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SPACE-LIKE ISOTHERMIC SURFACES AND 
GRASSMANNIAN SYSTEMS 

By 

Martha P. DUSSAN* 

Abstract. We show that space-like isothennic surfaces in the 
pseudo-riemannian space Rn-i,i are associated to O(n - j + 1,j + 1)/ 
O(n - j,j) x 0(1, I)-system, and that the action of a rational 
map with two simple poles on the space of local solutions of 
O(n - j + I,j + l)/O(n - j,j) x 0(1, I)-system correspond to Rib­
aucour and Darboux transformations to space-like surfaces in R n-i,i. 

1. Introduction 

It is known that there is a connection between the theory of submanifolds 
and the theory of solitons. Some examples are the well-known local corre­
spondence between pseudospherical surface and the solutions of the Sine-Gordon 
equation qx/ = sin q, and the recent reformulation of the theory of isothermic 
surfaces in R 3 within the modem theory of completely integrable (soliton) 
systems, given in [4]. A key point to study this connection is the existence of a 
Lax Pair or a zero curvature representation which may give rise to an action of 
an infinite dimensional group on the space of local solutions of the equation, 
called the "dressing action" in the theory of soliton equations. 

There are several excellent articles where is study that connection, specially in 
a recent work of Temg et al. ([9], [2]) is established a relationship between 
integrable systems and submanifolds geometry. In those articles it is considered 
a new integrable system the U / K -system and study the geometry associated to 
the particular Gm,n = Oem + n)jO(m) x O(n) and G~,n = Oem + n, l)jO(m) x 
O(n, 1 )-system. This study involved to find submanifolds in a certain symmetric 
space whose Gauss-Codazzi-Ricci equations are given by these systems, as well as 

* Author's e-mail: dussan@ime.usp.br 
Key Words: U / K -system, Dressing action, Space-like immersion. 
AMS(2000): 53A05, 35Q51. 
Received September 24, 2004. 
Revised October 17, 2005. 



82 Martha P. DUSSAN 

the geometric transformations associated to the dressing action of certain simple 
elements. 

The UjK-system is defined by Temg in ([9]) as the following PDE: Let U be 
a semi-simple Lie group, (J an involution on U and K the fixed point set of (J. 

Then U j K is a symmetric space. The Lie algebra :% is fixed point set of the 
differential (J* of (J at the identity, in others words, it is the +1 eigenspace of (J*. 

Let & denote the -1 eigenspace of (J •• Then we have I1Jj =:% EB & and 

[:%,:%] c:%, [:%,&] c &, [&,&] c:%. 

Let d be a maximal abelian sub algebra in f!J, a" a2, ... , an a basis for d and 
d1- the orthogonal complement of d in the algebra I1Jj with respect to the Killing 
form <,). The U j K-system is the following first order non-linear PDE for 
v : Rn -4 f!J n d1-

(1) 

where VXj = ::.' It is not difficult to show that v is a solution of the U j K-system if , 
and only if the connection I-form 

(2) 

is fiat for all A E C, if and only if there exists an application E such that 
E-' dE = eA' If eA is fiat for all A E C the eo = Li[ai, vJ dXi is a :%-valued, fiat 
connection and hence there exists g: Rn -4 K such that g-' dg = eo. Suppose 
K = Kl X K2 so we can write g = (g" g2) E K, x K2 . The two new systems given 
by the fiatness of the gauge transformation g, * eA and g2 * e;. are called the 
U j K -system I (II resp.). 

In the study made in ([2]), it was obtained that the submanifolds geometries 
associated to the Gm,n and G~,n-systems, include submanifolds in space forms 
with constant sectional curvatures, submanifolds admitting principal curvature 
coordinates and isothermic surfaces in R n. Moreover, that the dressing action 
of simple elements on the space of solutions of these systems correspond to 
Backlund, Darboux and Ribaucour transformations for submanifolds. 

In this note we are interested in to discuss the geometry of surfaces associated 
to the O(n - j + l,j + l)jO(n - j,j) x 0(1, I)-system as well as the geometric 
transformations corresponding to dressing actions. We show that in this case, the 
space-like isotherrnic surfaces in the pseudo-riemannian space Rn-j,j for any 
signature j are associated to O(n - j + l,j + I)jO(n - j,j) x 0(1, I)-system II, 
and that the Ribaucour and Darboux transformations to space-like surfaces 
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correspond to the action of a rational map with two simples poles. In particular 
we obtain that the space-like 2-tuples in Rn-j,j of type O(Ii 1) are in corre­
spondence with the solutions of the O(n - j + I,j + I)/O(n - j,j) x 0(1,1)­
system II, and that these correspond to an isothermic pair of space-like surfaces 
in Rn-j,j. Some results of this note appeared initially in the research report No. 
60 in 2002, see ([7]). 

We should recall that the topic of isothermic surfaces has been of increasing 
interest to geometers because they can be reformulated within the soliton theory 
([4]), or can be interpreted as the so-called curved fiats in the symmetric space 
0(4,1)/0(3) x 0(1,1) ([3]), and because of the relation between a 2-tuple in R3 
of type 0(1,1) and an isothermic pair ([2]). So motivated by these relations and 
the general results in Rn ([1]), this note pay attention to the space-like isothermic 
surfaces and its relation with integrable systems. Finally, we observe that as in the 
classic situation, space-like minimal surfaces, space-like surfaces with constant 
mean curvature and space-like surfaces of revolution in R2.1, provide examples of 
space-like isothermic surfaces in the Lorenztian space ([8]). 

