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HOCHSCIDLD COHOMOLOGY OF ALGEBRAS 
WITH HOMOLOGICAL IDEALS 

By 

Jose A. DE LA PENA and Changchang XI 

Abstract. Let cp: A -+ B be a homological epimorphism of k­
algebras. We investigate the relationship of the Hochschild co­
homologies Hi(A) and Hi(B) of A and B, and show that they can be 
connected by a long exact sequence. In particular, if A is a quasi­
hereditary algebra and B is the quotient of A by a minimal heredity 
ideal, then the long exact sequence provides information on Hi(A), 
Hi(B) and the extension groups between costandard modules and 
standard modules, thus one can actually compute Hi(A) inductively. 
As a consequence, we obtain the Hochschild cohomology of all non­
semisimple Temperley-Lieb algebras and representation-finite Schur 
algebras; 

1. Introduction 

Let A be a finite dimensional k-algebra over a field k. We consider the 
enveloping algebra A e of A which is, by definition, the tensor product A iSh A op 

of algebras A and AOP. Note that the category of left Ae-modules is the same as 
the category of A-A bimodules. Hence in the sequel we shall not distinguish the 
left Ae-modules from the A-A-bimodules. Recall that if X is an A-A-bimodule, 

then we have the following well-known formula for the Hochschhild cohomology 
of A with coefficients in X: 

Hn(A,X) = ExtAe(A,X). 

If X = A we obtain the n-th Hochschild cohomology of A: 

Hn(A) = ExtAe(A,A). 
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The aim of this work is to present some results that may be useful for the 
computation of the Hochschild cohomologies of an algebra. For this purpose, 
we consider a k-algebra homomorphism rp : A ---t B and the induced embedding 
functor rp* : mod B ---t mod A, where mod A stands for the category of all fi­
nitely generated left A-modules. The ring morphism rpe : A e ---t Be induces maps 
rp~: Hn(B) ---t Ext~e(B,B). Recall that rp is an epimorphism of algebras if rp* is a 
full embedding and, following [9], rp is a homological epimorphism if the induced 
functor of derived categories 

is a full embedding. We shall show that for a homological epimorphism 
rp: A ---t B the induced maps rp~ : Hn(B) ---t Ext~e(B,B) are isomorphisms. 

The main example of the above situation arises when J is an idempotent 
ideal of A which is projective as left A-module. In this case, the quotient 
A ---t B := AI J is a homological epimorphism. Furthermore, if J is a heredity 

ideal of A, that is, J is generated by an idempotent element f in A, and 
projective as a left A-module with fAf ~ k, then we get a long exact sequence 

o ---t Z(A) n J ---t HO(A) ---t HO(B) ---t Ext~ (D(jA) , Af) ---t HI (A) ---t HI (B) 

---t ... ---t Ext~(D(jA)~) ---t Hn(A) ---t Hn(B) ---t ... 

which is helpful in the calculation of the groups Hn(A). In particular, the 
existence of this sequence generalizes previous results in [10, 14]. Moreover, our 
results can be applied to get the Hochschild cohomology of certain quasi­
hereditary algebras. In particular, we determine the Hochschild cohomology of 
Temperley-Lieb algebras and representation-finite q-Schur algebras. 

2. Homological Epimorphisms 

In this section we recall definitions and elementary results on homological 
epimorphisms and deduce also basic facts which are needed in the sequel. 

Let rp: A ---t B be a morphism of k-algebras. The natural embedding 
rp* : mod B ---t mod A allows to identify B-modules as A-modules. Recall that rp 
is an epimorphism if for all k-algebra morphisms 1jJ, X : B =t C, the equation 
IjJrp = xrp implies IjJ = x. Well-known examples are the canonical epimorphisms 
A ---t AI I, the inclusion of the algebra of triangular matrices into the full matrix 
algebra and the canonical morphism A ---t S-IA if A is commutative and SeA is 
a multiplicative subset. 
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It is well-known that rp : A -> B is an epimorphism if and only if every A­
linear map BX -> BY is also B-Iinear, that is, if rp* : mod B -> mod A is a full 
embedding. Another condition is that rp is an epimorphism if and only if the 
mUltiplication map B ®A B -> B is a bimodule isomorphism. The reader is re­
ferred to [8] for further information on epimorphisms of finite dimensional k­

algebras, for instance, among other examples, it is shown that the path algebra 
kAn of the quiver 

An:1->2->3->···->n 

accepts _1_ (211+2) epiclasses n+2 n+1 . 
If rp : A -t B is a k-algebra homomorphism, then for any two B-modules X, 

Y we get a natural map rpo : HomB(X, Y) -> HomA(X, Y). 
Consider the derived category Db(mod A) of mod A equipped with the 

translation functor T given by T(X·r = xn+! and (Td'Xr = _d;+1 for an object 
x· E Db(mod A) with chain maps dJr : xn -> xn+l. Recall that there is a natural 
identification of mod A with a full subcategory of Db (mod A) and for any two 
modules X, Y E mod,A we have 

Ext~(X, Y) = HomDb(modA) (X, Tn Y). 

