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ALGEBRAIC INDEPENDENCE OF MODDlED 
RECIPROCAL SUMS OF PRODUCTS OF FmONACCI 

NUMBERS * 

By 

Taka-aki TANAKA 

Abstract. In this paper we establish, using Mahler's method, the 
algebraic independence of reciprocal sums of products of Fibonacci 
numbers including slowly increasing factors in their numerators (see 
Theorems 1, 5, and 6 below). Theorems 1 and 4 are proved by using 
Theorems 2 and 3 stating key formulas of this paper, which are 
deduced from the crucial Lemma 2. Theorems 5 and 6 are proved 
by using different technique. From Theorems 2 and 5 we deduce 
Corollary 2, the algebraic independence of the sum of a certain series 
and that of its subseries obtained by taking subscripts in a geometric 
progression. 

1 Introduction 

Let {Fn}n~O be the sequence of Fibonacci numbers defuled by 

Fo = 0, F1 = 1, Fn+2 = Fn+1 +Fn (n;::: 0). 

Brousseau [2] proved that for every kEN 

Rabinowitz [8] proved that for every kEN 
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In this paper we consider the arithmetic nature of the sums of similarly con
structed series such as 

and 

~ [logd n) 
~ (d E N\{I}, kEN), 
n=l FnFn+2k 

where [x) denotes the largest integer not exceeding the real number x. These sums 
are not only transcendental but also algebraically independent in contrast with the 
sums (lk and (lie which are algebraic numbers. 

In what follows, let {Rn}n~O be the binary linear recurrence defined by 

(2) 

where AI, A2 are nonzero integers with Il= At + 4A2 > 0 and Ro, RI are integers 
with RoR2 -# Rt and AIRo(AIRo - 2Rt) :s; O. We can express {Rn}n~O as fol
lows: 

Rn = aan +blr (n ~ 0), 

where a, P (Ial ~ IPI) are the roots of <J>(X) = X 2 - AIX - A2 and a,b E Q(~). 
It is easily seen that lal > IPI > O. Since RoR2 - Rt = abll and AIRo(AIRo - 2RJ) 

= (a2 - P2)(b2 - a2), we see that lal ~ Ibl > O. Therefore {Rn}n~o is not a ge
ometric progression and Rn =I 0 for any n ~ 1. 

THEOREM 1. The numbers 

are algebraically independent and so are the numbers 

EXAMPLE 1. Let {Fn}n~O be the sequence of the Fibonacci numbers defined 
by (1). Then the numbers 
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are algebraically independent and so are the numbers 

EXAMPLE 2. Let {Ln}n~O be the sequence of Lucas numbers defined by 

Lo = 2, LJ = I, Ln+2 = Ln+1 +Ln . (n ~ 0). (3) 

Then the numbers 

are algebraically independent and so are the numbers 

~ [logd n] 
D (d E N\ {I}, kEN). 
n=1 LnLn+2k 

Theorem 1 is deduced from Theorems 2 and 3 below. The proof will be given 
in Section 3. 

Let f(x) be a real-valued function on x ~ 0 such that f'(x) > 0 for any 
x> 0 and f(N) eN. Let f- I (x) be the inverse function of f(x). For any kEN 
we put 

and 

Let {Fn*}n~O be the Fibonacci type sequence defined by 
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THEOREM 2. For any kEN 

Sk = )* I)-Ad-1TI 
k 1=1 

1 k 
Uk = F* (T1 - (-A2) Tk+J). 

k 

Hence the sets of the numbers {SI, ... ,Sk+d, {T1, ... ,Tk+l}, and {SI(= TJ), 
UI, ... , Uk} generate the same vector space over Q. 

THEOREM 3. If f(n) == f(l) (mod 2) for any n ~ 1, then 

S* _ (_1)/(1) ~ AI-IT 
2k - F* L.,; 2 I 

2k 1=1 

for any kEN. Hence the numbers {S2! 11 ::;; I ::;; k} are expressed as linearly inde
pendent linear combinations over Q of the numbers {Till::;; I ::;; 2k}. 

Using Theorem 2, we prove also the following: 

THEOREM 4. The numbers 

are algebraically independent. 