2. The associated geometry 

First of all, we will find one maximal abelian subalgebra in the subspace &' 
for which we obtain elliptic Gauss equations, which is correct for space-like 
surfaces: 

Let U/K = O(n - j + I,j + I)/O(n - j,j) x 0(1,1), n - F:2:. 2, where 

0(n- j +I,j+I)={XEGL(n+2)lxt (In-j,j 0 )X=(In-j,j O)} 
o hi 0 11,1 ' 

( In-j 0) 
In-j,j = 0 -Ij' 

So, O(n - j + I,j + 1) is the Lie group of linear isomorphisms that leaves the 
following bilinear form on R n+2 invariant: 

(x, Y) = XIYl + X2Y2 + ... + Xn-jYn-j - Xn-j-;!-IYn-j+1 

- .... - XnYn + Xn+1Yn+l - Xn+2Yn+2· 

Let dIt = o(n - j + I,j + 1) be the Lie algebra of U and a: dIt -t dIt be an 
involution defined by a(X) = I;;JXIn,2' Denote by :Yt', &' the +1, -1 eigenspaces 
of a respectively, i.e., 



84 Martha P. DUSSAN 

:ff = { (~I ;2) I Y1 E o(n - j,j), Y2 E 0(1, 1) } = o(n - j,j) x 0(1, I), 

9= {(-I ~tl_" ~)I~EAnx2}' I, Is n },} 

We define the matrices at, a2 E A(n+2)x(n+2), by 

where eij is the elementary (n + 2) x (n + 2) matrix, whose only non-zero entry is 
1 in the ijth place. 

It is easy to see that the subalgebra d = <aI, a2 > is maximal abelian in 9. 
Then using this basis {at,a2}, the U/K-system (1) for this symmetric space is the 
following PDE for 

o ~t 

~2 0 

rn-2, I rn-2,2 

(3) 

We now denote the entries of ~ by: 

The O(n - j + 1,j + 1)/0(n - j,j) x 0(1, I)-system II is the PDE for 
(F, G,B) : R2 -7 gl.(2) x A(n-2)x2 x 0(1,1), where gl.(2) is the set of matrices 
2 x 2 with diagonal elements zero, 

(4) 
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. (COShU SinhU) d 
where the matnx B = (bij) E 0(1,1). Now we take B = sinh U cosh U ,an 
use the fact that 

B-1 dB = ( 0 el dxl + e2 dx2 ), 

el dxl + e2 dX2 0 

to have el = Uxp e2 = UX2 and that O(n - j + I,j + I)jO(n - j,j) x 0(1,1)­
system II becomes in the set of partial differential equations for 

(u, rI, I, rl,2, ... , rn-2, I, rn-2,2): 

{
(ri'2)XI =ri,Iuxl> i= I, ... ,n-2 
(ri,J) X2 = ri,2uX2' i = I, ... ,n - 2 
() () ",n-j-2 ",n-2 
UXI XI + UX2 X2 = - L.d=1 ri,l ri,2 + ui=n-j-I ri,l ri,2' 

(5) 

Next we identify the geometries of space-like surfaces corresponding to the 

O(n - j + I,j + I)jO(n - j,j) x 0(1, I)-system II. We start by defining the space­
like 2-tuples in the pseudo-riemannian space Rn-j,j of type 0(1,1): 

DEFINITION 2.1. Let (!) be a domain in R2 and Xi: (!) -+ Rn-j,j an immersion 

with flat and non-degenerate normal bundle for i = 1,2. (Xl, X2) is called a space­
like 2-tuple in Rn-j,j of type 0(1,1) if: 

(i) The normal plane of Xl (x) is parallel to the normal plane of X2(X) for any 

x E (!), 

(ii) there exists a common parallel normal frame {e3,"" en}, where {ecx};-j 

and {ecx}:_j+1 are space-like and time-like vectors resp. 

(iii) x E (!) is a hyperbolic line of curvature coordinate system with respect to 

{ e3, ... , en} for each Xk such that the fUndamental forms of Xk are: 

h = b~I dXf + b~2 dxi, 

n-2 
Ih = 8k L:(bklgil dXf + bk2gi2 dxi)ei+2, 81 = -82 = I, (6) 

i=I 

for some 0(1, I)-valued map B = (bij) and a At(n_2)x2-valued map G = (gij). 

Our first reslllt, which gives us the relationship between the space-like 2-tuples 

and the solutions of the O(n - j + I,j + I)jO(n - j,j) x 0(1, I)-system II (5), is 

the following: 

THEOREM 2.1. Suppose (u,rI,I,rI,2, ... ,rn-2,I,rn-2,2) is solution of (5) and F, 

B are given by 
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Then: (a) 
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B = (COShU sinh u). 
sinh u cosh u 

( 

0 -(;1 dX2 + (;2 dXl r1.l dxl ... r n-j-2,1 dXl -rn-j-l,l dXl ... -rn-2.1 dXI J 
(;] dX2 - (;2 dXl 0 rl,2 dX2 ... r n-j-2.2 dX2 -rn-j-1.2 dX2 -rn-2,2 dX2 

W = -r],] dx] -r1,2 dX2 0 0 0··· 0 

o 
-rn-2.1 dXl -rn-2,2 dX2 0 0 0 0 0 

is a flat o(n - j,j)-valued connection 1-form. Hence there exists A: R2 .....) 
O(n - j, j) such that 

A-I dA = cu, (8) 

where cu is given by (7). 

