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ON THE REISSNER-NORDSTROM-DE SITTER TYPE 
SPACETIMES 

By 

Dorota KOWALCZYK 

Abstract. In the paper a family of curvature conditions of pseudo
symmetry type is determined. We show that the curvature tensor of 
some Reissner-Nordstr6m-de Sitter type spacetiroes satisfy these 
conditions. 1 

1 Introduction 

Let (M, g), n ~ 3, be a semi-Riemannian manifold. Let T be a (O,4)-tensor 
satisfying on M 

T = exA + pg /\ A + yG, (1) 

where ex, p, yare functions on M and A a symmetric (O,2)-tensor on M. Clearly, 
T is a generalized curvature tensor. For precise definition of the symbols used 
we refer to Section 2 of this paper and [2]. It is known that if on M we have 
T = A + yG, where y is a function on M and A a symmetric (O,2)-tensor on M, 

then 

T· T = Q(Ric(T), T) - (n - 2)yQ(g, Weyl(T)) 

on M ([18], Lemma 2.2). In section 3 we prove a generalization of this result (see 
Theorem 3.1). Namely, if (1) holds on M then at all points of M at which ex is 
nonzero we have 

(a) T· T = Q(Ric(T), T) + L 2Q(g, Weyl(T)), 

(b) L2 = (n - 2) (P: -y). 

1 Math. Subject Classification: 53B20, 53B30, 53B50, 53C25, 53C35, 53C80. 
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In particular, if A = Ric(T) then (1) takes the form 

T = ex Ric(T) + fJg /\ Ric(T) + yG. (3) 

Now, at all points of M at which ex is nonzero, (2) and (3) yield (see Theorem 
3.1) 

(a) T· T = LTQ(g, T), 

(b) T· Weyl(T) = LTQ(g, Weyl(T)), 

( fJ2 ) fJ (c) LT=(n-2) ~-y --a' 

Further, from (3) we get 

(a) T· Ric(T) = LTQ(g, Ric(T)), 

(b) Ric(T)2 = (1C(T) - (n - 2)1/12) Ric(T) + 1/11 g, 
ex 

(c) 1/11 = (n - l)y + fJ1C(T), 

1 - (n - 2)fJ 
(d) 1/12 = (n _ 2)ex . 

Theorem 3.1 also states that (3) implies 

(a) Weyl(T)· Weyl(T) = Ll Q(g, Weyl(T)), 

(b) Weyl(T)· Ric(T) = Ll Q(g, Ric(T)), 

(c) Weyl(T)· T = Ll Q(g, T), 

(d) Ll = 1/12 -1/13' 

(e) 1/13 = 1C(T) - LT, 
n-l 

(4) 

(5) 

(6) 

on UWeyl(T) eM. It is easy to see that if ex vanishes at x E M then (1) implies 
Weyl(T) = O. Similarly, if at x E M we have A = tr~) g then T = (:.?;';n G at this 
point. Therefore, we restrict to the set UA n UWeyl(T) eM our considerations 
on tensors T satisfying (1). According to [8), a (O,4)-tensor T satisfying (1) on 
UA n UWey1(T) eM is said to be a Roter type tensor. Thus if a Roter type tensor 
satisfies (3) then (4) and (6) are fulfilled. Manifolds of dimension;;?; 4 with the 
curvature tensor R satisfying (3) on Us n Uc c M, i.e. 
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R = IXS + pg /\ S + yG, (7) 

where IX, p, yare some functions on Us n Uc and S is the Ricci tensor of (M, g), 
are called Roter type manifolds ([8]). We refer to [8], [11], [16], [22] and [24] for 
results related to Roter type manifolds.· In Section 5 we present examples of 
Roter type manifolds. 

We define on M = {(t, r) E R2 : r > O} the metric tensor g by 

(8) 

where H = H(t, r) is a smooth positive (or negative) function on M. The warped 
product M Xp if of (M, g) and an (n - 2)-dimensional semi-Riemannian space 
of constant curvature (if,g), n ~ 4, with the warping function F = F(t,r), will 
be called a Reissner-Nordstrom-de Sitter type spacetime. If H = H(r) and F = 
F(r) = r2 then Reissner-Nordstrom-de Sitter type spacetimes are pseudo symmetric 
([19], Example 1). Evidently, the Reissner-Nordstrom-de Sitter spacetime belongs 
to this class of manifolds (see Example 5.2(ii)). Certain Reissner-Nordstrom-de 
Sitter type spacetimes are non-Einsteinian and non-conformally fiat manifolds, 
i.e. the set Us n Uc c M Xp if of that spacetimes is nonempty. Such spacetimes, 
in view of Theorem 4.1 of [16], satisfy (7) on Us n Uc, i.e. they are Roter type 
manifolds ([8]). In Section 5 we present a suitable example (see Example 5.3). 

