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GRASSMANN GEOMETRY ON THE GROUPS 
OF RIGID MOTIONS ON THE EUCLIDEAN 

AND THE MlNKOWSKI PLANES 

By 

Kenji Kuw ABARA 

Abstract. We study the Grassmann geometries of surfaces when the 
ambient spaces are the Lie groups of rigid motions on the Euclidean 
and the Minkowski planes, furnished with left invariant metrics. 

1. Introduction 

Let M be an m-dimensional connected Riemannian manifold and r be an 
integer such that 1 ~ r ~ m. Given a nonempty subset 1: in the Grassmann 
bundle GY(TM) over M which consists of all r-dimensional linear subspaces of 
the tangent spaces of M, an r-dimensional connected submanifold S of M is 
called a 1:-submanifold or simply an associated submanifold if all tangent spaces 
of S belong to 1:, and the collection of such the submanifolds is called a 1:
geometry. "Grassmann geometry" is a collected name for such a 1:-geometry. Let 
G denote the identity component of the isometry group of M. Then G acts on 
Gr(TM) through the differentials of isometries and we have many G-orbits in 
GY(TM). If 1: is given by a G-orbit, the 1:-geometry is in particular called of orbit 
type. If M is a Riemannian homogeneous manifold, such a subset 1: is a 
subbundle of Gr(TM) over M. In the study of Grassmann geometry, we shall 
first consider the existence of 1:-submanifolds for an arbitrary 1:-geometry, and 
next if they exist, we shall consider whether or not such the 1:-geometry has 
somewhat canonical 1:-submanifolds, eg., totally geodesic submanifolds, minimal 
submanifolds, etc. 

In the previous paper [2], from this view of points, we have studied the 
Grassmann geometry of surfaces, namely the case r = 2, in the 3-dimensional 
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Heisenberg group with a left invariant metric. In this paper, we consider the cases 
when the ambient spaces M are the Lie groups of rigid motions on the Euclidean 
and the Minkowski planes, furnished with left invariant metrics. These spaces 
together with the Heisenberg case, are typical examples of 3-dimensional ho
mogeneous Riemannian manifolds, and as Lie groups they are locally the only, 
not nilpotent, solvable Lie groups among the 3-dimensional unimodular Lie 
groups, while the Heisenberg group is locally the only, not commutative, nil
potent Lie group among them. 

The aim of this paper is to determine the G-orbital Grassmann geometries of 
surfaces on these Riemannian manifolds which have the associated surfaces, and 
moreover to clarify geometric properties of their associated surfaces. 

2. The Lie Groups of Rigid Motions on the Euclidean and the 
Minkowski Planes 

Let E(2) denote the Lie group of rigid motions on the Euclidean plane, 
which is a semi-direct product of the group 0(2) of orthogonal transformations 
and the vector group R2 of parallel translations. Moreover let E(l, 1) denote the 
Lie group of rigid motions on the Minkowski plane, which is a semi-direct 
product of the group 0(1,1) of Lorentz transformations and the vector group R2 
of parallel translations. Hereafer we will consider only the connected components 
of the identity in these Lie groups. They are also denoted by the same notations 
E(2) or E(I,l). These Lie groups are solvable and together with any left 
invariant metric, become 3-dimensional homogeneous Riemannian manifolds, 
denoted by (M, g). Let I be the Lie algebra of left invariant vector fields on 
the Lie group M and <, > an inner product on I canonically induced from the 
Riemannian metric g. Then I is identified with the tangent space TeM at the unity 
e and the inner product <, > is equal to ge. 