For concepts related with derived categories see [11]. 
Consider the induced functor of derived categories 

Then for modules X, Y E mod B there are natural maps 

rpn : ExtB(X, Y) = HomDb(mOdB) (X, T" Y) -> HomDb(modA) (X, T" Y) = Ext~(X, Y). 

Following [9], we say that rp: A -> B is a homological epimorphism if 
Db(rp*) : Db(mod B) -t Db(mod A) is a full embedding, equivalently, if for every 
X, Y E mod Band n ;;::: 0 the morphisms rpn : ExtB(X, Y) -t Ext~(X, Y) are iso­
morphisms. 

To see whether an epimorphism is a homological epimorphism, we have the 
following statements proved in [9]. 

LEMMA 2.1. Assume that rp : A -t B is an epimorphism. Then the following 
statements are equivalent: 

(0) rp is a homological epimorphism. 
(1) For all i;;::: 1, Tor/(B,B) =0. 
(2) For all i;;::: 1 and module BY, Tor/(B, Y) = o. 
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(2') For all i ~ 1 and module XB, Tor/(X, B) = O. 

(3) For all i ~ 1 and modules XB, BY, Tor/(X, Y) ..:. Torf(X, Y). 

(4) For all i ~ 1, Ext~(B,B) = O. 
(5) For all i ~ 1 and Y E mod B, Ext~ (B, Y) = O. 
(6) For all i ~ 1 and X, Y E mod B, Ext1(X, Y) ..:. Ext~(X, Y). 

(OOP) rpop : A op ---t BOP is a homological epimorphism. II 

The following observation is a variation of some of the above statements. 

PROPOSITION 2.2. Let J be an ideal of A and let rp : A ---t B be the canonical 

epimorphism with B = AI J. Then 

(a) rp: A ---t B is a homological epimorphism if and only if Tor~(J, B) = 0 for 

all n ~ O. In this case, J is idempotent. 

(b) An idempotent ideal J of A is homological if and only ifExt~(J,AjJ) = 0 
for all n ~ O. 

(c) If J is a projective A-module and J2 = J, then rp is a homological epi­

morphism. 

PROOF. (a) By applying the functor - ®A B to the exact sequence O---t 
J ~ A ---t B ---t 0 we get a new exact sequence 

o ---t Tor~ (B, B) ---t J ®A B ---t A ®A B ---t B ®A B ---t 0 

and Tor~(B, B) ..:. Tor~_l (J, B) for n ~ 2. 
Since J ®A B ~ J IJ2 and B ~ B ®A B, we have Tor~(B,B) ~ JjJ2. Hence 

we get the desired condition. 
The proof of (b) is similar to (a) and (c) follows from (a). II 

An ideal J of A will be called a homological ideal in A if the quotient 
A ---t AI J is a homological epimorphism. Observe that such ideals were called 
strong idempotent ideals in [1]. 

Since our consideration involves also the enveloping algebras, we need also 
the following result. 

PROPOSITION 2.3. Let rp : A ---t B be an epimorphism of k-algebras. Then the 

following hold: 

(1) rpe : A e ---t Be is an epimorphism. 

(2) CPo: HO(B) ---t HomAe(B,B) is an isomorphism. 

Moreover, if rp is a homological epimorphism, then 
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(3) cpe is a homological epimorphism. 
(4) cp~ : Hn(B) -t ExtAe(B,B) is an isomorphism for each n ~ O. 

PROOF. In our proof we shall make use of the following identities shown in 
Cartan-Eilenberg's book for any three k-algebras A, r, ~ and modules XA-r, 

AY:E, r-:EZ: 
(a) (X@A Y) @n81:EZ ~ X@A®rCY@:EZ) [4, IX.2.1], 
(b) if Tor~(X, Y) = 0 = Tor;(Y, Z) for all n > 0, then 

Tor~®:E(X@A Y,Z) ~ Tor~®r(X, Y@:EZ) [4, IX.2.8]. 

Moreover, since cp : A -t B is an epimorphism, we have 
(c) for apy B-module X, there is an isomorphism B@A X ~ X, b @ X I--t bx. 

In particular, the algebras B@ABop and BOP are isomorphic. 
(1): Be @Ae Be = (B@kBOP) @AI8)ADP Be ~ B@A (BOP @Aop Be). 

