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ASYMPTOTIC CONDITIONAL DISTRIBUTIONS RELATED 
TO ONE-DIMENSIONAL GENERALIZED DIFFUSION 

PROCESSES 

By 

Masaru IIZUKA, Miyuki MAENo and Matsuyo TOMISAI{1 

Abstract. For a one-dimensional generalized diffusion process 
. {X(t) : t ~ O} on an interval I, we consider an expectation condi
tional on no hitting the end points of I. If the end points are not 
accessible, we take two sequences {<!'n} and {17n} which converge to 
the end points as n --+ co, instead of end points. We obtain the 
asymptotic behavior of this conditional expectation as t --+ co and 
n --+ co. As an application of our results, we discuss the asymptotic 
conditional distribution and related quantities in population genetics. 

1 Introduction 

Let I be an open interval, !i' = (d/dm)(d/ds) be a generalized diffusion 
operator on I, and D = [X(t) : t ~ 0, Px : x E 1m] be a one-dimensional generalized 
diffusion process with the generator !i', where 1m is the support of the speed 
measure dm. We set rl = inf 1m and r2 = sup 1m. In this paper we study the 
asymptotic behavior of the conditional expectations 

(1.1) Ex[f(X(rt)) It < arl Aarz ]' Ex[f(X(rt)) I t < arz < art], 

as t --+ co for measurable functions f and 0 < r :::;; 1, where aa is the first hitting 
time to a point aE1m and <!'A17=min{<!',17}. 

In the case that the scale is natural, hi + Im(rl)1 < co, r2 = co, and the speed 
measure is regularly varying at infinity, Li et al. ([19]) studied that the probability 
law of {v(t)X(rt) : 0 < r:::;; I} conditioned by {arl > rt} converges as t --+ co to a 
conditioned Bessel excursion where v(t) is a suitable function. However it seems 
to be hard to deduce the asymptotic behavior of (1.1) from the results in [19]. 
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When D is recurrent and f EL1(I,m), Minami et al. ([22]) showed a global 
asymptotic estimate of the elementary solution of the generalized diffusion 
equation 

(1.2) 8u(x, t)/8t = .Pu(x, t), t> 0, X E I, 

and obtained the asymptotic behavior of Ex[f(X(t))) for large t. In [24) and [30), 
the problem of asymptotic behavior is studied that corresponds to the case that 
D is transient and fELloc(I,m). In this paper we follow the same method as in 
[22J, [24], [30) to discuss the asymptotic behavior of (1.1) for f satisfying some 
conditions. 

The asymptotic behavior of (1.1) is also discussed in the theory of population 
genetics. For a diffusion process [X(t): t ~ O,Px : O::s; x::s; 1) with the generator 

1 d2 

.P = 4N x(1 - x) dx2 ' 

Ewens ([5], [6)) obtained the nontrivial limits 

(1.3) lim Px(X(t) EEl t < 0'0/\ 0'1) = J dy, 
HOO E 

(1.4) lim Px(X(t) EEl t < 0'1 < 0'0) = J 2y dy, 
Hoo E 

for x E (0,1) and a Borel set E. These limits are referred to as the asymptotic 
conditional distributions by Ewens. We should notice that these limit distributions 
are derived from our results by putting f(x) = lE(x) or f(x) = lE(x)Px (a1 < 0'0), 

where lE(x) = 1 if x E E, lE(x) = ° if x Ii/: E (see Sec. 6 for details). Note that 
limHoo Px(X(t) E E) = ° if En {O, I} = 0. For this diffusion process, we will 
also see that 

lim Px(X(7:t) EEl t < 0'0/\ ad = lim Px(X(7:t) EEl t < 0'1 < 0'0) 
Hoo Hoo 

=6LY(I-y)dy , 0<7:<1, 

(see Example 6.1). This result is different from those of (1.3) and (1.4). The cases 
that 7: = 1 and ° < 7: < 1 are referred to as the regularly divergent limit and the 
slowly divergent limit, respectively. The asymptotic conditional distributions in 
the regularly divergent limit (7: = 1) correspond to the behavior when the time 
from t = ° is large enough to be close to the stationary state if it exists. On the 
other hand, those in the slowly divergent limit (0 < 7: < 1) correspond to the 
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behavior when the time from t = 0 is very large but it is not enough to be close 
to the stationary state. 

We will state our main results in Sect. 2. The definition of the elementary 
solution will be given in Sect. 3. The proofs of the main results are presented in 
Sect. 4. We will see some examples in Sect. 5. Finally we will consider population 
genetics models in Sect. 6. 

2 Main Results 

Let R = [-00, +00) and m be a nondecreasing right continuous function from 
R into R. We set 

1= (11, h), II =inf{xER:m(x) > -oo}, h=SUp{xER:m(x) < oo}. 

Let s be a real valued continuous increasing function on I. We sometimes use the 
same symbols m and s for the induced measures dm(x) and ds(x), respectively 
They are called the speed measure and the scale function, respectively. For a 
function u on I, we set U(li) = limx--+i(,xeI u(x) if there exists the limit, for i = 1,2. 
We set 

1m = {x: X E I with m(xI) < m(x2) for every Xl < X < X2, 

or X = Ii' with Im(li) I + Is(li) I < 00, i = 1,2}, 

We assume 1m n 1* i= 0 throughout this paper. Let us fix a' point Co E I. arbi
trarily and set 

(2.1) I(x) = J ds(y) J dm(z), l(x) = J dm(y) J ds(z), X E I, 
(co, x] (co,Y] (co, x] (co,Y] 

where the integral I(a,b] is read as - I(b, a] if a> b. Following [7), we call the 
boundary Ii to be 

regular if I(h) < 00, l(li) < 00, 

exit if I(li) < 00, l(li) = 00, 

entrance if I(li) = 00, l(li) < 00, 

natural if I(li) = 00, l(li) = 00. 

Note that Ii = ri if l; is not entrance. For 0 < p < 00, let V(I,m) be the space 
of all functions f on I satisfying II I/IP dm < 00. Let D(2) be the space of all 
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functions U E L2(J,m) which have continuous versions u (we use the same symbol) 
satisfying the following conditions: 

i) There exist two complex constants A, B and a function hu E L2(J,m) such 
that 

(2.2) u(x) = A + Bs(x) + f {sex) - s(y)}hu(y) dm(y), x E J. 
(co. x] 

ii) If I; is regular, then u(l;) = 0 for each i = 1,2. 
We define the generalized diffusion operator .ff' from D(.ff') into L2(J, m) by 
.ff'u = hu. We sometimes use the symbol .ff' = (djdm)(djds). Due to S. Wata
nabe's argument, the above setting includes all cases of sticky elastic bound
ary conditions for regular boundaries as well (see [18], [31]). In the following, 
for a measurable functions u on J, u+(x) stands for the right derivative 
limelo{u(x+e) -u(x)}j{s(x+e) -sex)}, provided it exists. We denote by m. the 
restriction of m to I •. Namely, 

{
-oo, x:::::; rl, 

m.(x) = m(x), x E J., 
00, x ~ r2. 

The generalized diffusion operator .ff'. = (d j dm.) (d j ds) on I. is defined in the 
same way as above. Let L. be the spectrum of -.ff' •. We put A.. = inf L., which 
is nonnegative because -.ff'. is nonnegative in L 2 (I., m). 

Let D = [X(t) : t ~ 0, Px : x E 1m] be a one-dimensional generalized diffusion 
process having .ff' as the generator ([121). We denote by (Ja the first hitting time 
to a point a E 1m, that is, (Ja = inf{t > 0 : X(t) = a} if {t> 0 : X(t) = a} =I 0, 
(Ja = 00 otherwise. It is known that PA (Jr, < 00) > 0, X E Ln n I. if and only if 
I(ri) < 00 ([12]). 

First we consider the asymptotic behavior of (1.1) in the case that II and 12 
are not natural. Let (Ak);, k = 1,2, ... ,5, i = 1,2, be the following conditions. 

(AI); Is(r;) I < 00 and Im(ri)1 < 00. 

(A2); Is(ri)1 < 00, Im(r;)1 = 00, and IL"r,) {,u(x)jm(x)} dm(x) I < 00 

for some C; E I., where ,u(x) = sup Im(y){s(ri) - s(y)}l. 
Xl\rj<y<xvri 

(A3)j Is(r;)1 < 00, Im(r;)1 = 00, and If Is(r;) - s(x) I 1/2 dm(x) I < 00. 
(co, r,) 
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(A4); h is entrance and Ii = rio 

(AS); Is(r;)1 = 00, Im(r;)1 < 00, and ILi,r}V(X)/S(X)} ds(x) I < 00 

for some C; E I" where vex) = sup Is(y){m(r;) - m(y)}l. 
xArl<y<xvrl 

Here I; V"Y/ denotes max g, "Y/ }. We use the usual conventions a v ( - 00) = a, 
a /\ 00 = a. The condition (AI\ is satisfied if and only if Ii is regular, or entrance 

with I; i= rio The condition (A2); or (A3); implies that Ii is exit. The condition 

(AS)i implies (A4);. We denote by :Yt' the set of all measUrable functions f On I. 
satisfying the following conditions. 

(2.3) If I{s(r;) - s(y)}f(y) 1 dm(y) I < 00 if (AI); or (A2); is satisfied. 
(Co,ri) 

(2.4) If Is(rJ - s(Y)ll/2If(Y)1 dm(y) I < 00 if (A3\ is satisfied. 
(Co,ri) 

(2.5) ILo,ti) Is(y)f(Y)1 dm(y) I < 00 if (A4); is satisfied. 

(2.6) If If(y)1 dm(y) I < 00 if (AS); is satisfied. 
(Co,ri) 

THEOREM 2.1. Let i,jE{I,2} and ii=j. Assume one of (AI);, (A2)i' (A3);, 
and one of (Ak)j' k = 1,2, ... ,5. Then there exists a unique function ifJ. on I. 
satisfying the following properties. 

(i) ifJ. is positive and continuous on I., and satisfies ifJ.(co ) = 1 and 

(2.7) ifJ:;(y) -ifJ:;(x) = -2. f ifJ.(z) dm(z), x, y E I., 
(x,yJ 

(2.8) ifJ.(ri) = 0 if (Al)i' (A2); or (A3); is satisfied, 

(2.9) l/J:;(li) = 0 if (A4)i or (AS)i is satisfied, 

(2.10) ifJ. EL 1(I.,m)nL2(I.,m), 

(2.11) ifJJEL1(I.,m), ifJ;fEL1(I.,m) for fE:Yt'. 

(ii) It holds that 
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(2.12) 

~ J (L. .y.(y)' dm(y) r L. .y.(y),/(y) dm(Y), 

l (L. l/!.(y) dm(y)) -I L. l/!.(y)f(y) dm(y), 

for x E 1m n I. and f E Yt'. 

0<(:<1, 

(: = 1, 

COROLLARY 2.2. Assume one of (Ak)l' k= 1,2, ... ,5, and one of (A1)2' 
(A2)2' (A3h Let l/!. be the function in Theorem 2.1. Then it holds that 

lim Ex[f(X((:t)) It < Ur, < urI] 
t--+oo -

(L. l/!.(y)2 dm(y) r1 L. l/!.(y)2f(y) dm(y), 0 < (: < 1, 

(L. l/!.(y){s(y) - s(rl)} dm(y) rl 

X L. l/!.(y){s(y) - s(rl)}f(y) dm(y), Is(rl)1 < 00, (: = 1, 

(L l/!.(y) dm(y)r1L l/!.(y)f(y) dm(y), Is(rJ)1 = 00, (: = 1, 

for x E 1m n I. and fEYf'. 

REMARK 2.1. If (A4)J and (A4h are satisfied, then Px(url /\U"2 = (0) = 1, 
x E 1m, and it holds that lim(->co Ex[f(X((:t))] = {m(l2) - m(lt}r l II f(y) dm(y), 
x E 1m , 0 < (: ~ 1, fELl (I, m) ([22, Corollary 1], see also Theorem 2.8). 

Next we consider the case that 12 is natural. We divide our argument into two 
cases. The first case is related to periodic generalized diffusion operators. Let (A6) 
be the following condition. 

(A6) II = rl = 0 or II is entrance with II < rl = O. h = r2 = 00. s(O) = m(O) = O. 

There is a positive constant K such that for every x, y E [0,(0), 

s(x+ 1) -s(y+ 1) = K{S(X) -s(y)}, m(x+ 1) - m(y+ 1) = K-I{m(x) -m(y)}. 

Note that (A6) implies that 12 is natural. 
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THEOREM 2.3. Assume (A6) with 1(, #- 1. Then there exists a unique function 
t/!. on I. satisfying the following properties. 

(i) t/!. is positive and continuous on I., and satisfies (2.7), t/!.(O) = 0, 1./1:(0) = 1, 
and 

(2.13) sup 1(,-x/2(1 + X)-l lj;. (x) < 00, 
xeI, 

(2.14) 

(ii) Let ° < 1(, < 1 and f satisfy 

(2.15) J 1(,x/2(1 + x)lf(x)1 dm(x) < 00. 
I. 