The author would like to express her thanks to Professor Ryszard Deszcz for 
his guidance and encouragement to study of the theory of pseudosymmetry type 
manifolds as well as for his help during the preparation of this paper. 

2 Preliminaries 

Throughout this paper all manifolds are assumed to be connected para
compact manifolds of class Coo. Let (M,g) be an n-dimensional, n ~ 3, semi
Riemannian manifold, V its Levi-Civita connection and 8(M) the Lie algebra of 
vector fields on M. On M we define the endomorphisms X /\A Y and 9l(X, Y) of 
8(M) by 

(X /\A Y)Z = A( Y, Z)X - A(X, Z) Y, 

9l(X, Y)Z = VxVyZ - VyVxZ - V[X,y]Z, 

respectively, where A is a symmetric (O,2)-tensor on M and X, Y, Z E 8(M). 

The Ricci tensor S, the Ricci operator Y, the scalar curvature K and the 
endomorphism ~(X, Y) of (M,g) are defined by S(X, Y) = tr{Z --+ 9l(Z, X) Y}, 

g(YX, Y) = S(X, Y), K = tr Y and 
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f6'(X, Y)Z = ~(X, Y)Z - n ~ 2 (X I\g.9"Y +.9"X I\g Y - n: 1 X I\g Y)Z, 

respectively. Now the (0,4)-tensor G, the Riemann-Christoffel curvature tensor R 
and the Weyl conformal curvature tensor C of (M, g) are defined by 

G(Xl,X2,X3,X4) = g((Xll\gX2)X3,X4), 

R(Xl,X2,X3,X4) = g(~(Xl,X2)X3,X4)' 

respectively, where X j,X2, ... E 8(M). Let ff(X, Y) be a skew-symmetric endo
morphism of 8(M). We define the (0,4)-tensor T by T(Xj,X2,X3,X4) = 

g(ff(Xl ,X2)X3,X4). The tensor T is said to be a generalized curvature tensor if 

For a generalized curvature tensor T, a symmetric (0,2)-tensor field A and a 
(0, k)-tensor field Tj, k'?:. 1, we define the (0, k + 2)-tensor fields T· Tj, Q(A, T) 
and A· Tl by 

(T· Tl)(Xj, ... ,XkjX, Y) = (ff(X, Y)· TJ)(Xj , ••• ,Xk) 

= -Tj(ff(X, Y)Xj,X2, ... ,Xk) - ... 

- Tl (Xl , ... ,Xk_j,ff(X, Y)Xk), 

Q(A, Tj)(Xj, ... ,XkjX, Y) = ((X I\A Y)· TJ)(Xl, ... ,Xk) 

= -Tl((X I\A Y)Xj,X2, ... ,Xk) - ... 

- Tl (Xj, ... ,Xk-l, (X I\A Y)Xk), 

(A· Tl)(Xj, ... ,Xk) = -Tj(dXj,X2, ... ,Xk) - ... - Tl(Xj,X2, ... ,dXk), 

respectively, where the endomorphism d is defined by g(d X, Y) = A(X, Y). 
Setting in the above formulas ff(X, Y) = ~(X, Y) or ff(X, Y) = ~(X, Y), 
Tl = R, Tj = C or Tj = S, A = g or A = S, we obtain the tensors: R· R, R· C, 
C· R, C· C, R· S, C· S, Q(g, R), Q(g, C), Q(S, R), Q(S, C), Q(g, S), S· Rand 
S· C. For symmetric (0,2)-tensors A and B we define· their Kulkarni-Nomizu 
product A 1\ B by 
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(A ;\B)(XI, X2;X, Y) = A(XI , Y)B(X2'X) + A(X2,X)B(XI, Y) 

- A(XI ,X)B(X2, Y) - A(X2, Y)B(Xl,X). 

In particular, for a symmetric (0,2)-tensor A we define the (0,4)-tensor A by 
A = ~A;\ A. If T is a generalized curvature tensor then its Weyl curvature tensor 
Weyl(T) is defined by 

1 . K(T) 
Weyl(T) = T - n _ 2 g;\ RIC(T) + (n _ 2)(n _ 1) G, (9) 

where Ric(T) and K(T) is the Ricci tensor and the scalar curvature of T, re

spectively. If (3) holds on URic(T) n UWeyl(T) then on this set we have 

Weyl(T) = a Ric(T) + (fJ - n ~ 2) g;\ Ric(T) + (Y + (n _ ~~~J _ 1)) G. (10) 