EXAMPLE 3. The numbers 

are algebraically independent and so are the numbers 

Using different technique to that used in the proof of Theorem 4, we prove 
the following: 
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THEOREM 5. Let d be an integer gr:eater than 1. Then the numbers 

(4) 

are algebraically independent. 

As a special case of Theorem 5 we have the following: 

COROLLARY 1. Let d be an integer greater than 1. Then the numbers 

(k EN), and 

are algebraically independent. 

Combining Corollary 1 and Theorem 2 with f(x) = dX , we immediately have 
the following: 

COROLLARY 2. Let d be an integer greater than 1. Then the numbers 

(k EN) 

are algebraically independent. 

It is interesting that the second series of Corollary 2 is regarded as a subseries 
of the first one obtained by replacing n by d n. It seems difficult to find in 
literature the results which assert the algebraic independence of the sum of a 
certain series and that of its subseries with subscripts taken in a geometric 
progression. For example, the algebraic independency of the numbers r::l 1/ Fn 
and r::1I/Fdn (d ~ 3) is open. On the other hand, Lucas [3] showed that 
r::1I/F2n = (5 - -15)/2. Andre-leannin [1] proved the irrationality Ofr::l1/Fn, 
while its transcendency is open. Nishioka, Tanaka, and Toshimitsu [7] proved 
that the numbers r::l 1/ Fdn (d ~ 3) are algebraically independent. 

EXAMPLE 4. Let {Fn}n~o be the s.equence of the Fibonacci numbers defined 
by (1) and d an integer greater than 1. Then the numbers 
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(kEN) 

are algebraically independent. 

EXAMPLE 5. Let {Ln}n~o be the sequence of Lucas numbers defined by (3) 
and d an integer greater than 1. Then the numbers 

(k E N) 

are algebraically independent. 

If A. is not a perfect square, we can prove the algebraic independence of 
the sums of the series (4) of Theorem 5 without the factor (_A2)d n in their 

numerators as follows: 

THEOREM 6. Assume in addition that A. is not a perfect square. Let d be an 

integer greater than 1. Then the numbers 

(5) 

are algebraically independent. 

2 Lemmas 

The following lemma will be used in the proof of Theorems I and 4. 

LEMMA 1 (Tanaka [9]). Let {Rn}n~O be as in Section 1. Then the numbers 

are algebraically independent. 

The following lemma plays an essential role in the proof of Theorems 2 and 3. 

LEMMA 2. Let f(x) be a real-valued function on x ~ 0 such that f'(x) > 0 
for any x> 0 and f(N) eN. Let f- I (x) be the inverse function of f(x). Let K. 
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be any field of characteristic 0 endowed with an absolute value I Iv' Let {an}n2l be 
a sequence in K with lanl v = o(l/f-l(n)). Suppose the sum 2::1Ian lv converges in 
R. Then in the completion Kv of K we have 

00 00 

L [f-l(n)](an - an+l) = Laf(h). (6) 
n=f(l) h=1 

PROOF. Let hEN and n E N. Since f'(x) > 0 for any x> 0, (f-l(X))' > 0 
for any x ~ f(l). Hence, if f(h) .::;; n < f(h + 1), then h .::;; f- 1 (n) < h + 1 and so 
[f-l(n)] = h. Therefore, letting 

x(n) = {I (n = f(h)) and Sn = tx(k), 
o (otherwise) k=1 

we see that Sn = [f-l(n)] for n ~ f(l). Then, letting HEN and N = f(H), we 
have 

H N 

L af(h) = L X(n)an 
h=1 n=J(J) 

N-l 
= L Sn(an - an+l) + SNaN 

n=f(l) 

N-l 
= L [f-l(n)](an - an+l) + [f-l(N)]aN. 

n=J(I) 
(7) 

Since lanl v = o(l/f-l(n)), [f-l(N)]aN tends to 0 as N --) 00. Since 2::1Ianlv 

converges in R, the sum of the subseries 2::1 af(h) also converges in Ku. Letting 
H --) 00 in (7), we have (6). This completes the proof of the lemma. 

REMARK 1. The condition lanl v = 0(1/f-1(n)) of Lemma 2 is satisfied if 

(8) 

since we have [f- 1 (n)] = Sn .::;; n. We shall use the condition (8) instead in the 
proof of Theorems 2 and 3. 

