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LEVI-PARALLEL HYPERSURFACES IN A COMPLEX
SPACE FORM

By
Jong Taek CHO

Abstract. In this paper, we classify a Hopf hypersurface in a non-
flat complex space form whose Levi-form is parallel with respect to
the generalized Tanaka-Webster connection.

1. Introduction

Let M = (M",J,§) be a complex n-dimensional Kahlerian manifold with
complex structure J and Kéihlerian metric §. Let M be an oriented real
hypersurface in M, g be the induced metric and 5 be the 1-form defined by
n(X) = g(X,&) where £ = —JN and N is a unit normal vector field on M. Then
M has an (integrable) CR-structure associated with the complex structure of the
ambient space. Let TM be the tangent bundle of M and D be the subbundle of
TM (or the (2n— 2)-dimensional distribution) which is defined by 7 =0. We
denote by CD = D ® C its complexification. Then we see that D is holomorphic
(or maximally invariant by J) and

# ={X-iJX:XeD}

defines an CR-structure on M. That is, # satisfies the following properties:
(i) each fiber #; (xe M) is of complex dimension n— 1,
(i) #NH ={0},
(ii) [o#,#] < A (integrability).
Furthermore, we have CD = # @® #. We call {D,J} the real representation of
#. Then for {D,J} we define the Levi form by

L:DxD— ZF(M), LX,Y)=dyX,JY)
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where & (M) denotes the algebra of differentiable functions on M. If the Levi
form is hermitian, then the CR-structure is called pseudo-hermitian, in addition, in
the case that the Levi form is non-degenerate (positive or negative definite, resp.),
then the CR structure is called a non-degenerate (strongly pseudo-convex, resp.)
pseudo-hermitian CR structure. Recently, Y. T. Siu [14] proved the nonexistence
of compact smooth Levi-flat hypersurfaces in complex projective spaces of
dimension > 3. Here, it is remarkable that the assumption of compactness in Siu’s
theorem has a crucial role. Actually, there are non-complete examples which are
Levi-flat in a complex projective space (see section 2). Anyway, the examples of
Levi-flat hypersurfaces which are known so far are not Hopf. In this situation, we
prove that there does not exist a Levi-flat Hopf hypersurface (Theorem 3).

On the other hand, the Tanaka-Webster connection ([19], [20]) is defined as a
canonical affine connection on a pseudo-hermitian, non-degenerate, integrable CR
manifold. For contact metric manifolds, their associated almost CR structures
are pseudo-hermitian and strongly pseudo-convex, but they are not in general
integrable. For a non-zero real number k, the author [7] defined the generalized
Tanaka-Webster connection (in short, the g.-Tanaka-Webster connection) V for
real hypersurfaces in Kédhlerian manifolds. The g.-Tanaka-Webster connection
V coincides with the Tanaka-Webster connection if real hypersurfaces satisfy
$A + A¢ = 2k¢ (Proposition 2). The covariant differentiation of the Levi form L
with respect to the g.-Tanaka-Webster connection V is well-defined:

(VxL)(Y,Z) = XL(Y,Z) — L(Vx Y, Z) — L(Y,VxZ)

for any X,Y,Z e D. Then we say that M is Levi-parallel with respect to the
g.-Tanaka-Webster connection or shortly Levi-parallel if M satisfies

9(VxL)(Y,2)) =0

for any vector fields X, Y,Z € D. We note that a Levi-flat hypersurface is Levi-
parallel (see (2) in Remark 1).

A complex n-dimensional complete and simply connected Kahlerian manifold
of constant holomorphic sectional curvature ¢ is called a complex space form,
which is denoted by M,(c). A complex space form consists of a complex pro-
jective space P,C, a complex Euclidean space E,C or a complex hyperbolic space
H,C, according as ¢ >0, ¢=0 or ¢ < 0. R. Takagi [16, 17] classified the ho-
mogeneous real hypersurfaces of P,C into six types. T. E. Cecil and P. J. Ryan
[6] extensively studied a real hypersurface whose structure vector & is a principal
curvature vector, which is realized as tubes over certain submanifolds in P,C,
by using its focal map. A real hypersurface of a complex space form is said to
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be a Hopf hypersurface if its structure vector is a principal curvature vector. By
making use of those results and the mentioned work of R. Takagi, M. Kimura [9]
proved the local classification theorem for Hopf hypersurfaces of P,C whose all
principal curvatures are constant. For the case H,C, J. Berndt [3] proved the
classification theorem for Hopf hypersurfaces whose all principal curvatures are
constant.

