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LEVI-PARALLEL HYPERSURFACES IN A COMPLEX 
SPACE FORM 

By 

long Taek ClIO 

Abstract. In this paper, we classify a Hopf hypersurface in a non
flat complex space form whose Levi-form is parallel with respect to 
the generalized Tanaka-Webster connection. 

1. Introduction 

Let U = (un, J, g) be a complex n-dimensional Kahlerian manifold with 
complex structure J and Kahlerian metric g. Let M be an oriented real 
hypersurface in U, g be the induced metric and 1'/ be the I-form defined by 
l'/(X) = g(X, c;) where c; = -IN and N is a unit normal vector field on M. Then 
M has an (integrable) CR-structure associated with the complex structure of the 
ambient space. Let TM be the tangent bundle of M and D be the subbundle of 
TM (or the (2n - 2)-dimensional distribution) which is defined by 1'/ = O. We 
denote by CD = D ® C its complexification. Then we see that D is h%morphic 

(or maximally invariant by J) and 

Yf = {X - ilX : XED} 

defines an CR-structure on M. That is, Yf satisfies the following properties: 
(i) each fiber ~ (x E M) is of complex dimension n - I, 
(ii) YfnJ¥={O}, 
(iii) [Yf, Yf) c Yf (integrability). 

Furthermore, we have CD = Yf EEl J¥. We call {D,J} the real representation of 
Yf. Then for {D,J} we define the Levi form by 

L: D x D ~ ff(M), L(X, Y) = dl'/(X,JY) 
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where $>(M) denotes the algebra of differentiable functions on M. If the Levi 

form is hermitian, then the CR-structure is called pseudo-hermitian, in addition, in 
the case that the Levi form is non-degenerate (positive or negative definite, resp.), 
then the CR structure is called a non-degenerate (strongly pseudo-convex, resp.) 
pseudo-hermitian CR structure. Recently, Y. T. Siu [14] proved the nonexistence 

of compact smooth Levi-flat hypersurfaces in complex projective spaces of 
dimension ~ 3. Here, it is remarkable that the assumption of compactness in Siu's 
theorem has a crucial role. Actually, there are non-complete examples which are 

Levi-flat in a complex projective space (see section 2). Anyway, the examples of 
Levi-flat hypersurfaces which are known so far are not Hopf. In this situation, we 

prove that there does not exist a Levi-flat Hopf hypersurface (Theorem 3). 
On the other hand, the Tanaka-Webster connection ([19], [20]) is defined as a 

canonical affine connection on a pseudo-hermitian, non-degenerate, integrable CR 
manifold. For contact metric manifolds, their associated almost CR structures 
are pseudo-hermitian and strongly pseudo-convex, but they are not in general 

integrable. For a non-zero real number k, the author [7] defined the generalized 
Tanaka-Webster connection (in short, the g.-Tanaka-Webster connection) V for 

real hypersurfaces in Kahlerian manifolds. The g.-Tanaka-Webster connection 
V coincides with the Tanaka-Webster connection if real hypersurfaces satisfy 

¢A + A¢ = 2k¢ (Proposition 2). The covariant differentiation of the Levi form L 
with respect to the g.-Tanaka-Webster connection V is well-defined: 

(VxL)(Y,Z) = XL(Y,Z) - L(VxY,Z) -L(Y, VxZ) 

for any X, Y, ZED. Then we say that M is Levi-parallel with respect to the 

g. -Tanaka- Webster connection or shortly Levi-parallel if M satisfies 

g«VxL)(Y,Z)) = 0 

for any vector fields X, Y,Z E D. We note that a Levi-flat hypersurface is Levi
parallel (see (2) in Remark 1). 