(b) A (-dOX I 0 0 
dX2 0 

o 0)1 o 0 B- 1 is exact. So there exists a map 

X : R2 .....) J!1nx2 such that 

o 0 ... 0 0)1 B- 1. 
dX2 0 ... 0 0 

(9) 

(c) Suppose that all the entries of B are non-zero. Let X; : R2 .....) Rn-j,j denote 

the j-th column of X (solution of (9)) and e; denotes the i-th column of A. Then 

(XI ,X2) is a space-like 2-tuple in Rn-j,j of type 0(1,1). In fact, 

(1) el, e2 are space-like tangent vectors to Xl and X2, i.e., the tangent planes 

of XI, X2 are parallel. 

(2) {e3, ... ,en} is a parallel normal frame for XI and X 2, with {e3, ... ,en-j} 

and {en-HI, ... , en} being resp. space-like and time-like vectors. 

(3) the two fundamental forms for the immersions Xk are: 

! II = cosh2 U dx~ + sinh2 u dxi 

III = ~;':}(r;,1 cosh u dXf + r;,2 sinh u dxDe;+2 

Iz = sinh2 u dx[ + cosh2 u dxi 

lIz = - ~;~2(r;,1 sinh u dx[ + r;,2 cosh u dxDe;+2. 

PROOF OF THEOREM 2.1. The proof follows from an argument similar to 

those for Theorem 6.8 or 7.4 in [2]. • 

REMARK 2.1. We observe that, taking a generic b = (bi}) E 0(1,1), Theorem 

(2.1) shows that Ij, IIj are given by (6) and dX; are: 
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dXI = -(bll dXlel + b12 dX2e2) dX2 = (b21 dXlel + b22 dx2e2). 

We also note that Theorem (2.1) can be stated for a generic (F, G, B) solution of 
the system (4). 

Now we have the converse theorem. 

THEOREM 2.2. Let (X1,X2) be a space-like 2-tuple in Rn-j,j of type 0(1,1), 

{e3, ... , en} a common parallel normal frame and (Xl, X2) a common hyperbolic line 
of curvature coordinates for Xl and X2, such that the two fundamental forms h, Ih 
for Xk are given by (6). Set fi} = (b~~Xi if i =j:. j, fii = 0 and F = (/Yhx2' If all 
entries of G are non-zero then (F, G,B) is a solution of (4). 

PROOF. From the definition of space-like 2-tuples in Rn-j,j, we have 

is a dual I-frame for Xk and OJi~) = iTara-2,l dX1, OJ~~ = iTara-2,2 dX2 for each Xk, 
where iTa = 1 if IX = 3, ... ,n - j and iTa = -1 if IX = n - j + 1, ... , n. We observe 
that OJ;:), i = 1,2, IX = 3, ... , n are independent of k. We have the Levi-Civita 

connection I-form for the metric his: 

h f (k) - (bk dx2 .(k) _ (bdxl S' d (k) _ (k) (k) 
were 21 - -b-' )12 - -b-.-· mce OJ IIX - -OJ 12 /\OJ2a 

(k) (k) k2 kl 
-OJ21 /\ OJ la (see appendix), we get 

(bdxl (ra-2,2)xl (bkJ) X2 (r a-2, J) X2 

bk1 ra-2,1 bk2 ra-2, 2 

(k) (k) . (k) _ (I) _ (bll)X2 (bI 2 )xl _ 
so f21 '/;2 are mdependent of k. Hence OJ12 - OJ 12 - -b- dXI - -b- dX2 -

12 11 

hi dXI - fl2 dX2 = ¢'2 dXI - ¢'I dX2. So the structure equations and the Gauss-
Codazzi equations for XI, X2 imply that (F,G,B) is a solution of system (4) . 

• 
THEOREM 2.3. The O(n - j + I,j + I)jO(n - j,j) x 0(1, I)-system II (4) is 

the Gauss-Codazzi equations for a space-like surface in Rn-j,j such that: 

n-2 

1= sinh2 u dXf + COSh2 u dxi, II = - 2)ri,l sinh u dxr + ri,2 cosh u dXi}ei+2. 
i=1 
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PROOF. From the form of I and II, we have: 

where O'a = 1 if ex = 3, ... ,n - i and O'a = -1 if ex = n - i + 1, ... ,no Now use the 
structure equation to obtain: (Ol2 = U X2 dXI - U Xj dX2. Using the Gauss-Codazzi 
equation (see appendix), we obtain that these are the following system for 

(u, rl, I, rl,2,· .. ,rn-2, I, rn-2,2): 

(10) 

Hence if we put 

B = (COSh u sinh u ) 
sinh u cosh u ' 

(
rl,1 r l ,2) 

G= rn~2'1 rn~2'2 ' (11) 

we see (F, G, B) is solution of the system (4). Conversely, if (F, G, B) is solution 
of the system (4), and we assume B is as in (11), then from the fourth equation 
of system (4) we get ~I = UXI> ~2 = U X2 , i.e., (F, G,B) is of the form (11). Finally 
writing the O(n - i + 1,i + 1)/0(n - i,i) x 0(1, I)-system II for this (F, G,B), 
in terms of u and rij we get equation (10). • 

Combining Theorems 2.1 and 2.3 we get 

THEOREM 2.4. Let @ be a domain of R2, and X2 ; @ ---> R n-},} an immersion 

with flat normal bundle and (x, y) E @ a hyperbolic line of curvature coordinates 
system with respect to a parallel normal frame {e3, ... ,en}. Then there exists an 

immersion XI, unique up to translation, such that (XI, X2) is a space-like 2-tuple in 
R n-j,j of type 0(1, 1). Moreover, the fundamental forms of XI, X2 are respectively: 

lh = cosh2 u dXf + sinh2 u dxi 

III = ~;:}(ri,1 cosh u dXf + ri,2 sinh u dXi}ei+2 

12 = sinh2 U dXf + cosh2 u dxi 

liz = - ~;::}(ri,l sinh u dXf + ri,2 cosh u dxi}ei+2. 

