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Abstract. The Dirichlet-Neumann problem for the dissipative Helm-
holtz equation in a connected plane region bounded by closed curves
and open arcs (cuts) is studied. The Dirichlet condition is specified
on the closed curves, while the Neumann condition is specified on
the cuts. The existence of a classical solution is proved by potential
theory. The problem is reduced to a Fredholm equation of the
second kind, which is uniquely solvable. An integral representation
for the solution of the problem is obtained. Our approach holds for
both interior and exterior domains.

1. Introduction

The boundary of a 2-D cracked domain includes both closed curves and open
arcs (cuts or cracks). The boundary condition is specified on the whole boundary,
i.e. on both closed curves and open arcs. Open arcs or cuts model screens, wings,
cracks or spits in applied problems. Boundary value problems for PDEs in
cracked domains describe different physical processes such as distribution of
electric and heat fields, propagation of acoustic waves and scattering by cracks,
etc. Stationary waves in isotropic media are described by the Helmholtz equation

Au+k*u=0,

where A is Laplacian. If Im k = 0, then this equation is called propagative. If
Im k # 0, then this equation is called dissipative, since energy of waves dissipates
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in the media [13]. The skew derivative problem for the propagative Helmholtz
equation outside cuts (cracks) in a plane has been studied in [12]. The Dirichlet
and Neumann problems for the dissipative Helmholtz equation in cracked
domains were studied in [7], [8]. In the present paper we study the mixed problem
for the dissipative Helmholtz equation in a cracked domain (interior or exterior),
so that the Dirichlet condition is specified on the closed curves, while the
Neumann condition is specified on the cuts. We obtain an integral representation
for a solution and reduce the problem to the uniquely solvable Fredholm integral
equation of the second kind and index zero. The obtained integral equation can
be solved numerically by standard codes [9]. The results of the present paper may
be helpful in applied inverse problems of determination of crack locations.

2. Formulation of the Problem

By a simple open curve we mean a non-closed smooth arc of finite length
without self-intersections [5].

Let y be a set of curves, which may be closed and open. We say that y € C%4
(or y e C14) if curves y are of class C>* (or Ch%4) with the Holder exponent
Ae(0,1].

In the plane x = (x;,x;) € R?> we consider the multiply connected domain
bounded by simple open curves I“ll,...,l“]{,l e C>* and simple closed curves
IZ,...,T € C?% 1€ (0,1], so that the curves do not have common points, in
particular, endpoints. We will consider both the case of an exterior domain
and the case of an interior domain, when the curve I'? encloses all others. We
put

N] NZ
r'=yr), r=yr? r=r'urx
n=1 n=1

The connected domain bounded by I'? and containing I'! will be called 2, so
that 092 = T'2, T'! = 9. We assume that each curve I/ is parametrized by the arc
length s: T/ = {x: x = x(s) = (x1(5), %2(s)), s € [a,bJ]}, n=1,...,N;, j=1,2, s0
that

al <bj <---<ay <by <a} <b} <. <a} <bl

and the domain 2 is to the right when the parameter s increases on 1"3. Therefore
points x e I' and values of the parameter s are in one-to-one correspondence
except a2, b2, which correspond to the same point x for n = 1,..., N,. Below the
sets of the intervals on the Os axis
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Ny Na 2 N
bl Uil U Utahl
n=1 n=1 j=1n=1
will be denoted by I'!, T'? and T also.
We put C/7(I7) ={F(s) : F(s) € C/'[a2, b2, #™) (a2) = FM (b2),m =0, j},
j=0,1, re[0,1] and
N,
Ci(r2) = () CH(T2).
n=1
The tangent vector to I' at the point x(s) we denote by 7, = (cos a(s),
sin a(s)), where cos a(s) = x{(s), sin a(s) = x5(s). Let n, = (sin a(s), —cos a(s)) be
a normal vector to I' at x(s). The direction of n, is chosen such that it will
coincide with the direction of 7, if n, is rotated anticlockwise through an angle of
n/2. So, n, is the inward normal to & on I'2
We consider I'! as a set of cuts. The side of I'' which is on the left, when
the parameter s increases will be denoted by (I'')* and the opposite side will be
denoted by (T'')".
We say, that the function u(x) belongs to the smoothness class K if
1) ue COUD\I'")N C2(2\I'!) and u(x) is continuous at the end-points of the
cuts IT'!, L
2) Vue C%(2\I''\X), where X is a point-set, consisting of the end-points
of T