Then it holds that 

(2.16) lim t3/2eA.rlEx[f(X(-rt)) It < ero] 
(-HX) 

= Cl-r-3/2t/!.(x)S(x)-1 J t/!.(y)F(y; -r)f(y) dm(y), 
1. 

for X E 1m n I., where C1 is a positive constant specified by (4.17), and F(Yi -r) = 
s(y) if 0< -r < 1, and F(y; 1) = S(l2) (E (0, (0)). 

(iii) Let 1(, > 1. If ° < -r < 1, then it holds that 

for x E 1m n I. and f satisfying 

(2.18) J 1(,x(1 + x)2If(x)1 dm(x) < 00. 
I. 

If -r = 1, then it holds that 

(2.19) lim Ex[f(X(t)) I t < ero] = (J t/!.(y) dm(y))-IJ t/!.(y)f(y) dm(y), 
(-HX! I, I, 

for X E 1m n 1* and f sa'tisfying (2.15). 

REMARK 2.2. By means of (2.13), t/!J E L1(I.,m) for f satisfying (2.15), and 

t/!;f E L1(I.,m) for f satisfying (2.18). 
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For a measurable function f on 1, we set 

supp[fl = { x E 1m : J u If I dm > 0 fot: any neighborhood U of x}. 

THEoREM 2.4. Assume (A6) with 1C = 1. If 0 < -r < 1, then it holds that 

(2.20) 

= 2-ln-1/2m(I)I/2s(I)-1/2-r-3/2(1 - -r)-1/2 J s(y)2f(y) dm(y), 
I. 

for x E 1m n 1* and fELl (1*, m) such that supp[fl is compact in [0,00). If -r = 1 
and f satisfies (2.15), then sf E L I(I*,m) and it holds that 

(2.21) t~ tEx[f(X(t)) I t < eTol = 2-1 L s(y)f(y) dm(y), 

Next we consider the case that the speed measure is regularly varying near 
the boundary 12 . Let 0 < f3 < 1 and L be a positive slowly varying function at 
infinity, that is, limx->ex> L( cx) / L(x) = 1, c > O. Let (A7) and (A8) be the fol
lowing conditions. 

(A7) h = rl = 0 or II is entrance with h < rl = O. 12 = r2 < 00. sex) = x, X E 1*. 
m satisfies m(O) = 0 and 

(2.22) lim x-I-liP L(Xrlm(l2 - l/x) = 1. 
X""" ex> 

(A8) II = rl = 0 or h is entrance with II < rl = O. 12 = r2 = 00. sex) = x, X E 1*. 
m satisfies m(O) = 0 and 

(2.23) 

Note that 12 is natural if (A7) or (A8) is satisfied. It is known that, under the 
assumption (2.22) or (2.23), there is a slowly varying function L satisfying 

(2.24) 

(cf. [27]). Let denote by Ci , i = 2,3, positive constants given by 

where r(z) is the gamma function defined by r(z) = J: e-ttz- I dt. 
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THEOREM 2.5. Let xE1m n1* and f satisfy yf(y) ELl(l.,m). 

(i) Assume (A7). Also assume that supp[fl is compact in [0,12). If 0 < -r < 1, 
then it holds that 

(2.25) 

If -r = 1, then it holds that 

(2.26) lim tl+PL(t)Ex[f(X(t)) It < aol = C21i l I yf(y) dm(y). 
HOO 4 

(ii) Assume (A8). If 0 < -r < 1 and supp[fl is compact in [0, (0), then it holds 

that 

If -r = 1, then it holds that 

(2.28) lim tEx[f(X(t)) I t < aol = pI yf(y) dm(y). 
1--+00 I. 

If l(1i) = 00 with Ii = rj for i = 1 and 2, then Px(arl 1\ ar2 = (0) = 1, x Elm. 

Including this situation, we consider other asymptotic conditional expectations. 
Let gn} and {17n} be sequences satisfying 

(2.29) ~n' 17n E 1m, ~n < Co < 17n (n E N), ~n 1 rl, 17n i r2 as n ~ 00. 

THEOREM 2.6. There exist subsequences gn} and {17n} (denoted by the same 

symbols), afunction 1/1* on 1*, and three sequences {dill, j = 1,2,3, satisfying the 

following properties. 

(i) 1/1* is positive and continuous on 1*, and satisfies (2.7) and I/I*(co) = 1. 
(ii) {V~i)}, j = 1,2,3, are sequences of positive numbers and it holds that 

(2.30) lim V~I) lim Ex [f(X( -rt)) I t < at; 1\ a" 1 
n-+oo t ...... C1j n n 

= lim V~I) lim Ex[f(X(-rt)) It < a" < at; 1 
n-+C1J t-+oo n n 

= I 1/I*(y)2f(y) dm(y), 0 < -r < 1, 
I. 



282 Masaru lIzUKA, Miyuki MAENo and Matsuyo TOMISAKI 

(2.32) n~ VP) t~ Ex[.f(X(t)) 1 t < er'1n < ere.] 

= {L t/!*(y){s(y) - s(rl)}f(y) dm(y), 

L t/!.(y)f(y) dm(y), 

Is(rl) 1 < 00, 

Is(rl)1 = 00, 

for x E 1m and f E Ll(I.,m) with supp[.f] being compact in 1*. 

REMARK 2.3. If tj = rj and Is(lj) 1 = <X) for i = 1 or 2, then t/!* = 1 10 

Theorem 2.6 (see Proposition 4.3). 

We note that Theorem 2.6 is a kind of extension of Theorem 2.1 and 

Corollary 2.2. We also note that if (Al)l and (AI)2 are satisfied, then the double 
limits (n -+ <X) and t -+ (0) are commutable. More precisely we obtain the 

following. 

COROLLARY 2.7. Assume (AI)1 and (Alh. Then it holds that 

(2.33) 

(2.34) 

lim lim Ex [f(X( rt)) I t < ere 1\ erI'J ] 
n-+co t-HX) n n 

= J~ t~ Ex[f(X(rt)) 1 t < erI'Jn < ere.] 

= (L t/!*(y)2 dm(y) Tl L t/!*(y)2f(y) dm(y), 0 < r < 1, 

lim lim Ex[f(X(t)) 1 t < ere 1\ erI'J ] 
n---+co t-tOO n n 

= (L t/!*(y) dm(y) Tl L t/!*(y)f(y) dm(y), 

(2.35) J~ t~ Exlf(X(rt)) 1 t < erI'Jn < ere.] 

= (L t/!*(y){s(y) - s(rl)} dm(y) Tl 
x L t/!*(y){s(y) - s(rt}}f(y) dm(y), 

for any sequences {c;n} and {17n} satisfying (2.29), f satisfying (2.3), and the func
tion t/!* given in Theorem 2.1. 
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In some cases we can obtain asymptotic conditional expectations of 

limn- HD Ex[f(X( of)) I f < (Jt;n /\ (J'1J and limn-too Ex [f(X( ot)) If < (J'1n < (Jt;J as 
t -+ co. 

THEOREM 2.8. Assume Ii = ri, IS(li) I = co and Im(h) I < co for i = 1,2. Let 
x E 1m , 0 < 0 ~ land fELl (1, m). Then it holds that 

Assume that there exists the limit s* = 1imn-too Is( ~n)l/ S(17n) E (0, co). Then it holds 
that 

(2.37) lim lim Ex[f(X(ot)) I t < (J'1 < (Je ) = {m(h) - m(h)} -I J f(y) dm(y). 
/-)00 n-HX) n n I 

If s* E (0, co), then it also holds that 

(2.38) lim lim Ex[f(X( ot)) I t < (Je /\ (Jy/ ) 
n~CI.) t-HX) n n 

= l~ }~ Ex[f(X(ot)) I t < (JY/n < (Jd 

= {m(h) -m(ld}-I tf(Y) dm(y). 

This theorem implies that the double limits (n -+ co and t -+ co) are commutable 
if we take appropriate sequences gn} and {7Jn}, when there exists a stationary 
distribution. However this commutability does not hold in general as we can see 
in the following. 

We consider again the case that the speed measure is regularly varying near 
the boundary t2. Let 0 < f3 < 1 and L be a positive slowly varying function at 
infinity. Let (A9) and (AlO) be the following conditions. 

(A9) ti = ri, ltd = co for i = 1,2. s(x) = x, X E 1, m(x) satisfies (2.23) and there 
exists the limit 

(2.39) 

where kl (t) and k2 (t) are the inverse functions of the mapping [0, co) 3. x f---7 

-xm( -x) and [0, co) '3 X f---7 xm(x), respectively. 

(AlO) tl = rl > -co and t2 = r2 = co. s(x) = x, X E 1, and m(x) satisfies (2.23). 
Further assume that 
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lim. Ix2m(x)/m(lr + l/x)1 = 00. 
X-HlO 

Since (2.23) is satisfied, there is a slowly varying function L satisfying (2.24). 

THEOREM 2.9. Assume (A9). Let x Elm, 0 <. ~ 1 and f ELl(I,m). Then it 

holds that 

(2.40) lim tt-PL(t)-l lim Ex(f(X(.t)) I t < O'e 1\ 0'" I = C4.- I+P J fey) dm(y), /-+00 n-+oo •• I 

where 

If there exists the limit s* = lim.n-+ool~nl/17n E (0,00], then 

Further assume that s* E (0,00). Then there exist subsequences gn} and {17n} 
(denoted by the same symbols) and positive constants vV), j = 1,2,3, such that 
the statement (ii) of Theorem 2.6 holds with d i ) = v~j)m(17n), "'* = 1 and f E 

LI(I,m). 

REMARK 2.4. Note that vii), j = 1,2,3, are not necessarily the same (see 
Sect. 6.3). 

THEOREM 2.10. Assume (AI0). Let x E 1m nI, 0 <. ~ 1 and f E LI(I,m) 
with supp(fl being compact in I. Then it holds that 

(2.42) lim t1+P L(t) lim Ex (f(X( .t)) I t < O'e 1\ 0'" I 
t-+oo n-+co n n 

= /1i.~ tl+PL(t) J~ Ex(f(X(.t)) I t < O'e. < 0'".1 

= C3.- t-P(x -lr) t (y -ldf(y) dm(y). 

There exist subsequences {en} and {17n} (denoted by the same symbols) such 
that the statement (ii) of Theorem 2.6 holds with a function "'*(y) = 

B(y - co) + 1, y E I, where B is a real number satisfying 0 ~ B ~ (co -/1)-1. 
If limsuPn-+oolm(~n)l/17nm(17n) < 00, then {V~i)}, j = 1,2,3, satisfy the following 
properties. 
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n-+oo n-+oo 

285 

REMARK 2.5. In the same way as in the proof of Theorem 2.8 we can show 
that 

}~ Ex[/(X(rt)) I t < a'ln < ad = Ex[/(X(rt)){X(t) - h}]/Ex[X(t) -id, 

under the assumption of Theorem 2.10. By means of Proposition 3.1 in the next 
section, 

0< Ex[X(t) -It] < 00, x E 1m nI, t> O. 

But it seems to be difficult to consider the asymptotic behavior of Ex[X(t) - h] as 
t -+ 00 since x - h ¢ LI(I,m). So that there are no results on the conditional 
asymptotic behavior of limn_ oo Ex[/(X(rt)) I t < a'ln < aen} as t -+ 00. 

3 Preliminaries 

In this section we define the elementary solution pet, x, y) of the generalized 
diffusion equation (1.2) following [12], [21] and [33]. Then we study its properties. 

Let I, m, s, etc. be those given in the preceding section. Let IPj(x,2), i = 1,2, 
2 E C, be the solutions of the integral equations 

(3.1) IPI(x,A.)=I+A.J {s(x)-s(Y)}IPI(y,2)dm(y), xEI, 
(co,x] 

(3.2) IP2(x,2)=S(X)-S(Co)+A.J {S(X)-S(Y)}IP2(y,2) dm(y) , xEI, 
(co,x] 

where Co E 1* is fixed arbitrarily. Then for each rx> 0, there exist the limits 

Define the function h(rx) by the equality 

l/h(rx) = l/h l (rx) + l/h2(rx). 
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We set 

h11 (IX) = h(IX), h22(1X) = -{hI (IX) + h2(1X)} -I, 

h12 (IX) = h21 (1X) = -h(lX)jh2(1X). 

The functions hij(IX), i,j = 1,2, can be analytically continued to C\(-oo,O]. The 
spectral measures U ij, i, j = 1, 2 are defined by 

1 JA
2 U"([AI ..1.2]) = lim - 1m h"(-A + V-le) dA lJ' '0 lJ , 

e~ TC Al 

for all continuity points Al and ..1.2 of uij (AI < ..1.2). The matrix valued measure 
[uij(dA)L,j=I,2 is symmetric and nonnegative definite. We define the elementary 
solution of the generalized diffusion equation (1.2) by 

(3.3) p(t, x, y) = L: J e-Atcpi(X, -A)cp/y, -A)uij(dA) , t> 0, x, Y E I. 
i,j=I,2 [0,00) 

Note that p(t,x,y) = p(t,y,x) and p(t,x,y) is positive and continuous for t> 0, 

x,YE/. 

