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SMOOTHLY SYMMETRIZABLE COMPLEX SYSTEMS 
AND THE REAL REDUCED DIMENSION 

By 

Tatsuo NISIDTANI and Jean VAILLANT 

1 Introduction 

Let L be a first order system 

n 

L(x, D) = 2: Aj{x)Dj 

j=1 

where Al = I is the identity matrix of order m and A;(x) are m x m complex 
valued smooth matrix functions. In this note we continue to study the question 
when we can smoothly symmetrize L(x, D). In particular we discuss about the 
question whether we can smoothly reduce L(x, D) to a hermitian system if 
L(x, D), at every frozen x, is similar to hermitian system as a constant coefficient 
system. In [2], [3] the same question for real systems was studied. Let L(x, e) be 
the symbol of L(x,D): Let us denote 

L(x, e) = (ej(x, e)) 

which is a m x m complex valued matrix. We set 

d(L(x, .)) = dimspanR{Re ej(x, '),Im ej(x,.)} 

which is called the real reduced dimension of L at x. 

Our aim in this note is to prove 

THEOREM 1.1. Let m 2': 2. Assume that at every x near x there exists S(x) 
which is possibly non smooth in x such that S(x) -I L(x, e)S(x) is hermitian for 

every e and the real reduced dimension of L(x,') 2': m2 - m + 2. Then there is a 
smooth T(x) defined near x such that 

T(x)-I L(x, e)T(x) 

is hermitian for any e and for any x near x. 

Received October 14, 2004. 



260 Tatsuo NISIDTANI and Jean VAILLANT 

REMARK. It is clear from the proof that e = (e I, ... , en) is not necessary to 
be the covariab1es of x = (XI, ... , xn ) and actually we prove the assertion for 
2:}=1 Aj(y)ej . Moreover T(Y) can be chosen as 'smooth as Aj(y) which is also 
clear from the proof. This remark is available for applications of the result to 
quasi-linear systems 2:;=1 Aj(x, u)Dju. 

In a series of papers [4], [5] the second author proved that if L(e) is 
diagonalizable with real eigenvalues for every e and the real reduced dimension 
deL) ~ m2 - 2 and m ~ 3 then there exists a constant matrix S such that 
S-I L(e)S is hermitian for every e. Combining the above theorem with this result 
we obtain 

THEoREM 1.2. Let m ~ 3. Assume that L(x, e) is diagonalizable with real 
eigenvalues for every X near x, every e and the real reduced dimension d(L(x, .)) ~ 
m2 - 2 for every x near x. Then L(x, e) is smoothly symmetrizable near x and 
hence L(x,D) is strongly hyperbolic near x. 

PROOF. If m ~ 4 and hence m2 - 2 ~ m2 - m + 2 the proof follows from 
Theorem 1.1. When m = 3 we will give a proof in §4. 0 

REMARK. When m = 2 then Theorem 1.2 fails (see for example [6]). 

2 Lemma 

In this section we write ej(x,e) = ¢j(x,e) + Ht/lj(x,e). Considering 
S(x)-I L(x, e)S(x) we may assume that L(x, e) is hermitian for every e which will 
be assumed throughout the paper. Thus we have 

¢j(x,.) = ¢{ (x, .), t/lj(x,.) = -t/l{ (x, .), t/lf(x, .) = o. 

Let ¢j(x, .), (i,j) E MR, t/lj(x, .), (i,j) E MI be a maxima11inearly independent set 
in {¢j(x, .), t/lj(x,.) Ii> j}. We add (i, i) to MR and denote by MR thus obtained 
set so that 

(2.1) ¢j(x, .), (i,j) E MR, t/lj(x, .), (i,j) E MI 

is a maximal linearly independent set in {¢J(x, .), i ~ j, t/lj(x, .), i > j}. Let us 
define the index set K: 

K = {(i,j) I i ~ j, (i,j) ¢ MR n MI} 
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and denote by IKI the cardinal number of K. We denote 

and MI , K are defined in the same way. 
For 1 ~ p ~ m we define n(p) by 

n(p) = I{i I (p, i) ¢ MR}I + I{i I (p, i) ¢ MI}I 

that is, the number of t/lf(x, .), ifJf(x,.) on the p-th row which are linear com­
binations of (2.1). From the assumption we have 

m 

(2.2) 2:n(p) ~ 2(m - 2). 
p=! 