(12) 

EXAMPLE 2.1. Recall that given a space-like surface in R 2, I with curvature -1 

and free of umbilic points, there exists a local coordinates system XI, X2 such that 
the two fundamental forms are ([11]): 
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1= cosh2 U dXf + sinh2 U dx~, II = cosh u sinh u(dxf + dx~). 
With respect to this coordinates system, the Gauss-Codazzi equation of the surface 

is written in the following form (Elliptic sinh-Gordon equation): 

This implies that (u, sinh u, cosh u) is a solution of 0(3, 2)/0(2,1) x 0(1, I)-system 

II (5). Let X(XI,X2) denote the immersion of M and e3 the unit normal of M. Then 
(X, e3) is a space-like 2-tuple in R2, I of type 0(1, 1), where e3 is a parametrization 

of an open subset of pseudo-hyperbolic space H2(1) = {q E R2,II (q, q) = -I}. 

Now we are interested in finding the connection between the space­
like isothennic surfaces in Rn-j,j and the solutions of the O(n -) + 1,) + 1)/ 
O(n - ),)) x 0(1, I)-system II. We begin by defining space-like isothennic sur­
faces in Rn-j,j just as in the classic situation of isothennic surfaces in Rn ([1]). 

DEFINITION 2.2 (Space-like isothennic surface). Let (!) be a domain in R2. 
An immersion X: (!) ---+ Rn-j,j is called a space-like isothermic surface if it has flat 

normal bundle and the two fundamental forms are: 

n-2 

1= e2U(dxf + dxD, II = eU I)gi, I dXf + gi,2 dx~)ei+2' 
i=1 

with respect to some parallel normal frame {e",}. Or equivalently (Xl,X2) E (!) is 

conformal and line of curvature coordinate system for X. 

It is not difficult to see that The Gauss-Codazzi-Ricci equation for space-like 
isothermic surfaces in Rn-j,j is (10). 

Our next result establishes the relation between space-like isothennic surfaces 
and the space-like 2-tuples in Rn-j,j of type 0(1,1). 

PROPOSITION 2.1. Suppose that (XI,X2) is a space-like 2-tuple in Rn-j,j of 

type 0(1,1). Let 21 = XI - X2 and 22 = XI + X2. Then both 21 and 22 are 
space-like isothermic. 

PROOF. Let (u, rl, I, rl,2, ... ,rn-2,1, rn-2,2) be a solution of (10) associated to 
(XI,X2). Set X = (XI,X2). Then by (9), we have: 

{ dXl = -(cosh u dXlel + sinh u dX2e2) , 

dX2 = sinh u dXlel + cosh u dX2e2. 
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We note that F = (U~2 U~l), WI2 = UX2 dXI - UX1 dX2 and Wia = aara-2,i dx; 

where aa = 1, ex = 3, ... ,n - j and aa = -1, ex = n - j + 1, ... ,no Now using (8), 
we have that for ex=3, ... ,n, dea=aa(ra-2,ldxlel+ra-2,2dx2e2). We compute 
that 

{ dZI = dXI - dX2 = -eU(dxlel + dX2e2), 
dZ2 = dX1 + dX2 = -e-U(dxlel - dX2e2). 

Hence the induced metric and the second fundamental form for ZI and Z2 are, 
respectively: 

We observe that the two immersions Z\ and Z2 given in proposition above 
are isothermic dual surfaces, which we called a space-like isothermic pair in 
Rn-j,j. 

Now we will study the dressing action of a rational map with two simple 
poles on the space of solutions of the O(n - j + I,j + I)/O(n - j,j) x 0(1,1)­
system II. 

Let O(n - j + l,j + 1) ® C = O(n - j + l,j + 1; C) the complexified 
Lie group. The symmetric space O(n - j + I,j + 1)/O(n - j,j) x 0(1,1) is 
determined by two involutions, namely 7:, a: O(n - j + 1, j + 1; C) -+ 

O(n-j+l,j+l;C) defined by: XI--+7:(X)=X and Xl--+a(X)=I,;JXIn,2, 

resp. Then O(n - j + l,j + I)/O(n - j,j) x 0(1, I)-reality condition is: 

g(X) = g(A) 

In,2g( -A)In,2 = g(A) (13) 

g(A)t(In-i,i 0 )g(A) = (I"'-i,i 0) 
o 11,1 0 11,1 

for a map g:C-+ Uc=O(n-j+I,j+I;C). 
We recall that a frame for a solution v of the U / K-system (II) is a 

trivialization of the corresponding. Lax connection 0). (Of) that satisfies the 
U / K-reality condition. 

Let 
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G+ = {g : C ---} O(n - j + l,j + 1; c) I g is holomorphic and satisfies the 
reality condition (13)} 

G_ = {g: S2 ---} O(n - j + l,j + 1; c) I g is meromorphic, g(oo) = I and 
satisfies the reality condition (13)}. 