The following lemma is a special case of Theorem 3.3.2 in Nishioka [5], since 
its assumption is satisfied by Masser's vanishing theorem [4]. 
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LEMMA 3. Let K be an algebraic number field and d an integer greater than 1. 
Suppose that fij(zJ,z2) E K[[ZJ ,Z2JJ (i = 1, ... ,m,) = 1, ... ,n(i)) are algebraically 
independent over K(zJ, Z2) and convergent in a polydisc U c C2 around the origin. 
Assume that, for every i, fi! (ZI' Z2), ... ,fin(l) (ZI' Z2) satisfy the system of functional 
equations 

iin(i) (ZI' Z2) 

aj 0 0 fil(zf,zf) bil (Zl' Z2) 
(i) 

ai a21 
(9) = + 

0 
(i) 

an(i) 1 
(i) 

an(i)n(i)-l aj iin(i) (zf, zf) bin(i) (Zl' Z2) 

where ai, a~:) E K and bij(ZI, Z2) E K(ZI' Z2). If (ai, (2) E U is an algebraic point with 
o < lad, la21 < 1 such that ai, a2 ·are multiplicatively independent, then the values 
fu( ai, (2) (i = 1, ... ,m,) = 1, ... , n(i)) are algebraically independent. 

REMARK 2. It is not necessary in Lemma 3 to assume that bij(afk, at) 
(i = 1, ... ,m,) = 1, ... ,n(i)) are defin~d for all k ;?: 0, which is satisfied by (9) and 
the fact that fij (a(, at) (i = 1, ... ,m,) = 1, ... , n(i)) are defined for all k;?: 0 

. (dk d k ) SInce a l ,a2 E U. 

LEMMA 4 (Theorem 3.2.1 in Nishioka [5]). Let C be afield of characteristic O. 
Suppose that fij(zl, Z2) E C[[ZI' z2Jl (i = 1, ... ,m,) = 1. ... ,n(i)) satisfy the func
tional equations of the form (9) with ai, a~:) E C, ai ;f= 0, a;il_l ;f= 0 (2 ~ s ~ n(i)), 
and bij(ZI,Z2) E C(Zj,Z2). If fu(Zj,Z2) (i = 1, ... ,m,) = 1, ... ,n(i)) are algebrai
cally dependent over C(ZI' Z2), then there exists a non-empty subset {il,"" ir } of 
{I, ... ,m} with ail = ... = air such that iiI 1, ... ,iir 1 are linearly dependent over C 
modulo C(Zj, Z2), that is, there exist Cl, ... , Cr E C, not all zero, such that 

LEMMA 5 (Nishioka [6, Lemmas 2, 3, and 6]). Let ~ be a nonzero complex 
number and al, ... , an nonzero complex numbers satisfying lail;f= 1, lail;f= lajl 
(i ;f= i)· Let ii(z) E q[zll (0 ~ i ~ n) satisfy the functional equations 
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d z' 
Ji(Z) = c;,Ji(Z ) + 1 + aizT (1 ~ i ~ n), 

where r E Nand e = ±1. If d = c;, = 2 and e = 1, then Ji(z) (1 ~ i ~ n) are linearly 
independent over C modulo C(z), otherwise so are Ji(z) (0 ~ i ~ n). 

REMARK 3. If d = c;, = 2 and e = 1, then 

LEMMA 6 (A special case of Theorem 3.3.10 in Nishioka [5]). Let C be afield 
and F a subfield of C. If 

f(zJ,z2) E C[[ZJ,Z2lJ nF(ZJ,Z2), 

R(O,O) ¥= O. 

3 Proof of Theorems 1, 2, 3, and 4 

PROOF OF THEOREM 1. Let 

and 

Letting f(x) = d X in Theorem 2, we see that for any fixed d 

k 

Sd.k= }*'2)-A2)/-I Td,l (kEN). 
k 1=1 
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Hence the sets of the numbers {Sd,l12 ~ d ~ m, 1 ~ 1 ~ k} and {Td,l12 ~ d ~ m, 
1 ~ 1 ~ k} generate the same vector space over Q for any fixed m E N\ {I} and 
for any fixed kEN. Since the numbers Td,k (d E N\{l},k EN) are algebraically 
independent by Lemma I, the numbers Sd,k (dEN\{I},kEN) are algebraically 
independent. 