Assume that K contains r ~ 0 diagonal entries (i, i) then it is clear that 

m 

(2.3) 2:n(p) ~ 2(m - 2) - r. 
p=1 

We start with 

LEMMA 2.1. Assume that L(x,·) is hermitian and K contains no diagonal 

entry and 

(2.4) d(L(x,·)) ~ m2 - m + 1. 

Let H(x) = (hJ(x) + V-lgJ(x)) be a positive definite hermitian matrix such that 

(2.5) L(x, ()H(x) = H(x)L(x, () *, 'V( 

holds for every x near x. Then H(x)jh;;:(x) is smooth near x. 

PROOF. Since h;;:(x) > 0 then H(x)/h;;:(x) is again positive definite and 
verifies (2.5). Denoting H(x)jh;;:(x) by H(x) again let us consider the real and 
the imaginary part of the (i, j)-th entry, i < j, of the equality (2.5): 

(2.6) 

m m m m 

(2.7) '" ",i k + '" .I,ihk + '" hi .IJ '" i ",j 0 ~'I'kgj ~'I'k j ~ k'l'k - ~gk'l'k = . 
k=1 k=! k=! k=! 
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Let us put 

H(x) = (hi (x), h~(x), . .. ,h~=t(x), hi (x), gi (x), . .. ,h~(x), g~(x), 

hi(x), gi(x), . .. , h~-1 (x), g~-1 (x)). 

Then (2.6) and (2.7) with 1::; i < j ::; m yield m(m - 1) equations with 
(m + 1)(m - 1) unknowns H(x): 

(2.8) G(x, ~)H(x) = F(x, ~). 

Recalling that ¢>;(.x, .), 1 ::; i::; m are linearly independent by the assumption we 
can choose C ERn so that 

This gives that 

¢>f(x,c) - ¢>j(x,C) ,., 0, i > j 

<ftJ(x,C) = 0, (i,j) E MR, i > j 

l/IJ(x,C) = 0, (i,j) E MI, i> j. 

¢>J(x, C) = 0, l/IJ(x, C) = 0, for all i > j 

since ¢>J(x, .), (i,j) rf:. M R , l/IJ(x, .), (i,j) rf:. M I , i> j are linear combinations of 
¢>j(x, .), (i,j) E M R , l/Ij(x, .), (i,j) E M I , i > j. In (2.8) choosing· ~ = C we have 

(2.9) G(x, C)H(x) = F(x, ~~). 

Here G(x, C) has the form 

G(x,C) = [0 D] 

where D is a non singular diagonal matrix of order m(m - 1) and 0 is the 
m(m - 1) x (m - 1) zero matrix. Let N(x,~) be the submatrix of G(x,~) con­
sisting of m(m - 1) rows and the first m - 1 columns. We show that with a 
suitable C· one has 

(2.10) rank N(x, CO) = m - 1 

so that we can find il,i2, ... ,im-l such that the submatrix N(x), consisting of 
m - 1 columns and il, ... , im- 1-th rows of N(x, ~.**), is non singular at x = x. 
We pick up these il,' .. ' im-I-th equations from (2.8) with ~ = C* and add to 
(2.9) to get 

(2.11) G(x)H(x) = F(x) 
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where 

G(x) = [ .~. ~* .. J. 
N(x) 

Then noting det G(x) #- ° and hence det G(x) #- ° near x we can conclude from 
(2.11) that H(x) is smooth near X. This proves the assertion since gf(x) = ° and 
h::;(x) = 1. 