Conversely, if on URic(T) n UWeyl(T) we have 

Weyl(T) = a Ric(T) + fJg;\ Ric(T) + yG, 

for some functions a, fJ, y on URic(T) n UWeyl(T), then 

In particular, the curvature tensor R of a semi-Riemannian manifold (M, g), 
n 2': 4, has a decomposition of the form (3) if and only if its Weyl tensor has a 
decomposition of this form. 

get 
REMARK 2.1. (i) From (3) and (10), by making use of (2)(b) and (6)(d), we 

- L? 
T=aA----G 

n - 2 ' 

- LI 
Weyl(T) = aA I - --2 G, 

n-

on URiC(T) n UWeyl(T), where A = Ric(T) +~g and AI = A - (n~2)"g. In Section 4 
we consider tensors satisfying (3) on the subset of URic(T) n UWeyl(T) of all points 
at which the functions LI and L2 are nonzero. 

(ii) Curvature properties of manifolds of dimension;:::: 4 whose curvature 
tensor R satisfies (3), with fJ = y = 0 on Us n Uc c M, were investigated in [24]. 
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A semi-Riemannian manifold (M, g), n ~ 3, is said to be pseudosymmetric 

([2], [7]) if at every point of M the tensors R· Rand Q(g, R) are linearly de
pendent. Thus the manifold (M, g) is pseudosymmetric if and only if 

(11) 

on UR = {x E M I R - n(n~l) G =1= 0 at x}, where LR is some function on UR. It is 
clear that every semisymmetric manifold (R· R = 0) is pseudosymmetric. There 
exist pseudo symmetric manifolds which are non-semisymmetric (see e.g. [7], Sec
tion 3.6). We mention that certain spacetimes are pseudosymmetric, for instance: 
the Robertson-Walker spacetimes, the Schwarzschild spacetime, the Kottler space
time, as well as the Reissner-Nordstrom spacetime ([4], [19]). The Reissner
Nordstrom-de Sitter spacetime is also pseudo symmetric (see Example 5.2(ii)). For 
more detailed information on the geometric motivation for the introduction of 
pseudo symmetric manifolds, and for a review of results on different aspects of 
pseudosymmetric manifolds, see [2], [7] and [27]. 

A semi-Riemannian manifold (M, g) is said to be Ricci-pseudosymmetric ([2], 

[7]) if at every point of M the tensors R· Sand Q(g, S) are linearly dependent. 
Thus the manifold (M,g) is Ricci-pseudosymmetric if and only if 

R· S = LsQ(g,S) (12) 

on Us = {x E MIS - ~g =1= 0 at x}, where Ls is some function on Us. Note that 
Us cUR. Every pseudosymmetric manifold is Ricci-pseudosymmetric manifold. 
The converse statement is not true ([7.], Section 8). Semi-Riemannian manifolds 
fulfilling (11) or (12) or other conditions of this kind are called manifolds of 

pseudosymmetry type ([7], [27]). We refer to [2] for a recent survey of results on 
pseudo symmetry type manifolds. 

Let TJ and T2 be (0, k)-tensors on M. According to [5], we say that the 
tensors TJ and T2 are pseudosymmetric related to a generalized curvature tensor 

T and a symmetric (0,2)-tensor A if at every point of M the tensors T· TJ and 
Q(A, T2) are linearly dependent. This is equivalent to T· TJ = LQ(A, T2) on the 
subset U c M of all points at which Q(A, T2 ) is nonzero; where L is some 
function on U. If Tl = T2, then we say that the tensor TJ is pseudosymmetric with 

respect to the tensors T and A. 

3 Roter Type Tensors 

Let T be a generalized curvature tensor on a semi-Riemannian manifold 
(M, g), n ~ 4. We denote by Ric(T), Weyl(T) and K(T) its Ricci tensor, the 
Weyl tensor and the scalar curvature, respectively. The subsets UT, URiC(T) and 
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UWeyl(T) are defined in the same manner as the subsets UR, Us and Ue, re
spectively. Further, we assume that T is a generalized curvature tensor satisfying 
(1) on URic(T) n UWeYI(T) eM. Let UA denote the subset ofM consisting of all 
points at which the tensor A is not proportional to g. It is clear that URic(T) n 
UWeyl(T) c UA. We have 

LEMMA 3.1. Let (M, g), n ~ 4, be a semi-Riemannian manifold admitting a 

generalized curvature tensor T satisfying (1) on M. If at x E UA eM the tensor 

Weyl(T) is nonzero then also IX is nonzero at x. 

PROOF. We suppose that IX vanishes at x. Now (1) reduces to T = f3g /\ A + 
yG. From this, by standard calculations, we obtain Weyl(T) = 0, a contradiction. 