Next we give the definition of the Green function G( IX, X, y) of the generalized 
diffusion equation (1.2). Define the functions Ui(X,IX), i = 1,2, IX> 0, X E I, by 

(3.4) 

It is well known that UI (x, IX) [resp. U2(X, IX)] is positive and nondecreasing [resp. 
nonincreasing] in x E I, and Ui(X, IX), i = 1,2, satisfy 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

UI (12, IX) < 00 if I(h) < 00, 

u2(1I,IX) < 00 if I(lt) < 00, 

lim Ui(X, IX) = 0, lim ut(x, IX) = ° if Ii is natural, 
x-+l;,xeJ x-+l;,xeJ 

IJ Ui(y, IX) dm(y) I < 00, 
(co,l;) 

(see [12], [18]). We define G(IX, x, y) by 

(3.9) G(IX, x, y) = G((I., y, x) = h(IX)Ul (x, IX)U2(y, (I.), (I. > 0, x S y, x, Y E I. 

We note the following facts ([21], [22]). 
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(3.10) sup p(t,x,y) < 00, if m(x) <m(y), {(lI,x)U(y,12)}nlm =1=0. 
(>0 

(3.11) p(t,x,y)=p(t,xvrl,rd, t>O,xEl,YE(II,rd iflj<rl. 

(3.12) p(t, x, y) = p(t, x 1\ r2, r2), t> 0, X E I, y E h,l2) if r2 < 12. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

p(t, x, y) :::;; p(t, x, x) 1/2p(t, y, y) 1/2, t> 0, x, Y E I. 

p(t,x,x) :::;; C 1G(t-l ,x,x), t> 0, X E f. 

G(a, x, x) :::;; G(a, y, y) + Is(x) - s(y)I, a> 0, x, y E f. 

lim G(a,x,x) =0, a>O, if f(li) < 00. 
x-+h,xeI 

lim p(t, x, y) = 0, t> 0, Y E I, if l(li) < 00. 
x---+l;}xeI 
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Let D = [X(t) : t 2': 0, Px : x E fm] be a one-dimensional generalized diffusion 
process with the generator 2! as in the preceding section. Then it holds that 

(3.18) Px(X(t) EE) = tp(t,X,y) dm(y), xEfm, t> 0, EE~(I), 

([12]). We find the following properties from [12], [21] and [22]. 

(3.19) 

if a, bE fm, a < b. 

(3.20) p(t,x,y) = tp(t-u,a,Y)Px(O"aEdU) 

= tp(t-u,x,a)PY(O"aEdu), t>O, 

if x, y, a E fm, x < a < y. 

Obviously the expectation Exlf(X(t))] of f(X(t)) with respect to the proba
bility measure Px is finite for bounded measurable functions f on f. It is easy to 
show that it is finite for f E Ll(I,m). Now we observe that Ex[s(X(t))] is finite. 

PROPOSITION 3.1. It holds that 

(3.21) Ex[ls(X(t))I] < 00, 

for x E fm n f. and t > o. 
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PROOF. By means of (3.18), 

(3.22) Ex[ls(X(t))1l = tp(t,x, y)ls(y)1 dm(y) 

= I p(t,x, y)ls(y)1 dm(y) + I p(t,x, y)ls(y)1 dm(y). 
([I ,co] (co,h) 

We only show 

(3.23) I pet, x, y)ls(y)1 dm(y) < 00. 
(Co,[2) 

If sELI((co,12),m) or Is(h)1 < 00, then (3.23) holds obviously. Assume s¢ 
LI((co,12),m) and s(h) = 00, which implies that h is natural. We note that 

(3.24) I Is(y)lu2(y, a) dm(y) < 00, a> o. 
(co, h) 

Indeed, since by (3.7), U2(X, a) satisfies 

-ui(x, a) = al u2(y,a) dm(y), 
(x,h) 

we see by (3.7) again that 

00 > U2(Co, a) = - I ui(x, a) ds(x) 
(co,h) 

= al ds(x) I U2(y, a) dm(y) 
(Co,l2) (x, h) 

= al {s(y) - S(Co)}U2(y,a) dm(y). 
(co,h) 

Combining this with (3.8) we obtain (3.24). Let II ::; a < b ::; 12 . Then by means 
of (3.9), (3.13) and (3.14), 

sup p(t,x, y) ::; rl/2p(t, x, x) 1/2 sup G(t-I, y, y)I/2 
a<y<b a<y<b 

= t- I/2h(r l ) 1/2p(t, x, x) 1/2 sup UI (y, rl) 1/2u2 (y, t- I ) 1/2 
a<y<b 

< rl/2h(rl)I/2p(t x x)I/2u (b t- I )I/2U (a t- I )I/2 = F(t x a b) - ,,1, 2, -, , , . 
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Since 12 is natural, (x, 12) n 1m is an infinite set. We can take ao, bo E 1m such that 

m(x) < m(ao) < m(bo), so that Mo == sUPu>o p(u, x, ao) < IX) in view of (3.10). By 
means of (3.19) and (3.20) we see that for yE [bo ,/2)nIm , 

p(t,x, y) ~ MoPy((5ao < t) ~ MoEy[el-uao/I) = Moeu2(y, C 1)/u2(ao, C 1). 

This estimate coupled with (3.24) implies that 

f p(t,x,y)ls(y)1 dm(y) 
(co,h) 

=f p(t,x,Y)ls(Y)ldm(y)+f p(t,x,y)ls(y)ldm(y) 
(co,bo) [bo.t2) 

::;; F(t, x, co, bo) f Is(y)1 dm(y) 
(co, bo) 

This shows (3.23). 0 

Let p. (t, x, y) be the elementary solution of the generalized diffusion equation 

(1.2) with Sf! and I replaced by Sf!. and I., respectively. Note that P .. (t,x,y) 
coincides with p(t, x, y) whenever 11 ='1 and 12 = '2. Also note that 

(3.25) Px(X(t /\ (5rl /\ (5rJ E E) 

= t P.(t, x, y) dm(y), x E 1m n I., t> 0, E E f!J(I.). 

The conditional expectation Ex[f(X(t)) I t < (5rl /\ (5r2] is finite for x E 1m n I., t> 0 
and f which is bounded on I. or f E Ll(I.,m). 

In the rest of this section, we assume that both of Ii, i = 1,2, are not natural. 
Then the spectrum L. of - Sf!. only consists of point spectrum, A. (= inf L.) E L., 
and (3.3) corresponding to P.(t,x, y) is reduced to 

(3.26) P.(t, x, y) = L e-A1l/J(x, -A)l/J(y, -A), t> 0, x, Y E I., 
AEL. 

where the functions l/J(x, -A), A E L., satisfy 

(3.27) l/J+(y, -A) -l/J+(x, -A) = -A f l/J(z, -A) dm(z), x, y E I., 
(x,y] 
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(3.28) "'(r;, -A) = 0 if 1(1;) < 00, or Ii is entrance with Ii # r;, 

(3.29) "'+(h, -A) = 0 if h is entrance with Ii = ri, 

(3.30) J ",(x, _A)2 dm(x) = 1, 
I. 

(3.31) J ",(x, -A)"'(X, -J.l) dm(x) = 0 if A # J.l. 
I. 

In view of [14, Theorem 1], 

(3.32) 

PROPOSITION 3.2. Let i,j E {I,2} and i # j. Assume one of (AI);, (A2)i' 

(A3)i' and one of (Ak)j' k= 1,2, ... ,5. Then "'(·,-A*) belongs to L1(I*,m), and 

"'(', -A*)f(·), "'(', -A*)2fO also belong to L1(I*,m) whenever f E JIf. Further 

there is a non increasing function K(t) on (0,00) such that 

(3.33) eA.1p*(t, x, y) :::; K(t)H(x)H(y), t> 0, x, Y E 1*, 

(3.34) 

Consequently it holds that 

if (AI); or (A2)i is satisfied, 

if (A3)i is satisfied, 

if (A4); is satisfied, 

if (AS); is satisfied. 

(3.35) JJ p*(u, x, y)p*(t, y, z)lf(y)g(z)1 dm(y)dm(z) < 00, 
I. xl. 

for u, t > 0, X E 1* and f, g E JIf. 

PROOF. By means of (3.14), (3.15) and (3.16) corresponding to m* and 1* in 
place of m and I, respectively, we see that 

(3.36) p*(t,x,x):::; t-1Is(x) -s(ri)l, t> 0, xEI*, if I(ri) < 00. 

Since I(ri) < 00 for i = I or 2, it holds that 

(3.37) p*(t,x,x) :::; t-1 min{s(x) - s(rI),s(r2) - sex)}, t> 0, X E 1*. 



We show that 

(3.38) 
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sup P.(t,x,x)/H1(x)2 < 00, t> O. 
xEh.col 
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If (A3)1 is satisfied, then (3.36) implies (3.38). If (A4)1 is satisfied, then Is(rl)1 = 00 

and one of (A1h, (A2b (A3)2 is satisfied, and hence Is(r2)1 < 00. Therefore by 
means of (3.37) we obtain (3.38). 

Let us assume (A5)1' Then by using the results in [20, Sect. 4) and [23, (6.4)), 
we find that P.(t, x, x) is bounded in x E (rl' co] for each fixed t> 0, which shows 
(3.38). 

If (AI)I or (A2)1 is satisfied, then in the same way as [20, Sect. 4] we can 
show that sUPxE(r,.col P.(t,x,x){s(x) - s(rl)}-2 is finite for each t > O. Thus we 
obtain (3.38). 

In the same way as above, we can obtain that 

(3.39) sup P.(t,x,x)/H2(x)2 < 00, t>O. 
XE (Co ,r2) 

It follows from (3.38) and (3.39) that 

- 2 
(3.40) K(t) == sup P.(t,x,x)/H(x) < 00, t> O. 

XEJ.. 

Since tj;(x, _A.)2 ::0:; eJ.,lp.(t,x,x), there is a positive constant C such that 

(3.41 ) o < tj;(x, -A.) ::0:; CH(x), x E I •. 

Next we show (3.33). We may assume that L. \{A.} =? 0. There is a 6 E (0,1) 
such that A.<6A, AEL.\{A.}, from which it holds that (l-6)A<A-A., 
A E L. \ {A.}. Then we see that 

leJ.,lp.(t, x, y) - tj;(x, -A.)tj;(y, -A.)I = L e-(J.-J.,)ltj;(x, -A)tj;(y, -A) 
,eEL, \{J..} 

~ L e-J.(1-0)11tj;(x, -A)IItj;(y, -A)I 
J.EL, 

::0:; p.((1-6)t,x,x)I/2p.((1-6)t,y,y)1/2. 

Combining this with (3.40) and (3.41), we find that 

eJ.,lp.(t, x, y) ::0:; p.((l - 6)t, x, x) 1/2p .((l - 6)t, y, y) 1/2 + tj;(x, -A.)tj;(y, -A.) 

::0:; {K((l - 6)t) + C2}H(x)H(y). 
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Putting K(t)=K((1-o)t)+C2 leads us to (3.33). Since P.(t,x,x) is non

increasing in t, so is K(t). 
It is easy to see that 

for f E:/t. Combining (3.41) with (3.42), we obtain that tfJ(-, -A.), tfJ(-, -,1,.)f(·) 
and tfJ(-, -,1,.)2fO belong to Ll (I., m). The result of (3.35) immediately follows 

from (3.33) and (3.42). 0 

REMARK 3.1. If one of (AI);, (A2);, (A5); is satisfied for each i = 1,2, we 

can show (3.33) with H replaced by tfJ(·, -),*), that is, sUPx,),EI, P.(t,x, y)/ 
tfJ(x, -,1,.)tfJ(y, -A.) < 00 for each t > O. This implies that .!l' is intrinsically 

ultracontractive (cf. [2]). 

4 Proof of Theorems 

In order to show Theorem 2.1, we prepare the following. 

PROPOSITION 4.1. Under the assumption of Theorem 2.1, it holds that 

( 4.1) 

= (L tfJ(y, -,1,*) dm(y)yl L tfJ(y, -,1,*)2f(y) dm(y) 

x J tfJ(z, -,1,.)g(z) dm(z), 
I, 

for x E 1m n 1*, 0 < 0 < 1 and f, g E:/t. 

PROOF. By virtue of (3.25) and Markov property, 

(4.2) Ex[f(X(ot))g(X(t)) I t < CJrl !\ CJr2 ] 

= Ex[f(X( ot) )g(X(t)), t < CJrl !\ CJr2 J1 PAt < CJrl !\ CJrJ 

= J P.(ot,x,y)f(y) dm(y) 
I. 

x J p.((l - o)t, y, z)g(z) dm(z)/ PAt < CJrl !\ CJr2 ), 
I, 
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which is finite in view of (3.35). Note that 

(4.3) 

It follows from (3.26) that 

(4.4) 

By means of Proposition 3.2, 

eA.1p*( 7:t, x, y)p*((1 - 7:)t, y, z) 

S K(7:to)K((l - 7:)to)H(x)H(y)2 H(z) , t ~ to, x, Y E 1*, 

for each to > O. Combining this with Lebesgue's dominated convergence theorem, 

(3.42) and (4.4), we obtain 

(4.5) lim eA•1 II P*(7:t, x, y)p*((l - 7:)t, y, z)f(y)g(z) dm(y)dm(z) 
1-00 I. xl. 