A complex n-dimensional complete and simply connected Kahlerian manifold 
of constant holomorphic sectional curvature c is called a complex space form, 

which is denoted by iiIn (c). A complex space form consists of a complex pro
jective space PnC, a complex Euclidean space EnC or a complex hyperbolic space 

HnC, according as c> 0, c = 0 or c < o. R. Takagi [16, 17] classified the ho
mogeneous real hypersurfaces of PnC into six types. T. E. Cecil and P. J. Ryan 
[6] extensively studied a real hypersurface whose structure vector ~ is a principal 

curvature vector, which is realized as tubes over certain submanifolds in PnC, 

by using its focal map. A real hypersurface of a complex space form is said to 
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be a Hopf hypersurface if its structure vector is a principal curvature vector. By 
making use of those results and the mentioned work of R. Takagi, M. Kimura [9] 

proved the local classification theorem for Hopf hypersurfaces of P nC whose all 
principal curvatures are constant. For the case HnC, J. Berndt [3] proved the 
classification theorem for Hopf hypersurfaces whose all principal curvatures are 

constant. 
The main purpose of the present paper is to classify real hypersurfaces of 

Mn(c), c#-O whose Levi form is parallel with respect to the generalized Tanaka

Webster connection. More specifically, in section 4, we prove 

MAIN THEOREM. Let M be a Hopf hypersurface of a complex space form 

Mn(c), c #- O. Suppose that M is Levi-parallel with respect to the g.-Tanaka

Webster connection. Then we have the following. 

(1) If Mn(c) = PnC, then M is locally congruent to one of 

(AI) a geodesic hypersphere of radius r, where 0 < r <~, 

(A2) a tube of radius r over a totally geodesic PkC (1 ::::; k ::::; n - 2), where 

0< r <~, 
(B) a tube of radius r over a complex quadric Qn-l, where 0 < r < ~. 

(II) If 1VL,(c) = HnC, then M is locally congruent to one of 

(Ao) a horosphere, 

(A I) a geodesic hypersphere or a tube over a complex hyperbolic hyper

plane H n- 1 C, 
(A2) a tube over a totally geodesic HkC (1 ::::; k ::::; n - 2), 

(B) a tube over a totally real hyperbolic space HnR. 

2. The Generalized Tanaka-Webster Connection for Real Hypersurfaces 

In this paper, all manifolds are assumed to be connected and of class Ceo and 

the real hypersurfaces are supposed to be oriented. First, we give a brief review of 
several fundamental concepts and formulas on almost contact structure. An odd
dimensional smooth manifold M2n+1 has an almost contact structure if it admits 

a vector (, a I-form '1 and a (l,l)-tensor field rp satisfying 

'1(() = I and rp2 X = -X + '1(X)(. 

Then there exists a compatible Riemannian metric g: 

g(rpX, rp Y) = g(X, Y) - '1(X)'1( Y) 

for all vector fields X and Y on M. We call ('1,~, rp, g) an almost contact metric 

structure of M and M = (M;'1,~,rp,g) an almost contact metric manifold. For 
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an almost contact metric manifold M we define its fundamental 2-form <l> by 
<l>(X, Y) = g(rpX, Y). If 

(1.1) <l> = dry, 

M is called a contact metric manifold. We refer to [4) on contact metric geometry 
for more detail. 

For an almost contact metric manifold M, the tangent space TpM of M 
at each point p EM is decomposed as TpM = Dp EB {<;}p (direct sum), where 
we denote Dp = {v E TpM I ry(v) = O}. Then D; p ~ Dp defines a distribution 
orthogonal to ~. The restriction ijJ = rplD of rp to D defines an almost complex 
structure to D. If the associated Levi form L, defined by 

L(X, Y) = dry (X, ijJY), 

x, Y E D, is hermitian, then (ry, ijJ) is called a pseudo-hermitian CR structure and 
in addition, if its Levi form is non-degenerate (positive or negative definite, resp.), 
then (1'/, ijJ) is called a non-degenerate (strongly pseudo-convex, resp.) pseudo
hermitian CR structure. Moreover, if the following conditions are satisfied: 

(1.2) [ijJX,ijJYj- [X, Y) ED 

and 

(1.3) [ijJ, ijJ](X, Y) = 0 

for all X, Y E D, where [ijJ, ijJ] is the Nijenhuis torsion of ijJ, then the pair (ry, ijJ) 
is called a pseudo-hermitian, non-degenerate, (strongly pseudo-convex, resp.) 
integrable CR structure associated with the almost contact metric structure 
(1'/,~, rp, g). In particular, for a contact metric manifold its associated CR structure 
is pseudo-hermitian, strongly pseudo-convex but is not in general integrable. For 
further details about CR structures, we refer for example to [2], [5], [18]. 