LEMMA 3.2. Any symmetric (0,2)-tensor on a semi-Riemannian manifold 

(M, g), n ~4, satisfies 

G· G = 0, A· G = 0, (g /\A)· G = 0, G· A = Q(g,A), 

G· (g /\A) = Q(g,g /\A), A· A = -Q(A2,A), g /\ Q(g,A) = Q(A, G), 

(g/\A)·A = Q(g,A2), A· (g/\A) + (g/\A)·A = -Q(A2,g/\A), 

(g/\A). (g/\A) = -Q(A2,G), Q(A,G) = -Q(g,g/\A), 

Q(A,g /\A) = -Q(g,A), G· A = Q(g,A), A· A = Q(A,A2). (13) 

PROOF. The identities (13) are a consequence of suitable definitions. 

LEMMA 3.3. Let on a semi-Riemannian manifold (M, g), n ~ 4, be given a 

generalized curvature tensor T satisfying (1). Then at all points at which IX is 

nonzero we have 

A2 =! ((IX tr(A) + (n - 2)f3)A + (13 tr A + (n - l)y)g - Ric(T)) , 
IX 

T . A = (n - 2) (13: - y) Q(g, A) - Q(A, Ric(T)) - ~ Q(g, Ric(T)). (14) 

A consequence of the above lemma is the following 

COROLLARY 3.1. Let on a semi-Riemannian manifold (M, g), n ~ 4, be given 

a generalized curvature tensor T satisfying (1) on URic(T) n UWeyl(T) eM and let 
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LT and L[ be the functions on URic(T) n UWeyl(T) defined by (4) (c) and (6)(c), 
respectively. 

(i) If A = Ric(T) then T· Ric(T) = LTQ(g, Ric(T)) on URic(T) n UWeyl(T)' 
(ii) IfT = R then R· S = LTQ(g,S) and c· S = L[Q(g,S) on usn Uc eM. 

Using the above lemmas we can prove the following generalization of Lemma 2.2 
of [18). 

THEOREM 3.l. Let (M,g), n;:::: 3, be a semi-Riemannian manifold admitting a 
generalized curvature tensor T satisfying (1) on M. 

(i) At all points of M at which a is nonzero we have (2). In addition, if 
A = Ric( T) then (4) is fulfilled. 

(ii) On UWeyl(T) eM we have (6), provided that n ;:::: 4. 

PROOF. (i) First of all we note that for any generalized curvature T and any 
function y on M the following identity is satisfied 

(T - yG) . (T - yG) = T· T - yQ(g, T). 

Further, if T satisfies (1) then we have 

(T - yG) . (T - yG) = (aA + fJg 1\ A) . (aA + fJg 1\ A) 

= a2A:. A + afJ((g I\A)· A + A· (g I\A)) 

+ fJ2(g 1\ A) . (g 1\ A). 

(15) 

(16) 

In addition, let x be a point of M at which rx is nonzero. Now (16), in view of 
Lemma 3.2, (14) and (15), yields 

= yQ(g, T) - Q((fJ tr(A) + (n - l)y)g, rxA) + Q(Ric(T), aA) 

- Q((a tr(A) + (n - 2)fJ)A,fJg 1\ A) - Q((fJ tr(A) + (n - 1)y)g,fJg 1\ A) 

+ Q(Ric(T),fJg I\A) - fJ2 Q((rx tr(A) + (11 - 2)fJ)A, G) 
rx 

+ fJ2 Q(Ric(T), G) + Q(Ric(T), yG) - yQ(Ric(T), G) 
a 
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= Q(Ric(T), T) + yQ(g, T) - ~2 - y) Q(g, 9 1\ Ric(T)) - (n - l)yQ(g, aA) 

(n - 2)132 (n - 2)132 
+ Q(g,aA)-(n-l)yQ(g,f3gI\A)+ Q(g,f3gI\A) 

a a 

= Q(Ric(T), T) + L2Q(g, Weyl(T)). 

Thus (2) is proved. Let A = Ric(T). We have 

Q(Ric(T), T) + L2Q(g, Weyl(T)) 

L 
= Q(Ric(T),f3g 1\ Ric(T) + yG) + L2 Q(g, T) - n ~ 2 Q(g, 9 1\ Ric(T)) 

= L2Q(g, T) - ~ Q(g, a Ric(T)) + yQ(Ric(T), G) - ~ Q(g,f3g 1\ Ric(T)) 
a a 

+ yQ(g, 9 1\ Ric(T)) = (L2 -~) Q(g, T). 