(a) 

Since BOP @Aop (B @k BOP) ~ (BOP @Aop B) @k BOP ~ B @kBop, we get 
(c)OP 

Be@A' (Be) ~ (B@AB) @kBop ~ B@k Bop = Be. 
(c) 

(2): HO(B) = Homw(B,B) ~ HomAe(B, B). 
Assume now that cp : A -t B is a homological epimorphism. 
(3): We shall check that property (1) in 2.1 is satisfied by cpe. Namely, 

Tor Ae (Be Be) = TorA®k Aop (B @ BOP Be) ~ Tor A (B BOP @ op Be) = O. 
n' n k, (b) n' A 2.1(2) 

(4): Hn(B) = Ext;.(B,B) ~ ExtA,(B,B). • 

In the following we shall compare the algebra A e and Be. Let el, ... , en be 
a complete set of pairwise orthogonal primitive idempotents for A. Then PI = 
Ae) , ... , P n = Aen is a set of representatives of the isomorphism classes of inde­
composable projective A-modules. 

Consider A e = A @kAoP. The elements ej@elP E Ae (1 s i,j s n) form a 
complete set of pairwise orthogonal primitive idempotents for A e. Then the 
indecomposable projective Ae-modules are of the form Ae(ej @ ej) = Aei @kejA. 

Given an ideal J of A, and the canonical epimorphism cp: A -t B = AIJ, 
we consider the ideal I = A @kJoP + J@kAop of Ae, which gives rise to exact 
sequences 

'P' o -t I -t A e -t Be -t 0 and 0 -t J@kJOP -t A@kJOP (BJ@kAop -t I -t O. 

The second sequence is exact since dimk(A @kJoP (B J @kAOP) - dimk I = 

2 dimk A· dimk J - (dimk A)2 + (dimk A - dimk J)2 = dimk J@kJoP. 
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We get the following technical remark. 

LEMMA 2.4. If an idempotent ideal I in A is a projective left A-module, then 

is a projective presentation of I as Ae-module. Moreover, the two first terms of the 

sequence are in add(P) for a projective Ae-module P whose trace in A e is 1. In 

particular, proj.dimAe Be ::;; 2. 

PROOF. Assume that I = EB Aej = AeA for an idempotent e = ~ ej. Con-
n jES n jES 

sider the unity 1 = ~ ei of A and set P = EB EB[Ae(ei ® e7)EB Ae(ej ® e?)] 
i=1 ;=1 jES n 

which is a projective Ae-module. Then I ®kAop '=" EBEBAej ®kekAop E add(P) 
and similarly, I ®k lOP and A ®k lOP E add(P). jES i=1 

Finally, the trace of P in Ae is 

trp(Ae) = L L[Ae(e; ® e7) + Ae(ej ® e?)] = A ®kjDP + I ®kAop = I. 
l~i~njES • 

The above Lemma may be used to provide another proof of the fact that 
rpe : A e ~ Be is a homological epimorphism as a consequence of the following 

Theorem shown in [1]: 
Let I be a an idempotent ideal of a k-algebra C and D = C I I. Assume that 

there is a projective C-module P such that 1= trp( C) and that the minimal 
projective resolution 

has its first s + 1 terms Po, PI, ... ,Ps E add(P). Then for any X, Y E mod D, 

Extb(X, Y) ~ Ext~(X, Y), 0::;; i ::;; s + 1. 

Let us end this section with some examples of homological epimorphisms and 
Hochschild cohomology. 

EXAMPLE 1. In this example we shall have a homological epimorphism 
rp : A ~ AI I with non-projective AI. 

Consider the algebra A = kQI I with Q and I given by 

a 
Q : 1 ~ 2, I = < [Ja[J) . 

fJ 
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Let J be the trace in A of the projective module PI corresponding to the 
vertex 1. A projective resolution of J is: 

h Ji fo 
••• ----7 PI ----7 PI ----7 PI EB PI ----7 J ----7 0, 

where fo(eI,O) = eI, fo(O,et} = p, fi(et} = (O,prt.), h(eI) = pa, .... Hence J has 
infinite projective dimension. Moreover, the ring B = AI J is just k with AB the 

simple S2 at the vertex 2. Hence Ext~(B,B) = 0 for all n:?: 1 since 

h 
••• ----7 PI ----7 PI ----7 P2 ----7 B ----7 0 

eI 1--7 P 

is a projective resolution which remains exact after applying HomA(S2, -). There­
fore cp : A ----7 B is a homological epimorphism. 

EXAMPLE 2. Let A and B be two algebras and let F: Db (mod A) ----7 

Db(mod B) be a derived equivalence which sends A to B. Happel has shown 
[10] that Hn(A) ~ Hn(B) for all n:?: O. In fact, one can establish a derived 
equivalence P: Db(mod Ae) ----7 Db(mod Be) sending A to B. Then Hn(A) = 

Ext~e(A,A) = HomDb(modAe) (A, rnA) ~ HomDb(modBe)(B,rnB) = ExtZ.(B,B) = 

Hn(B). Especially, the Hochschild cohomology of an algebra is both tilting­

invariant and Morita-invariant. 

