfies 

(4.3) ~(j2(x)(OpU)/(X) + b(x;p, q, r) (opu) (x) = -u(x) cos2 x, 0 < x < n, 

where op := %p. Thus opu is bounded and periodic in x with period n, and 

by de l' H6pital Theorem as in proof of Lemma 4.2. By Lemma 4.3, opu is a 
Lipschitz continuous function in (p, q, r), and its Lipschitz constant is inde­
pendent of x. Moreover opu is jointly continuous at (0, p, q, r). 

By differentiating the equation (4.3) with respect to p, we can also show that 

and o}u is jointly continuous at (0, p, q, r) in a similar way. Similarly we can 
prove that 
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for 0 ~ nl + n2 + n3 + n4 ~ 2, 0 ~ nl ~ 1, 0 ~ n2,n3,n4 ~ 2, where ax := ajax, 
ap := ajap, aq := ajaq, ar := ajar, and they are jointly continuous at (O,p,q,r). 
Hence the lemma is proved. 0 

REMARK 4.1. Thompson was not aware that g is actually of C2-class. 

PROOF OF THEOREM 1.1. For notational brevity, we set PI (t) := p(t), 
P2(t) := q(t), P3(t) := r(t). Then 

g(8,PI,P2,P3) = J: U(XiPI,P2,P3) dx, 

(4.4) 

By Lemma 4.3, g(8,p,q,r) is of C2-class in (8,p,q,r). We can apply Ito formula, 
to obtain 

(4.5) g( 8(l), PI (I), P2 (I), P3 (I)) 

= g(8(O),PI(O),P2(O),P3(O)) + J~ Lg(8(s),PI(S),P2(S),P3(S)) ds 

+ J~ go(8(s),PI(S),p2(S),P3(S))u(8(s)) dB(s) 
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where we have set L:= !a2(0)a2 ja02 + b(OjPl,P2,P3)ajaO, N(t) := 

S~ a(O(s)) dB(s), go:= agjaO, gj:= agjapj, gOj:= a2gj(aOapj), and gjk:= a2gj 
(apjapk) , j,k = 1,2,3. 

Now we claim 

(4.6) 

Let us estimate Ii, 1:s; i :s; 7, separatery. 
It is clear that 1111 = Ig(0(0),P1(0),P2(0),P3(0))1 = 0(1) as 1-+ 00. By the 

definition of u, IIzI = I, and Ihl = 0(1) as 1-+ 00. 1141 =. O(l°(1/2+e)) = 0(1) as 
1-+ 00. Indeed, B(t) = OCt) as t -+ 00 and gj = sg aujapj = 0(0) as B -+ 00. Thus 
if we set mAl) := s~ gj dM j then by the assumption (A.3), 

(mj)(I) = t gJ d(Mj) :s; const. t t2 d(Mj) = 0(1°) 

for some 0 < b < 2. For a continuous local martingale there exists a Brownian 
motion B such that mj(t) = B( (mj)(t)). By the law of iterated logarithm, for any 
e> 0, B(t) = 0(t1/2+e) as t _ 00. Thus, for 0 < e < (2 - b)j2b, 

mj(l) = O( (mJl2+8 (I)) = 0(1°(1/2+8)) = 0(1). 

1151 :s; til' gj dAj(t) I 
J=l 0 

:s; const. 

:s; const. 

= 0(1) as 1- 00. 

By Propositon 3.2.14 of [7], 
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~ const. 

3 

~ const. :L J <B)(l) J <Mi)(l) 
i=l 

3 

~ const. :LVZJ<Mi)(oo) 
J=l 

= 0(1) as 1-7 00, 

3 

~ const. :L 
i,k=l 

3 

~ const. :L 
i=! 

3 

t t2 d<MJ)(t) J<Mi)(oo) 

~ 0(lo/2) :L J <M J)( (0) 
i=! 

= o(l) as 1-700. 

Thus we obtain (4.6). Hence 

(4.7) lim e(l) = lim e(l) . 
1->00 I 1->00 g( e(l), p(l), q(l), r(l)) 

In order to get the right hand side of (4.7), we claim the following: 

(4.8) e(l) -7 00 as I -7 00 

and 

(4.9) Ig(e,p, q, r) - g(e, p, q, r)1 ~ C(lp - pi + Iq - ql + Ir - 'I). 
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PROOF OF (4.8). The boundedness of u and (4.6) implies lim B(l) = 00. In 
fact for any B > 0, 

1-00 

Ig(B,p,q,r)1 ~ 1: lu(x: p,q,r)1 dx 

~ CB. 

where C > 0 is independent of B. 

B(l) > ~ g(B(l),p(l),q(l),r(l)) --4 ~ > 0 (l--4 (0). 
I - C I C 

Hence 

lim B(l) = 00. 
1->00 

PROOF OF (4.9). By Lemma 4.3, u is a uniformly Lipschitz continuous 

function in (p, q, r). Thus g satisfies the inequality (4.9). 
The existence of p( (0) = limt->oo p(t), q( (0) = lin1t_00 q(t) and r( (0) = 

limf--;oo r(t) in the assumption (A.I), the inequality (4.9) and (4.8) imply 

lim g( B(l), p(l), q(l), r(l)) = lim g( B(l), p( (0), q( (0), r( (0)) 
1->00 B(l) 1-00 B(l) 

_ l' g(B, p( (0), q( (0), r( <X) )) 

- 1m B . 
0->00 

By the periodicity of u in x with period n, 

(4.10) 1· g(B(l),p(l), q(l), r(l)) - ~J" ( . ( ) ( ) ( )) d 1m B(/) - u x. p <X) ,q <X) ,r <X) x. 
1-+00 . n 0 

Therefore we obtain by (4.7) and (4.10) that 

N(Je) = (I: u(x: p(oo),q(oo),r(oo)) dxyJ 0 
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