Now we find certain simple elements in G_ explicitly. Let W = 
(WI, ... , wn) t E Rn-i,i, Z = (ZI, Z2) t E R 1,1 unit vectors and Cn+2 be equipped with 

the bi-linear form: 

-t(In-i,i 0) _ _ _ < U, V)2 = U 0 I V = UI VI + ... + un-ivn-i - Un-j+1 Vn-j+1 
1,1 

- ... - UnVn + Un+1 Vn+l - Un+2Vn+2· 

Let n the orthogonal projection of C n+2 onto the span of (~) with respect 

to (, )2' So 

= ~ (Ww t -iWZt ) (In-i,) 0) (14) 
n 2 iZWt zzt 0 11,1' 

it is the projection onto C ( ~;), which is perpendicular to (~). So 

itn = nit = O. Let s E R, s =f. 0, and it defines 

( A-is )( A+is ) gsrr(A)= n+-,-. (I-n) it+-,-. (I-it) . 
, A+U A-U 

So substituting (14) to gs,rr, we get 

( ') __ 1_ [,2 2(1 - 2WW 1I n_i ,i 0 ) 
gs rr A - 2 A I + Sot , A + s2 I - 2ZZ 11,1 

+ 2SA( -Z:IIn-i,i WZ;Il,1) l­ (15) 

One can see that gs,rr(A) (15) satisfies the O(n - j + I,j + l)/O(n - j,j) x 
0(1, I)-reality condition (13), therefore the element gs,rr E G_. 

Now we get an explicit construction of the action of gs,rr on the space of 
solutions of the O(n - j + I,j + I)/O(n - j,j) x 0(1, I)-system. 

THEOREM 2.5. Let (: R2 ---} Anx2 be a solution of the O(n - j + I,j + 1)/ 
O(n - j,j) x 0(1, I)-system (3), and E(x,A) a frame of ( such that E(x,A) is 
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holomorphicfor A,EC. Let Wand Z be unit vectors in Rn-j,j, RI,I respectively, n 

the orthogonal projection onto C ( ~) with respect to (,)2 and g~ n the map 

defined by (15). Let n(x) denote the orthogonal projection onto C (~) (x) with 

respect to <, )2, where 

- W - Z - -I 
Let W = IIwlln-J.J and Z = IIzlh.l' E(x,A,) = gs,n(A,)E(x,A,)gs,,,(x)(A,) , 

~ = ~ - 2S(WZtJI,I)*, (17) 

where (.9*)ij =.9ij if i i= j, and (.9*)ii = 0, 1 sis 2. Let 

-# -I E (x, A,) = E(x, A,)gs,,,' (18) 

Then 

(a) ~ is a new solution of system (3). 

(b) £# is a frame for { 

(c) 

( ) ( A(X) 0) £#(x 0) = (A#(X) _ 0 ) 
E x,O = 0 B(x) , , 0 B#(x) , 

for some A, B, A#(x), B#(x), and 

-# ~ ~ 1 -# ~ ~ 

A = A(J - 2WW In-j,j), B = B(J - 2ZZIJ1, I)' (19) 

(d) (W,Z) is a solution of the system: 

where OJ,. is the Lax connection. 

For proving this theorem we have the following lemma whose proof is quite 
similar to the proof of Lemma 9.4 in [2] and which we omit. 

LEMMA 2.1. With the same conditions as in theorem above, we get 
(i) W(x) ERn, Z(x) E R2. 

(ii) II W(x)lIn_j,j = IIZ(x)III,1 Vx and gs,,, satisfies the O(n - j + I,j + 1)/ 
O(n - j,j) x 0(1, I)-reality conditions (13), i.e. gs,,, E G_. 

(iii) £(x, A,) is holomorphic in A, E C. 
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PROOF OF TH:EOREM 2.5. The computations give us 

(20) 

But E- I dE = 2:;=1 (aiA + [ai, v]) dXi, E(x, A) is holomorphic in A E C 
and gs,rr(A) is holomorphic at A = 00. SO E-1 dE must be of the form: 
2:;=1 (a;A +,u;) dXj. Now we write 

( 0 wztIII) then ml (x) = 2s , '/ 'and ml (x) E 9. In fact, one sees that 
-ZW l .. 0 the element n-J,J 

A+is_ A-is;:; _ ;:; 
=--. n+--. n+(I-n)(I-n), 

A-zS Il+zs 
(21) 

and now we make the expansion of terms His and ).-is around Il = 00. Sub-
).-IS ).+IS 

stituting this in (21) we have 

( _ 2is_ . [is S2 ]_) (;:; 2is;:; 2i2s2 ;:; ) 
9 -( )(Il) = n+-n + 2zs ---+ ... n + n --n+--n + ... 

S," x Il 112 11 3 Il 112 

+ (I - n)(I - n). 

Hence we obtain that ml (x) = 2is(n - n), i.e., ml (x) is as we had claimed. 
Now multiply (20) by gs,rr on the right side and equate the constant term of 

equation which results of that operation, to obtain 

where Po is the projection from 9 onto 9 n d.l.. Therefore V = v - po(ml) is a 
solution of O(n - j + 1, j + 1) j O(n - j, j) x 0(1, 1 )-system. More specifically, 

. . ( 0 () _ ( 0 ~) - , 't wntmgv= -I ;;/J .. 0 andv= -I ,(=(-2s(WZlJ,d. 
1,1<" n-J,J -h,1( In-j,j 0 

is a solution of O(n - j + l,j + l)jO(n - j,j) x 0(1, I)-system (3). 
For item (b) and (c), since gs,rrEO(n-j+l,j+l;C), (18) becomes in 
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-# (In-j,j 0) 1 E (X,A) = E(x, A) 0 I -2-
1,1 A +S2 

x [A2I+S2(I-2In-oj,jWWI 0 ) 
I -2h1ZZt 

+2SA( ~ ~ -In_j,jWZ/ )] (In-j,j 0). (22) 
hlzwt 0 0 11,1 

We note that £# is a frame of ~ and that £#(x,.) is not in G+. The reality 
condition (13) implies that both E(x,O) and £#(x, 0) are in O(n - j,j) x 0(1,1). 
So, now we write: 