Since lE.J'l', II.P*(7:t,x,y)p*((I-7:)t,y,z)dm(y)=p*(t,x,z) and 
II. t/!(y, _A*)2 dm(y) = 1, the asymptotic behavior (4.1) is derived from (4.2), (4.3) 

and (4.5). D 

PROOF OF THEOREM 2.1. Put t/!*(x) = t/!(co, -A*)-It/!(x, -A*), x E 1*. It follows 

from (3.27), (3.28), (3.29), (3.30), (3.32), and Proposition 3.2 that t/!* satisfies all 

of the properties in the statement (i). Further by means of Proposition 4.1, 

(4.6) lim Ex[f(X(7:t))g(X(t)) It < ar, /\ ar2 ) 
t-oo 

= (L. t/!*(y)2 dm(y)) -I (L. t/!*(y) dm(y))-I 

X L. t/!*(y)2f(y) dm(y) L. t/!*(z)g(z) dm(z). 

We find (2.12) with 0 < 7: < 1 and 7: = 1 by putting g = 1 and f = 1 in (4.6), 

respectively. D 

PROOF OF COROLLARY 2.2. By Markov property, we have 
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Ex[f(X(rt)) 1 t < ar2 < ar!] = Ex[f(X(rt)), t < ar2 < a'll/PAt < ar2 < ar,) 

Ex[f(X(rt))<I>(X(t)) 1 t < ar, 1\ ar2 ] 0 1 
= Ex[<I>(X(t)) 1 t < ar! 1\ arJ ' < r::; , 

where 

( 7) ""'() = P ( ) = {S(x) - s(rd}/{sh) - s(rl)}, if Is(rl)1 < 00, 
4. 'V X x ar2 < ar! I, if Is(rl)1 = 00. 

Since <I> E Yl', we obtain the corollary by means of Proposition 4.1. 0 

Next we prove Theorems 2.3 and 2.4. In [25] and [29], the asymptotic 

behavior of elementary solutions of periodic generalized diffusion equations was 

studied. We list up some results from [25) and [29). Let IPi(X, A), i = 1,2, be the 

solutions of the equations (3.1), (3.2) with Co = 0, which exist because of the 

assumption (A6). It holds that, under the assumption (A6), 

(4.8) .,1.. > 0 if and only if K # I, 

(4.9) IP2(X, -A.) > 0, x E I., 

(4.10) sup K-X/2(1 + x)-IIP2(X, -A.) < 00, 
XEI .. 

(4.11) f KX/2(1 + x) dm(x) < 00 if K> I, 
I, 

(4.12) IP2(-, -A.) E LI(I.,m) if K> I, 

(4.13) sf E LI(I.,m) if K = 1 and f satisfies (2.15), 

(4.14) 

(4.15) lim sup t3/ 2eA,t sup K-(x+y )/2(1 + X)-I (1 + y)-Ip*(t, x, y) < 00, 
(-rOO x,YEI* 

(4.16) 

x It 3/ 2e2• t L P.(t,x,y)f(y) dm(y) 

- C1IP2(X, -.,1.*) L IP2(y, -.,1.*)f(y) dm(y) I = 0, 

for f satisfying (2.15), where C1 is a positive constant given by 
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PROOF OF THEOREM 2.3. Put l/I*(x) = qJ2(X, -A,*), x E 1*. By means of (3.2), 
(4.9), (4.10) and (4.12), we see that l/I* satisfies all of the properties of the 
statement (i). 

Let 0 < K < 1 and f satisfy (2.15). We note that 

(4.18) lim PAt < 0'0) = Px(O'o = 00) = s(x)js(h) E (0,00), X E 1*. 
1->00 

If 0 < T < 1, then in the same way as in the proof of Proposition 4.1, 

(4.19) Ex[f(X(Tt)) It < 0'01 

= J P*(Tt,x, y)f(y)Py ((1 - T)t < 0'0) dm(Y)/Px{t < 0'0)' 
I. 

By using (4.14), (4.15), (4.18), (4.19), and Lebesgue's dominated convergence 

theorem, we obtain (2.16) with 0 < T < 1. If T = 1, then 

(4.20) Ex[f(X(t)) I t < 0'01 = J p*(t,x, y)f(y) dm(y)/PAt < 0'0). 
I. 

Therefore (2.16) with T = 1 immediately follows from (4.16) and (4.18). 

Let K > 1. In this case, f = 1 satisfies (2.15) by means of (4.11), and hence 

we obtain (4.16) with f = 1. Therefore 

(4.21) 

x It3/ 2eA•1Px(t < 0'0) - C)qJ2(X, -A,*) L. qJ2(Y' -A,*) dm(y) I = O. 

If 0 < T < 1 and f satisfies (2.18), then (2.17) is obtained by (4.14), (4.15), (4.19), 

(4.21) and Lebesgue's dominated convergence theorem. If T = 1 and f satisfies 

(2.15), then (2.19) follows from (4.16), (4.20) and (4.21). 0 

PROOF OF THEOREM 2.4. Noting K = 1, we find A,* = 0, qJ2(X, -A,*) = s(x), 
Cl = {m(I)/4ns(I)}1/2 ([25]), and 

lim x-1s(x) = s(I), lim x-1m(x) = m(I). 
x~co x-+oo 
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Hence by means of [24, Corollary 1], 

t~ t l/2 t. p*(t,x, y) dm(y) = {m(1)jns(1)}1/2s(x). 

Combining this with (4.3), we find that 

(4.22) lim t l/2px (t < 0"0) = {m(1)jns(1)}1/2s(x). 
/->00 

Since Px(t < 0"0) and s(x) are nondecreasing in x E 1m and x E I., respectively, and 
s(x) is continuous, the convergence in (4.22) is uniform in x E 1m n [0, a] for each 
a E 1*. Therefore if 0 < 7: < 1, f E Ll(I,m) and supp[f] is compact in [0, (0), we 
obtain (2.20) by means of (4.14), (4.15), (4.19), (4.22), and Lebesgue's dominated 
convergence theorem. If r = 1 and f satisfies (2.15), then sf E Ll (1*, m) by means 
of (4.13), and (2.21) follows from (4.16), (4.20) and (4.22). 0 

We turn to the proof of Theorem 2.5. Under the assumption (A7) or (A8), 
the asymptotic behavior of the elementary solution P.(t, x, y) was studied in [30]. 
We summarize some results which we need below. 

PROPOSITION 4.2. If (A7) is satisfied, then 

(4.23) 

If (A8) is satisfied, then 

(4.24) 

(4.25) lim sup tl+fJi(t) sup y-Ip.(t,x,y) < 00, 
/->00 y€l, 

(4.26) 

(4.27) lim tl+fJi(t)J P.(t,x,y)f(y) dm(y) = C3xJ yf(y) dm(y), 
/->00 I. I. 

for f satisfying yf(y) E Ll(I*,m). 

PROOF. In [30], (4.24), (4.25), (4.26) and (4.27) are obtained. We will show 
(4.23). We note that, under the assumption (A7), there exist the solutions C(J;(x, ;[), 
i = 1,2, of the equations (3.1) and (3.2) with Co = O. We also note that (3.3) 
corresponding to p. (t, x, y) is reduced to 
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(4.28) P.(t, x, y) = J e-J.ICfJ2 (x, -A)CfJ2(Y, -,1,)0"22 (dA) , t> 0, x, Y E I •. 
(0,00) 

By virtue of [30, (5.11)], 

(4.29) lim t1+PL(t) J e-J.10"22(dA) = C21i2. 
1 ...... 00 (0,00) 

In view of (4.28) and (4.29), it is enough to show that 

(4.30) lim sup tl+PL(t) J e-J.ljx-1y- ICfJ2(X, -A)CfJ2(Y, -A) - 1 j0"22 (dA) = 0, 
1->00 X,YE(O,aj (0,00) 

for each a E 1*. Due to [13, (2.27)], we have 

(4.31) jCfJ2(X, -A)j :s; jxj exp{21/2jhm(x)jl/2}, 

(4.32) jCfJ2 (x,).,) - xl :s; jAx2m(x) II exp{21/2IAxm(x) 11/2}, 

for x E I and)" E C. Fix a point a E I. arbitrarily. By means of (4.31) and (4.32), 

we have 

sup Ix- Iy- ICfJ2(x, -2)CfJ2(Y, -A) - 11 
X,YE(O,aj 

:s; sup Ix-I CfJ2(X, -A) - llly- ICfJ2(Y, -2)j + sup ly- 1CfJ2(Y, -2) - 11 
x,yE (O,aj YE (O,a] 

Fix a positive T arbitrarily and take a positive A such that AT2 2: 32am(a). 
Then it holds that SUPi~T,J.~J\ exp{ -At/2 + 23/2(Aam(a))1/2} :s; 1. Noting 

maxx~o xe-x :s; e- I, we see that for every t 2: T, 

sup tI+PL(t) J e-J.tjx- Iy-I CfJ2 (x, -2)CfJ2(y, -A) - 110"n(d2) 
X,YE(O,aj (0,00) 

:s; 2am(a)t1+P L(t) J 2 exp{ -At + 23/ 2 (Aam(a) ) 1/2} 0"22 (dA) 
(0, (0) 

:s; 2am(a){1 + exp{23/ 2 (Aam(a)) 1/2} }t1+P L(t) J 2e-J.l/20"22 (d}',) 
(0, (0) 

:s; 8e-1 am(a){ 1 + exp{23/2(Aam(a)) 1/2}}tP L(t) J e-AI/ 40"22 (d)"). 
(0, (0) 

Combining this with (4.29), we obtain (4.30). D 
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PROOF OF THEOREM 2.5. (i) Let us assume (A7). Let f satisfy yf(y) E 

Ll(I,m) and supp[fJ being compact in [O,h). Note that 

(4.33) 

If 0 < r < 1, we notice that (4.19) holds in this case, too. By (4.23), (4.33), and 
Lebesgue's dominated convergence theorem, we obtain 

= lim t1+PL(t) J p*(rt,x,y)f(y)Py((1- r)t < 0'0) dm(y)/PxCt < 0'0) 
t .... ro I. 

Let r = 1. By means of (4.20), (4.23), (4.33), and Lebesgue's dominated con
vergence theorem, we obtain 

= lim t1+P L(t) J p*(t, x, y)f(y) dm(y)/ Px(t < 0'0) 
t .... ro I. 

= C2121 J yf(y) dm(y). 
I. 

(ii) Assume (A8) and yf(y) E L 1(1*,m). Combining (4.26) with (4.3), we 
have 

(4.34) 

uniformly in x in [0, a) n 1m for each a E 1*. If 0 < r < 1 and supp[f) is compact 
in [0, ex)), by using (4.19), (4.24), (4.25), (4.34) and Lebesgue's dominated con
vergence theorem, we obtain 

lim t1+PL(t)Ex[f(X(rt)) It < 0'0) 
t_oo 

= lim t1+PL(t)J p*(rt,x,y)f(y)Py((1-r)t < 0"0) dm(y)/PxCt < 0'0) 
t .... ro I. 
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If T = 1, by using (4.20), (4.27), (4.34) and Lebesgue's dominated convergence 

theorem, we obtain 

lim tEx[f(X(t))! t < (To] 
/->CIJ 

= lim t} P.(t, x, y)f(y) dm(y)j PAt < (To) 
t-HY;) 1* 

= p} yf(y) dm(y), 
J, 

which completes the proof. 0 

Let gn} and {I]n} be sequences satisfying (2.29). We set 

{

-<X), x::s; ~n' d d 
mn(x) = m(x), ~n < X < I]n, sn(x) = 1(';n,l1n)(x)s(x), fLln = dl?1n dsn' 

+00, l]::S;x, 

Denote by Ln the spectrum of -2" and put A.,n = inf Ln. Since the assumptions 

(A1)i' i = 1,2, are satisfied for mn, Sn and (~n,l]n)' there exists a unique positive 

continuous function l/J.,n on (~n,I]/l) satisfying l/J.,n(CO ) = 1 and (2.7), (2.8), (2.10) 

with l/J., A. and I. replaced by l/J.,n' A.,n and (~/l' I]n), respectively. 

PROPOSITION 4.3. There exist a subsequence {l/J.,n} (denoted by the same 
symbol) and a positive continuous function l/J. on I. satisfying (2.7), l/J.(co) = 1, and 

( 4.35) lim sup !l/J. n(x) -l/J.(x)! = 0, 
/l->CIJ XEK ' 

for every compact set K c I •. 