Let M be a real hypersurface of a Kahlerian manifold M = eM; J, g) and N 

a global unit normal vector on M. By V, A we denote the Levi-Civita connection 
in M and the shape operator with respect to N, respectively. Then the Gauss and 
Weingarten formulas are given respectively by 

VxY=V'xY+g(AX,Y)N, VxN=-AX 

for any vector fields X and Y tangent to M, where g denotes the Riemannian 
metric of M induced from g. An eigenvector (resp. eigenvalue) of the shape 
operator A is called a principal curvature vector (resp. principal curvature). For 
any vector field X tangent to M, we put 
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(2.1) JX = rpX + tj(X)N, IN = -e. 
We easily see that the structure (tj, e, rp, g) is an almost contact metric structure 
on M. From the condition f;J = 0, the relations (2.1) and by making use of the 
Gauss and Weingarten formulas, we have 

(2.2) 

(2.3) 

(Vxrp)Y = tj(Y)AX - g(AX, Y)e, 

Vxe = rpAX. 

By using (2.2) and (2.3), we see that a real hypersurface in a Kiililerian 
manifold always satisfies (1.2) and (1.3), the integrability condition of the asso
ciated almost CR structure. From (Ll) and (2.3) we have 

PROPOSITION 1. Let M = (M; tj, e, rp, g) be a real hypersurface of a Kiihlerian 
manifold. The almost contact metric structure of M is contact metric if and only if 
rpA + Arp = ±2rp, where ± is determined by the orientation. 

The Tanaka-Webster connection ([19], [20]) is the canonical affine connection 
defined in a non-degenerate integrable CR manifold. Tanno ([18]) defined the 
generalized Tanaka-Webster connection for contact metric manifolds by the ca
nonical connection which coincides with the Tanaka-Webster connection if the 
associated almost CR structure is integrable. We define the generalized Tanaka
Webster connection (in short, the g.-Tanaka-Webster connection) for real hyper
surfaces of Kahlerian manifolds by the naturally extended one of Tanno's gen
eralized Tanaka-Webster connection for contact metric manifolds. 

We recall Tanno's generalized Tanaka-Webster connection V for contact 
metric manifolds: 

Vx Y = Vx Y + (Vxtj)(y)e - tj(Y)Vxe - tj(X)rpY 

for all vector fields X and Y. 
Taking account of (2.3), the g.-Tanaka-Webster connection for real hyper

surfaces of Kahlerian manifolds, which is denoted by the same symbol V as the 
one for contact metric manifolds, is naturally defined by (cf. [7]) 

(2.4) Vx Y = Vx Y + g(rpAX, Y)e - tj(Y)rpAX - ktj(X)rpY, 

where k is a non-zero real number. We put Fx Y = g(rpAX, Y)e - tj(Y)rpAX
ktj(X)rpY. Then the torsion tensor T is given by T(X, Y) = Fx Y - FyX. Also, 
by using (1.2), (1.3), (2.2), (2.3) and (2.4) we can see that 

(2.5) 
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and 

T(X, Y) = 2 d1](X, Y)¢, X, Y ED. 

We note that the associated Levi form is 

1 --
L(X, Y) = 2: g((q;A + Aq;)X, q;Y), 

where we denote by A the restriction A to D. If M satisfies rpA + Arp = 2krp, then 
we see that the associated CR structure is pseudo-hermitian, strongly pseudo
convex and further satisfies T(¢, rpY) = -rpT(¢, Y), and hence the generalized 
Tanaka-Webster connection V coincides with the Tanaka-Webster connection. 
Namely, we have (cf. [7)) 

PROPOSITION 2. Let M = (M; 1], ¢, rp, g) be a real hypersurface of a Kiihlerian 

manifold If M satisfies rpA + Arp = 2krp, then the associated CR-structure is 

pseudo-hermitian, strongly pseudo-convex, integrable, and further the generalized 

Tanaka- Webster connection V coincides with the Tanaka- Webster connection. 