The main purpose of the present paper is to classify real hypersurfaces of
M, (c), ¢ # 0 whose Levi form is parallel with respect to the generalized Tanaka-
Webster connection. More specifically, in section 4, we prove

MAIN THEOREM. Let M be a Hopf hypersurface of a complex space form
M,(c), ¢+#0. Suppose that M is Levi-parallel with respect to the g.-Tanaka-
Webster connection. Then we have the following.

(I) If M,(c) = P,C, then M is locally congruent to one of

(A1) a geodesic hypersphere of radius r, where 0 <r <%,

(4,) a tube of radius r over a totally geodesic PyC (1 <k < n—2), where
0<r<i,

(B) a tube of radius r over a complex quadric Q,_,, where 0 <r <%.

(1) If M,(c) = H,C, then M is locally congruent to one of:

(4o) a horosphere,

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-
plane H,_,C,

(43) a tube over a totally geodesic HyC (1 <k <n-2),

(B) a tube over a totally real hyperbolic space H,R.

2. The Generalized Tanaka-Webster Connection for Real Hypersurfaces

In this paper, all manifolds are assumed to be connected and of class C* and
the real hypersurfaces are supposed to be oriented. First, we give a brief review of
several fundamental concepts and formulas on almost contact structure. An odd-
dimensional smooth manifold M?**! has an almost contact structure if it admits
a vector ¢, a l-form 7 and a (1,1)-tensor field ¢ satisfying

7€) =1 and ¢’X = —X +n(X)¢.
Then there exists a compatible Riemannian metric g:
9(pX,0Y) = g(X,Y) —n(X)n(Y)

for all vector fields X and Y on M. We call (3,&,0,9) an almost contact metric
structure of M and M = (M;n,&,¢,9) an almost contact metric manifold. For
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an almost contact metric manifold M we define its fundamental 2-form @ by
Q(X,Y)=g(pX,Y). If

(1.1) O =dy,

M is called a contact metric manifold. We refer to [4] on contact metric geometry
for more detail.

For an almost contact metric manifold M, the tangent space T,M of M
at each point pe M is decomposed as T,M =D, ® {}, (direct sum), where
we denote D, ={ve I,M|n(v) =0}. Then D:p — D, defines a distribution
orthogonal to &. The restriction ¢ = ¢|D of ¢ to D defines an almost complex
structure to D. If the associated Levi form L, defined by

L(X,Y) =dn(X,pY),

X, Y € D, is hermitian, then (7, ®) is called a pseudo-hermitian CR structure and
in addition, if its Levi form is non-degenerate (positive or negative definite, resp.),
then (7,%) is called a non-degenerate (strongly pseudo-convex, resp.) pseudo-
hermitian CR structure. Moreover, if the following conditions are satisfied:

(1.2) [pX,pY]—[X,Y]eD
and
(1.3) [6,0)(X,Y) =0

for all X,Y € D, where [¢,®] is the Nijenhuis torsion of @, then the pair (7, @)
is called a pseudo-hermitian, non-degenerate, (strongly pseudo-convex, resp.)
integrable CR structure associated with the almost contact metric structure
(n,¢,9,9). In particular, for a contact metric manifold its associated CR structure
is pseudo-hermitian, strongly pseudo-convex but is not in general integrable. For
further details about CR structures, we refer for example to [2], [5], [18].

Let M be a real hypersurface of a Kihlerian manifold M = (M;J,§) and N
a global unit normal vector on M. By V, 4 we denote the Levi-Civita connection
in M and the shape operator with respect to N, respectively. Then the Gauss and
Weingarten formulas are given respectively by

VxY =VxY +g(4X,Y)N, VyN=—-AX

for any vector fields X and Y tangent to M, where g denotes the Riemannian
metric of M induced from §. An eigenvector (resp. eigenvalue) of the shape
operator A is called a principal curvature vector (resp. principal curvature). For
any vector field X tangent to M, we put
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(2.1) JX = gX +7(X)N, JN=—¢.

We easily see that the structure (7,£,¢,g) is an almost contact metric structure
on M. From the condition VJ = 0, the relations (2.1) and by making use of the
Gauss and Weingarten formulas, we have

(2.2) (Vxp)Y =n(Y)AX — g(AX, Y,
(2.3) Vyé = pAX.