We now show (2.10) proving that there is c; such that Ker N(x, e) = {a}. 
Study 

N(x, c;) ( ~) ) = N(x, c;)y = ° 
Yn1-1 

which is 

(2.12) { ¢jYi - ¢;Yi = 0, tf;JYi + tf;{Yi = 0, 1::;, i < j ::;, m - 1 

-¢'('Yi = 0, tf;'('Yi = 0, 1::;, i ::;, m - 1. 

Consider ¢;'(X, .), tf;'('(x, .), 1 ::;, i ::;, m - 1. Assume that 

(2.13) 

(2.14) 

"',111 (x-, .)2 + .1',n1(X-, .)2 == 0, . .. . If' If' l=l),12,···,lp, 

"',n1(x-, .)2 + .1',n1(X-, .)2 -± 0, . " . If' If' 'F l=]I,]2'''',]q 

where q = m - 1 - p. If p = ° then choosing c; so that ¢'(' (x, c;)2 + tf;'('(x, c;)2 #- ° 
for i = 1, ... ,m -1 we conclude that Y = ° by (2.12). Let p ~ 1. For s = 1, ... ,q 

we set 

_ I { . -/.. . I ",is ( - ) 2 .I,is (- ) 2 - o} I Vs - I -r]s If'i x,' + If'i x,' = . 

Then from the assumption it follows that 

q 

4p + 2 L Vs ::;, 2(m - 1) 
s=1 

which shows that 

q 

L Vs ::;, -m + 1 + 2q < q. 
s=1 
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Therefore there is t such that VI = 0. We now choose e so that 

rft,!,(x,e)2+t/t,!,(x,e)2 #0, i=h,h, ... ,jq, 

rft{'(x,.e) 2 + t/t{'(x,e)2 # 0, i # k 

This together with (2.12) proves that Yj; = 0, i = 1,2, ... , q, Yi = 0, i # jt and 
hence Y = 0. This concludes the proof. D 

A blocking of L and the corresponding blocking of H gives similar equalities 
as (2.5). We apply Lemma 2.1 to thus obtained equalities. To do so we introduce 

DEFINITION. We say that K is confined on {PI, ... ,p.d if for every i = 

I, ... ,t we have 

If n(pj) = ° for j = 1, ... , t then, by definition, K is confined on 
{PI, .. "Pt}. If K is confined on {I,2, ... ,t} then rftj(x,.), t/tj(x,.), 1 ~i~t, 
t + 1 ~ j are linearly independent. 

For any permutation a on {I,2, ... ,m} we define Pa to be the matrix whose 
entries are zero except for (j, a(j))-th entry which is 1 for j = 1, ... , m. Note that 
Pa is an orthogonal matrix. Let La(x,e) = p;I L(x, e)Pa and Ha(x) = p;I H(x)Pa 
then La(x, e) and Ha(x) verify (2.5). Moreover since L(x,·) is hermitian we see 
with La = (;;} + R~}) that 

span{;;j(x, .), ~}(x, .), i > j} = span{rftj(x, .), t/t}(x, .), i > j}. 

With 

M: = {(a(i),a(j)) I (i,j) E MR}, M;, = {(a(i),a(j)) I (i,j) E MI} 

we set 

M R {(") MY R· '} a = l, } E a' l ~ } , M I {(") MY I· '} a = l, } E a' l > } 

then it is clear that ;;}, (i,j) E M:, ~}, (i,j) EM; is a maximal linearly inde­
pendent set in {¢}, i ~ j, ~}, i > j}. It is also clear that 

{(i,j) I (i,j) ¢ M: n M;,} = ((a(i) , a(j)) I (i, j) E K} = Ka. 