Assume ri = Ii and !S(li)! = <X) for i = 1 and 2. Then l/J.(x) = 1, x E 1. If {~n} 
and {I] n } satisfy 

( 4.36) 

then 

( 4.37) sup l/J.,I,(X) < 00. 
en ~X5,'7I1)n 

Assume A. = 0, ri = Ii for i = 1,2, Is(ll)1 < <X) and s(l2) = 00. Then l/J.(x) = 
B{s(x) - s(co)} + 1, X'E I, where B is a real number satisfying O::s; B::s; 
{s(co ) - s(ll)} -1. For each a E I, it holds that 
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(4.38) sup l/J.n(X) < 00, 
i;n;s;x;s;a,n ' 

(4.39) sup I/J.,n(x)/s(x) < 00 if s(a) > O. 
a;S;X;S;'7.,n 

PROOF. Following the same argument as the proof of [14, Theorem 1], we 

can show that there exist a subsequence {I/J.,n} and a positive continuous function 

I/J. satisfying (2.7), I/J.(co) = 1 and (4.35). 
Assume ri = Ii and IS(li) 1 = 00 for i = 1 and 2. Then A. = 0 by virtue of [18, 

Theorem 3]. Therefore it follows from (2.7) that I/J.(x) = BIs(x) + B2, X E I, 
where BI and B2 are constants. Noting that I/J.(x) > 0, x E I and I/J.(co) = 1, we 

see that BI = 0 and B2 = 1, that is, I/J.(x) = 1, XEI. Let {(n} and {17n} satisfy 

(4.36). We will show (4.37). By virtue of (2.7), 

(4.40) I/I.,n(x) = 1 + I/J:n(co){s(x) - s(co)} 

- A.,n f {s(x) - s(y)}I/J.,n(y) dm(y), x E «(n, 17n), 
(co,x] 

and it holds that 

(441) II/J+ ( )1 < 1 -I/J.,n«(n) 1 -1/J.,n(17n) 
. ',n Co - s(co) _ s«(n) v S(17n) - s(co) 

::;; {s(co) - s«(n)} -I v {S(17n) - s(co)} -I. 

Combining this with (4.36), we see that 

MI == sup II/J;n(co){s(x) - S(co)} 1 

(n'5,X'5:'ln1 n I 

::;; sUP{{S(17n) -s(co)}{s(co) -s«(n)}-I v {s(co) -s«(n)}{S(17n) -s(co)}-I} 
n 

< 00. 

By using (4.40) again, we have 

sup I/J.,n(x)::;; 1 + MI· 
<n 5,x5.'7I/,n 

Assume A. = 0, ri = Ii for i = 1,2, Is(lI)1 < 00, and s(l2) = 00. Noting 

1/J*(lJ) ;;::; 0, in the same way as above we find that I/J*(x) = B{s(x) - s(co)} + 1, 
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X E I, and 0:::;; B:::;; {s(co) - s(lI)rI. Let a E I. Since M2 == sUPn Il/!:n (co) I < 00 by , 
means of (4.41), it follows from (4.40) that 

sup l/!. n(x) :::;; 1 + M2Is(a) - s(co) I, 
<;,,:$;x:$;a,n 

sup l/!.,n(x)/s(x):::;; s(a)-I + M2{1 + Is(co)lfs(a)} if s(a) > 0, 
o5,x5.1]"ln 

which shows (4.38) and (4.39). 0 

PROOF OF THEOREM 2.6. Let gn} and {17n} be subsequences corresponding 

to N.,n} in Proposition 4.3. Let fELl (1., m) such that supp[fl is compact in I •. 
We may assume that supp[fl C (C;n,17n) for sufficiently large n. Then f satisfies 

(2.3) with rl = C;n or r2 = 17n- By means of Theorem 2.1 and Corollary 2.2, we see 

that 

t~~ Ex[f(X(rt)) I t < (J~" /\(J'IJ = t~ Ex[J(X(rt)) It < (J'I" < (J<,,] 

= (J l/!.,n(y)2 dm(y))-l J l/!.,n(y)2f(y) dm(y), 0 < r < 1, 
(1;, .. '1,,) (~",'I,,) 

}~~ Ex[f(X(t)) I t < (J/;" /\ (J1JJ 

= (J l/!.,n(y) dm(y))-I J l/!.,n(y)f(y) dm(y), 
(1;", 'I,,) (/;'" 'I,,) 

E.~ Ex[f(X(t)) I t < (J'I" < (Ji;"l 

= (J l/!.,n(Y){s(y) - s(C;n)} dm(y))-l 
(1;", 'I,,) 

x J . l/!.,n(Y){s(y) - s(C;n)}f(y) dm(y). 
(c;", 'I,,) 

We put 

(4.42) V~I) = J l/!.,n(y)2 dm(y), 
(1;",'1,,) 

(4.43) V~2) = J l/!.,n(y) dm(y), 
(<;",'1,,) 
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(4.44) 

Ish)1 = 00. 

Then we obtain (2.30), (2.31) and (2.32) by virtue of (4.35). D 

PROOF OF COROLLARY 2.7. We put !J; •. n(x) = 0 for x E I. \(!;n, 'Yfn) and n E N. 
Then, by means of (AI)l and (Al)2' we can show that !J; •. n(n EN) are uniformly 
bounded and equicontinuous on I •. Therefore there exist a subsequence {!J; •. n} 
(denoted by the same symbols) and a positive continuous function ~* on I. such 
that 

lim sup I!J;. n(x) - ~*(x)1 = o. 
n-+OO XEI* I 

We note that ~. satisfies (2.7) with !J;. replaced by ~., ~.(co) = 1 and ~.(ri) = 0 
(i = 1,2). Since the function !J;. in Theorem 2.1 is unique, we see that 0. coin
cides with !J;., and 

(4.45) lim sup I!J;. n(x) -!J;.(x)1 = 0, 
n-H:t) XEI* 1 

for every sequence {!J;. n}. It is easy to see that (2.30), (2.31) and (2.32) are 
valid for every f satisfying (2.3) and v~j), j = 1,2,3, given by (4.42), (4.43), 
(4.44) with Is(rl)1 < 00. By means of (4.45), (Al)l and (Alb we find that 

lim VJl) = f !J;.(y)2 dm(y), 
n-H;() J* 

lim VP) = f !J;.(y) dm(y), 
n.-?co J. 

}~n,; VJ3) = L !J;.(y){s(y) - s(rl)} dm(y). 

Thus we obtain (2.33), (2.34) and (2.35). D 

PROOF OF THEOREM 2.8. Let 0 < T::; 1 and f E Ll(I,m). It is easy to see 
that 

(4.46) }~n,; Ex[f(X(Tt)) I t < (J(" /\ (J'IJ = Ex[f(X(Tt))] = L p(Tt,X, y)f(y) dm(y). 

This formula together with [22, Corollary 1] implies (2.36). 
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Assume that there exists the limit s* = limn-><Xlls(~n)ljS(17n) E (0, (0). In the 
same way as the proof of Corollary 2.2, 

(4.47) E [f(X( )) I ) _ Ex[f(X(it))<I>n(X(t)) , t < al;. 1\ all,.] 
x it t < a 1J" < al;" - E [m. (X( )) )' 

x wn t, t < al;" 1\ a 1J" 

where 

(4.48) 

Since limn-><Xl <I>n(x) = s.(l + s.rl E (0,1)' we see that 

(4.49) Ji.rr,; Ex[f(X(it)) I t < a1J" < ad = Ex[f(X(it))], 

from which (2.37) follows. 
Next we assume 0 < s. < 00. By means of Proposition 4.3, t/!.(x) = I, x E 1 

and it is the unique positive continuous function on 1 satisfying (2.7) and 
t/!*(co) = 1 because of A. = O. By (4.37) and the dominated convergence theorem, 
we see that (2.30), (2.31) and (2.32) are valid for t/!. = 1, any sequences satisfying 
(2.29) and (4.36), and fELl (1, m). Note that we do not need the condition that 
supp[fl is compact in 1. Noting (4.37), (4.42), (4.43) and (4.44), we find that 

lim V~J) = m(l2) - m(ll), j = 1,2,3. 
n->OO 

Combining this with Theorem 2.6, we obtain (2.38). 0 

PROOF OF THEOREM 2.9. Let 0 < i::; 1 and f E LI(1,m). Since (4.46) also 
holds in this case, by means of [16, Theorem 2] and [22, Remark 2] we obtain 
(2.40). 

Assume that there exists the limit s. = limn->ool~nl!17n E (0,00]. In the same 
way as the proof of Theorem 2.8, we can show (2.41). Further assume s. E 

(0, (0). Then we see that (2.30), (2.31) and (2.32) hold with t/!. = 1, and f E 

Ll (1, m). Here we do not need the condition that supp[fl is compact in 1. 
Since (2.23) and (2.39) imply liinx-> 00 Im( -x) I/m(x) E [0,(0), by means of (4.37), 

(4.42), (4.43) and (4.44) we also see that the sequences {dJ)/m(17n)}, j= 1,2,3, 

are bounded, and hence there are subsequences gn}, {17n}, {V~J)}, j = 1,2,3, 

(denoted by the same symbols) satisfying v~J) == limn-><Xl V~J) /m(17n) E [0, (0), j = 
1,2,3. We will show that v~J) > 0, j = 1,2,3. It follows from (4.40) that 

( 4.50) 
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which implies 

(I) fl]n 2 1 fl]n/2 2 
Vn ~ t/J*,n(Y) dm(y) ~ 2 (1711 - y) dm(y) 

Co (17n - co) Co 

~ (1711/2)2 2 {m(17n/2) - m(co)}. 

(17n - Co) 

Combining this with (2.23) we see that vii) ~ 2-(1+1/.8). In the same way we 

obtain vV) > 0, j = 2,3. 0 

PROOF OF THEOREM 2.10. Let ° < T ~ 1 and f E Ll(J,m) such that supp[f] 
is compact in J. Since (4.46) also holds in this case, by means of [30, Theorem 1] 
we see that 

l~ tl+PL(t) }~rr;, Ex[f(X(Tt)) I t < CJl;n I\CJI]J 

= C3T- I- p(X -/J) t (y - II)f(y) dm(y). 

Next we note that 

where 

Since limn->ex) 'Pn(x) = 1, we see that 

Therefore we obtain 

lim tl+PL(t) lim Ex[f(X(Tt)) I t < CJl;n < CJI] ] 
~CX) ~ex) • 

Note that ,1,* = ° by virtue of [18, Theorem 3], and hence by means of Prop
osition 4.3, t/J*(x) = B(x - co) + 1, x E J with ° ~ B ~ (co - /1)-1. Thus there 
exist subsequences {';n} and {17n} (denoted by the same symbols) such that the 
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statement (ii) of Theorem 2.6 holds with this t./!*. Assume that limsuPn-+oolm(en)if 
Yfnm(Yfn) < 00. Fix a point a E I such that s(a) > O. By using (4.38) and (4.39) we 
see that 

n-HlO 

= lim sup 2 l( ) {f t./!*.n(y)2 dm(y) + f t./!*.n(y)2 dm(Y)} 
n-+oo Yfnm Yfn (e •• a) (a,II.) 

::;; sup t./!*,n(y)2 limsup{m(a) - m(en)}IYf~m(Yfn) 
en :5.ys,a,n n-+oo 

In the same way we obtain 

Since (4.50) is also valid in this case, (2.43) follows by the same method as in the 
proof of Theorem 2.9. We also see that 

Combining this with (2.23) we obtain liminfn-+oo VP) IYfnm(Yfn) > o. 0 

5 Examples 

We observe two examples in this section. 

5.1 Bessel Processes 

Let D = [X(t) : t ~ 0, Px : x E I] be a diffusion process whose generator is 
given by 
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where (X E R, and 1= (0,1) or (0,00). This process is referred to as the (X

dimensional Bessel process on I if (X> 0. In particular, D is the Brownian motion 

on I in the case that (X = 1. We set 

(5.1) so(x) = xI-«, mo(x) = 2x«-I, sex) = JX so(y) dy, m(x) = JX mo(y) dy, 
Co Co 

where Co is a :fixed point in I arbitrarily. We assume that m(x) = -00 for x < 0, 
and further assume that if I = (0,1), then m(x) = 00 for x> 1. Thus 11 = rl = ° 
and 12 = r2 = 1 if I = (0,1), or 12 = r2 = 00 if I = (0,00). Then the generator L 
is reduced to 2 = (d/dm)(d/ds) which is a generalized diffusion operator defined 

in Sect. 2, and sand m above are the scale function and the speed measure, 

respectively. We note that (Alh or (A2)1 or (ASh is valid according to ° < (X < 2 

or (X:::::; ° or (X ~ 2. 
(i) Let us consider the case 1= (0,1). In this case (Alh holds. Let Jv(x) be 

the Bessel function defined by 

We denote by J(v) the set of positive zeros of Jv, that is, J(v) = {x > 0: Jv(x) = O}. 
It is known that J(v) is a countable infinite set, it has no accumulating points in 

[0, (0), and 

(cf. [32, Ch.15]). 