This, together with (2), leads to (4)(a). Note that (5)(a) is an immediate con
sequence of (4)(a). Further, (4)(a) and (5)(a), together with (9), imply (4)(b). 

(ii) The relations (3) and (9) give 

Weyl(T) = a Ric(T) + (13 - n ~ 2) 9 1\ Ric(T) + (Y + (n-i~~~ _ IJ G. 
We note that Ric(Weyl(T)) = O. Now, in view of Theorem 3.1(i), we get 

Weyl(T) . Weyl(T) 

(1 ( 1)2 K(T)) 
=(n-2) ~ f3- n - 2 -Y-(n-2)(n-1) Q(g,Weyl(T)) 

( (132) 13 1 - (n - 2)13 K(T)) = (n - 2) - - Y - - + - - Q(g, Weyl(T)), 
a a (n- 2)a n- 1 

i.e. (6)(a). Now we prove that (6)(b) and (6)(c) are satisfied. From (6)(a) and (9) 
we obtain 

whence 
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1 . 
Weyl(T) . T = n _ 2 g A (Weyl(T) . RlC(T)) 

Ll . 
+LIQ(g, T) - n _ 2 Q(g,g ARlC(T)). (17) 

Further, applying (5), (6) (d), (9) and Lemma 3.2 into (17) we find 

Weyl(T) . Ric(T) 

( 1 . K(T)). = T - n _ 2 g A RlC(T) + (n _ 2)(n _ I) G . RlC(T) 

= T· Ric(T) - n ~ 2 (g'A Ric(T)) . Ric(T) + (n _ ~~~~ _ 1) Q(g, Ric(T)) 

. 1 . 2 K(T) . 
= LrQ(g, RlC(T)) - n _ 2 Q(g,RlC(T) ) + (n _ 2)(n _ 1) Q(g,RlC(T)) 

( K(T) 1 ( (n - 2)P - I)) . 
= L r +(n_2)(n_I)-n_2 K(T)+ rI. Q(g,RlC(T)). 

This, by (6)(d), yields (6)(b). Finally, (6)(b) together with (17) and the identity (see 
Lemma 3.2) 

g A Q(g, Ric(T)) = Q(Ric(T), G), 

leads to (6) (c), completing the proof. 
From Theorem 3.1 it follows 

COROLLARY 3.2 (cf. [13], Theorem 4.2; [22]). If the curvature tensor R of 

a semi-Riemannian manifold (M,g), n ~ 4, satisfies (I) on Us n Uc c M, with 

A = S, then on this set we have 

R . R = LRQ(g, R), R· S = LRQ(g, S), R· C = LRQ(g, C), 

R· R = Q(S,R) + (LR +~)Q(g, C), 

1 - (n - 2)P K 
C· C = LcQ(g, C), Lc = LR + ( 2) - -I ' n- rI. n-

C . R = LcQ(g, R), 

S 2 ((n-2)p-I )s (n-l)y+pK(T) 
= +K + g. 

rI. rI. 
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We have also the following 

PROPOSITION 3.1 ([10], Proposition 6.5). Let (M,g), n ~ 4, be a semi

Riemannian manifold admitting a generalized curvature tensor T and let the 

conditions: 

T· T = LTQ(g, T) and T· T = Q(Ric(T) , T) + LQ(g, Weyl(T)) 

be fulfilled on URic(T) n UWey1(T) eM. Then on this set we have 

Q( Ric(T) - (LT - L)g, T - n: 2 G) = O. 

PROOF. From our assumptions it follows that 

Q(Ric(T), T) + LQ(g, Weyl(T)) = LTQ(g, T), 

hence 

L 
Q(Ric(T), T) - n _ 2 Q(g, g /\ Ric(T)) = (LT - L)Q(g, T). 

This, by the identity (see Lemma 3.2) 

Q(g, g /\ Ric(T)) = -Q(Ric(T), G), (18) 

turns into 

L 
n _ 2 Q(Ric(T), G) = Q((LT - L)g - Ric(T), T), 

which yields (4), completing the proof. 

The last proposition, together with Lemma 3.4 of [13], implies 

COROLLARY 3.3 ([10], Corollary 6.1). Let (M,g), n ~ 4, be a semi

Riemannian manifold admitting a generalized curvature tensor T and let the 

conditions: 

T· T = LTQ(g, T) and T· T = Q(Ric(T) , T) + LQ(g, Weyl(T)) 

be satisfied on URic(T) n UWeyl(T) eM. If at every point of this set the tensor 
Ric(T) has no a decomposition in a metrical part and a part of rank at most one 

then (3) holds on URiC(T) n UWeyl(T). 
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REMARK 3.1. As it was stated above, if T be a generalized curvature tensor 
on a semi-Riemannian manifold (M, g), n ~ 4, then (18) holds on M. We define 
now on M the following (0,6)-tensors: 