By using (2.2) and (2.3), we see that a real hypersurface in a Kéhlerian
manifold always satisfies (1.2) and (1.3), the integrability condition of the asso-
ciated almost CR structure. From (1.1) and (2.3) we have

PrOPOSITION 1. Let M = (M;n,&,0,9) be a real hypersurface of a Kdihlerian
manifold. The almost contact metric structure of M is contact metric if and only if
pA + Ap = +2¢, where + is determined by the orientation.

The Tanaka-Webster connection ([19], [20]) is the canonical affine connection
defined in a non-degenerate integrable CR manifold. Tanno ([18]) defined the
generalized Tanaka-Webster connection for contact metric manifolds by the ca-
nonical connection which coincides with the Tanaka-Webster connection if the
associated almost CR structure is integrable. We define the generalized Tanaka-
Webster connection (in short, the g.-Tanaka-Webster connection) for real hyper-
surfaces of Kédhlerian manifolds by the naturally extended one of Tanno’s gen-
eralized Tanaka-Webster connection for contact metric manifolds.

We recall Tanno’s generalized Tanaka-Webster connection V for contact
metric manifolds:

VxY =Vx ¥ + (Vxn)(Y)E = n(Y)Vxé —n(X)pY

for all vector fields X and Y.

Taking account of (2.3), the g.-Tanaka-Webster connection for real hyper-
surfaces of Kihlerian manifolds, which is denoted by the same symbol V as the
one for contact metric manifolds, is naturally defined by (cf. [7])

(2.4) VxY =VxY +g(pAX, Y)E —n(Y)pAX — kn(X)pY,

where k is a non-zero real number. We put FyY = g(pAX, Y)é —n(Y)pAX —
kn(X)pY. Then the torsion tensor T is given by (X, Y) = FyY — FyX. Also,
by using (1.2), (1.3), (2.2), (2.3) and (2.4) we can see that

(2.5) Vn=0, V&=0, Vg=0, Vp=0.
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and
T(X,Y)=2d9(X,Y), X,YeD.

We note that the associated Levi form is
| PP _

where we denote by 4 the restriction 4 to D. If M satisfies pA4 + Ap = 2kp, then
we see that the associated CR structure is pseudo-hermitian, strongly pseudo-
convex and further satisfies 7'(¢,9Y) = —pT(£,Y), and hence the generalized
Tanaka-Webster connection V coincides with the Tanaka-Webster connection.
Namely, we have (cf. [7])

PROPOSITION 2. Let M = (M;n,¢&,9,9) be a real hypersurface of a Kdihlerian
manifold. If M satisfies A+ Ap =2ko, then the associated CR-structure is
pseudo-hermitian, strongly pseudo-convex, integrable, and further the generalized
Tanaka-Webster connection V coincides with the Tanaka-Webster connection.

Since the structure vector field & is ?-parallel, we see that Vy Y for X, Y e D
still belongs to D. We define the covariant differentiation of the Levi form L with
respect to the g.-Tanaka-Webster connection V as follows:

(2.6) (VxL)(Y,Z) = XL(Y,Z) — L(VxY,Z) — L(Y,VxZ)

for any X,Y,Z e D.

3. Real Hypersurfaces of a Complex Space Form

Let M = M,(c) be a non-flat complex space form of constant holomorphic
sectional curvature ¢(s 0) and let M a real hypersurface of M. Then we have the
following Gauss and Codazzi equations:

(3.1) RX,Y)Z= g{g(Y, 2)X — g(X,2)Y
+9(0Y,Z)pX — g(pX,Z)pY — 2g(pX, Y)pZ}

+9(AY,Z)AX — g(AX,Z)AY,

(32) (V)Y = (VyA)X = {n(X)pY —n(Y)pX - 29(pX, Y)¢}
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for any tangent vector fields X, Y, Z on M. We now suppose that M is a Hopf
hypersurface, that is, A = a£. Then we already know that « is constant (see [8]).
Differentiating this covariantly along M, and then by using (2.3) we have

(VxA)E = apAX — ApAX,
and further by using (3.2) we obtain

4

(Ved)X =

oX +apAX — ApAX
for any vector field X on M. From this, we have
24pAX — §¢X = a(pA + Ap)X.
Here, we assume that AX = AX for a unit vector field X orthogonal to &, then

(3.3) (24 — o) ApX = <oc/1 + %) oX.
Now, we prove

THEOREM 3. There does not exist a Levi-flat Hopf hypersurface in a non-flat
complex space form.