More generally, let I be a 3-dimensional unimodular Lie algebra with an 
inner product <, >. Then the Lie bracket [,] of I induces a unique symmetric 
linear transformation L of I such that [u, v] = L(u x v) for u, v E I where x 
denotes the cross product on I with respect to a fixed orientation. Moreover, 
taking the eigenvalues AI, A2, A3 of L and their positively oriented, unit eigen
vectors EI, E2, E3, we have the following relations: 

(2.1) 

If the Lie algebra I with <, > is associated with a Lie group M with a left 
invariant metric g, by these relations the Levi-Civita connection V of (M, g) is 
expressed as follows: 



(2.2) 
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VE;Ej = (1/2) ~(lXijk -lXjld + IXkij)Ek 
k 
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where lXijk = ([Ei,Ej],Ek) and i = 1,2,3. Moreover various curvatures of (M,g) 
at the unity e can be calculated as follows: The Ricci quadratic form r is dia
gonalized by the eigenvectors EI, E2, E3, together with its principal Ricci cur
vatures given by 

(2.3) 

where Ai = Ji.I + Ji.2 + Ji.3 - Ji.i for i = 1,2,3. In particular, the scalar curvature p 

is given by the equation p = 2(Ji.2Ji.3 + Ji.3Ji.I + Ji.lJi.2)' Also, the sectional curvature 
K( U, v) of the plane generated by vectors u, v can be explicitly calculated by the 
general formula 

(2.4) K(U, v) = lIu x v112p/2 - r(u x v) 

for any 3-dimensional Riemannian manifold. Refer to [3] for the details of these. 
Let (M, g) be E(2) with any left invariant metric g. Then the triple 

{AI,A2,A3}, determined as above, consists of one zero and two positive constants. 
We may here suppose A3 = 0. Moreover the set of isometry classes of left in
variant metrics on E(2) is characterized by the set 

A(E(2)) = {(AI,A2) ER2: AI> A2 > ° or Al = A2 = I}, 

where the case that Al = A2 = 1 corresponds to the local Euclidean metric. Next 
let (M,g) be E(I, 1) with any left invariant metric g. Then the triple {AI,A2,A3} 
consists of zero, positive, and negative constants. We may suppose Al > 0, A2 < 0, 
and A3 = 0. Moreover the set of isometry classes of left invariant metrics on 
E(I,I) is characterized by the set 

A(E(I, 1)) = {(AI,A2) E R2 : Al > ° > A2 ~ -AI}. 

Refer to [4] for these. In these cases the principal Ricci curvatures of the left 
invariant metric g corresponding to (Al,A2) EA(E(2)) (or A(E(I,I))) are cal
culated as follows: 

Here we note that the signature of Ricci quadratic form r is (+, -, -) except for 
the case of E(2) that Al = A2 = 1 and the case of E(I, 1) that Al = -A2. Also, it is 
known that for any left invariant metric of these cases the isometry group of 
(M, g) has three dimension except for the local Euclidean case of E(2). Hence, 
for any left invariant metric but for that case, the connected component of the 
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identity in the isometry group is equal to the group of all the left translations, 
thus, it is isomorphic to E(2) or E(I,I). 

3. Grassmann Geometry on the Lie Group E(2) 

In this section we consider the orbital Grassmann geometry of surfaces in 
E(2), denoted by M, with any left invariant metric 9 but for the local Euclidean 
case. Let G denote the connected component of the identity in the isometry group 
of (M, g). Then, since G is the group of left translations, a G-orbit in the 
Grassmann bundle G2(TM) is a homogeneous subbundle of 2-planes on which G 

acts simply and transitively. Hence, the orbit space !/( G), the set of all the G

orbits, is identified with the Grassmann manifolds G2(TeM) of linear planes in 
TeM, thus, the Grassmann manifold G2 (I) where I denotes the Lie algebra of M. 