EXAMPLE 3. Finally, let us remark that there is a formula between 
Hochschild cohomology and homology, namely, Hi(A,X) ~ Hi(A,DX) for all 

A-A-bimodule X, where D is the k-duality. However, this does not help us very 

much when we calculate Hochschild cohomology Hi(A). For example, it is 

proved in [20] that for a quasi-hereditary algebra A we always have Hn(A) = 0 
for all n:?: 1, but the Hochschild cohomology Hn(A) may not vanish. An 
easy example is the Auslander algebra A of k[x]/(xn ), in this case, we obtain 
dimk HO(A) = n, dimk HI(A) = n - 1, and dimk H2(A) = n - 1, and Hi(A) = 0 

for all i:?: 3 since the global dimension of A is at most 2. (For this and other 

similar examples see [10].) 

3. Hochschild Cohomology of an Algebra with Homological Ideals 

In this section we assume that A is a finite dimensional k-algebra and J is a 

homological ideal of A. Write B = AI J. Our results in this section will be useful 
for calculation of the Hochschild cohomology of an algebra with homological 

ideals. 
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PROPOSITION 3.1. (a) For every B-B-bimodule Y, there is a long exact se­

quence 

0-; H1CB, Y) -; H1CA, Y) -; Ext~eCJ, Y) -; ... -; 

-; Hi(B, Y) -; Hi(A, Y) -; Ext~,(J, Y) -7 ... . 

Moreover, HOCB) = HO(A, B). 

(b) If AJ is projective, then Ext~,(J, Y) = 0 for every B-B-bimodule Y. In 

particular, Hl(B) = Hl(A,B). 

(c) If J is a projective Ae-module, then Hi(B) = Hi(A,B) for i;;::: o. 

PROOF. Consider the exact sequence 0 -7 J -7 A -; B -; 0 of A e-modules. 

The sequence in (a) is obtained by applying HomA'( -, Y) to get the long exact 
sequence 

1 . . . 
-7 ExtA,(J, Y) -; ... -; ExtA,(B, Y) -7 ExtA, (A, Y) -7 ExtA,(J, Y) -7 .... 

We show that HomA,(J, Y) = O. Indeed, let a E HomA,(J, Y) be an element. 
Since J is idempotent by 2.2, any element x E J is a linear combination of 
elements of the form uv with u, v E J. Thus a(uv) = ua(v) E JY = 0 and 

a = O. 
By 2.2, Hi(B, Y) = Ext1,(B, Y) = Ext~,(B, Y), for i;;::: O. The result fol­

lows. 
(b): Assume that J is a projective A-module. Since J is an idempotent ideal, 

we have J = AfA for some idempotent element f E A. Then, the projectivity of J 

implies that J ~ Af ®fAf fA. Consider the exact sequence 

g o -; K -7 Af ®k fA -7 J ~ Af ®fAf fA -7 0, 

where g(a ®k b) = a ®fAf b. Then K is the A - A-bimodule generated by 
{x® f - f®xlx E fAf}· 

To show that Ext~,(J, Y) = 0, it is enough to prove that HomA,(K, Y) = O. 
Indeed, let a E HomA,(K, Y) and consider the element x ® f - f ® x E K with 
x E fAf. Then we get in the B-module Y 

a(x ® f - f ® x) = a(f(x ® f - f ® x)) = fa(x ® f - f ® x) E JY = O. 

Hence HomA,(K, Y) = 0 and (b) is proved. 
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(c): If J is a projective Ae-module, then Ext~e(J, Y) = 0 for any Ae-module 

Y and i ~ 1. The result follows from (a). • 

Let Z(A) denote the center of A. It is well-known (and trivial to show) that 
HO(A) = Z(A). More generally, HomAe(A,J) = Z(A) nJ for any two-sided ideal 
J of A. 

PROPOSITION 3.2. (a) Assume that AJ is a projective A-module. Then there is 

an exact sequence 

0-+ Z(A) nJ -+ HO(A) -+ HO(B) -+ Ext~e(A,J) 

-+ Hl(A) -+ HI (B) -+ Ext~.(A,J) -+ H2(A). 

(b) Assume that J is a projective Ae-module. Then there exist a long exact 

sequence 

1 . . . 
-+ H (B) -+ ... -+ ExtAe(A,J) -+ H'(A) -+ H'(B) -+ .... 

(c) Assume that J is a projective ideal in A generated by a primitive idempotent 

element f with fA! ~ k. Then there exist a long exact sequence 

0-+ Z(A) nJ -+ HO(A) -+ HO(B) -+ Ext~(D(jA),Af) -+ Hl(A) 

-+ HI (B) -+ ... -+ Ext~(D(jA),Af) -+ Hi(A) -+ Hi(B) -+ "', 

where D is the usual duality Homk(-,k). 

PROOF. By applying HomAe (A, -) to the exact sequence 0 -+ J -+ A -+ 

B -+ 0 we get a long exact sequence 

1 . . . 
-+ ExtAe(A, B) -+ ... -+ ExtAe(A,J) -+ ExtAe(A, A) -+ ExtAe(A, B) -+ .... 