Proor. Suppose that M is Hopf and Levi-flat. Then A¢ = af and we get
PAX + ApX =0

for any X € D. We assume AX = AX. Since ¢ is a principal curvature vector by
using (3.3) we have 24° +% =0, which shows ¢ < 0. Then we see that M has at
most three constant principal curvatures A, x4 and «, and further we see that
u=—A. But, Corollary 1 in [3] states that Au+c/4 =0. Thus, we have a
contradiction. O

We remark here that there are examples of Levi-flat hypersurfaces which are
not Hopf. We say that M is a ruled real hypersurface of M,(c), ¢ # 0 if there is
a foliation of M by complex hyperplanes M,_;(c). In other words, M is ruled if
and only if D is integrable and its integral manifold is a totally geodesic sub-
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manifold M,_;(c). Then we easily see that a ruled real hypersurface is Levi-flat.
In fact, its shape operator may be written down as following:

Al =l +uU (p+#0),
AU = i,
AZ =0

for any Z € D, 1. U, where U is unit vector orthogonal to &, « and x are functions
on M. M. Kimura [10] constructed ruled real hypersurfaces in complex projective
space. Let M be a hypersurface in S?"*! defined by

{(re” cos O, re sin ,V1 —r2z,,..., V1 —r2z,) € C"*!

Sl =10<r< 1,0St,0<2n,}.

=

Then the Hopf image M of M is a minimal ruled hypersurface in CP”. We note
that the above example of a ruled real hypersurface is not complete. In a similar
way, in [1] the authors gave a minimal ruled real hypersurfaces in complex
hyperbolic space. For more details about ruled real hypersurfaces we may refer
to [13].

From Proposition 2, together with the results in [12] (in case of P,C) and [15]
(in case of H,C) we get easily

THEOREM 4. Let M be a real hypersurface of My(c), ¢ # 0. Suppose that M
satisfies pA + Ap = 2kg for some non-zero constant k. Then the CR-structure is
pseudo-hermitian and strongly pseudo-convex. Furthermore we have the following:

(1) in the case M,(c) = P,C with the Fubini-Study metric of ¢ = 4, then M is
locally congruent to one of the following:

(A1) a geodesic hypersphere of radius r, where 0 <r <%,
(B) a tube of radius r over a complex quadric Q,_,, where 0 <r <%.

(I0) in the case M,(c) = H,C with the Bergman metric of ¢ = —4, then M is
locally congruent to one of the following:

(do) a horosphere,

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-
plane H,_C,

(B) a tube over a totally real hyperbolic space H,R.
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Remark 1. (1) Together with Proposition 1, we see that the almost contact
metric structure on M which appears in the above theorem is a contact metric
structure only for the very special case determined by k = =+1, where + depends
on the orientation. More precisely, with the help of the tables in [3] and [16],
we see that the almost contact metric structures are contact metric only for a
geodesic hypersphere of radius § in P,C, for a horosphere in H,C. Hence for real
hypersurfaces appearing in Theorem 4, except those just mentioned, they do not
admit contact structure but their associated CR structures are pseudo-hermitian,
strongly pseudo-convex and further the g.-Tanaka-Webster connection V defined
on them coincides with the Tanaka-Webster connection.

(2) From (2.6), it follows that Levi-flat hypersurface is Levi-parallel. Leaving
the Levi-flat case aside, we find that real hypersurfaces stated in Theorem 4 are
also Levi-parallel.

We prepare some more results which are needed to prove our Main Theorem.

THEOREM 5 ([9]). Let M be a Hopf hypersurface of P,C. Then M has constant
principal curvatures if and only if M is locally congruent to one of the following:

(A1) a geodesic hypersphere of radius r, where 0 <r <%,

(42) a tube of radius r over a totally geodesic PrC (1 <k < n—2), where
0<r<i,

(B) a tube of radius r over a complex quadric Qn_, where 0 <r <%,

(C) a tube of radius r over P\C x P(,_1),C, where 0 <r <% and n(>5) is
odd,

(D) a tube of radius r over a complex Grassmann G,,5C, where 0 <r <% and
n=29,

(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(S), where
O0<r<fand n=15.

THEOREM 6 ([3]). Let M be a Hopf hypersurface of H,C. Then M has
constant principal curvatures if and only if M is locally congruent to one of the
Sfollowing:

(Ado) a horosphere,

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
Hn—lca

(42) a tube over a totally geodesic HC (1 <k <n-2),

(B) a tube over a totally real hyperbolic space H,R.
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TuroreM 7 ([11], [15]). Let M be a Hopf hypersurface of a non-flat complex
space form M,(c), ¢ # 0. Suppose that the shape operator A is n-parallel (i.e.,
g((VxA)Y,Z) = 0) for any tangent vectors X, Y and Z which are orthogonal to &).
Then we have the following.