_ (A(X) 0) -# _ (A#(X) 0) 
E(x, 0) - 0 B(x) , E (x, 0) - 0 B#(x)· 

Finally, from (18) we have £#(x, O) = E(x, O)gs,ii(X) (0)-1 , this means 

( A# ~) = (A 0) (In-j,j 
o B# 0 B 0 

x (In-j,j 0) 
o 11,1 

0)( ~~I ) 1- 2In_ j,jWW 0 

11,1 0 1- 2II,IZZI 

= (A(I - 2W
o

W 1In- j,j) 0 ) 
B(I - 2ZZthl) , 

from which follows A# = A(I - 2WWtIn_j,j), B# = B(I - 2ZZ'II,I). 

(d) Follows directly taking the differential of (16). • 

In the next statement we will use the notation gs,n #¢" for denoting 
the dressing action of gs,n on ¢" and g_ #¢, for the dressing action of g_ on ¢, 
(see ([2])). 

COROLLARY 2.1. Suppose E is a frame of the solution ¢, of the 

O(n-j+l,j+l)/O(n-j,j)xO(l,l)-system (3) such that E(x, A) is hol­

omorphic for A E C. 

(i) If E(O, A) = I, then ~ obtained in Theorem 2.5, is gs,n # ¢, and £ is the 
frame of ~ with £(0, A) = I. 

(ii) Let g+(A) = E(O, A) and ~ the new solution of (3) obtained in Theorem 2.5. 

Then g+ E G+ and ~ = g_ #¢" where g_ is obtained by factoring gs,ng+ = g+g_ 

with g± E G±. 
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Now writing c; = ( ~), e = ( ~), we rewrite the new solution e given by 
Theorem 2.5 as 

( ft) (F) ~ ~I G = G - 2s(WZ 1I,r)*. (23) 

So (F, G,B) and (ft, G,B#) are solutions of the O(n - j + I,j + I)jO(n - j,j) x 
0(1, I)-system II (4). 

We note that if we write F = (fijhx2' G = (rij)(n-2)x2' ft = (]ij)2X2' G = 

(rij)(n-2)x2' then (23) for e is 
{ ~ij = /ij - 2S~iZje:, i,j = 1,2 

rij = rij - 2Sw2+iZjej> i = I, ... ,n - 2, j = 1,2 
(24) 

where el = -e2 = 1. 
Now let £# frame of e, Ell of (F, G,B) and E#ll of (ft, G,B#). Then we get 

E#II (x ..l) = E#(x ..l) (In- j,j 0) (1 ~) (In-j,j 0) 
, , 0 hi 0 B#I 0 hi' 

now, using (22), we get that the frames Ell and E#II are related by 

E#II(x..l) = Ell(x..l) 1 __ 2_ S Wf!A1n-j.j -s..l~~ B hI . [ ( 
2 ~ A I A AI I )] 

, , ..l2 +s2 -s..lBZWll n_j,j ..l2BZZtBlh! 
(25) 

In the next we will use the notation 
- -# -# -# (c;,E ) = gs,7l.(c;,E), A = gs,7l.A, B = gs,7l.B, 

- - -# -II II (F,G,B ,E# )=gs,7l.(F,G,B,E ), 

to understand the result obtained after the action of the element gs,7l over the 
solutions given. 

3. Associated Geometric Transformations 

Here we describe the corresponding geometric transformations on surfaces 
in the pseudo-riemannian space Rn-j,j corresponding to the action of gs,7l, given 
in (15), on the space of local solution of the O(n - j + I,j + I)jO(n - j,j) x 
0(1, I)-system II (4). 

We start with the definition of Ribaucour transformation given by Dajczer­
Tojeiro in [6). Let R:+P be the standard flat pseudo-riemannian space form of 
index s, 0:::;; s :::;; p. For x E R:+P and v E (TR:+P)x' where let yx.v(t) = exp(tv) 
denote the geodesic. 
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DEFINITION 3.1. Let M n and N.rn be riemannian submanifolds of the pseudo­

riemannian space R;+P, 0 ~ s ~ p. A sphere congruence is a vector bundle iso­

morphism P; 1/(M) -;. 1/(£1) that covers a diffeomorphism I; M -;. £1 with the 

following conditions: 

(1) If ~ is a parallel normal vector field of M, then P 0 ~ 0 1-1 is a parallel 

normal field of £1. 

(2) For any nonnull vector ~ E "Yx(M), the geodesies Yx,,; and Y/(x),P(t;) intersect 
at a point that is equidistant from x and l(x) (the distance depends on x). 

DEFINITION 3.2. A sphere congruence P; 1/(M) -;. 1/(£1) that covers 

I ; M -;. £1 is called a Ribaucour transformation if it satisfies the following ad­

ditional properties: 

(1) If e is an eigenvector of the shape operator At; of M, then I. (e) is an 

eigenvector of the shape operator Ap(,;) of M. 
(2) The geodesics Yx,e and Yl(x),l.(e) intersect at a point that is equidistant to x 

and l(x). 