Q(g, T), Q(g, Ric(T)) = -Q(Ric(T), g /\ Ric(T)), 

Q(g, g /\ Ric(T)) = -Q(Ric(T), G), Q(g, G) = 0, 

Q(Ric(T), T), Q(Ric(T), Ric(T)) = O. (19) 

Now we assume that (3) holds on URiC(T) n UWeyl(T) c M. Applying (3) into (19) 
we obtain (cf. [11], p. 162) 

Q(g, Ric(T)) = ~ Q(g, T) + ~ Q(Ric(T), G), 
a a 

Q(Ric(T), T) = - ~ Q(g, T) + (Y - fJ:) Q(Ric(T), G), (20) 

Using (4)(c), (9), (19) and (20) we also obtain 

Q(Ric(T), Weyl(T)) = t/l2Q(g, T) + n ~ 2 Q(Ric(T), G), 

1 
Q(g, Weyl(T)) = Q(g, T) + n _ 2 Q(Ric(T), G). 

4 New Curvature Conditions of Pseudosymmetry Type 

In this section we present a family of new curvature conditions of pseu
do symmetry type. Such conditions are fulfilled on a semi-Riemannian manifolds 
(M,g), n ~ 4, admitting a generalized curvature tensor T such that (3) holds on 
URic(T) n UWeyl(T) eM. Namely, using results from previous sections we can 
prove 

PROPOSITION 4.l. Let (M, g), n ~ 4, be a semi-Riemannian manifold ad

mitting a generalized curvature tensor T satisfying (3) on URic(T) n UWeyt(T) eM. 
Then on some open subset V of this set we have: (2), (4), (6) and 

T· T = L3Q(Ric(T), Weyl(T)) + L4 Q(Ric(T), T), (21) 

L - _ (n - 1)aL2LT L _ (n - 1)aLTt/l3 (22) 
3 - t/ll ' 4 - t/ll ' 

T· T = LsQ(Ric(T), Weyl(T)) + L6Q(g, Weyl(T)), (23) 
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Ls=--, L6= --I LT, LT (1/12) 
Ll LI 

Weyl(T) . Weyl(T) = L7Q(g, T) + LsQ(Ric(T), T), 

Weyl(T) . Weyl(T) = L9Q(g, T) + LlOQ(Ric(T) , Weyl(T)), 

~ = LI (1 -~:), LlO = ~> 
Weyl(T) . Weyl(T) = Lll Q(Ric(T), T) + L12Q(Ric(T), Weyl(T)), 

L = f!:.L ((n - l)a(JI/I2LT _ 1) L = _ (n - l)aLILT 
II (J I 1/11 ,12 1/11' 

T· Weyl(T) = L 13 Q(g, T) + LI4Q(Ric(T), T), 

LT 
Ll4 = - L2' 

T· Weyl(T) = L I5 Q(g, T) + LI6Q(Ric(T), Weyl(T)), 

T· Weyl(T) = L17Q(Ric(T), T) + LIsQ(Ric(T), Weyl(T)), 

L - -f!:.L ((n - l)a(Jt/12LT 1) L __ (n - l)aL~ 
17 - (J T t/11 +, IS - t/11 ' 

Weyl(T) . T = Q(Ric(T), Weyl(T)) + L I9Q(g, Weyl(T)), 

Weyl(T) . T = L20Q(Ric(T), T) + L21 Q(Ric(T) , Weyl(T)), 

L - -?:.L ((n - l)a(JL2 1) L __ (n - l)aLIL2 
20 - (J I t/11 +, 21 - 1/11 ' 

Weyl(T) . T = -L5Q(Ric(T), T) + L22Q(g, Weyl(T)), 

L _ LTL2 
22 - LI ' 
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(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

provided that the functions (J, t/1J, t/13, LI and L2 are nonzero at every point of V. 
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COROLLARY 4.1. Let (M, g), n z 4, be a semi-Riemannian manifold admitting 

a generalized curvature tensor T satisfying (3) on URiC(T) n UWeyl(T) eM. Using 

(2), (4), (6) and (21)-(42) we can state that on a certain subset of URic(T) n UWeyl(T) 

any linear combination of the tensors: T· T, T· Weyl(T), Weyl(T)· T and 

Weyl(T) . Weyl(T) is equal to some linear combination of the tensors: Q(g, T), 

Q(Ric(T), T), Q(g, Weyl(T)) and Q(Ric(T), Weyl(T)). 