X = () (x(ah) Ux(8))),
n=1

3) in the neighbourhood of any point x(d) € X for some constants € > 0,
e > —1 the inequality holds

(1) Vi < €|x - x(d)[,

where x - x(d) and d=a! or d=0b), n=1,...,N,.

ReMARK. In the definition of the class K we consider I'' as a set of cuts
in the domain 2. According to this definition, u(x) and Vu(x) are continuously
extensible on cuts '\ X from the left and from the right, but their values on
I''\X from the left and from the right may be different, so that u(x) and Vu(x)
may have a jump across FI\X .

Let us formulate the mixed Dirichlet-Neumann problem for the dissipative
Helmholtz equation in the domain @\I'' (interior or exterior). The Dirichlet
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condition is specified on the closed curves I'2, while the Neumann condition is

posed on the cuts I'!.
Problem U. To find a function u(x) of the class K which satisfies the

Helmholtz equation
(22)  thyyxy (X) F thiyry (%) + KPu(x) =0, x e D\I'!, k = const, Imk > 0
and the boundary conditions

au_(x) =F+(S), _a_u(i)

= F~(s),
anx X(S)G(r])+ anx ( )

(2b)
*()e(r')

u(x)lx(s)erz = F(s).
If 9 is an exterior domain, then we add the following conditions at infinity:
(20)  w=o(x7"?), Vux)l=o(xI7'%), |xl =[x} +x3 = co.

All conditions of the problem U must be satisfied in the classical sense.

The problem U includes two particular cases. In the first case ' =g,
I'? # ¢ and we obtain the Dirichlet problem for the dissipative Helmholtz
equation in the domain & without cuts (this is a particular case of [8] also). In
the second case I'! # &, ' = ¢&f and we obtain the Neumann problem for the
dissipative Helmholtz equation outside the cuts I'' on a plane (see [4], [7)).

On the basis of the energy equalities [1, v. IV], [11], we can easily prove the
following assertion.

Tueorem 1. If Te C»* Ae(0,1], then the problem U has at most one
solution.

The theorem holds for both interior and exterior domain 2.

3. Integral Equations at the Boundary

Below we assume that
(3) F*(s), F~(s) e C*X(IT"), F(s)e CM(T?), Ae(0,1].
If ('), %,(I'?) are Banach spaces of functions given on I'! and I'?; then

for functions given on I'" we introduce the Banach space %;(I"') N %,(?) with

the nom || - [lg,riyngsrzy = - ooy + 11 - gy
We consider the angular potential from [3], [4] for the equation (2a) on

I‘*l
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(4) w4 (x) = ;;Jr' wo)V(x,0) do.

The kernel V(x,0) is defined on each curve I} (n=1,...,N;) by the
formula

7 0

Vo) = 3

a) 0Dy

A0 e = y(Q))) d¢, o ela, b)),
where #,(z) is the Hankel function of the first kind [10]:

o © N—1/2
#(2) = \/ECXPTEZZ ln/4)J exp(—t)t‘l/z(l +_lt‘> dt,
0

vz 2z
y =) =n(&),»(), Ix-y&)l= \/(X1 = 1) + (2 = »2(&)*.

Below we suppose that u(o) belongs to the Banach space Cq‘"(l“l), w e (0,1],
g €[0,1) and satisfies the following additional conditions

b,
(5) J ulo)do=0, n=1,...,N;.

a)
We say, that u(s) e C2(I'') if
Ny
w(s) [T s —arl?ls — byl 7 e CHe(TY),
n=1

where C%¢(T'!) is a Holder space with the exponent  and

”#(S)"c;»(r‘) =

Ny
ws) [T 1s = arl?ls — byl
n=1

coe(rt)

As shown in [3], [4] for such u(o) the angular potential w;[u](x) belongs
to the class K. In particular, the inequality (1) holds with ¢ = —g, if g € (0,1).
Moreover, integrating w;[u](x) by parts and using (5) we express the angular
potential in terms of a double layer potential

(© i) = 5| p(0) 50 A5 x = y(o)) o

with the density

g

(o) =J w(&) dé, aela bl n=1,...,N..