If (X < 2, then 

pet, x, y) = L IJ-«/2(K)J2-«/2(K) I-I e-K2t/ 2(xy) 1-«/2 J I _«/2(Kx)JI _«/2(KY). 
KEJ(I-«/2) 

Suppose that f satisfies f~/2 xlf(x)1 dx < 00 and fll/2(1 - x2-«) If(x) I dx < 00. By 
virtue of Theorem 2.1 and Corollary 2.2, it holds that for x E 1, 

lim Ex[f(X(.t)) I t < 0"0 t\ 0"1) = JI f(1)(., y)f(y) dy, 
HOO 0 

lim Ex[f(X(.t)) I t < 0"1 < 0"0) = JI j<2)(.,y)f(y) dy, 
HOO 0 
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( I )-1 
(5.4) f(2) (1, y) = y2-a/2 J I - a/2 (toY) L y2-a/2 J I - a/ 2 (toY) dy , 

where to = min J(l - rx/2). In the case that rx = 1, (5.2), (5.3) and (5.4) are re
duced to 

f(l)(r, y) = f 2)(r, y) = 2 sin2 ny, if 0 < r < 1, 

J(I)(1, y) = (n/2) sin ny, 

J(2) (1, y) = ny sin ny. 

If rx:2: 2, then Px(X(rt) EEl t < 170;\ (71) = Px(X(rt) EEl t < (71) = Px(X(rt) E 

E It < 171 < (70) and 

p( t, x, y) = L I Ja/2 (K)Ja/2- 2(K) I-I e- I(2 1/2 (xy) l-a/2 Ja/2- 1 (/(x)Ja/2- 1 (ICY). 
KEJ(a/2-1) 

By means of Theorem 2.1, we find that 

lim Ex[f(X(rt)) I t < ad = JI f*(r, y)f(y) dy, 
t--H:fJ 0 

( I )-1 
(5.6) f*(1,y) = ya/2Ja./2 __ 1(60Y) Lya/2Ja/2_1(60Y) dy , 

where 60 = min J(rx/2 - 1) and f satisfies J~/2 xa-1IJ(x)1 dx < 00 and 

J;/2(1 - x2- a)IJ(x)1 dx < 00. 

(ii) Let 1= (0, (0). We set m(x) = m(s-I(x)), where S--I(X) stands for the 

inverse function of s(x). Then m(x) is a continuous increasing function on 
(s(O),s(oo)). Let 2 = (d/dm)(d/ds) with s(x) = x, which is a generalized dif
fusion operator. Let jJ(t, x, y) be the elementary solution of the generalized 
diffusion equation (1.2) with ,g replaced by 2. Then it holds that 

p(t,s(x),s(y)) =p(t,x,y), x,YEI. 
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Let 0 < a < 2. Then -00 < s(O), s(oo) = 00, and Im(O)1 < 00. Further it 
holds that 

lim m(x)/xa/(2-a) = lim m(x)ls(xt/(2-a) = 2a-1(2 - at/(2-a). 
x~co x-+oo 

This shows that m satisfies (2.23) with fJ = 1 - al2 E (0, 1). By virtue of Theorem 
2.5 (ii), it holds that for x E I, 

(5.7) 

(5.8) 

lim t2-rt./2Ex[f(X(Tt)) I t < 0'0] 
1--+00 

= 2a/ 2- 1r(2 - aI2)-IT-2+rt./2(1 - T)-I+a/2 J: y3-"f(y) dy, ° < T < 1, 

lim tEx[f(X(t)) I t < 0'0] = Joo yf(y) dy, 
1--+ 00 0 

where f satisfies f: xlf(x)1 dx < 00 and in particular for (5.7) it is necessary that 
supp[f] is compact in [0,00). 

Let a :::; O. Since s( 00) = 00, m( 00) < 00 in this case, we can not apply our 
theorems to see the asymptotic behavior of (1.1) as t ----., 00. Noting (5.1), we 
deduce from [1] that 

(5.9) 

where Iv is the modified Bessel function defined by 

J x = (~)V 00 (xI2)2n 
v() 2 ~ n!r(n + v + 1)' 

By using this, we can obtain the asymptotic behavior of (1.1) as t ----., 00. Indeed, 

PAt < 0'0) = J: p(t, x, y)mo(y) dy 

= rl+,,/2q2 _ (12) -1 t,,/2-1 x 2-"e-x2 /21 F(1, 2 - a12; x 2/2t), 

where F(a, b; z) is the hypergeometric function defined by 

qb)~qa+n) zn 
F(a, b; z) = qa) 20 qb + n) n! . 

Here we used the following relation. 
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_ ['((J.l + v)/2)b V • 2 2 
-2V+1aJl+V[,(v+I)F((J.l+v)/2,v+l,b /4a), if J.l+v>O. 

Therefore we find that 

lim sup It1-0:/2xo:-2 PAt < 0'0) - 2-1+0:/2[,(2 - 1X/2)-11 = 0, a E I. 
t ..... oo O<x;S;a 

If supp[f] is compact in [0, (0) and s: x3-0:If(x) I dx < 00, then 

(5.10) lim t2-0:/2Ex [f(X(.t)) It < 0'0] 
/ ..... 00 

309 

= lim t2-0:/2 Joo p(.t, x, y)Py ((1 - .)t < O'o)f(y)mo(Y) dy/ Px(t < 0'0) 
/--+00 0 

= 2-1+0:/2[,(2 - 1X/2)-1.-2+0:/2(1 - .t/2- 1 J: y3-O:f(y) dy, 0 < • < 1. 

If S: xlf(x) I dx < 00, then 

lim tEx[f(X(t)) I t < 0'0] 
/--+00 

= lim t Joo pet, x, y)f(y)mo(Y) dy/ Px(t < 0'0) = Joo yf(y) dy. 
~oo 0 0 

The above argument is still valid in the case that 0 < IX < 2, and the asymptotic 
behavior coincides with (5.7) and (5.8). We note that it is enough for (5.10) that 
x3-O:f(x) is integrable near the end point O. This fact is also valid for (5.7). 

Let IX ~ 2. In this case we also find that (5.9) holds by virtue of [1], and 
Px(O'o /\ 0'00 < (0) = O. Then we derive the following asymptotic behavior. 

lim to:/2 Ex[f(X(t)) I t < 0'0/\0'00] = lim to:/2 Ex[f(X(t))] 
~oo ~oo 

= 21-0:/2['(1X/2)-1 J: yO:-lf(y) dy, 

for f such that S: xo:-1If(x)1 dx < 00 and supp[f] is compact in [0,(0). 

5.2 Birth and Death Processes 

For given 0 < 1<:, J.l < 00, we put 

sex) = {x (I<: - I)-I(l<:x - 1) if I<: =1= 1, x E [0, (0), 
if I<: = 1, 
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00 

(K - Ifl (K + I)Jl2:)1 - K-n) I[n,n+l) (x), if K "# I, 

m(x) = 
00 

n=O 
X e [0,00), 

2Jl 2: nI[n,n+l) (x), if K = I, 
n=O 

m(x) = -00, x e (-00,0). 

Then £' = (d/dm)(d/ds) is a generalized diffusion operator and it is a periodic 

diffusion operator 

£,f(n) = {f+(n) - f+(n - I)}/{m(n) - m(n - I)}, 

where f+(n) = {f(n+ 1) - f(n)}/{s(n+ 1) -s(n)}. Feller ([8]) pointed out that 

the generator of a birth and death process can be represented as a difference 

operator as above. Since (A6) is satisfied, we find that all of the statements of 

Theorems 2.3 and 2.4 hold. The spectrum of -£' has been studied in [25] and 

[29], from which 

.1* = (K + I)-I(Kl/2 - I)2Jl-l, C1 = 2-ln-I/2KI/4(K + I)I/2JlI/2, 

qJ2(X, -.1*) = s(x), x e [0,1]' 

qJ2(X + n, -.1*) = (K- 1 + 1)-1/2IK1/2 - II-1K(n-I)/2 

x [sin nO + {(2K - 2K1/2 + 1) sin nO - K1/2 sin(n - I)O}s(x)], 

xe[O,I),neN. 

where qJ2(x, -A) is the solution of the equation (3.2) with Co = 0, and 0 is 
the posltive number satisfying sin 0 = (K-1 + 1)1/2IKI/2 - 11 and cos 0 = 1(;1/2 + 
K-1/ 2 - 1. By means of Theorems 2.3 and 2.4, we obtain the following. Let 

keN. 

Assume that 0 < K < 1 and f satisfies 2::1 Kn/2(1 + n)lf(n)l{m(n)
m(n-I)} < 00. If 0 <. < 1, then 

lim t3/2 exp{(K + 1)-1 (K1/2 - 1)2 Jl-I.t}Ek[f(X(.t)) I t < ao] 
/-+00 

00 

x .-3/2(1 - Kkr1qJ2(k, -.1*) 2:(1 - "n)qJ2(n, -A*)f(n){m(n) - m(n - I)}. 
n=1 
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If ,= 1, then 

co 

x (1 - Kk)-J ifJ2 (k, -A*) L ifJ2(n, -A*)f(n){m(n) - m(n - I)}. 
n=l 

Assume K = 1. If ° < , < 1, then 

co 

= (2n)-1/2Jll/2,-3/2(1 _ ,)-1/2 L n2f(n){m(n) - m(n - I)}, 
n=1 

for every f such that 2::1 If(n)l{m(n) - m(n - I)} < 00 and supp[fl is compact 
in [0,(0). If ,= 1, then 

co 

lim tEk[f(X(t)) I t < eTol = r 1 "nf(n){m(n) - m(n - I)}, 
I~OO L.-t 

n=1 

for every f satisfying 2::1 (1 + n)lf(n)l{m(n) - m(n - I)} < 00. 
Assume K > 1. If ° < , < 1) then 

co 

x ,-3/2(1 - ,)-3/2 L ifJ2(n, -A*)2f (n){m(n) - m(n - I)}, 
n=1 

for every f satisfying 2::1 Kn(1 + n)2If(n)l{m(n) - m(n - I)} < 00. If ,= 1, 
then 

lim Ex[f(X(t)) It < eTol 
/-->co 

~ (t. ~,(n, -A,){m(n) - m(n - I)} ) -, t. .,(n, -A,)J(n){m(n) - m(n - I)}, 

for every f satisfying 2::1 Kn/2(1 + n)lf(n)l{m(n) - m(n - I)} < 00. 
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6 Application to Population Genetics 

In this section, we consider the asymptotic conditional distributions in pop
ulation genetics since this concept was first introduced in population genetics (see 
[4]). We consider a locus with two alleles in a randomly mating population of N 
diploid individuals. We denote by Al the wide-type allele and by A2 the mutant 
allele. Let X(n) be the relative frequency (gene frequency) of AI at the n-th 
generation in the population (n = 0, 1,2, ... ). Mutation, selection and random 
genetic drift are the factors which change gene frequency X(n). The Wright
Fisher model and the stochastic selection model are the fundamental stochastic 
models in population genetics. The Wright-Fisher model is a stochastic model due 
to random genetic drift and this stochastic force has no correlation between 
distinct generations. On the other hand, in the stochastic selection model sto
chastic force of selection has autocorrelation from generation to generation in 
general. These models are described by discrete time stochastic processes because 
we regard the generation as the time unit. It is difficult, however, to analyze these 
discrete time models. Then diffusion approximations are employed for the original 
discrete time models. In other words, we approximate a discrete time stochastic 
process in population genetics by an appropriate diffusion process by introducing 
a new time scaling. For approximating methods and applicability of diffusion 
approximations, see [3], [11] and cited therein. A general stochastic model may 
be obtained by combining these diffusion models. We will deal with a diffusion 
process D = [X(t) : t;;::: 0, Px : x E I] that is the diffusion model with random 
genetic drift and stochastic selection, where I is the interval with end points ° and 
1. Further we introduce two deterministic factors of mutation and selection in this 
diffusion model. 

It is known that the generator of the diffusion process D is given by 

1 d 2 d 
L = 2a(x) dx2 + b(x) dx' 

(6.1) 
1 2 2 

a(x) = 2Nx(1 - x) + yx (1 - x) , 

y 
b(x) = v - (u + v)x + 2px(l - x)(1 - 2x) 

+ {(SII - 2S12 + S22)X + S12 - S22}x(1 - x) 

(see [10]). The meaning of each variable and parameter are as follows. The 
variable x is the gene frequency of A I (0::;; x ::;; 1). The parameter N is the 
population size (1 ::;; N ::;; co). Note that the case that N = co corresponds to 
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that without random genetic drift. Three genotypes AlA) A)A2 and A2A2 have 
fitnesses 1 + Wn + Sl), 1 + ~ Wn + SI2 and 1 + S22 in the original discrete time 
model. Here Wn is the stochastic part of selection parameters at the n-th gen
eration, and Sll) SI2 and S22 are the deterministic part of selection parameters 
(min { Wn + SII , ~ Wn + S 12, S22} ~ -1). It is assumed that stochastic selection has 
no dominance. We assume that {wn : 0, ±1, ±2, ... } is a discrete time stationary 
process with the mean E[wn] = O. The parameter y = I:~-oo E[Wowkl/4 is a 
degree of autocorrelated stochastic selection (0 ::; y < co). The parameter p de
notes the type of stochastic selection (p ~ 1). The case that p = 1 with N < co is 
called the TIM model ([28]) and the case that p > 1 with N = co is called the 
SAS-CFF model ([9]). The mutation rate per generation from AI to A2 [resp. 
from A2 to Ad is denoted by u [resp. v] (u, v ~ 0). 