() In case that M,(c) = P,C, then M is locally congruent to one of real
hypersurfaces of type (A1), (A2) and (B);

(I1) In case that M,(c) = H,C, then M is locally congruent to one of real
hypersurfaces of type (Ao), (41), (42) and (B).

4. Levi-parallel Hopf Hypersurfaces in a Complex Space Form

In this section we shall prove our Main Theorem. Suppose that M is a
Levi-parallel Hopf hypersurface of a complex space form M,(c) with respect to
g.-Tanaka-Webster connection. Then by using (2.5) and (2.6) we have

9((p(Vz4) + (VzA)p)X,pY) =0
for any vector fields X, Y, Z orthogonal to & on M. It follows easily that
g(VzA)X, Y) = 7((VzA)X)n(Y) + g(VzA)pX,pY) = 0

for any X,Y,Z e D.
Together with (2.4), we have

1) g((VzA)X,Y) —7(AX)g(pAZ, Y) — 9(pAZ, X)n(4Y)

+9((VzA)oX,0Y) — n(ApX)g(9AZ,¢Y) — g(p4Z, pX)1(ApY) = 0
for any X,Y,Z e D. We now suppose that 4¢ = «&. Then (4.1) reduces to
(4.2) 9(VzA)X, Y) = g(9p(VzA)pX,Y) = 0

where X,Y,Z e D. Assume X € V,, that is, AX = AX, where we denote by V)
the eigenspace of A4 associated with a principal curvature 1. Taking account of
(3.3), we divide our arguments into two cases: (i) 24 # o and 21 = o. First, we
consider the case (i). Then for any Z e D, we get

(VzA)X = Vz(AX) — A(VzX)
= (ZA)X + (Al — A)(VzX).
So we have
(4.3) g(VzA) X, X) =ZA+ g((Al — A)VzX,X)
=ZA+g(VzX,(Al — A)X) = ZA.
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Similarly, by using (3.3), we have

at+c
4.4 V2A)pX,9X) = —(Z1) ———.
(4.4) 9((VzA4)pX, pX) = —( )(2/1_06)2
From (4.2), (4.3) and (4.4) we obtain
(Z2) (,12 - %) =0.
Since « is constant, this shows that
(4.5) ZAi=0 for any ZeD.

Also, it follows from the equation of Codazzi (3.2) that
(VZA)E — (VeA)Z = —gq;z for any Z e D.

On the other hand, from (2.3) and (3.3) we find
(V2A)E = (VeA)Z = V(AE) — AVZE — Ve(AZ) + A(VeZ)
= (o — A)pAZ — (ENZ — (AL — A)V¢Z

B oA+ 5
—A(a— ZA—a)(/)Z_ (EA)Z — (AT — A)VeZ

for any unit vector Z € V;. From the above two equations, we obtain
(4.6) EA=0

where we have used g(¢Z,Z) =0 and g((Al — A)V¢Z,Z) = 0. Hence from (4.5)
and (4.6) we see that A is constant. Next, in the case (ii) 24 = «, since o; is
constant, A must be constant.

Thus, by virtue of Theorems 5 and 6 we can see that M is locally congruent
to one of six types (4;), (42), (B), (C), (D) and (E) in P,C or (4g), (A1), (42)
and (B) in H,C. Conversely, by using Theorem 7, we check that real hyper-
surfaces of types (4;), (43), (B) in P,C or (4p), (41), (42) and (B) in H,C are
Levi-parallel (with respect to the g.-Tanaka-Webster connection).

Now, we shall prove M of types (C), (D) and (E) in P,C is not Levi
parallel. For M of type (C), (D) or (E) in P,C, M has five distinct constant
principal curvatures, say A;, A2, A3, 44 and «a so that TM =V, @V, ® V;, @
Vie @ {¢}g. We put x=cot(0—%) (§<6<3). Then we may express (cf. [11])

1 _x+1 x—1 —4x

(47) ll:xl )'2=_;1 /13—1—X) A4=X+1’ Oﬂzm.
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We note that
(48) O0<x<1 and oW =V,, oV =V_, oV, =V, a=34
We first prove the following

LemMma 1. Let M be a real hypersurface M of types (C), (D) and (E) in
P,C. If M is Levi-parallel, then

(4.9) (1) for X e V3, (i =1,2); V2X = (V2X),, — g(X, pAZ)¢,
(2) for X eV, (a=3,4); VzX = (VzX), —g(X,0A4Z)¢.

for any Z € D, where X; denotes the V,-component of the vector X.