THEOREM 3.1. Let ~ = ( ~) solution of (3), E frame of ~, E(x,O) = 

(A~X) B~X)), (F, G,B) a solution corresponding to O(n - j + I,j + 1)/ 

O(n - j,j) x 0(1, I)-system II (4), and 

- - - # - II II - # 
(F, G,B ,E# ) = gs,n.(F, G,B,E), A = gs,n.A. 

Let e;, e; denote the i-th column of A and .1# resp. Then we have 

(i) 

oE -1 ( 0 X) 
o2(x,O)E (x,O)= -I xtJ,_ .. 0 ' 

1,1 n ] ,j 

oE# #-1 _ ( 0 x) "', (x,O)E (x, 0) - - t 
VA -Il,lX In-j,j 0 

for some X and X. 

(ii) X = (Xl, X2 ) and X = (Xl, X2 ) are space-like 2-tuples in R n-j,j of type 

0(1,1) such that {e",} and {e",} are resp. parallel normal frames for Xj and ~ for 

j = 1,2, with indices IX = 3, ... , n - j and IX = n - j + 1, ... , n corresponding to 

space-like and time-like vectors resp. 

(iii) The solutions of O(n - j + I,j + I)/O(n - j,j) x 0(1, I)-system II (4) 

corresponding to X and X as given in Theorem 2.2 are (F, G, B) and (F, 0, jj#) 

resp. 
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(iv) The bundle morphism P(ek(x)) = ek(x), k = 3, ... ,n is a Ribaucour 

Transformation covering the map .xj(x) 1-7 .x}(x) for each 1 S; j S; 2. 

(v) There exist smooth functions ¢ij such that .xj + ¢ijei = .x} + ¢ijei for 

1 S;jS;2 and 1 S;iS;n. 

For the proof we will need the following result whose proof is quite similar to 

proof of Corollary (6.11) in [2]. 

PROPOSITION 3.1. Let E(x, A) be a frame for the solution ~ of system (3), and 

Y(x) = ~~ (x, O)E- l (x, 0). Then we have 

(i) 

for some X E A nx2 . 

(ii) X = (Xl ,X2) is a space-like 2-tuple in Rn-i,j of type 0(1,1). 

... (-dXl 0 0 . .. 0)1. . 
(lll) dX = A 0 dX2 0 ... 0 B- 1• Thzs means X satzsfies (9). 

PROOF OF THEOREM 3.1. From (18), Theorem 2.1, proposition above, we get 

( OX) _ aE# #-1 
-I --a' (x,O)E (x,O) 

-I1,1X In-i,i 0 Jl. 

aE -1 2 ( 0 = a' (x,O)E (x,O) + - E(x, 0) , , 1 
Jl. S -zw In-i,j 

Hence 

Let now 1] = ~;=1 wjej, then the i-th column of X is given by 

_ 2 2 

Xi = Xi + -8; L(zjbij)1], 
s j=1 

(26) 

where 81 = -82 = 1. Now from the relation A# = A(I - 2WW1In_j,j) we get 

ei = ei - 2Wi1]8; with 8i = 1, i = 1, ... , n - j and 8; = -1, i = n - j + 1, ... ,n. So 

using this last relation, we have 
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(27) 

where 

for j = 1, 2, i = 1, ... , n. 

This proves that P: f(Xj) -+ f(~) given by P(ek(x)) = ek(x), k = 3, ... ,n is 
a Ribaucour transformation covering the map I: Xj -+~, I(Xj(x)) = ~(x) for 
each 1 ~ j ~ 2. II 

The next result shows that the transformation constructed in Theorem 3.1, 

for space-like 2-tuples in Rn-j,j of type 0(1, I), is a Darboux transformation for 
spacelike isothermic surfaces. 

DEFINITION 3.3. Let M, M be two space-like surfaces in Rn-j,j with flat and 

non-degenerate normal bundle and P: f(M) -+ f(M) a Ribaucour transforma­

tion that covers the map I : M -+ M. If I is a conformal diffeomorphism, then P is 

called a Darboux transformation. 

THEOREM 3.2. Let (Y1, Y2 ) be a space-like isothermic pair in Rn-j,j corre­

sponding to the solution (u, G) of the system (lg)' :nd let ~ = ( ~) the corre­

sponding solution of the system (3), where F = ( ~I ). Let also s E R different 

of zero, n a projection on c(~), gs,n the rat~~~al element defined in (15), and 

W, t as in Theorem 2.5, for the solution ~ of the system (3). Let 

Then 

B = (COSh U sinh u ) 
sinh u cosh u ' 

(i) (Yl, Yz) is also a space-like isothermic pair in Rn-j,j. 

(ii) (ii, G) is the solution of system (10), corresponding to (Y1, Y2), where 

ii = 20: - u, sinh 0: = -22 and G = (rij) is defined by (24). 
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(iii) The fundamental forms of pair (Yl, Y2) are respectively 

IiI = e-2ii (dx[ + dxi) 

iii = e-ii 2::=3 (-'0;-2,1 dxf + '0;-2,2 dxDeo; 
i2 = e2ii (dxf + dxi) 
I-I - ii ",n (- d 2 - dx2 ) -2 - -e uo;=3 ro;-2,1 Xj + ro;-2,2 2 eo;. 

(iv) The bundle morphism P(ek(x)) = ek(x), k = 3, ... ,n covering the map 
Yi ---; Yi is a Darboux transformation for each i = 1,2. 