Again letting f(x) = dX and noting that f(n) == f(l) (mod 2) for any n E N, 
we see by Theorem 3 that for any fixed d 

(_1)/(1) 2k 

SJ,2k= F* 2:A~-ITd,l (kEN). 
2k 1=1 

Hence the numbers {Sd 21 12 ~ d ~ m, 1 ~ I ~ k} are expressed as linearly inde-, 
pendent linear combinations over Q of the numbers {Td,l12 ~ d ~ m, 1 ~ I ~ 2k} 
for any mE N\{l} and for any kEN. Since the numbers Td,k (d E N\{l},k E N) 
are algebraically independent by Lemma I, the numbers Sd,2k (d E N\{l},k E N) 
are algebraically independent, which completes the proof of the theorem. 

Before stating the proof of Theorems 2 and 3, we recall that {Rn}n~O is 
expressed as 

Rn = aan + bpn (n 2: 0), 

where a, p are the roots of <I>(X) = X 2 - AjX - A2 such that lal > IPI > 0 and 
a,b E Q(JX) satisfy lal2: Ibl > O. Using the same a and P, we can express the 
sequence {Fn*}n~O defined before Theorem 2 by 

PROOF OF THEOREM 2. Since Rn = aan + br (n 2: 0) and -A2 = ap, we 
have 

(10) 

Hence, noting that nlpn / Rnl --70 as n --7 co, we have by Lemma 2 with Re
mark 1 
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1 co _I (k-I pn+1 k-I pn+I+I) 
Sk = k k 'L [f (n)] 'L--'L--

a(a - p ) n=f(l) 1=0 Rn+1 1=0 Rn+l+l 

1 co k-l pf(h)+1 

= a(ak - pk) 8~ Rf(h)+l· 
(11) 

Letting k = 1 and replacing n by n + /- 1 in (10), we have 

(-A2r+I- 1 1 (pn+l-l pn+l) 

Rn+I-IRn+1 = a(a - P) Rn+l-l - Rn+l . 

Hence by Lemma 2 

Tl= 'L [f (n)] ----
(-A2)1-1 00 -I (pn+I-I pn+l) 

a(a - P) n=f(l) Rn+l-l Rn+1 

(-A2) 1-/ co pf(h)+l-l 

= a(a - P) 8 Rf(h)+l-I . 
(12) 

Therefore we have 

Replacing n by f(h) in (10), we have 

(-A2)f(h) 1 (Pf(h) Pf(h)+k) 

Rf(h)Rf(h)+k = a(ak - pk) Rf(h) - Rf(h)+k . 
(13) 

Hence 

and so 

which completes the proof of the theorem. 

PROOF OF THEOREM 3. Replacing k by 2k in (10) and multiplying its both 
sides by (-lr, we have 
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_ 1 (2k-l (-fJ) n+1 _ 2k-l (-fJr+I+1) 

- a(Cl.2k - fJ2k) ~ Rn+1 ~ R n+I+1 . 

Hence, noting that nlfJn / Rnl -t 0 as n -t co, we have by Lemma 2 with Re
mark 1 

* _ 1 00 -I (2k-l (-fJr+1 2k-l (-fJr+I+1) 
S2k - 2k 2k L [f (n)] L R - L -'-R""'---

a( CI. - fJ ) n=/(1) 1=0 n+1 1=0 n+i+l 

1 2k-l 00 fJ1(h)+1 
_ "( _1)/+/(1) ,, __ 
- a(Cl.2k - fJ2k) ~ f:t R/(h)+1 ' 

since f(h) == f(1) (mod 2) for any h ~ 1. Therefore we have by (12) 

( 1)/(1) 2k 
S* - - "AI-IT 

2k - F* ~ 2 I, 
2k 1=1 

which completes the proof of the theorem. 