This is also bijective to the real projective plane of all the linear lines in 1. 
Let S2(l) be the unit sphere in I centered at the origin and for WE S2(1), 

let P( W) denote the linear plane orthogonal to W. Then, by assigning to W 
the sectional curvature JC(P(W)) of the plane P(W), we can induce a curvature 
function JC(W) on S2(1) such that JC(W)=1C(-W). Let (Al,A2) be the pair in 
A(E(2)) corresponding to 9 and {EI,E2,E3} be the orthonormal basis of I given 
in (2.1). Moreover identify a vector Win S2(I) with an element (WI, W2, W3) in R3 
by the relation W = wlEI + W2E2 + W3E3. Then, by the formula (2.4), it follows 

Next for WE S2(I) let (!)(W) be the G-orbit containing the 2-plane P(W). 
We note that (!)(W) = (!)(-W). Then we have the following. 

PROPOSITION 3.1. There exists an (!)( W)-surface if and only if W = (0,0, ± 1), 
thus, P( W) is the WI w2-piane. 

PROOF. Note that (!)(W) can be regarded as a distribution of 2-planes on 
M. Then there exists an (!)( W)-surface if and only if the distribution (!)( W) is 
involutive. Since (!)( W) is invariant by the left translations, we may take a 
suitable basis {U, V} of P( W) and see whether or not it holds [U, V] E P( W), 
equivalently, <[U, V], W) = 0. 

Let W = (WI, W2, W3). We first suppose that it holds that WI = W2 = W3. In 
this case it follows W = ±(1/V3)(I, 1, 1). Put U = (1, -1,0) and V = (1,0, -1). 
Then, the pair {U, V} are an orthogonal basis of P( W) and moreover it follows 



Grassmann geometry on the groups 53 

<[V, V), W) = ±(Aj + A2)/V3. Since Aj and A2 are positive, this value is not 
zero. 

We next suppose that it doesn't hold that WI = W2 = W3. In this case we put 

V = (W2 - W3, W3 - WI, Wj - W2), V = W x V. 

Then, V and V are orthogonal to W, and moreover since V =1= 0, they are 
linearly independent. Hence, the pair {V, V} is a basis of P( W). Moreover it 
follows 

<[V, V), W) = 2(1 - WjW2 - WjW3 - W2W3)(AIW; + A2WD. 

If AIWf + A2wi =1= 0, it holds <[V, V), W) = ° if and only if WIW2 + WIW3 + 
W2W3 = 1. This, together with the equation Wf + wi + W5 = 1, induces the 
equation (WI - W2)2 + (W2 - W3)2 + (W3 - WI)2 = 0. But this is not the case. 

Hence it follows Al wi + A2wi = 0. This induces WI = W2 = 0, which implies W = 
(0,0, ±1). 0 

REMARK. Using the Lagrange's method of indeterminate coefficients, we can 
see that the critical points of the curvature function !C( W) on S2(1) given by (3.6) 
are: 

W= (±1,0,0),(0,±l,0),(0,0,±1), 

and the critical value where W = (0,0, ±1) is (AI - A2)2/4, which is neither the 
maximum nor the minimum of the curvature function !c. We here remark that 
these calculations need the condition Al > A2. 

Now we consider the (9(W)-geometry when W= (O,O,±l). Hereafter we 
rewrite this W by Woo To see geometric properties of the (9( Wo)-surfaces, namely, 
the leaves of (9( Wo), we decompose the Levi-Civita connection V of (M, g) into 
the tangent part D and the normal part IT of the distribution (I)(Wo). More 
pricisely, 

VxY = DxY +IT(X, Y) 

for vector fields X, Y E (9( Wo). Then the restrictions of D and IT onto each leaf 
give the Levi-Civita connection on the leaf with respect to the metric induced 
from g, and the second fundamental form of the leaf, respectively. Now, taking 
note of the fact that EI and Ez are left invariant base fields of (9( Wo), we can 
calculate the Levi-Civita connection V of (M,g) as follows: 

(3.7) 
Al - A2 

VElEz = VE2EI = - 2 E3· 
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Consequently it follows DEIEj = 0 for i = 1,2, and 

Summing up the arguments in this section, we have the following theorem. 

THEOREM 3.2. Let (M,g) be the group E(2) with any left invariant metric g 

which is not the local Euclidean metric, and let (AI,A2) be the element in A(E(2)) 

corresponding to g. 