Since the structure vector field ¢ is V -parallel, we see that V x Y for X, Y E D 

still belongs to D. We define the covariant differentiation of the Levi form L with 
respect to the g.-Tanaka-Webster connection V as follows: 

(2.6) (VxL)(Y,Z) = XL(Y,Z) - L(VxY,Z) - L(Y, VxZ) 

for any X, Y,Z E D. 

3. Real Hypersurfaces of a Complex Space Form 

Let M = Mn(c) be a non-flat complex space form of constant holomorphic 
sectional curvature c( -# 0) and let M a real hypersurface of M. Then we have the 
following Gauss and Codazzi equations: 

(3.1 ) 

(3.2) 

c 
R(X, Y)Z = 4 {g( Y, Z)X - g(X, Z) Y 

+ g(rp Y, Z)rpX - g(rpX, Z)rp Y - 2g(rpX, Y)rpZ} 

+ g(A Y, Z)AX - g(AX, Z)AY, 
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for any tangent vector fields X, Y, Z on M. We now suppose that M is a Hopf 
hypersurface, that is, AC; = etc;. Then we already know that et is constant (see [8]). 
Differentiating this covariantly along M, and then by using (2.3) we have 

(VxA)c; = etrpAX - ArpAX, 

and further by using (3.2) we obtain 

c 
(VeA)X = 4rpX + etrpAX - ArpAX 

for any vector field X on M. From this, we have 

c 
2ArpAX - "irpX = et(rpA + Arp)X. 

Here, we assume that AX = AX for a unit vector field X orthogonal to C;, then 

(3.3) (2A - et)ArpX = (etA +~) rpX. 

Now, we prove 

THEOREM 3. There does not exist a Levi-flat Hopf hypersurface in a non-flat 

complex space form. 

PROOF. Suppose that M is Hopf and Levi-fiat. Then AC; = etC; and we get 

rpAX + ArpX = 0 

for any XED. We assume AX = AX. Since C; is a principal curvature vector by 
using (3.3) we have 2A2 +~ = 0, which shows c < O. Then we see that M has at 
most three constant principal curvatures A, Ji and et, and further we see that 
Ji = -A. But, Corollary 1 in [3] states that AJi + c/4 = o. Thus, we have a 
contradiction. 0 

We remark here that there are examples of Levi-fiat hypersurfaces which are 
not Hopf. We say that M is a ruled real hypersurface of Mn(c), c i= 0 if there is 
a foliation of M by complex hyperplanes Mn-l (c). In other words, M is ruled if 
and only if D is integrable and its integral manifold is a totally geodesic sub-
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manifold Mn-l (c). Then we easily see that a ruled real hypersurface is Levi-fiat. 
In fact, its shape operator may be written down as following: 

A~ = ex~ + JlU (Jl # 0), 

AU =Jl~, 

AZ=O 

for any ZED, ..L U, where U is unit vector orthogonal to ~, ex and Jl are functions 
on M. M. Kimura [10] constructed ruled real hypersurfaces in complex projective 
space. Let M be a hypersurface in S2n+ I defined by 

~ IZil2 = 1,0 < r < I,O:s;; t,e < 2n, }. 

Then the Hopf image M of M is a minimal ruled hypersurface in cpn. We note 
that the above example of a ruled real hypersurface is not complete. In a similar 
way, in [1] the authors gave a minimal ruled real hypersurfaces in complex 
hyperbolic space. For more details about ruled real hypersurfaces we may refer 
to [13]. 

From Proposition 2, together with the results in [12] (in case of PnC) and [15] 
(in case of HnC) we get easily 

THEOREM 4. Let M be a real hypersurface of Mn(c), c # O. Suppose that M 
satisfies cpA + Acp = 2kcp for some non-zero constant k. Then the CR-structure is 

pseudo-hermitian and strongly pseudo-convex. Furthermore we have the following: 

(I) in the case Mn(c) = PnC with the Fubini-Study metric of c = 4, then M is 

locally congruent to one of the following: 

(AI) a geodesic hypersphere of radius r, where 0 < r < i, 
(B) a tube of radius r over a complex quadric Qn-l, where 0 < r <~. 