PROOF OF THEOREM 4. Let 

and 

Letting f(x) = d X in Theorem 2 and noting that (_l)d n = (_l)d (n ~ I), we see 

that for any fixed d 
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Hence the numbers {Ud,l12::;; d ::;; m, 1 ::;; I ::;; k} are expressed as linearly inde

pendent linear combinations over Q of the numbers {Td,112::;; d ::;; m, 1 ::;; I ::;; 
k + I} for any m E N\{I} and for any kEN. Since the numbers Td,k (d E N\{I}, 
kEN) are algebraically independent by Lemma I, the numbers Ud,k (d E N\{I}, 
kEN) are algebraically independent, which completes the proof of the theorem. 

4 Proof of Theorems 5 and 6 

REMARK 4. For Q(Zl' Z2) E C(Zl' Z2) with Q(O,O) = 0, we define 

where x is a variable and d is an integer greater than 1. Letting D = xo / ox, we 
see that 

ct:J 

) I ~ I n d n d" fi(x, Zl, Z2 := D f(x, Zl, Z2) = L.; n x Q(zl ,z2 ) (l ~ 0) 
n=l 

satisfy 

Hence for a complex number x, the functions fo(x, Zl, Z2), ... ,fm(x, Zl, Z2) satisfy 
a system of functional equations of the form (9). 

PROOF OF THEOREM 5. Let c = a-1b, y = rx-1fJ, and 

I n Z Y Z ct:J (d" k d" ) 
f~lk(Z) = ~ n ( 1 + czd" - 1 + cykzd" 

Then 

ct:J l):n( A )dn 

ii- ( ) = 2( k _ fJk) ~n s - 2 
c,lk Y a rx L.; R R 

n=l dn dn+k 
(14) 
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Using (11) in the proof of Theorem 2 and letting k = 1, !(x) = dX, and 
g(z) = 2::1 zdn /(1 + czdn ), we have 

(15) 

Therefore it is enough by (14) and (15) to prove the algebraic independence 
of the values klk(Y) (~E QX, I ;;::: 0, kEN) and g(y). We see that each !I;Ok(Z) 
(~ E QX , kEN) satisfies the functional equation 

( zd ykzd) 
kOk(Z) = UI;Ok(zd) + ~ 1 + czd - 1 + cykzd 

and !l;lk(Z) (120) satisfy a system of functional equations of the form (9) for 
every fixed ~ and k by Remark 4. We see also that g(z) satisfies the functional 
equation 

Hence by Lemma 3 the values !l;lk(Y) (~E QX, 120, kEN) and g(y) are alge
braically independent if the functions !l;lk(Z) (~E QX, 120, kEN) and g(z) are 
algebraically independent over C(z). 

We assert that for every fixed ~ oF 1 the functions !I;Ok(Z) (k E N) are linearly 
independent over C modulo C(z) and so are the functions fiOk(Z) (k E N) with 
g(z), which implies by Lemma 4 that the functions !l;lk(Z) (~E QX, I;;::: 0, kEN) 
and g(z) are algebraically independent over C(z). Let 

Then 

!I;Ok(Z) = hl;o(z) - h!;k(Z) 

for every fixed ~EQx and kEN and each hl;k(Z) (~EQx,k20) satisfies the 
functional equation 

Suppose there exists a ~ oF 1 such that k01(Z), ... ,j!;Ok(Z) are linearly dependent 
over C modulo C(z) for some k. If d = ~ = 2 and c = 1, we see by Remark 3 
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that h20(Z) =2z2/(1-z2) EC(Z) and so h21 (Z), ... ,h2k(Z) are linearly dependent 
over C modulo C(z); otherwise, so are hf,o(z),hf,l(Z), ... ,hf,k(Z), which contradicts 
Lemma 5, since Hf,k(Z) := C1y-khf,k(Z) satisfies the functional equation 

d 
d Z 

Hf,k(Z) = ?;Hf,k(Z ) + 1 k d' + cy Z 

Therefore, if ff,lk(Z) (?;EQx,I~O,kEN) and g(Z)=hlO(Z) are algebraically 
dependent over C(z), then hlO (z),flOl (z), ... ,jiOk(Z) are linearly dependent over 
C modulo C(z) for some k, and hence so are hlO(Z),hll (z), ... ,h1k(Z), which 
contradicts Lemma 5. Therefore the functions /<;lk(Z) (?; E QX, I ~ 0, kEN) 
and g(z) are algebraically independent over C(z) and so the values fl'.lk(Y) 
(?; E QX, I ~ 0, kEN) and g(y) are algebraically independent, which completes the 
proof of the theorem. 