The first two statements follow from 3.1. To prove the statement (c), we no­
tice that J ~ Af ®k fA and that D(Af ®k fA) ~ D(jA) ®k D(Af). Thus, by [4, 
Chap. IX, Exercise 8, p. 181], we have DExt~e(A,J) = DHi(A,J) ~ Hi(A,DJ) = 

Hi(A,D(jA) ®kD(Af)). It follows further from [4, Chap. IX, Corollary 4.4, 
p. 170 and Chap. VI, Proposition 5.3, p. 120] that Hi(A,D(jA) ®kD(Af)) ~ 

Tort(D(Af),D(jA)) ~ DExt~(D(jA),Af). Thus we have proved (c). • 
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Let us remark that Theorem 5.3 in [10] now follows easily from 3.2(c): 
Suppose f is the idempotent of the one-point extension A = B[M] such that 
M = rad(Af). Let S be the simple injective A-module D(fA). Then fAf ~ k. It 
follows from the exact sequence 0 -t M -t Af -t S -t 0 that Ext~(D(fA),Af) ~ 
HomA(M,Af)/k ~ HomA(M,M)/k and Ext~+l(D(fA),Af) ~ Ext~(M,Af) ~ 
Ext~ (M, M). Thus the long exact sequence in [10, Theorem 5.3] follows im­
mediately from 3.2. 

As a direct consequence of 3.2, we have the following corollary. 

COROLLARY 3.3. Assume that J is a projective ideal in A generated by a 
primitive idempotent element f with fAf ~ k. If the injective dimension of the right 
A-module fA is at most m, then Hi(A) = Hi(B) for all i > m. In particular, if 
id(AA) ::;; 1, then Hi(A) = Hi(B) for all i> 1. • 

Recall that an idempotent ideal I of A is a heredity ideal if I is a projective 
left module and EndA (I) is a semisimple ring. The following is probably well­
known. 

LEMMA 3.4. Assume that k is an algebraically closed field and that J is an 
indecomposable idempotent two-sided ideal of A. The following conditions are 
equivalent: 

(a) J is a heredity ideal; 
(b) J is a projective Ae-module with EndAe(J) = k; 
(c) The multiplication map m: J ®A J -t J is an isomorphism and 

EndAe(J) = k; 

(d) EndAe(J) = k and Tort(B,B) = 0, where B = A/J. 

PROOF. (a) =? (b): Since J is an indecomposable two-sided ideal in A, 

it must be generated by a primitive idempotent element f in A. Thus J ~ 

Af ®fAf fA. Since fJf is isomorphic to k, we have that EndAe(J) ~ f· A e . f ~ 

fAf ®k fAf ~ k. 
(b) =? (a): This is clear. 
(a) =? (c): Applying J ®A - to the exact sequence 0 --+ J -t A --+ B --+ 0, we 

get 

o -t Tor~ (J, B) --+ J ®A J ~ J ~ J ®A A --+ J ®A B = O. 

If J is a projective A-module, then Tor~(J,B) = O. 
(c) ¢:? (d): Applying - ®A B to the canonical sequence, we get 
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0= Tor1(A,B) -t Tor1(B,B) -t Tort(J,B) -t Tort (A, B) = O. 

Then Tort(J,B) = 0 exactly when Tor1(B,B) = O. 
(c) => (a): It is shown in [I, (5.3) and (1.4)]. • 

PROPOSITION 3.5. Assume that k is algebraically closed and J is an inde-

composable heredity ideal of A. Then 

(a) HomAe(J,J) = k = HomAe(J,A). 

(b) Hi(B) = Ext~e(A, B) for all i ~ O. 
(c) Hi(A) = Ext~e(B,A) for all i ~ 1. 
(d) dimk HO(A) = dimkHomAe(B,A) + 1. 

PROOF. We apply different functors to the canonical exact sequence O-t 
J -t A -t B -t O. 

For (a) we apply HomAe(J, -) and use 3.4 and 3.1 (a). 
(b) Follows from 3.4 and 3.1(c). 
(c) and (d): By applying HomAe(-,A) we get the following exact sequence 

o -t HomAe(B,A) -t HomAe(A,A) ~ HomA,(J,A) 

-t Ext~e(B,A) -t Ext~e(A,A) -t 0 

and Ext~e(B,A) ~ Ext~e(A,A) for i ~ 2. By (a), a is surjective since a(l) ::/= O. 
Therefore (c) and (d) follow. • 

The next lemma shows that the terms Ext~e(A,J) in the long exact sequence 
3.2 may be replaced by Ext~e(B,J) in certain cases. 

LEMMA 3.6. Under the assumptions of3.5, we have Ext~e(A,J) ~ Ext~e(B,J) 

for i::/= 1 and dimk Ext~e(A,J) = dimk Ext~e(B,J) - 1. 