REMARK 4.1. From the above statement it follows that on some subset of 
URic(T) n UWeyl(T) eM the tensor T· Wey/(T) - Wey/(T) . T is expressed by a 
linear combination of the tensors Q(g, T), Q(Ric(T), T), Q(g, Weyl(T)) and 
Q(Ric(T), Weyl(T)). Recently manifolds with the tensor R· C - C . R ex
pressed by a linear combination of the tensors Q(g, R), Q(g, C), Q(S, R) and 
Q(S, C) were investigated among others in [9), [14] and [15] (see also [10], 
Section 5). 

5 Examples 

It is known that certain spacetimes are pseudo symmetric. Such spacetimes 
were investigated in (4), [12] and (19]. For instance, in (19) it was stated that every 
Robertson-Walker, the Schwarzschild, the Kottler and the Reissner-Nordstr6m 
spacetimes are pseudosymmetric. There are also space times satisfying other con
ditions of pseudo symmetric type (see e.g. [17) and references therein). In this 
section we give an example of a family of warped product space times satisfying 
(3) for T = R. 

EXAMPLE 5.1. We recall that the warped product M XF N, of a I-dimensional 
manifold (M,g), gil = -1, with a warping function F and a 3-dimensional Rie
mannian manifold (N, g) is said to be a generalized Robertson- Walker spacetime 

([1), (20)). Generalized Robertson-Walker spacetimes were investigated among 
others in [25]. In particular, if (N, g) is a Riemannian space of constant curvature 
then M XF N is called a Robertson- Walker spacetime. It is well-known that such 
spacetimes are conform ally flat. Every Robertson-Walker spacetime is pseudo
symmetric ([7), Section 6). In [3] it was shown that at every point of a generalized 
Robertson-Walker spacetime M XF N the following condition is satisfied: the 
tensors R· R - Q(S, R) and Q(g, C) are linearly dependent. This is equivalent 
to R· R - Q(S, R) = LQ(g, C) on Uc c M, where L is some function on Uc. 

Generalized-Robertson Walker spacetimes satisfying some curvature condition of 
pseudo symmetry type were investigated in [17]. 
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EXAMPLE 5.2. (i) Let M = {(t, r) E R2 : r> O} be on an open connected 
nonempty subset of R2 and let on M be defined the metric tensor g as in (8), 
We consider the warp~d product M XF N of the manifold (M,g) and the 2-
dimensional unit standard sphere (N, g), with the warping function F = 

F(r) = r2, 

(ii) According to [23] the warped product M XF N defined in (i) is said to 
be the Reissner-Nordstrom-de Sitter spacetime if H(r) = 1-~+~-tAr2, where 
m = const. > 0, e = const. and A = const. In particular, if e ¥= 0 and A = 0, or 
e = 0 and A ¥= 0, or e = 0 and A = 0, then the Reissner-Nordstrom-de Sitter 
spacetime is called the Reissner-Nordstrom spacetime, the Kottler spacetime or 
the Schwarzschild spacetime, respectively [26] (Section 13). These spacetimes are 
non-semisymmetric pseudo symmetric manifolds ([19], Example 1). It is well
known that the Kottler spacetime is a non-Ricci flat Einstein manifold. The 
Schwarzschild spacetime is a Ricci flat manifold. 

(iii) If H(t, r) = 1 - 21:(1) then the warped product M XF N is called the 
Vaidya spacetime. The Ricci tensor S of the Vaidya spacetime satisfies 
rank S ~ 1, which means that this spacetime is a special quasi-Einstein manifold. 
We can check that the Vaidya spacetime is a non-pseudo symmetric manifold 
satisfying 

R· R - Q(S,R) = _PI Q(g, C), 
P2 

PI = 2(8m3m"( -5r + 2m) + 2r2m(2 + 2m'2 -7rm") 

+ r3 ( _m'2 + 2rm") + rm( -5 - 4m' + 36rm")) , 

h = r(r - 2m) (2m( -3r2 + 6rm - 4m2)(1 + rm") + r3 (2 + rm")) , 

at all points at which P2 is nonzero, where mil = ~' and m' = ~. 

EXAMPLE 5.3. Let M XF N be the spacetime defined in Example 5.2 with 
the warping function F = F(r) = r2. Let K and K be the scalar curvature of 
(M, g) and M XF N, respectively. We have 

K = (2H,2 - HH")H-3 , 

K = (2H2 + 2H3 + 2r2H,2 - rH(4H' + rH"))r-2H-3 , 

where H" = d:t,' and H' = dJ:. In addition, we set 

'l: = 2H2 + 2H3 - 2r2 H,2 + r2 HH". 