1
a,



108 P. A. Krutitsknn and V. V. KOLYBASOVA

Consequently, w;[](x) satisfies both equation (2a) outside I'' and the conditions
at infinity (2c).

Let us construct a solution of the problem U. This solution can be obtained
with the help of potential theory for the Helmholtz equation (2a). We seek a
solution of the problem in the following form

() uly, ul(x) = v1[V)(x) + w[y] (),

where
i) = | v@)#lx = y(o) do,

(8) wlul(x) = w11 (x) + w2 (4] (%),

ali) = 3| o) o klx = (o) de,

and wi[y](x) is given by (4), (6).
By [;;---do we mean

Ni ob]
S|
a;

n=1

We will look for v(s) in the space C%*(I'!), then the single layer potential
v1[vV](x) belongs to the class K, obeys the equation (2a) outside I'! and satisfies
the conditions at infinity (2c) in case of an exterior domain 2 (see [1, v. IV],
[3])-

We will seek u(s) from the Banach space C2(I'')NCM/4(T?), we (0,1],
ge[0,1) with the norm |- “Cl;g(rl)ncl,l/ts(r‘z) =" ”cqw(r‘) + 1 - llcram(r2)- Besides,
u(s) must satisfy conditions (5).

It follows from Theorem 5 in Appendix 1 that for such u(s) the double layer
potential w,[u](x) belongs to C!(2), and so w,[y](x) € K. Besides, wy[u](x) obeys
the equation (2a) and satisfies the conditions at infinity (2c) if 2 is an exterior
domain [1, v. IV], [11]. Consequently, for densities u(s), v(s) described above, the
function (7) belongs to the class K and satisfies all conditions of the problem U
except the boundary condition (2b).

To satisfy the boundary condition we put (7) in (2b), use the limit formulas
for the angular potential from [3] and arrive at the integral equations for the
densities u(s), v(s):
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©0) £3%)+5 | ¥(0) 5 lx(0) - y(o)) do

B 21—7r J r! Ho) SIIT:%?S‘()XES)Y’(J;()T)) do+ 2:_ J r! M) % Volxs, ) do

+%J ()ai a%(l)(kIX(s) y(0))) do = F*(s), sel’,

©0) 5| A klx(s) = ) do+ 5 [ wo)Vx6),0) dot )

+q ] #0) 5 A1) = Y@ do = F6), seT?,
4 r? 0 ly
where V(x,0) is the kernel of the angular potential (4),
V(o) = [ - hlklx =y de, o€ lal bl n=1,2,...,M,
al 6ny

z

h<z>=%“(>——1 2

By ¢y(x,y) we denote the angle between the vector Xy and the direction of the
normal n,. The angle ¢y(x, y) is taken to be positive if it is measured anti-
clockwise from n, and negative if it is measured clockwise from m,. Besides,
@o(x, y) 1s continuous in x,y e I if x # y.

Equation (9a) is obtained as x — x(s) € (') and comprises two integral
equations. The upper sign denotes the integral equation on (I'!)*, the lower sign
denotes the integral equation on (I'!)~.

In addition to the integral equations written above we have the conditions
(5).

Subtracting the integral equations (9a) we find
(10) v(s) = (F*(s) = F~(s)) e C*X(T').

We note that v(s) is found completely and satisfies all required conditions.
Hence, the potential v;[v](x) is found completely as well.
We introduce the functions fi(s) and f,(s) by the formulae

(1) fils) = 5 (F*(5) + F(5)
0

ony

i

3] @) - F @) 5 dx(s) - v do, seT,
r
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(11b) fz(s>—-—F(s)—-ﬁjr,(ma)—F’(a))%m(kms)~y(o->|> do, sel”.