PROOF. We apply HomAe(-,J) to the canonical sequence to get 

0--+ HomAe(B,J) --+ HomAe(A,J) --+ HomAe(J,J) ~ Ext~e(B,J) 

--+ Ext~e(A,J) -t 0 

and Ext~e(B,J) ~ Ext~e(A,J) for i ~ 2. 
Since £5(1,) corresponds to our canonical sequence, the map £5 is a mono-

morphism and the result follows. • 
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By 3.2, to compare the Hochschild homologies of A and B, we need to 
calculate the groups ExtAe(A,J). In general, fAf may not be isomorphic to k, 
this implies that we cannot use the third exact sequence of 3.2. However, the 
following result will be helpful in some cases. 

PROPOSITION 3.7. Suppose that J is an ideal in A generated by an idempotent 

element f such that AJ is projective. We denote by TrfAf(M) the transpose of an 

fAf-module M. 

If Ext}Af(TrfAf(fA),Af) = 0 for all i ~ 1, then ExtAe(A,J) ~ 

ExtA®k(fAf)"p(HomfAf(fA,fAf),Af) for all n ~ 1. 

PROOF. It follows from [2, Proposition 3.2, p. 123] that Af @fAf fA ~ 

HomfAf(HomfAf(f A, f Af), Af) if Ext}Af(TrfAf(f A), Af) = 0 = Ext}Af(TrfAf(f A), Af)· 

By definition of the transpose, if PI ----+ Po ----+ fA ----+ 0 is a projective presentation 
of the fAf-module fA, then we have a presentation of right fAf-module 

TrfAf(fA): 

0----+ HomfAf(fA,fAf) ----+ HomfAf(Po,fAf) ----+ HomfAf(P1,fAf) ----+ TrfAf(fA) ----+ O. 

Now it follows from this sequence that Ext}Aj(HomfAf(fA,fAf),Af) ~ 
Ext}1} (TrfAf (fA) , Af) = 0 for i ~ 1. By [4, Chap. IX, Theorem 2.8a, p. 167], 

Ext~®AOP (A, HomfAf (HomfAf (fA , fAf) , Af)) ~ Ext~oP®fAf(A @A HomfAf (fA , fAf) , 

Af) = Ext~oP®fAf(HomfAf(fA,fAf),Af). If we understand each A-fAf-bimodule 

as left A @ (fAf) op -module, then the last cohomology group is just what we 

want. This finishes the proof. • 

The condition in the above proposition can be satisfied if Af is an injective 
right fAf-module, or fA is a projective fAf-module. The following is an example 
in which Af is an injective right fAf-module. 

Let A be the algebra given by the following quiver with the relation: 

(X 0 0 ~ 0 (X2 = O. 
1 2 

We consider the ideal J of A generated by the primitive idempotent element 
f corresponding to the vertex 1. Then J is a projective left ideal in A, fAf is 
isomorphic to k[x]/(x2 ) and Af = fAf. 

In fact, we have the following more general result. 

COROLLARY 3.8. Let f be an idempotent element in A such that AJ = AfA is 
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projective and that (1 - f)AfA(1 - f) = (1 - f)A(1 - f). If fAf is self-injective, 

then ExtAe(A,J) ~ ExtAf'!>k(fAf)Op(HomfAf(fA,fAf),Af) for n ~ 1. 

PROOF. Let e = 1 - f. Then we have a matrix presentation of A: 

A = (eAe eAf) 
fAe fAf . 

Since eAfAe = eAe, both the right fAf-module eAf and the left fAf-module fAe 

are projective by [3, Theorem 11.3.4]. Since fAf is self-injective, the right fAf­

module Af = fAf E9 eAf is injective. Thus the corollary follows from 3.7 im-
mediately. • 

A very special case is that fAf is a symmetric algebra, that is, as an fAf-fAf­

bimodules we have fAf ~ D(fAf). In this case we have 

COROLLARY 3.9. Under the assumption of 3.7 the following statement is 

true: If fAf is symmetric and ExtJAf(D(Af),02(fA)) = 0 for all n ~ 1, then 

ExtAe(A,J) ~ ExtA®k(fAf)Op(D(fA),Af) for all n ~ 1, where 0 2 is the second 
syzygy operator. 

PROOF. Since fAf is symmetric, we have that DTrfAf = 0 2 and D ~ 
HomfAf( -,fAf)· Thus the result follows. • 

Now let us consider the Hochschild cohomology of a quasi-hereditary al­
gebra. As is known, quasi-hereditary algebras were introduced in [6] and are a 
special kind of algebras of finite global dimension. They include many important 
algebras such as Temperley-Lieb algebras (see [16]) and Birman-Wenzl algebras 
(see [17]), and so on. 

Recall that an algebra A is called quasi-hereditary if there is decomposi­
tion of 1 = el + e2 + ... + em into primitive orthogonal idempotents ej such that 
each ideal A(ei + ei+l + ... + em)A/A(ei+l + ... + em)A is a heredity ideal in 
A/A(ei+l + ... + em)A for all i. Set Ai = A/Ji with Ji = A(ei + ei+l + ... + em)A 
and Jm+l = O. So each Ai is an A-A-bimodule and the injective Ai-module 

D(ei_1 + Ji)Ai is isomorphic with D(ei-1Ai). With the these notations we have the 
following result which is a direct consequence of 3.2. 