PROOF OF THEOREM 6. First we consider the case where (x, 13 are multi
plicatively dependent. Then there exist integers m, n, not both zero, with 
(X177f3n = 1. Since IX and 13 are field conjugates in the quadratic number field 
Q( VX), f3l11(Xn = 1 must also hold. This implies 

(IXI3) m+n = (IX / 13) m-n = 1. 

Since I IX/ 131 > 1, we have m = n -=F 0, and hence IXI3 must be a real root of 
unity, i.e., -A2 = IXI3 = ±1. Therefore this case is proved by Theorem 5 since 

d" d (-A2) = (-A2) (n ~ 1). 
Secondly we consider the case where IX, 13 are multiplicatively independent. 

Define 

(?; E QX, 1 ~ 0, kEN), 

where c = a-1b and y = rx- 1f3. Then 

Using (11) in the proof of Theorem 2 and letting k = 1, f(x) = dX, and 
( ) ,\,00 d"/( d") g ZI,Z2 = L..m=l z2 1 + cZ2 ,we have 



360 Taka-aId TANAKA 

Therefore it is enough to prove the algebraic independence of the values 
fl;.lk(a-2,y) (~EQX,I~O,kEN) and g(a-2,y). We see that each f~Ok(Zl,Z2) 
(~ E QX , kEN) satisfies the functional equation 

and /efk(Zl, Z2) (l ~ 0) satisfy a system of functional equations of the form (9) 
for every fixed ~ and k by Remark 4. We see also that g(Zl, Z2) satisfies the 
functional equation 

d 

g(Zl,Z2) =g(zt,zf) +1 z2 d' + cZ2 

Hence, noting that a-2, yare multiplicatively independent, we see by Lemma 3 
that the values /elk(a-2,y) (~EQx,I~O,kEN) and g(a-2,y) are algebraically 
independent if the functions f~lk(Zl,Z2) (~E QX,l ~ O,k E N) and g(Zl,Z2) are 
algebraically independent over C(Zl,Z2). We assert that for every fixed ~ =F 1 the 
functions f~Ok(Zl' Z2) (k EN) are linearly independent over C modulo C(Zl, Z2) 
and so are the functions .liOk(Zl,Z2) (kEN) with g(Zj,Z2), which implies by 
Lemma 4 that the functions !elk(Zl, Z2) (~E QX, I ~ 0, kEN) and g(Zl, Z2) are 
algebraically independent over C(Zl, Z2). 

Suppose there exists a ~ =F 1 such that f~Ol (Zl, Z2)" .. '!~Ok(ZI' Z2) are linearly 
dependent over C modulo C(Zl, Z2) for some k. Thus there are complex numbers 
Cl, ... , Ck, not all zero, such that 

Cd~Ol (Zl, Z2) + ... + Cd~Ok(Zl' Z2) E C(Zl, Z2). 

Since f~Ol(Zl,Z2), ... ,!eOk(Zl,Z2) EC([Zl,Z2]J, by Lemma 6 there exist A(Zl,Z2), 
B(Zl, Z2) E C(Zl, Z2] such that 

Letting Zl = Z2 = Z, we have 

which contradicts Lemma 5 by the same way as in the proof of Theorem 5. 
Therefore, if f~lk(Zl, Z2) (~E QX, I ~ 0, kEN) and g(Zl, Z2) are algebraically de
pendent over C(Zl,Z2), then g(Zl,Z2),!lOl(Zl,Z2), ... ,!lOk(Zl,Z2) are linearly de
pendent over C modulo C(Zl,Z2) for some k. By the same way as above g(z,z), 
.liOl (z, z), . .. , flOk(Z, z) are linearly dependent over C modulo C(z), which again 
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contradicts Lemma 5. Therefore the functions !l;lk(ZI) Z2) (c; E QX) I ~ 0, kEN) 
and g(ZI, Z2) are algebraically independent over C(Zl, Z2) and so the values 
!i;lk(rx-2,y) (c;EQx,I~O,kEN) and g(a-2,y) are algebraically independent, 
which completes the proof of the theorem. 
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