For the Reissner-Nordstrom-de Sitter spacetime the last three formulas turn into 
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_ 18(3e4 + Ar6(1 + Ar2) + 3e2r2( -3 + 4Ar2) + 6r3m(1 - 2Ar2)) 
K= 3' 

(3e2 - 6mr + 3r2 - Ar4) 

K = _2A3r12 - 18A2r10 - 36mA2r9 + 18A(6 - e2A)r8 - 432Amr7 

- 72A(3m2 - 4e2)r6 + 216e2mAr5 - 54e4Ar4 

- 216m(e2 - 2m2)r3 + 162e2(4m2 + e2)r2 - 324e4mr + 54e6, 

r = _2A3r12 - 30A2r10 - 36mA2r9 + 18e2A2r8 + 72mAr7 - 72A(3m2 + 2e2)r6 

+ 216e2mAr5 + (-108e2 - 54e4A - 432m2)r4 + 432m(e2 - m2)r3 

+ 162e2(4m2 - e2)r2 - 324e4mr + 54e6. 

We can check that the tensor S - ~ g of M x F if is a zero tensor if and only if 

r = 0, (43) 

holds on M. Further, the tensor C of M XF if is a zero tensor if and only if on 
M we have 

(44) 

For the Reissner-Nordstrom-de Sitter spacetime the left-hand side of (44) has the 
form 

2H2 + 2H3 + 2r2 H'2 + rH(2H' - rH") 

= _A3r12 + 9A2r lO _ 18mA2r9 + ge2A2r8 - 162mAr7 - 36A(3m2 - 4e2)r6 

- 54m(2e2 + 3)r5 + (162e 2 - 27e4A - 324m2)r4 + 54m(7e2 - 4m2)r3 

+ 81e2(4m 2 - e2)r2 - 162e4mr + 27e6. 

From the above considerations it follows that x E Us n Uc c M XF if if and 
only if the left-hand sides of (43) and (44) are nonzero at nl (x), where 
nl : M x if -+ M denotes the natural projection. The curvature tensor R of 
M XF if satisfies (7) on Us n Uc with 

rx = (r2 H 3(2H2 + 2H3 + 2r2 H'2 + rH(2H' - rH"))r-2, (45) 

j3 = (rH(2r2 H'3 - rHH'(4H' + rH") + 2H3(H' + 2rH") 

(46) 
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y = 4r2H,4 +4H4(H,2 - H") - 2H,5HI/ +4rHHI2(-2H' + rH,2 - rH") 

+ H 2(-12rH,3 + 6rH'H" + r2HI/2 + 4H,2(1 - r2H")) 

+ H 3(8H12 + 6rH'HI/ + HI/(-2 + r2H")) .. -2. 

In addition, on Us n Uc we have 

t/ll = ((H + H2 - rH') (_4r3H,4 +4r3HH,2HI/ - r3H2HI/2 

+ 2H4 (2H' + r HI/) + H3 (4H' - 4r H,2 + 2r HI/)) ) .. -2r-l H-2, 

K: 

t/l2 ="4' 

t/l3 = (4H2 + 4H3 + 4r2 H,2 - rH(5H' + 2rHI/))6r-2 H-3, 

Ll = (-2H2 - 2H3 - 2r2 H,2 + rH( -2H' + rHI/)) 12r-2 H-3, 

L2 = (-(3 + 4H)H,2 + 2(1 + H)HHI/) - 12r-2 H-4L11, 

H' 
R· R = - 2rH2 Q(g,R). 
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(47) 

(48) 

(49) 

REMARK 5.1. Warped products M XF N of semi-Riemannian spaces of con
stant curvature (M,9), p 2:. 2, and (N, g), n - p 2:. 2, satisfying (7) were inves
tigated in [16]. In that paper (see [16], Example 4.1) an example of such warped 
product is given. That warped product can be locally realized as hypersurfaces 
immersed isometrically in a semi-Riemannian space of constant curvature Nsn+l (c), 
n 2:. 4, with signature (s, n + 1 - s). 

REMARK 5.2. Let M be a hypersurface in N;+1 (c), n 2:. 4. On M we have 
([18]) 

(n - 2)p 
R· R - Q(S,R) = - n(n + 1) Q(g, C), (50) 

where p is the scalar curvature of the ambient space. We assume thatM is a 
pseudo symmetric manifold. Thus (11) holds on UR c M. From (11) and (50) it 
follows that 

(51) 

holds on UR ([6]), where A = S - (LR + ~(;~~)g. In addition, we assume that 
rank A 2:. 2 at x E UR n Us. Applying now Lemma 3.4 of [13] to (51), we obtain 
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R = ~A on some neighbourhood U c UR n Us of x, where rP is some function on 
U. Thus on U the tensor R satisfies (3). 
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