(II) in the case Mn(c) = HnC with the Bergman metric of c = -4, then M is 

locally congruent to one of the following: 

(Ao) a horosphere, 

(At) a geodesic hypersphere or a tube over a complex hyperbolic hyper

plane Hn-IC, 

(B) a tube over a totally real hyperbolic space HnR. 
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REMARK 1. (1) Together with Proposition 1, we see that the almost contact 
metric structure on M which appears in the above theorem is a contact metric 

structure only for the very special case determined by k = ±1, where ± depends 
on the orientation. More precisely, with the help of the tables in [3] and [16], 
we see that the almost contact metric structures are contact metric only for a 

geodesic hypersphere of radius ~ in PnC, for a horosphere in HnC. Hence for real 
hypersurfaces appearing in Theorem 4, except those just mentioned, they do not 

admit contact structure but their associated CR structures are pseudo-hermitian, 
strongly pseudo-convex and further the g.-Tanaka-Webster connection V defined 

on them coincides with the Tanaka-Webster connection. 
(2) From (2.6), it follows that Levi-flat hypersurface is Levi-parallel. Leaving 

the Levi-flat case aside, we find that real hypersurfaces stated in Theorem 4 are 

also Levi-parallel. 

We prepare some more results which are needed to prove our Main Theorem. 

THEOREM 5 ([9]). Let M be a Hopf hypersurface of pnc. Then M has constant 
principal curvatures if and only if M is locally congruent to one of the following: 

(Ad a geodesic hypersphere of radius r, where 0 < r < I' 
(A2) a tube of radius r over a totally geodesic PkC (1 ::;; k ::;; n - 2), where 

0< r < I' 
(B) a tube of radius r over a complex quadric Qn-I, where 0 < r <~, 

(C) a tube of radius r over PI C x P(n-l)/2C, where 0 < r < ~ and n(~ 5) is 
odd, 

(D) a tube of radius r over a complex Grassmann G2,SC, where 0 < r < ~ and 

n= 9, 
(E) a tube of radius r over a Hermitian symmetric space SO(10)jU(5), where 

o < r < ~ and n = 15. 

THEOREM 6 ([3]). Let M be a Hopf hypersurface of HnC. Then M has 

constant principal curvatures if and only if M is locally congruent to one of the 

following: 

(Ao) a horosphere, 
(Ad a geodesic hypersphere or a tube over a complex hyperbolic hyperplane 

Hn-IC, 
(A2) a tube over a totally geodesic HkC (1 ::;; k ::;; n - 2), 
(B) a tube over a totally real hyperbolic space HnR. 
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1'HEoREM 7 ([11], [15]). Let M be a Hopf hypersurface of a non-flat complex 
space form Mn(c), c # O. Suppose that the shape operator A is 'I-parallel (i.e., 
g((VxA)Y,Z) = 0) for any tangent vectors X, Yand Z which are orthogonal to C;). 
Then we have the following. 

(I) In case that Mn(c) = PnC, then M is locally congruent to one of real 
hypersurfaces of type· (Ad, (A2) and (B); 

(II) In case that Mn(c) = HnC, then M is locally congruent to one of real 
hypersurfaces of type (Ao), (Ad, (A2) and (B). 

4. Levi-parallel Hopf Hypersurfaces in a Complex Space Form 

In this section we shall prove our Main Theorem. Suppose that M is a 
Levi-parallel Hopf hypersurface of a complex space form Mn(c) with respect to 
g.-Tanaka-Webster connection. Then by using (2.5) and (2.6) we have 

g((tp(VzA) + (VzA)tp)X,tpY) = 0 

for any vector fields X, Y, Z orthogonal to C; on M. It follows easily that 

g((VzA)X, Y) - rJ((VzA)X)rJ(Y) + g((VzA)tpX,tpY) = 0 

for any X, Y,Z E D. 
Together with (2.4), we have 

(4.1) g((VzA)X, Y) -17(AX)g(tpAZ, Y) - g(tpAZ, X)17(AY) 

+ g((VzA)tpX,tpY) -17(AtpX)g(tpAZ,tpY) - g(tpAZ,tpX)17(AtpY) = 0 

for any X, Y,Z E D. We now suppose that AC; = aC;. Then (4.1) reduces to 

(4.2) g((VzA)X, Y) - g(tp(VzA)tpX, Y) = 0 

where X, Y,Z E D. Assume X E VA, that is, AX = AX, where we denote by VA 
the eigenspace of A associated with a principal curvature A.. Taking account of 
(3.3), we divide our arguments into two cases: (i) 2,1 ¥= a and 2,1 = a. First, we 
consider the case (i). Then for any ZED, we get 

(VzA)X = Vz(AX) - A(VzX) 

= (ZA)X + (AI - A)(VzX). 