Proor. For X eV, and Y eV,, we get
9(VzA) X, Y) = (A — p#)g(VzX, Y).
If we put A= ;ﬁfi, then pX € V5 and ¢Y € V. Together with (2.2) we get
9((VzA)pX,0Y) = (A - D)g(Vz(pX),pY)
= (A-M9(p(VzX),9Y)

=(A-m9(VzX,Y)

Suppose that M is Levi-parallel. Then from (4.2) we obtain
(4.10) (A=) +(A-@)g(VzX,Y) = 0.
From (4.7) and (4.10) we calculate the following:

(x+1)(x*+1)

(4.11) for X eV, (i=1,2), Y e Vy,; o= 1) g(VzX,Y)=0,
'(x—l)(x2+1) _
for XeV,, YeV,; O 1) g(VzX,Y) =0,
for X e V), YeV,;2xg(VzX,Y) =0,
for X eV, YeV,; —2x9(VzX,Y) =0,
(x+1)(x2+1)
% AT T =
for X eV, YeV,; (=) g(VzX,Y) =0,
1— 2
for X eV, Y eVy; (—Ml—)g(VZX, Y)=0.

x(x+1)
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Since g(VzX,¢) = —g(X,9AZ), from (4.8) and (4.11), we may express VzX as
4.9). O

Secondly, we also prove
Lemma 2. Let M be a real hypersurface M of type (C), (D) and (E) in P,C.
Then we have
(4.12) VeZ e V), ®@{pZ}y for ZeV;, (i=1,2).
Proor. For any unit vector Z € V¥, from (2.3) and Proposition 3 it follows
that
(VzA)E — (VeA)Z = Vz(AE) — AVZE — Ve(AZ) + A(VeZ)
= (ol — A)pAZ — (EX)Z — (Al — A)VeZ

_ A(oc iy i) 0Z — (A — A)VeZ.

On the other hand, from (3.2) we get
(VzA)E — (VeA)Z = —9Z.
Hence we obtain

od+2

(4.13) (Al — A)VeZ = {* <°‘ T —w

)]goZ for ZeV;.
Since ¢V, = Vj,, from (4.13) we can find (4.12). O

Thus, it follows from Proposition 3 and (4.13) that for i =1,2,

ali+2 . Ot/li-i'z

or
(4.14) 2047 — ok — 1)g(VeZ, 0Z) = a(A} — aki — 1)g(0Z, ¢Z).

But, for a real hypersurface M which is locally congruent to one of types
(C), (D) and (E) we know that A> —al—1#0. (We note that the equation
A% —aA —1 =0 holds if and only if M is locally congruent to a real hypersurface
of type (A4;) or (4;).) Therefore from (4.14) we get
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(4.15) 9(VeZ,9Z) = %g(gf)Z, 0Z) for ZeV,, i=1,2.
For X € V3, and Z € Vj,, by using (1) and (2) in (4.9), we have
(4.16) R(Z,9Z)X =V2(VyzX) = Vyz(V2X) = Viz,p11 X
= Vz{(VozX), — h9(X,9*Z)¢}
= Voz{(VzX),, — Ls9(X,9Z)¢}
= Vi202), -8 X + V((7,22), 420X
= (VZ(szX)x,)x, - '139((V¢ZX)1,’¢Z)§
— (Vyz(VzX);)s, + )»39((V2X)11>¢22)f
= (V(vzo2),, X s, + 239X, 0(V20Z);,)E + A3VeX
+ (V(9,22), X3, = 439(X,0(VpzZ2),)E + A3V X
The equations (4.15) and (4.16) show that
9(R(Z,9Z)X,0X) = 2139(Ve X, pX) = ad3g(pX, pX).
On the other hand, since pX € V}, and ¢Z € V},, the equation of Gauss (3.1) gives
(4.17) 9(R(Z,9Z)X,0X) = =29(0Z,9Z)g(pX , pX).

From this, together with (4.7), we have 5% . 14X = 2 that is, x> + 1 = 0. This is

x2—1

a contradiction.
Thus, we have our Main Theorem. O
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