Then, among G-orbital Grassmann geometries of surfaces in M, the m( Wo)

geometry is the only one which has associated surfaces. 

Moreover, any m( Wo)-surface S is a minimal flat surface in M such that (i) it 
has not a totally geodesic point, and (ii) K(TpS) = (AI - A2)2/4 > 0 for any pES. 

REMARK. A maximal m(Wo)-surface, a maximal leaf of m(Wo), is complete 
since m( Wo) is a left-invariant distribution on the Lie group M. Moreover, since 
any left translation is an isometry of (M, g), all the maximal m( Wo)-surfaces are 
congruent to each other. 

4. Grassmann Geometry on the Lie Group E(I, 1) 

Next we consider the orbital Grassmann geometry of surfaces in E(I, 1) with 
any left invariant metric g. We denote by (M, g) this Riemannian manifold and 
we retain the same notations as in the previous section. For example, G is the 
group of left translations of M, I is the Lie algebra of left invariant vector fields 
on M, K is the curvature function on the unit sphere S2(1), and so on. 

Now let (AI,A2) be the pair in A(E(I, 1)) corresponding to g and {EI,E2,E3} 

be the orthonormal basis of { given in (2.1). Moreover for WE S2(I), let Wi, 

i= 1,2,3, be the i-th coefficients of W with respect to the basis {EI,E2,E3 }. 

Then, similarly to the case of E(2), the curvature function K( W) is given by 

We here note that though the form of K(W) is the same as in the case of E(2), in 
this case Al is positive and A2 is negative, while in the case of E(2) both Al and A2 

are positive. 
Next for WE s2(1) we consider the G-orbit meW) containing the 2-plane 

P( W), and give the condition for the existence of an m( W)-surface. 
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PROPOSITION 4.1. There exists an (P( W)-surface if and only if the coefficients 
Wi of W satisfy the following equations: 

(4.10) 

PROOF. Similarly to Proposition 3.1, we divide the proof into case (i) that 
WI = W2 = W3 (= ± 1 / v'3) and case (ii) that it doesn't hold, and for each case take 
the same left invariant vector fields U and V as in the proposition. Then, the 
condition for the existence of a (P(W)-surface is similarly given by the equation 
<[U, V], W) = O. 

For case (i), since <[U, V], W) = ±(A.I + A2)/v'3, the above equality occurs 
only for the case when A] + A2 = O. For case (ii), similarly to Proposition 3.1, 
the equation holds if and only if AI wr + A2Wi = O. These prove our proposition. 

o 
REMARK. Similarly to the case of E(2), the orbit space 9( G) of G-orbits 

can be identified with the real projective plane over L Then the set of G-orbits 
which have the associated surfaces coincides with two projective lines defined by 
the second equation of (4.10). 

Also, using the Lagrange's method of indeterminate coefficients, we can see 
that the set of critical points of the curvature function K( W) on S2 (1) given by 
(4.9) is: 

{(±1, 0, 0), (0, ±1, 0), (0,0, ±1)} 

when AI+A2#O, and {(O,O,±1)}U{(WI,W2,.W3);Wr+wi=1,W3=0} when 
Al + A2 = O. Particularly, if we regard (0,0, ±1) as a point in the projective plane, 
it gives the unique common point on the above two projective lines, and also 
attains the maximum values (AI - A2)2/4 of K(W). 

Now we take a W which satisfies the equations (4.10), and consider the 
(P( W)-geometry for such a W. First, using the formula (2.2), we concretely write 
down the Levi-Civita connection V of (M, g) by the terms of A;'S and E;'s: 

(4.11 ) VElE2 = VE2 E I = -(AI - A2)/2E3, 

VElE3 = (AI - A2)/2E2, VE2 E3 = (AI - A2)/2EI, 

VE3El = (AI + A2)/2E2, VE3E2 = -(AI + A2)/2EI, 

VElEI = VE2E2 = VE3E3 = O. 