PROOF. It follows from Proposition 2.1 and Theorem 2.3 that (F, G,B) is 
a solution of O(n - j + l,j + 1)/O(n - j,j) x 0(1, I)-system II (5), and X = 
(XI, X2 ) = (Y1;Y2 , Y2;Y1) is the corresponding space-like 2-tuple in Rn-j.j of type 

0(1,1). Now let X=(X\,X2 ) be as in Theorem 3.1 and let YI =XI-X2, 
Y2 = XI + X2. Then using (26) we get that Yj and Y2 are given by (28). Since 
zT - zi = I, there exists a function a: R2 ---; R such that ZI = cosh a, Z2 = 
-sinh a. It follows from jj# = B(I - 2ZZ1 It. d that 

-# (-COSh(2a - u) 
B = 

sinh(2a - u) 
-sinh(2a - u)) = (-COSh U 
cosh(2a - u) sinh U 

-sinh U) 
cosh U . 

Since dXI = cosh U dXI el + sinh u dX2h and dX2 = sinh u dXI ej + cosh u dX2h it 
follows that 

So we get the claim (i)-(iii). 
For (iv) we observe that the map I: Yi ---; Yi is conformal because the 

coordinates (XI, X2) are isothermic for Yi and Y;. Now we need to prove that 
P : f( Y;) ---; f( Yi) given by ek(x) ---; ek(X), k = 3, ... ,n is a Ribaucour trans­
formation. For that, we use the fact that there exist smooth functions <Pij such 
that Xj + <Pijei = ~ + <Pije; for 1 :s; i :s; nand j = 1,2, (Theorem 3.1 (v)), and so 

YI + (<Pi! - <p;2)ei = YI + (<Pi! - <Pi2)e;, Y2 + (<Pi! + <Pi2)ei = Y2 + (<Pi! + <Pi2)h 

for each 1 :s; i :s; n. Hence the map P is a Darboux transformation. • 

EXAMPLE 3.1. Let n=3, j= I, then we have the 0(3,2)/0(2,1) x 0(1,1)­
system. Let (u, rl1, r12) = (0,0,0) be a trivial solution of (10), then F = 0, G = 0, 
B=I. So a space-like 2-tuple X in R2,1 of type 0(1,1) and the frame E(X,y,A) 
associated to trivial solution are: 
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cos (AX) 0 0 -sin(..1.x) 0 

(-X 0) 0 cosh(..1.y) 0 0 sinh (..1.y) 

x= ~ ~ , E(x,y,..1.) = 0 0 1 0 0 

sin (AX) 0 0 cos (..1.x) 0 

0 sinh (..1.y) 0 0 cosh (..1.y) 

Then from (16), we obtain that 

WI WI cosh SX + ZI sinh SX 

W2 W2 cos sy - Z2 sin sy 

W3 W3 
ZI WI sinh SX + ZI cosh SX 

Z2 W2 sin sy + Z2 cos sy 

From (26), we get that the 2-tuple in R2,1 of type 0(1,1) constructed by applying 
the Ribaucour transformation to the trivial solution is: 

i.e., 

X = 0 + ~ WI sinh sx + ZI cosh SX (-X) 
lOs (WI sinh SX + ZI cosh sx)2 - (W2 sin sy + Z2 cos sy)2 

(
WI cosh sx + ZI s~nh SX) 

x W2 cos sy - Z2 sm sy 

W3 

j{. _ _ _ W2 sm sy + Z2 cos sy (0) 2 . 
2 - ~ S (WI sinh sx + ZI cosh sx)2 - (W2 sin sy + Z2 cos sy)2 

(
WI cosh sx + ZI s~nh SX) 

x W2 cos sy - Z2 sm sy . 

W3 

EXAMPLE 3.2. A space-like plane in R 2, I is an isothermic surface corre­
sponding to trivial solution (0,0,0) of (10). Then the space-like isothermic pair 
associated to the trivial solution is: 
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So the isothermic pair obtained by applying the Darboux transformations to the 
trivial solution, given by (28) is: 

Y- Y 2(A A)~A 
I = 1+- ZI +Z2 L.Jwiei, 

s i=1 

i.e., 

y _ (= X) + ~ WI sinh SX + ZI cosh SX + W2 sin sy + Z2 cos sy 
I - : s (WI sinh sx + ZI cosh SX)2 - (W2 sin sy + Z2 cos sy)2 

(
WI cosh sx + ZI s~nh SX) 

x W2 cos sy - Z2 sm sy 

W3 

y. (-X) 2 WI sinh SX + ZI cosh SX - W2 sin sy - Z2 cos sy 
2 = ~ + S (WI sinh SX + ZI cosh SX)2 - (W2 sin sy + Z2 cos sy)2 

(
WI cosh sx + ZI s~nh SX) 

x W2 cos sy - Z2 sm sy 

W3 

4. Appendix: Moving Frames 

We review the method of moving frames for space-like surfaces in the 
Lorentz space Rn-j,j: Set 

(
In-j 0) 

eA . eB = (JAB = In-j,j = 0 _Ij' 

We also let (Jj := (Ju. For the space-like immersion X set dX = colel + C02e2, with 
el, e2 space-like unit tangent vectors to the surface and the normal space is 
spanned by ep, for 3::;; p ::;; n. Define 

(29) 
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From d(dX) = 0 we get: 

for f3 as above. 
In addition, by Cartan's Lemma we have: 

WlfJ = hfIWl + hf2W2, W2fJ = hff1wI + hff2W2, 

this makes the first and second fundamental form: 

I : wf + wi, II: - 2: 2: WkaWkUaea (30) 
k=I,2 a 

We also have: dWCA = -l.:B WCB /\ WBA, which yield the Gauss and Codazzi 
equations. The Gauss equation comes from examining dW12, while the Codazzi 
equations are from dWlfJ and dW2fJ. 
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