Note that if K is confined on {PI, ... , Pt} then Ka is confined on {a(pJ), ... , 
a(pt)} and we have 

na(P) = n(p), na(P) = I{i I (p, i) ¢ M:}I + I{i I (p, i) ¢ M;'}I· 
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Our aim in this section is to prove: 

LEMMA 2.2. Assume that K is confined on {PI,P2, ... ,Ft}; (t;;:: 2) where 
(Pi, Pi) ¢ K and 

(2.15) 
( 

I:n(pj) :::;; 2(t - 1). 
j=l 

Assume that L(x,·) is hermitian. Let H(x) be a positive definite hermitian matrix 
such that (2.5) holds for every x near x. Then H(x)jh%(x) is smooth near x for 
some p. 

PROOF. As observed above, considering P;lL(x,I;)Pu with a suitable per­
mutation matrix P u we may assume that K is confined on {I, ... , t} and 
(j,j) ¢ K for j = 1, ... ,t. Let us write 

(2.16) L(x, 1;) = (LIl (x, 1;) Ll2Cx, 1;)) 
L21 (x, 1;) L22(X, 1;) 

where Lll (x, 1;) is the txt submatrix consisting of the first t rows and the first t 
columns of L(x,I;). Let us write 

(2.17) H(x) = (Hll(X) Hl2CX)) 
H21 (x) H22(X) 

where the blocking corresponds to that of (2.16). Then from (2.5) we have 

(2.18) 

Since 4JJ(x, .), lfJJ(x, .), 1 :::;; i :::;; t, j ~ t + 1 are linearly independent one can solve 
the equation Ll2Cx,l;) = 0 near x so that I;b = (I;il' . .. ,l;iN)' N = U(m - t) are 
linear combinations of the other I;a = (I;jl' ... , I;jM) with coefficients which are 
smooth functions in x near x where I; = (l;a,l;b) is some partition of the variables 
1;. Inserting these I;b into L(x,l;) the equation (2.18) becomes 

L!1(x,l;a)Hll(x) = Hll(x)Lll(x,l;a)*. 

Note that 

d(Lll (x, I;a)) ~ t 2 - (t - 1) 

by assumption. By Lemma 2.1 we conclude that Hll(x)jhf(x) is smooth near x. 
Denoting H(x)jhf(x) by H(x) we have (2.18) again. Since Hll(X) is smooth we 
write 
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(2.19) 

Let 1 ~ p ~ t. Take 1 ~ r ~ t with r =P p (note that t ~ 2). Consider the real 
part of the (p, r)-th entry of (2.19): 

In m m m 

(2.20) L ¢fh: - L l/Ifg: - L ¢khf - L l/Ikgf = smooth. 
k=t+l k=t+l k=t+l k=t+l 

Recall that ¢f(x, .), l/If(x, .), ¢k(x, .), l/Ik(x, .), t + 1 ~ k ~ m are linearly inde­
pendent. Let q ~ t + 1 and solve the equations: 

¢f(x,c;) = 0, l/If(x,c;) = 0, t + 1 ~ k ~ m 

¢k(x, C;) = 0, t + 1 ~ k ~ m, k =P q 

l/I£(x, C;) = 0, t + 1 ~ k ~ m. 

Then we find C;b=(C;ip ... ,C;iN ,), N'=4(m-t)-1 so that C;b are linear com­
binations of the other C;a = (C;jl' ... , C;jM') with coefficients which are smooth in x 
near x. Inserting these C;b into (2.20) we have 

¢;(x, C;a)h:(x) = smooth. 

Since ¢;(x, C;a) =1= 0 we conclude that h:(x) is smooth. The same argument shows 
that g~(x) is smooth. Since 1 ~ p ~ t, q ~ t + 1 are arbitrary we conclude that 
Hdx) is smooth. 

Finally we study H22(X). From (2.5) we have 

Since Hll (x) and Hdx) are smooth and ¢;Cx, .), l/I;(x, .), 1 ~ i ~ t, j ~ t + 1 are 
linearly independent, the same argument proves that H22(X) is smooth and hence 
the result. D 

3 Proof of Theorem 1.1 

Let IK n {diag}1 = r ~ 1. Considering p;;l L(x, C;)Pa with a suitable permu­
tation matrix P a, we may assume that 

Kn{diag} = {(l,l),(2,2), ... ,(r,r)}. 