In this section, we consider the one-dimensional diffusion process D = 

[X(t) : t ~ 0, Px : X E (0,1)] with the generator defined by (6.1) and X(O) = x. Let 
us fix a point Co E (0, 1) arbitrarily and set 

s(x) = 1: so(Y) dy, m(x) = JX mo(y) dy, 
Co 

(6.2) -I { JXb(Y) } 
so(x) = Co exp -2 Co a(y) dy , 

for 0 < x < 1, where Co is a positive constant. We also set m(x) = -co, x < 0 
and m(x) = co, x> 1. Then the generator L is reduced to !£ = (d/dm)(d/ds) 
which is a generalized diffusion operator defined in Sect. 2, and sand m given by 
(6.2) are the scale function and the speed measure, respectively. The densities So 

and mo can be expressed as follows. If N < co and y = 0, then the densities are 

so(x) = x-4Nv (1 - x)-4Nu exp{ -4N(SI2 - S22)X - 2N(SlI - 2S12 + S22)X2}, 

mo(x) = 4Nx- l (1 - x)-I so(x)-l. 

If N < co and y > 0, then the densities are 
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where [)=(1+2/Ny)1/2. If N=oo and y>O, then the densities are 

so(x) = x-P-2y-l(v-U-S22+S1Z)(1_ x)-p-2y-l(u-v-SU+SIZ) exp[2y-l{u(1 _ x)-l + vx-1}], 

mo(x) = 2y-1x-2 (1 - x)-2so(x)-1. 

We classify the states of the end points ° and 1 in Tables 1 and 2.* We will 
consider the asymptotic conditional distributions and some related asymptotic 
properties of the diffusion process with L given by (6.1). 

Table 1. The state of the end point 0 

18(0)1 Im(O)1 state 

N < 00, v = 0 <00 =00 exit 

N < 00, 0 < 4Nv < 1 <00 <00 regular 

N < 00, 4Nv ~ 1 =00 <00 entrance 

N = 00, v> 0 =00 <00 entrance 

N = 00, v = 0, U < S12 - S22 + y(p - 1)/2 =00 <00 natural 

N=oo, v=O, U=SI2-S22+y(p-I)/2 =00 =00 natural 

N = 00, v = 0, U > S12 - S22 + y(p - 1)/2 <00 = 00 natural 

Table 2. The state of the end point I 

s(l) m(1) state 

N < 00, U = 0 <00 =00 exit 

N < 00, 0 < 4Nu < I <00 <00 regular 

N < 00, 4Nu ~ I =00 <00 entrance 

N = 00, u> 0 =00 <00 entrance 

N = 00, U = 0, v < S12 -Sl1 +y(p-I)/2 =00 <00 natural 

N = 00, U = 0, v = S12 - Sl1 + y(p - 1)/2 = 00 = 00 natural 

N = 00, U = 0, v> S12 - Sl1 + y(p - 1)/2 <00 =00 natural 

*The states of the end points 0 and I in general cases are presented in Appendix (Tables 3 and 4). 
Tables I and 2 are special cases of Tables 3 and 4, respectively. 
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6.1 The Case that N < 00 with 4Nu < 1 or 4Nv < 1 

By Tables 1 and 2, this is the case that at least one of the boundaries is 
regular or exit. It is easy to see that (AI)! [resp. (AIhl is satisfied if 0 < 4Nv < 1 
[resp. 0 < 4Nu < 1], (A3)! [resp. (A3)21 is satisfied if v = 0 [resp. u = 0], and 
(A4)1 [resp. (A4hl is satisfied if 4Nv:::::: 1 [resp. 4Nu:::::: 1]. For E E ~((O, 1)), 
f(x) = lE(x) belongs to :Ie. We apply Theorem 2.1 to find the following 
asymptotic conditional distribution. 

lim PAX(rt) EEl t < ao 1\ al) 
[-HX> 

= l(L l/!.(y)2 dm(y)rIL l/!.(y)2 dm(y), 

(L I/J.(y) dm(y)) -I L I/J.(y) dm(y), 

0< r < 1, 

r = 1. 

If 0.::;; 4Nu < 1 .::;; 4Nv, then s(O) = -00 by Table 1 and hence Px(al < ao) = 
PAal < (0) = 1, and 

PAX(rt) EEl t < ao 1\ al) = PAX(rt) EEl t < al) 

= PAX(rt) EEl t < al < ao), 0 < r'::;; 1. 

If 0 .::;; 4Nv < 1 .::;; 4Nu, then s(l) = 00 by Table 2 and hence PAao < al) = 

PAao < (0) = 1 and PAX(rt) EEl t < al < ao) = O. 
If 0.::;; 4Nu, 4Nv < 1, then -00 < s(O) < s(l) < 00, and 

Px(al < ao) = {s(x) - s(O)}j{s(l) - s(O)}, 

which is the probability that Al fixes in the population before it disappears from 
the popUlation. By putting f(x) = lE(x) in Corollary 2.2, we obtain the following. 

Px(X(rt) EEl t < a! < ao) 

l(L 1/J.(y)2 dm(y)rIL 1/J.(y)2 dm(y), 

- (L l/!.(y){s(y) - s(O)} dm(y) rl L I/J.(y){s(y) - s(O)} dm(y), 

0< r < 1, 

r = 1. 

We consider the special case that N < 00 and y = Sl1 - S12 = S22 - S12 = 0 
(no selection) in the following examples. The generator is given by 

1 d 2 d 
L= 4N x(l-x) dx2 +{v- (u+v)x} dx' 
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The density of scale function is given by so(x) = x-4Nv(1 - x)-4Nu and that of 
speed measure is given by mo(x) = 4Nx4Nv-l(1 _ X)4Nu-I. 

EXAMPLE 6.1. We consider the case that 0 :s; 4Nu, 4Nv < 1. It is easy to see 
that 

( 1 )-1 
PAO"I < 0"0) = 10 y-4Nv(I - y)-4Nu dy 1: y-4Nv(I - y)-4NU dy. 

The probability density function p(t, x, y) has an eigenfunction expansion (see 
[17]). 

p(t,x, y) = (4N)-1{n2 - 4Nv)}-2(xy)I-4Nv{(1 _ x)(1 _ y)}1-4Nu 

co 

x LF(2 - 4N(u + v) + i, 1 - i,2 - 4Nv,x) 
i=1 

x F(2 - 4N(u + v) + i, 1 - i,2 - 4Nv, y){(i - 1)!ni + 1 - 4Nu)}-1 

x {1 - 4N(u + v) + 2i}r(2 - 4N(u + v) + i)n1 - 4Nv + i) 

x exp[-(4N)-li{i + 1 - 4N(u + v)}t], 

where F(cx,fJ, y, x) is the hypergeometric function defined by 

F( fJ )= ny) tncx+n)nfJ+n)xn 
cx, ,y,x ncx)r(fJ) n=O r(y+n) n!' 

The asymptotic conditional distributions are as follows. 

lim PAX(rt) EEl t < O"o!\ 0"1) = f /(1)(r, y) dy, 
HCO E 

lim PAX(rt) EEl t < 0"1 < 0"0) = f j<2)(r, y) dy, 
Hco E 

/(1)(r, y) = /(2)(r, y) 

= {3 - 4N(u + v)}r(3 - 4N(u + v)){r(2 - 4Nv) 

x r(2 - 4Nu)} -ly l-4Nv(1_ y)I-4NU, if 0 < r < 1, 

/(1)(1, y) = 1, 
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Note that this case with u = v = 0 and 7: = 1 coincides with results due to Ewens 

([5], [6]). Also note that, in this case with u = v = 0 and 0 < 7: < 1, /(1)(7:, y) = 
/(2)(7:, y) = 6y(1 - y). 

EXAMPLE 6.2. We consider the case that 0:::; 4Nu < 1 :::; 4Nv. The proba

bility density function p(t,x,y) has an eigenfunction expansion (see [17]). 

p(t,x,y) 

= (4N)-I{f'(4Nv)}-2{(1 - x)(1 _ y)}I-4Nu 

co 

x 2:F(4N(v - u) + i, 1 - i, 4Nv, x)F(4N(v - u) + i, 1 - i, 4Nv, y) 
i=1 

x {(i - I)Jr(i + I)} -1{4N(v - u) + 2i - I}f'(4N(v - u) + i)r(4Nv + i-I) 

x exp[-(4N)-I{i2 + (4N(v - u) - I)i + 4Nu(1 - 4Nv)}t]. 

The asymptotic conditional distributions are as follows. 

lim Px(X(7:t) EEl t < 0"0 /\ 0"1) = lim Px(X(7:t) EEl t < 0"1 < 0"0) 
(-Jrct:) t-+oo 

= lim Px(X(7:t) EEl t < O"I) = J /(1)(7:, y) dy, 
NCO E 

/(1)(7:, y) = {4N(v - u) + I}f'(4N(v - u) + I){r(2 - 4Nu)f'(4Nv)}-1 

x y4NV-I(I - y)I-4Nu, if 0 < 7: < I, 

/(1)(1, y) = 4Nvy4Nv-l. 

6.2 The Case that Is(t')1 = 00, Im(t')1 < 00, t = 0,1 

Note that this is the case that there exists the stationary distribution of X(t). 
By Tables 1 and 2 this is the case that one of the following conditions is valid. 

(6.3) N < 00, 4Nu;::: I, 4Nv;::: 1. 

(6.4) N= 00, u> 0, v> O. 

(6.5) N= w, 812 - 8 22 + y(p - 1)/2 > u > v = O. 

(6.6) N= w, 8 12 - 8 11 + y(p - 1)/2> v> u = O. 

(6.7) N= w, 8 12 + y(p - 1)/2 > max{811 , 822}, u = v = o. 
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Note that y ~ 0 in (6.3), and y> 0 in (6.4), (6.5), (6.6) and (6.7). Let {<;n} and 
{17n} be sequences such that 

(6.8) ~n < 17n (n E N), ~n! 0 and 17n T 1 as n -7 00, 

(6.9) 

Putting 17n =s-I(Cls(~n)I), nEN, with some positive number C leads us to (6.9) 
with s* = C-1, where S-1 denotes the inverse function of s. Thus we may assume 
that s* E (0,00). In view of Theorem 2.8, we obtain the following asymptotic 
conditional distributions. Let 0 < , :s;; 1, 0 < x < 1 and E E .16'((0, 1)). Then 

lim lim PxCX(,t) EEl t < eTc; /\ eT1J ) 
f-+oo n-+oo n n 

= lim lim Px(X(,t) EEl t < eT1J < eTc; ) 
t-+oo n-+co n n 

= lim lim Px(X(,t) EEl t < eT1J < eTc;) 
n-HX) t-+oo n n 

1 -1 

= (fa mo(y) dY) Ie mo(y) dy. 

Note that the last quantity of the above formulas is the stationary distribution of 
X(t). Note also that the double limits (n -7 00 and t -7 (0) are commutable for 
these cases. 

6.3 The Case that Is(t)1 = 00, Im(t)1 = 00, t = 0 or 1 

By Tables 1 and 2 this is the case that N = 00, y > 0, and one of the 
following conditions is satisfied. 

(6.10) S12 - S11 + yep - 1)/2 = v > u = o. 

(6.11) S12 - S22 + yep - 1)/2 = U > v = o. 

(6.12) S22 < S11 = S12 + yep - 1)/2, U = v = o. 

(6.13) S11 < S22 = S12 + yep - 1)/2, U = v = o. 

( 6.14) S11 = S22 = S12 + yep - 1)/2, U = v = o. 

(6.15) Sl1 > S22 = S12 + yep - 1)/2, u = v = o. 

( 6.16) S22 > S11 = S12 + yep - 1)/2, U = v = o. 
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Let {~n} and {ryn} be sequences satisfying (6.8) and (6.9). We may assume that 
s* E (0, (0) in above cases except (6.15) and (6.16). Also s* = 00 in case (6.15), 
and s* = ° in case (6.16). We set m(x) = m(s-l(x)). Then m(x) is a continuous 
increasing function on (s(O),s(l)). Let 2 = (djdm)(djdS) with s(x) = x, which is 
a generalized diffusion operator. Let p(t, x, y) be the elementary solution of the 
generalized diffusion equation (1.2) with .2 replaced by 2. Then it holds that 

p(t,s(x),s(y)) =p(t,x,y), X,YE (0,1). 

The double limits (n -7 00 and t -7 (0) are not commutable in these cases as it is 
shown in the following. 