PROPOSITION 3.10. Let A be a quasi-hereditary algebra. Then 
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2)-I)i dimk Hi(A) = 2)-I)i dimk Hi(Aj ) 
i~O i~O 

+ 2: 2:(-1)i dimkExt~(D(esAs+I),As+leS) 
js;.ss;.m i~O 

for all 1 ~ j ~ m. • 

As is well-known, a quasi-hereditary algebra A can be defined by standard 
modules il(i) and co standard modules V(j). Given an order of the idempotent 
elements ej as above, the standard module il(i) is the maximal factor module 
of Aei with composition factors S(j) such that j ~ i. Similarly, the costandard 
module V(i) is the maximal submodule of D(eiA) with composition factors S(j) 

such that j ~ i. Thus the projective Armodule Ajej_1 is just the standard module 
il(j) and the injective Armodule D(ej_IAj ) is just the costandard module V(j). 

Note that il(m) is the projective module Aem and V(m) is the injective module 
D(emA). The above proposition can be reformulated as follows: 

PROPOSITION 3.11. Let A be a quasi-hereditary algebra. Then 

2:( _1)i dimk Hi(A) = 2:( _I)i dimk Hi(Aj ) 
i~O i~O 

+ 2: 2:(-I)i dimkExt~(V(s),il(s)) 
js;.s:5,m i~O 

for all 1 ~ j ~ m. • 

As a corollary we have 

COROLLARY 3.12. Let A be a algebra (over k) given by a connected quiver 

with relations. If there is no oriented cycles in the quiver, then 

m 

2:(-1/ dimk Hi(A) = 1 + 2:2:(-I)i dimkExt~(E(S(j)),S(j)), 
i~O j=1 i~1 

where S(j) stands for the simple module corresponding to the vertex j and E(S(j)) 

is the injective envelope of S(j). 

PROOF. Since the quiver of the algebra has no oriented cycles, we can have 
an order on the simple modules such that all standard modules are just the simple 
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modules. In this case the costandard modules are just the indecomposable 
injective modules. Thus the result follows from the previous proposition. • 

The cohomology groups Ext~(VU),L\.U)) of the costandard modules and 
standard modules play an important role in the calculation of the Hochschild 
cohomology of a quasi-hereditary algebra. In this direction we have the following 
result. 

PROPOSITION 3.13. Let A be a quaSi-hereditary algebra with standard modules 
L\.U) and costandard modules VU), 1 ::;:; j ::;:; m. Suppose that there is a duality on 
the the module category mod-A which fixes simple modules. If proj.dim L\.U) ::;:; 1 
for all j, then Ext~(VU),L\.U)) = 0 for all i;;:: 3. 

PROOF. Since proj.dim L\.U) ::;:; 1 and the duality fixes each simple module 
but interchanges L\.U) and VU), we know that proj.dim T::;:; 1, inj.dim VU) ::;:; 1 
and inj.dim T ::;:; 1, where T is the characteristic tilting module of A. Further­
more, by a result of Ringel in [15], there is an exact sequence 

o ~ L\.U) ~ TU) ~ XU) ~ 0 

with T = EBj':! TU). Hence Ext~ (T, XU)) = 0 for all j. This implies that XU) E 

add(T). Now applying HomA(VU), -) to the above exact sequence, we obtain a 
new exact sequence 

... ~ Ext~(V(j), XU)) ~ Ext~(V(j), L\.U)) ~ Ext~(V(j), TU)) ~ .... 

This new exact sequence implies that Ext~(V(j),L\.U)) = 0 for i;;:: 3 and 1::;:; 
j::;:;m. • 

As an example of quasi-hereditary algebras satisfying all conditions in the 
proposition we mention the dual extension of a finite dimensional hereditary 
algebra (for the definition of dual extensions we refer to [18]). 

Let us end this section by an example which illustrates how we can use the 
results of this section to compute the Hochschild cohomology. Before we do this, 
let us recall the following result in [10] which is needed sometimes for particular 
computation. 

Let k be a perfect field and A an algebra over k. If el, e2, ... , em form 
a complete set of primitive orthogonal idempotents in A, then ei ® ejP, 1::;:; i, 
j ::;:; m, are a compete set of primitive orthogonal idempotents in Ae. Let Sci) 
denote the simple top of P(i) := Aei and S(i,j) denote the simple top of Ae_ 

module P{i,j) := A e • (ei ® ejP). Observe that S(i,j) ~ Homk(S(i), SU)). 
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LEMMA 3.14 [10J. Let··· -+ Rn -+ Rn- 1 -+ ... RJ -+ Ro -+ A -+ 0 be a mini­

mal projective resolution of A over A e. Then 

Rn = EBP(i,j)dimkExt~(S(i),s(j)). 
i,j 

In particular, the projective dimension of Ae-module A equals the global dimension 

of A. 