Let us set 1= {r + 1, ... ,m}. Recall that L(x,.) is hermitian and then 

(q,p)EK if (p,q)EK. 
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A key to the proof of Theorem 1.1 is 

LEMMA 3.1. Assume that 

d(L(x, .)) :2: m2 - m + 2 

and kn {diag} = {(I, 1), ... , (r,r)). Then there exists {}I,h, ... ,}q} c I such that 
k is confined on {jl, ... ,}q} and 

q 

(3.1) Ln(ji) ~ 2(q - 1). 
i=1 

PROOF. Let us set II = I. If there is no (i,}), i E II, } ~ r belonging to k 
then k is confined on II and 

Ln(j) ~ 2(m - 2) - r - r = 2(1111- 2). 
jell 

Hence II is a desired index set. If not there exists (i,}) 6k with i E II, }:5: r. 
Considering r;;1 L(x, f,,)P (j with a suitable permutation (J on II we may assume 
that (r + I,}) E k with } ~ r. With h = {r + 2, ... ,m} note that 

(3.2) Ln(j) ~ 2(m - 2) - r - (r + 2) = 2(1121- 2) 
jeh 

because we have L:je{I •...• r.r+l} n(j) :2: r + 2. If no (i, i), i E h } ~ r + 1 belongs 
to k then k is confined on h and hence h is a desired index set thanks to (3.2). 
Otherwise considering P;; I L( x, f,,)P (j with a suitable ·permutation (J on h which 
is identity on {I, ... , r, r + I}, we may assume that (r + 2,}) Ek with.} ~ r + 1. 
Note again with 13 = {r + 3, ... , m} that 

Ln(j) ~ 2(1131- 2). 
jeh 

Repeating this argument either we find a desired index set or arrive at the case 

L n(j) = 0 
je{m-k •... )m} 

with some k :2: 2. In this case k is confined on {m - k, ... , m}. This ends the 
proof. D 
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PROOF OF THEOREM 1.1. By the assumption for any x there is a S(x) such 

that 

S(X)-I L(x, ~)S(x) 

is hermitian for any ~. Taking S(x) -I L(x, ~)S(x) instead of L(x,~) we may 

assume that L(x,~) is hermitian for every ~. Let us set 

H(x) = S(x)S(x) * 

which is positive definite hermitian matrix and satisfies 

L(x,~)H(x) = H(x)L(x,~)*. 

If IKn {diag}I = 0 then we can apply Lemma 2.1 to conclude that H(x)jh:;'(x) is 

smooth near x since m2 - m + 2 ;;:: m2 - m + 1. Let IK n {diag} I ;;:: 1. Then one 

can apply Lemma 3.1 and Lemma 2.2 to conclude that H(x) = H(x)jh;(x) IS 

smooth near x with some p. Then T(x) = H(x) 1/2 is a desired one. D 

4 Case m = 3 in Theorem 1.2 

In this section we give a proof of Theorem 1.2 for the case m = 3. From the 

assumptions it follows that for every x near x there is a positive definite hermitian 

matrix H(x) such that 

( 4.1) L(x,~)H(x) = H(x)L(x,~)*. 

We assume 

d(L(x, .)) ;;:: m2 - 2 = 7. 

If IKn {diag}I = 0, since m 2 - 2 = m2 - m + 1 = 7, one can apply Lemma 2.1 to 

conclude the assertion. Let us tum to the case IK n {diag}1 = 1. Considering 
P;ILPu with a suitable permutation matrix Pu we may assume that either K = 
{(I, I), (2, I)} or K = {(1, I), (3,2)}. If the latter case occurs then K is confined 

on {2,3} and 

2 

I:n(pj) = 2 ~ 2(2 - 1) 
j=1 

so that one can apply Lemma 2.2 to conclude Theorem 1.1. It remains the former 

case. Considering H(x)jhf(x) instead of H(x) we may assume hi (x) = 1 in (4.1). 