We now consider the case (6.10) or (6.12). We see that 

s(O) = -00, s(1) = 00, 

lim m(x) > -00, lim x-1m(x) = lim s(x)-Im(x) = 2y-le-4Vy-l. 
X->-CX) X->CX) xTJ 

Denoting by kl (t) and k2(t) the inverse functions of the mapping [0,(0) :3 X 1---7 

-xm( -x) and [0,(0):3 X 1---7 xm(x), respectively, we find that 

( 6.17) 

Thus it follows from Theorem 2.9 that 

(6.18) lim t l / 2 lim PAX( rt) EEl t < {J~ 1\ (JIJ ) 
(-H:J:> n~oo 11 n 

= lim t1/ 2 lim Px{X(rt) EEl t < {JIJ < (Ji;J 
t-+co n-+oo " 

= yl/2(2nr)-1/2e2vy- 1 t mo(y) dy, 

for 0< r ~ 1, ° < x < 1 and E E .%'((0, 1)) satisfying JEmO(y) dy < 00. In the 
cases (6.11) and (6.13), we similarly obtain (6.18) where we have to replace v by 
u in the last formula. 

Let us consider the case (6.14). We see that s(O) = -00, s(1) = 00, and 

Hence (6.17) holds with () = 1 in place of () = 0. By using Theorem 2.9 we obtain 
that 
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lim t l /2 lim Px(X( rt) EEl t < al; /\ art ) 
t-H::tJ n-HY;) n n 

= lim t l / 2 lim Px(X(rt) EEl t < a., < al; ) 
t-+ro n-+co 'In n 

= yl/2(8nr)-1/2 Ie mo(y) dy, 

for 0 < r S 1, 0 < x < 1 and E E {!l((0, 1)) satisfying IE mo(y) dy < 00. 

Let us assume (6.15). Then it holds that s(O) = -00, s(l) < 00, 

limx-+ oo Ix-1m(-x) I = 2y-l, limxrds(l) - s(x)} (1 - x)-2(SIl-S22)/Y = y/2(SIl - S22), 
and limxTl m(x)(l - x)2(SII-S22)/Y = l/(Sll - S22). Therefore 

lim Ix2m( -x)t/m(s(l) - l/x)1 = (2fy) lim{s(l) - sex)} -3 /m(x) = 00. 
x-+oo xTl 

By exchanging the role of It and lz in Theorem 2.10, we obtain that 

lim t3/ 2 lim PxCX(rt) EEl t < al; /\ art ) 
t-+oo n-+co n n 

= lim t3/ 2 lim Px(X(rt) EEl t < art < al; ) 
/-+00 n-+co n n 

= yl/2(8n)-1/2r-3/2{s(l) - sex)} Ie {s(l) - s(y)}mo(y) dy, 

for 0 < r S 1, 0 < x < 1 and E E {!l((0, 1)) with E c (0,1). 
Let us assume (6.16). Then it holds that Is(O)1 < 00, s(l) = 00, 

limx-+oo m(x)/x = 2fy, limx!o{s(x) - s(O)}x-q = l/q and limx!olm(x)lxq = 2/qy, 
where q = 1 - p - 2(S12 - S22)fy > o. Therefore 

lim Ix2m(x)/m(s(0) + l/x)1 = 2y-l lim{s(x) - s(O)} -3 /lm(x)1 = 00. 
x--+oo x!o 

By means of Theorem 2.10, we obtain that 

lim t3/ 2 lim PxCX( rt) EEl t < al; /\ art ) 
t-H':;) n-+ co n n 

= yl/2(8n)-1/2r-3/2{s(x) - s(O)} Ie {s(y) - s(O)}mo(y) dy, 

forO<rsl, O<x<1 andEE{!l((O,l)) with Ec(O,l). 
Next, we consider the other order of limits. In cases (6.10) to (6.14), in view 

of Theorem 2.9, there exist subsequences gn} and {l1n} (denoted by the same 
symbols) and positive constants J.l~j), j = 1,2,3, such that 
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1~ Vn E,~ Px(X( 7:t) EEl t < O"i;n /\ O"1fJ 

= lim Vn lim PAX(7:t) EEl t < 0"1f < O"i; ) = p.il) J mo(y) dy, 0 < 7: < I, 
_00 HOO nnE 

lim Vn lim Px(X(t) EEl t < O"i; /\ 0"1f ) = p.~2) J mo(y) dy, 
n-+oo /-+00 nnE 

lim Vn lim PxCX(t) EEl t < 0"1f < O"i; ) = p.i3) J mo(y) dy, 
n-+oo /-+00 nnE 

for 0 < x < 1 and E E ~((o, 1)) satisfying JEmO(y) dy < 00, where Vn = 

f%;mo(y)dy. We note that p.ij ) , j=l,2,3 o are not necessarily the same. For 

example, let us consider the case that u = v = Sl1 - S12 = S22 - S12 = P - 1 = o. 
Then sex) and m(x) defined by (6.2) reduce to 

sex) = 10g{x/(1 - x)}, m(x) = 2y-l 10g{x/(1 - x)}. 

Putting 'In =s-I(Cls(c;n)l), nEN, implies (6.9) with s. = C-1, where C is a pos
itive number. It is easy to see that p.~l) = 2, p.~2) = 2-1n, p.i3) = (1 + C)-ln. 

By applying Theorem 2.6, in cases (6.15) and (6.16), we see that there are 

subsequences gn}, {'In} (denoted by the same symbols), and sequences of positive 
numbers {V~j)}, j = 1,2,3, and a positive continuous function tfi. satisfying (2.7) 

with A. = 0 and tfi.(co) = 1 such that 

(6.19) 1~~ V~l) t~ Px(X(7:t) EEl t < O"i;n /\ O""J 

= lim V~l) lim PxCX(7:t) EEl t < 0"" < O"i; ) 
n-+OO 1-+00 n n 

= t tfi.(y)2mo (Y) dy, 0 < 7: < I, 

(6.20) 1~~ VP) t~ PxCX(t) EEl t < O"i;n /\ O"1fJ = t tfiAy)mo(Y) dy, 

(6.21) 1~~ VP) t~~ Px(X(t) EEl t < O""n < O"i;n) 

= {t tfi.(y){s(y) - s(O)}mo(y) dy, Is(O)1 < 00, 

t Vt.(y)mo(Y) dy, Is(O)1 = 00, 

for 0 < x < 1 and E E ~((O, 1)) with E c: (0,1). 
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6.4 Other Cases 

Let us consider the case that N = 00, y> 0 and one of the following con
ditions is satisfied 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

S12 - Sl1 + y(p - 1)/2 < v, v> u = O. 

S12 - S22 + y(p - 1)/2 < u, u> v = O. 

S12+y(p-l)/2<min{Sl1,S22}, u=v=O. 

Sl1 > S12 + y(p - 1)/2 > S22, U = V = o. 
811 < S12 + y(p - 1)/2 < S22, U = V = o. 

We should notice that A* > 0 in these cases by means of [18, Theorem 3). Since 
the end points are entrance or natural in these cases, Px(ao /\ al = (0) = I, 

0< x < 1. We note that 18(0)1 < 00 in cases (6.23), (6.24) and (6.26), 18(0)1 = 00 

in cases (6.22) and (6.25). By virtue of Theorem 2.6, we see that there are 
subsequences {en}, {71n} (denoted by the same symbols), and sequences of positive 
numbers {V~j)}, j = 1,2,3, and a positive continuous function 1/1* satisfying (2.7) 

with A* > 0 and I/I*(co) = I, for which (6.19), (6.20) and (6.21) are satisfied. In 
these cases we can only show that 

lim eJ.·lp*(t, x, y) = 0, x, Y E I. 
1--+ OCJ 

Therefore we can not obtain the asymptotic behavior of 1imn--+ OCJ Px(X(ot) EEl t < 
aen /\ a'lJ and limn--+ OCJ Px(X( ot) EEl t < a'ln < aeJ as t -+ 00. 

Appendix 

Let D = [X(t) : t ~ O,Px : X E (0,1)) be the diffusion process with the gen
erator 

1 d 2 d 
L = 2a(x) dx2 + b(x) dx' 

where a(x),b(x)EC((O,I)) and a(x) is positive on (0,1). Let us fix a point 
Co E (0, 1) arbitrarily and set 

80 (X) = exp { -21:. ~~~~ dY}, mo(x) = a~) exp{21:. ~~~~ dY}, 

s(x) = JX so(y) dy, m(x) = JX mo(y) dy. 
~ ~ 
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We classify the state of the end points ° and -1 according to the asymptotic 
behavior of a and b near the end points. We set the following. 

ASSUMPTION. (i) For some real numbers p and q there exist the limits 

. a (x) . a(x) 
ao = lun - E (0,00), al = lun (1 )q E (0,00). 

~ ~ 41 -x 

(ii) If b =1= 0, then for some real numbers f.1. and v there exist the limits 

_ b(x) . b(x) 
bo = lun - E R\{O}, bi = lun (1 r E R\{O}. 

x!O Xll xTI - x 

(ii-I) If f.1. - P + 1 = 0, and one of 

p = 2, bo/ao = 1/2, bo/ao = (p - 1)/2, 

is satisfied, then there exists a real number Ao such that 

. Ib(X) bo 1 I lun sup ----·--Ao =0. 
e!O O<x<e a(x) ao x 

(ii-2) If v - q + 1 = 0, and one of 

q = 2, bl/al = -1/2, bI/al = -(q - 1)/2, 

is satisfied, then there exists a real number Al such that 

. Ib(X) bill bm sup ---·---AI =0. 
elO l-t<x<1 a(x) al 1 - x 

(ii-3) If f.1. - P + 1 < 0, then a and b are differentiable near the end point 0, and 

satisfy lim(a(x)/b(x))' = 0. 
x!O 

(ii-4) If v - q + 1 < 0, then a and b are differentiable near the end point 1, and 

satisfy lim(a(x)/b(x))' = 0. 
xTi 

Under the Assumption we obtain Tables 3 and 4. It follows from the def
inition of the classification of boundary that 

Is(t)1 < 00, Im(t)1 < 00 if the end point t is regular, 

Is(t)1 < 00, Im(t)1 = 00 if the end point t is exit, 
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Is(t)1 = 00, Im(t) I < 00 if the end point t is entrace, 

Is(t)1 + Im(t)1 = 00 if the end point t is natural, 

where t = 0 or 1. Therefore it is quite easy to see the results on the cases CD, @, 
®, @, @ on both tables. In order to obtain those on the other cases, we have to 
observe the convergence or the divergence of J(t) and J(t) for the functions J 
and J defined in Sect. 2. After a tedious calculation, we obtain results on all cases 
in Tables 3 and 4. 

Table 3. The state of the end point 0 

Is(O)1 Im(O)1 state 

p<I <00 <00 regular <D 
b=O I:::;p<2 <00 =00 exit @ 

p~2 <00 =00 natural ® 

p<I <00 <00 regular ® 

1:::; p < p + 1, p < 2 <00 =00 exit (i) 

I :::;p<p+l, p~2 <00 =00 natural ® 

p=p+l, p<2, 2bo/ao:::;p-1 <00 = 00 exit (j) 

p=p+l, p<2, p-l <2bo/ao< I <00 <00 regular ® 

p=p+l, p<2, 2bo/ao~1 =00 <00 entrance ® 

p=p+I=2,2bo/ao<I <00 =00 natural @J 

b#-O p=p+I=2, 2bo/ao=1 =00 =00 natural @ 

p=p+I=2,2bo/ao>I =00 <00 natural @ 

p = p + I, p > 2, 2bo/ao < 1 <00 =00 natural @ 

p = p + I, p > 2, 1:::; 2bo/ao :::; p - 1 =00 = 00 natural @> 

p=p+l, p>2, 2bo/ao>p-I =00 <00 natural @ 

p>p+I, bo <0, p< 1 <00 =00 exit @ 

p>p+l,bo<O,p~l <00 =00 natural @ 

p > p + I, bo > 0, p < 1 =00 <00 entrance @ 

p > p+ 1, bo > 0, p ~ 1 = 00 <00 natural @ 
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Table 4. The state of the end point 1 

sCI) mel) state 

q < I <00 <00 regular CD 

b=O 15.q<2 <00 =00 exit ® 

q:::.2 <00 =00 natural ® 

q<1 <00 <00 regular @) 

15.q<v+I, q<2 <00 =00 exit (2) 

15.q<v+l, q:::.2 <00 =00 natural @ 

q=v+I, q<2, 2bJ/a, 5.-1 =00 <00 entrance (j) 

q = v + 1, q < 2, -1 < 2b,/a, < -(q - 1) <00 <00 regular ® 

q = v + 1, q < 2, 2b,/a, :::. -(q - 1) <00 =00 exit ® 

q=v+l=2, 2bJ/a, <-1 =00 <00 natural @ 

bi'O q = v + 1 = 2, 2bJ/a, = -1 =00 =00 natural @ 

q=v+l=2, 2bJ/a, >-1 <00 =00 natural @ 

q = v + 1, q> 2, 2bJ/a, < -(q - 1) =00 <00 natural @ 

q=v+l, q>2, -(q-l)5.2bJ/a, 5.-1 =00 =00 natural @) 

q=v+I, q>2, 2bJ/a, >-1 <00 =00 natural @ 

q> v+ 1, b, > 0, v < 1 <00 =00 exit @ 

q> v + 1, b, > 0, v:::. 1 <00 =00 natural @ 

q> v + 1, b, < 0, v < 1 =00 <00 entrance @) 

q> v + 1, b, < 0, v:::. 1 =00 <00 natural @) 
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