Note that Lemma 3.14 is valid for algebras given by quivers with relations 

over any field. 

EXAMPLE 4. Suppose A is an algebra (over a field k) given by the quiver 

with relations: 

"I fJl 
o ~ 0 ~ 0, aa' = 1313' = o. 
1 " 2 fJ 3 

This algebra is the dual extension of the hereditary algebra of the linear 

quiver of A3 and has global dimension 2. We denote by J the ideal of A 

generated by the idempotent e3 corresponding to the vertex 3. An easy calculation 
shows that the center Z(A) of A is of dimension 3, Z(A) n J is I-dimensional and 

that Z(B) is of dimension 2. Thus it follows from 3.2(c) that the .sequence 

is exact. 

° -+ Ext~(V(3),A(3)) -+ HI(A) -+ HI(B) -+ Ext~(V(3),A(3)) 

-+ H2(A) -+ H2(B) -+ 0 

Note that dimk HO(B) = dimkExt~(V(3),A(3)) = 2 and dimk Hi(B) = 1 for 
i= 1,2. By 3.11, we see that dimkH1(A) = dimk H2(A). On the other hand, a 
simple calculation using the sequence (3.14), shows that dimk HI(A) = 3. 

Similarly, we can calculate the Hochschild cohomology of the following 

quasi-hereditary algebra A given by 

"I fJl 
o~o~o, 
1 " 2 fJ 3 

aa' = 13'13,1313' = 0, 

f3a = a'f3' = 0. 

Here we have that dimk HO(A) = 3 and dimk Hi(A) = 1 for 1 ~ i ~ 4. (Note 

that the global dimension of this algebra is 4.) 
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4. Applications 

In this section we apply our results to calculate the Hochschild cohomology 
of the Tempedey-Lieb algebras. Our method can be used to determine the 
Hochschild cohomology of the partition algebras in [13]. 

Let k be a field and n an integer. Recall that the Temperley-Lieb alge­
bra An(J) for J E k is defined to be a k-algebra with identity generated by 
tl,t2, ... ,tn-1 subject to the relations: 

(1) t;tjt; = t; if Ij - il = 1, 

(2) tJj = tjti if Ij - il > 1, 

(3) t1 = Jti for 1 ::; i ::; n - 1. 

It was proved in [16] (see also [12]) that a block of a non-semisimple Temperley­
Lieb algebra is Morita equivalent to the algebra Am given by the following quiver 
with relations: 

lXi+l lX; = (Ji-l(Ji = 0, 

(J;+llXi+1 = lXi(J;, 

IXm-l(Jm-1 = O. 

As was proved in [19], the non-trivial block of the representation-finite 
q-Schur algebra Sq(m, r) with m ~ r is Morita equivalent to an algebra of the 
form An. For the definition of q-Schur algebras we refer to [7]. Hence, to get 
the Hochschild cohomology of these algebras, it is sufficient to calculate the 
Hochschild cohomology for the algebra An, and this will be done in the fol­
lowing. 

PROPOSITION 4.1. Let k be any field and An the k-algebra defined as above. 

Then 

PROOF. We show this by induction on n. For n = 1, the algebra Al is a 
simple algebra and the proposition is trivially true. For n = 2 or 3, the prop­
osition follows from Example 3 and Example 4 in the previous sections. Suppose 
now that the proposition holds for n - 1 with n ~ 4. Let J be the ideal in An 
generated by the idempotent en corresponding to the vertex n. Then J is a hered-
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ity ideal such that Ani] ~ An-I- We may use the following minimal projective 
resolution of V(n) to compute Ext~(V(n),il(n)): 

O Q d2n-2 Q d2n- 3 Q Q 
--t 2n-2 --t 2n-3 --t - - - --t n-I --t n-2 

dl do () --t - - . --t QI --t Qo --t V n --t 0, 

where Qi = P(n - i - 1) for 0 ::;; i::;; n - 1, and Qj = P(j - n + 2) for n - 1 ::;; j ::;; 

2n - 2. (Here P(j) stands for the indecomposable projective An-module corre­
sponding to the vertex j.) In fact, the kernel of d; is V(n - i), if 1 ::;; i ::;; n - 1; 
and il(i - n + 2), if n - 1 ::;; i ::;; 2n - 2. Thus we have for i ~ 1 

dimk Ext~ (V(n), il(n)) = {1 i E {2n.- 3, 2n - 2}; 
" 0 otherwIse. 

Note that gLdim An = 2n - 2. Thus the proposition follows directly from 3.11 
and induction. III 

Since Hochschild cohomology of algebras is Morita-invariant by [10, The­
orem 4.2], the above proposition describes also the Hochschild cohomology of 
both the Temperley-Lieb algebras and the representation-finite q-Schur algebras 
Sq(n, r) for n ~ rand r < 2p, where p is the characteristic of the field. 
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