Let us set 



Smoothly symmetrizable complex systems 

h~ t(h2 h3 h2 2 h3 3 h3 3) = 2' 3' l,gl' l,gl' 2,g2 . 
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Taking the real and imaginary part of the (2,1)-th, (3,1)-th and (3,2)-th entry of 
(4.1) in this order we get 

(4.2) G(x, e)h(x) = F(x, e) 

where F(x, e) is a linear function in e with coefficients which are smooth in x. 
At x = x, G(x, e) has the form 

¢1 - 2 ° ¢i - ¢f -tfJi - tfJf ¢~ -tfJ~ ¢l - 3 -tfJj 

tfJi ° tfJi + tfJ I ¢i - ¢I tfJ~ ¢~ tfJj -¢j 

° ¢I - 3 ¢1 -tfJ1 ¢3 ¢1 3 - 1 -tfJ~ - tfJf -¢i -tfJi 

° tfJj tfJ1 ¢1 tfJ~ + tfJf ¢~ - ¢I tfJi -¢i 
¢1 -¢~ ¢i tfJi ¢2 -1 tfJ2 - 1 ¢i - ¢i -tfJi - tfJi 
tfJ1 tfJ~ tfJr ¢3 -1 tfJ; -¢; tfJi + tfJi ¢i -¢i 

From the assumption ¢;(x,.) or tfJ;(x,.) is a linear combination of the other 
¢J(x, .), tfJJ(x, .), i> j. Since the argument is similar we may assume that ¢;(x,·) 
is a linear combination of the others. Take e so that 

tfJ;(x,e) = 0, ¢r(x,e) = 0, tfJf(x,e) = 0, 

¢1(x,e) = 0, tfJ1(x,e) = 0, ¢~(x,e) - ¢i(x,e) = 1. 

Since ¢~(x,e) - ¢I(x,e) # ° or ¢i(x,e) - ¢Ux,e) # 0, without restrictions we 
may assume that 

We pick up the last four equations of (4.2), then the coefficient matrix at x = x is: 

a ° ° ° 
(4.3) 

0 ° a ° ° =[O:EJ. 

° ° 1 ° 
° ° ° 1 

Choosing e so that 

and we pick up the second, third, fifth and sixth equations in (4.2). Thus we have 
8 equations which yield 
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G(x)h(x) = j(x) 

where 

r 
Gl (x) 

G(x) = .~. '~'1' Gl=ll -11 '] 
E 0 -1 

is non singular and j(x) is smooth. Then we can conclude that h(x) is smooth 
near x. 

We finally study the case IK n {diag}1 = 2. As before without restrictions we 
may assume that K= {(2,2),(3,3)}. We first assume that there is <; such that 
rl>j(x, <;) = 0, i > j, V;j(x,~) = 0, i> j and two of 

(4.4) ¢f(x,~)-¢j(x,~), i>j 

are different from zero. In this case the same reasoning as before shows the 
assertion. We then treat the case that no two of (4.4) are different from zero for 
any ~ with ¢j(x, <;) = 0, tf;j(x,~) = 0, i> j. This implies that ¢f(x,.) - ¢j (x, .), 
i> j are linear combinations of {¢j(x, .), tf;j(x, .), i > j}. Take ~ so that 

¢;(x,~) = 0, tf;;(x,<;) = 0, i = 1,2 

and let us denote by G2 the submatrix consisting of the last 4 columns and rows 

of G. With x=-¢~(x,~), y=tf;~(x,~), Ci=¢i(x,<;)-¢i(x,<;), fJ=¢i(x,~)­
¢~(x,~) one has 

° Ci 
-y 
x 

x 

-y 

fJ 

° 
Since Ci, fJ are real linear forms in x, y then there is a ~ such that IG2(x, ~)I -=1= 0. 
The rest of the proof is a repetition of the preceding arguments. 
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