To see geometric properties of the (!)( W)-surfaces, namly, the leaves of the 
distribution (!)( W), we next see the Gauss curvature KD and the second fun-
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damental form II of leaves. Let W = (Wj, W2, W3). Then, by the relations (4.10) 
between wi's, the formula (4.9) of K(W) is rewritten in the term of WI as follows: 

(4.12) 

Now we divide the case into two according as WI is zero or not. 
First suppose WI # 0, and set X = (W2, -WI, 0) and Y = (W3, 0, -wd. Then 

the pair {X, Y} is a basis of (!)(W). By the fomulas (4.11), it follows 

VxX = WIW2(AI - A2)E3, Vy Y = -WIW3AjE2, 

AI - A2 
Vx Y = 2 WI (-W2E2 + W3E3 + wIEI), 

and moreover by taking the normal components of these, 

(4.13) II(X, X) = WjW2W3(Aj - A2)W, II(Y, Y) = -WIW2W3Aj W, 

Al - A2 2 AI - A2 ( 2Aj 2) 
II(X, Y) = 2 wl(l- 2w2)W = 2 WI 1 +Tzwj W, 

II( Y, X) = ~j {(AI - A2)W~ - (AI + A2)wi - (AI + A2)wD W 

_ Al - A2 (1 2AI 2) W 
- -2-Wj + Tzw j 

where the second equations in the last two equations are obtained by using (4.10). 
Also, by the first equation of (4.10), it follows 

(4.14) <X,X)<Y, Y) - <X, y)2 = (wr + wi}(wr + w~) - wiw~ = wf. 

Then, by (4.12), (4.13), (4.14) and the Gauss equa:tion of leaves, the Gauss 
curvature KD(W) is given as follows: 

(4.15) K (W) = K(W) _ <II (X, Y),II(X, Y) - <II(X, X), II(Y, Y) 
D <X,X)<Y, Y) _ <X, y)2 

_ (AI - A2)2 2' (' ') 2 (AI - A2)2(1 - 2wi)2 
- 4 + Al 11.2 - Al WI - 4 

- AI (AI - A2)wiw~ 

= -AI (AI - A2)Wf < 0 
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where the equations (4.10) are again used. Next, to calculate the mean curvature 
H of leaves, we make an orthonormal basis {X, :IT} from {X, Y} by the Schmidt 
orthonormalization method. Namely let 

Then, using the equations (4.10), we can see that 

Hence the leaves of (!)( W) are minimal. 
Next suppose WI = O. In this case W2 = 0 by (4.10). Set X = (1,0,0) and 

Y = (0,1,0). We note that the pair {X, Y} is an orthonormal basis of t9(W). 
Then, by (4.11) and (4.12), it follows 

V'xX = V'y Y = 0, V'x Y = V'yX = -(AI - A2)/2E3, 

(4.17) II(X, X) = II( Y, Y) = 0, II(X, Y) = II( Y, X) = -(AI - A2)/2E3, 

and moreover 

( 4.18) 

Hence by (4.17) it follows H=O, and by (4.18) and the Gauss equation, it 
follows ICD( W) = 0. These imply that the leaves of (!)( W) are flat minimal 
surfaces. 

Summing up the arguments in this section, we have the following theorem. 