So we have 

(4.3) g((VzA)X,X) = ZA. + g((AI - A)VzX,X) 

= ZA + g(VzX, (AI - A)X) = ZA.. 
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Similarly, by using (3.3), we have 

a2 + c 
(4.4) g( (V zA)cpX, cpX) = -(Z1) (21 _ a)2 . 

From (4.2), (4.3) and (4.4) we obtain 

(Z1) (12 - a1 - *) = O. 

Since a is constant, this shows that 

(4.5) Z1=0 for any ZED. 

Also, it follows from the equation of Codazzi (3.2) that 

c 
(VzA)c; - (VeA)Z = -4CPZ for any ZED. 

On the other hand, from (2.3) and (3.3) we find 

(VzA)c; - (VeA)Z = Vz(Ac;) - AVzc; - Ve(AZ) + A(VeZ ) 

= (aI - A)cpAZ - (c;1)Z - (AI - A)VeZ 

= it a - __ 2 cpZ - (O)Z - (AI - A)VeZ ( ait + f.) 
2it - a 

for any unit vector Z E VA' From the above two equations, we obtain 

(4.6) 
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where we have used g(cpZ, Z) = 0 and g((itI - A)VeZ, Z) = O. Hence from (4.5) 
and (4.6) we see that it is constant. Next, in the case (ii) 2it = a, since al is 
constant, it must be constant. 

Thus, by virtue of Theorems 5 and 6 we can see that M is locally congruent 
to one of six types (Ad, (A2), (B), (C), (D) and (E) in PnC or (Ao), (Ad, (A2) 
and (B) in HnC. Conversely, by using Theorem 7, we check that real hyper
surfaces of types (AI), (A2), (B) in PnC or (Ao), (AI), (A2) and (B) in HnC are 
Levi-parallel (with respect to the g.-Tanaka-Webster connection). 

Now, we shall prove M of types (C), (D) and (E) in PnC is not Levi 
parallel. For M of type (C), (D) or (E) in PnC, M has five distinct constant 
principal curvatures, say itI, it2, it3 , it4 and a so that TM = Vii ED Vi2 ED Vi) ED 
Vi4 ED {OR' We put x = cot(e -~) (~< e < ~). Then we may express (cf. [11]) 

(4.7) 
x-I -4x 

it4 = --1' a = -2--1 . x+ x -
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We note that 

(4.8) 0< x < 1 and q;V).1 = V).2' q;V).2 = V_).t> q;V).a = V).a' a = 3,4. 

We first prove the following 

LEMMA 1. Let M be a real hypersurface M of types (C), (D) and (E) in 
pnc. If M is Levi-parallel, then 

(4.9) (1) for X E V).{ (i = 1,2); VzX = (VzX)).; - g(X, q;AZ)~, 

(2) for X E V).a (a = 3,4); V'zX = (VzXha - g(X, q;AZ)~. 

for any ZED, where X). denotes the VA-component of the vector X. 

PROOF. For X E V). and Y E VJL , we get 

g((V'zA)X, Y) = (Je - f.l)g(VzX, Y). 

If we put X = ~1~~, then q;X E Vx and q; Y E Vji. Together with (2.2) we get 

g((VzA)q;X, q;Y) = (X - jl)g(V'z(q;X), q;Y) 

= (X - jl)g(q;(VzX) , q; Y) 

= (X - jl)g(VzX, Y) 

Suppose that M is Levi-parallel. Then from (4.2) we obtain 

(4.10) [(Je - f.l) + (X - Jl)]g(VzX, Y) = 0. 

From (4.7) and (4.10) we calculate the following: 

(4.11 ) 
. (x+ 1)(x2 + 1) 

for X E V).; (z = 1,2), Y E V).3; x(x _ 1) g(VzX, Y) = 0, 

(x - I)(x2 + 1) 
for X E V)." Y E V).4; x(x+ 1) g(VzX, Y) = 0, 

for X E V).l' Y E V).2; 2xg(VzX, Y) = 0, 

for X E V).2' Y E V).l; -2xg(VzX, Y) = 0, 

(x + I)(x2 + 1) 
for X E V).3' Y E V).4; x(I _ x) g(VzX, Y) = 0, 

(1 - x)(x2 + 1) 
for X E V).4' Y E V).3; x(x + 1) g(VzX, Y) = 0. 
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Since g(VzX, c;) = -g(X, cpAZ) , from (4.8) and (4.11), we may express VzX as 
(4.9). D 

Secondly, we also prove 

LEMMA 2. Le( M be a real hypersurface M of type (C), (D) and (E) in pnc. 
Then we have 

(4.12) VI;Z E Vi; EB {cpZ}R for Z EVil (i = 1,2). 

that 
PROOF. For any unit vector Z E VJ., from (2.3) and Proposition 3 it follows 

(VzA)c; - (VI;A)Z = Vz(AC;) - AVzC; - VI;(AZ) + A (VI;Z) 

= (IXI - A)cpAZ - (O)Z - (U - A)VI;Z 

( IXA+2) =A 1X- 2A -1X cpZ-(U-A)VI;Z. 

On the other hand, from (3.2) we get 

(VzA)c; - (VI;A)Z = -cpZ. 

Hence we obtain 

(4.13) (U - A)VI;Z = [A( IX - ~~ ~ ~)] cpZ for Z E V.I. . 

. Since cpVi, = Vi2 , from (4.13) we can find (4.12). D 

Thus, it follows from Proposition 3 and (4.13) that for i = 1,2, 

{ IXAi + 2} [( IXAi + 2)] Ai - 2Ai _ IX g(VI;Z, cpZ) = Ai IX - 2Ai _ IX g(cpZ, cpZ) 

or 

(4.14) 2(A; - IXAi - l)g(VI;Z, cpZ) = IX(A; - IXAi - l)g(cpZ, cpZ). 

But, for a real hypersurface M which is locally congruent to one of types 
(C), (D) and (E) we know that A2 - IXA - 1 of O. (We note that the equation 
A 2 - IXA - 1 = 0 holds if and only if M is locally congruent to a real hypersurface 
of type (Ad or (A2)') Therefore from (4.14) we get 
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(4.15) 
a . 

g(Vf,Z,cpZ) = 2g(cpZ,cpZ) for Z E V;.p l = 1,2. 

For X E V;. I and Z E V;.3' by using (1) and (2) in (4.9), we have 

(4.16) R(Z,rpZ)X = Vz(Vq>zX) - Vq>z(VzX) - V[Z,q>ZjX 

= Vz{(Vq>ZX)AI - A3g(X, cp2Z)e} 

- Vq>z{(VZX)AI - A3g(X,CPZ)e} 

= (Vz(Vq>ZX)A)AI - A3g((Vq>ZX)"I'CPZ)( 

- (Vq>z(VZX)"1 hi + A3g((VZX)"I' cp2Z)( 

- (V(Vzq>Zh3 X)AI + A3g(X, cp(VZrpZ)A)( + A3 Vf,X 

+ (V(v.Z Z)J.3 X )AI - A3g(X,rp(Vq>zZh)( + A3Vf,X. 

The equations (4.15) and (4.16) show that 

g(R(Z, rpZ)X, cpX) = 2A3g(Vf,X, cpX) = aA3g(rpX, cpX). 

On the other hand, since rpX E V;.2 and cpZ E V;.3' the equation of Gauss (3.1) gives 

( 4.17) g(R(Z, rpZ)X, rpX) = -2g(cpZ, cpZ)g(rpX, rpX). 

From this, together with (4.7), we have x~~:\ . i~~ = -2, that is, x 2 + 1 = o. This is 
a contradiction. 

Thus, we have our Main Theorem. 0 
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