THEOREM 4.2. Let (M,g) be the group E(l, 1) with any left invariant metric 9 

and (AI,A2) the element in A(E(l, 1)) corresponding to g. Moreover take WE S2(1) 

and let Wi, i = 1,2, 3, be the coefficients of W with respect to the orthonormal basis 

{E I ,E2,E3} of 1. 
Then, an (!)( W)-geometry has an (!)( W)-surface if and only if the coefficients 

Wi of W satisfy the equations (4.10). Under this condition, the curvature function 

IC( W) moves the values between the positive maximum (A. I - A2)2/4 and the 

minimum (AI + (3 + 2V2)A2) (AI + (3 - 2V2)A2)/4. 
Moreover, for such a (!)( W)-geometry, the (!)( W)-surfaces are minimal surfaces 

in M with the constant nonpositive curvature -Ai (Ai - A2)wf, where ° ~ wi ~ 
A2/(A2 - Ai). In particular they are flat if and only if Wi = 0, thus, W2 = 0, 

equivalently W = (0,0, ±1). 
Also, an (!)( W)-geometry has the totally geodesic (!)( W)-sUifaces if and only if 

Ai + ,12 = ° and the coefficient W3 is equal to 0. 
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PROOF. The first claim is the one of Proposition 4.1. From (4.10), we can 
see that 0 ~ W? ~ A2/(A2 - AI). Then, by (4.12), we can calculate the bounds of 
K(W) for such W's. 

The second claim has been done in the arguments of this section. We prove 
the third claim. We first note that if it is the case when WI = 0, the (1)( W)-surfaces 
are not totally geodesic and in this case W3 =1= 0 by (4.10). Hence we may consider 
the case when WI =1= O. In this case it follows W2 =1= 0 by (4.10). We now recall 
the formulas (4.13) for the second fundamental form of (1)( W)-surfaces. In the 
formulas, it holds W3 = 0 if and only if ll(X, X) = O. Also, if W3 = 0, it holds 
ll(Y, Y) = 0 and then it holds ll(Y,X) = 0 if and only if Al +,.1.2 = O. These 
prove the third claim. 0 

REMARK. As described in the last remark of the previous section, a maximal 
(1)( W)-surface, if it exists, is complete, and then all the maximal (1)( W)-surfaces 
are congruent to each other. 

REMARK. The solution of the equations (4.10) can be parametrized by the 
coefficient WI as follows: 

where the signs of the 2nd and the 3rd parts can be taken independently. Since 
(1)( W) = (1)(- W), we may here assume that WI ~ o. Then the above paramet
rization gives that of all the G-orbital (1)( W)-geometries which have the associated 
surfaces. This parametization is devided into 4 series by the difference of the signs 
of the 2nd and the 3rd parts. In each series if two geometries are different, their 
associated surfaces are not congruent to each other. Because they have different 
Gauss curvatures. 

Also, these 4 series look very similar from geometric properties of the 
associated surfaces. In fact, consider the linear transformation rp of I defined by 
the equation CP(WI' W2, W3) = (WI, -W2> -W3). Then it is an isometric automor
phism of I and at the same time changes the signs of the 2nd and the 3rd 
components of the above parametrization. So, if in place of E(I, 1), we con
sider its universal covering, cP induces an isometric automorphism on it and 
consequently it holds cp( (1)( W)) = (1)( cp( W)). Hence the (1)( W)-geometry and the 
(1)( rp( W) )-geometry on the universal covering are equivalent to each other. But we 
don't know a relationship between 2 series obtained by changing the either sign 
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of the 2nd and the 3rd parts. In this situation, the linear isometry rP of I defined 
by the equation ¢(WI, W2, W3) = (WI, -W2, W3) is not an automorphism of L 

REMARK. We last remark about a relation between the Grassmann geo
metries of E(2) and E(1, 1). Consider the complexification IC of the Lie algebra I 
of E(1, 1) and put 

FI = vCTEI , F2 = E2 , F3 = vCTE3 . 

Then these Fi generate a real form of IC and satisfy that 

where -A2 ~ AI > O. Hence the real form is isomorphic to the Lie algebra E(2). 
From this fact and the results of Theorem 4.2, it may be expected that there 
exist somewhat relations between two (!)(W)-geometries of E(2) and E(1,1) 
when W = (0,0, ±1), and between the local Euclidean geometry of E(2) and the 
geometry of E(1, 1) when Al + ..1.2 = 0 and W3 = O. 
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