As shown in [4], if seT!, then fi(s) € CH*(I'). Clearly, f3(s) e CLA(T?).
Adding the integral equations (9a) and taking into account (9b) we obtain the
integral equations for u(s) on I'' and on I'?

1 sin @y (x(s), ¥(0)) i 0
(12a) —-ELI (o) |x(os) -y dU+ZJr1 ﬂ(a)éﬁ; Vo(x(s),0) do

+§L u(o) bi— Bg;%(l)(klx(ﬂ ~¥0)) do = fi(s), seT’,

(12b)

Ao~

J o)V (x(s),0) do
r

+5u6) 5 | o) o A klxls) — Yo do = (), seT?,
r2 on,
where fi(s), f2(s) are given in (11).

It follows from Lemma 4 in Appendix 2 that the sum of integral terms
in (12b) belongs to C¥4(I'?) in s for any u(s) e C2(I'')NCO(I?), we (0,1],
g€ [0,1). Since fo(s) e CHA(?) in (12b), any solution of the equation (12b) in
C2(I')NCO(T?) automatically belongs to C#(I'')N C##(I'?). Consequently,
below we will look for a solution u(s) of the equations (12) in C¥(I'') N CO(I'?),
we(0,1], ge[0,1).

Thus, if u(s) is a solution of equations (5), (12) from the space CJ(I' hn
Co(r?), we (0,1], g€ [0,1), then u(s) e C2(I'') N C#4(I'?) and the potential (7)
satisfies all conditions of the problem U.

The following theorem holds.

TueoreM 2. Let T e C>* and conditions (3) hold. If the system of equations
(12), (5) has a solution u(s) from the Banach space C;’(I‘l) NCcor?), o e (0,1],
g€ [0,1), then a solution of the problem U is given by (7), where v(s) is defined
in (10).

Below we look for u(s) in the Banach space Cg’(I‘l)ﬂ co(r?).

If s e I'?, then (12b) is an integral equation of the second kind. If s € T'!, then
(12a) is a singular integral equation [5], [2]. The first term in (12a) is a Cauchy
singular integral.

Our further treatment will be aimed to the proof of the solvability of the
system (5), (12) in the Banach space C;’(Fl) N C%I'?). Moreover, we reduce the
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system (5), (12) to a Fredholm equation of the second kind, which can be easily

computed by classical methods.
Equation (12b) on I'? we rewrite in the form

(13) u(s) +Lﬂ(0’)Az(& 0)do=25(s), seT?,

Aa(s,0) = 51 = 8NV (x(5),0) + 58(0) 5 5 Kix(s) = ¥(0)]),

0,

0, ifsel!

5 — b b
(5) {1, if seT?,

V(x,0) is the kernel of the angular potential (4). According to [3], [4],
Ay(s,0) e CO(T? x T), since T e C%%, A€ (0,1].

RemArk. Evidently, fi(a?) = f2(b?) and Ay(a?,0) = A2(b2,0) for any
ogel (n=1,...,N;). Hence, if u(s) is a solution of equation (13) from

N>
C°<U [a2, b? ), then, according to the equality (13), u(s) automatically satisfies
n=1

matching conditions u(a?) = u(b?) for n=1,...,N, and therefore belongs to
C%(I'?). This observation is true for equation (12b) also and can be helpful
for finding numerical solutions, since we may abandon matching conditions
w(a) = pu?) (n=1,...,N,), which are fulfilled automatically.

It can be easily proved that

(see [3], [4] for details). Therefore we can rewrite equation (12a) on I'! in the
form

(14 HI G

g—3S

+J w(0)Y(s,0) do = —2£i(s), sel',
r

where

o= {1 s (A8 1) L i

~3000) o o A (Klx(5) ~ Y(0)) f € COR(T! ),
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=Aif 0<A<1 and po=1—¢g for any ¢ € (0,1) if A=1 (we took into
account Lemma 3 in [4]).
4. The Fredholm Integral Equation and the Solution of the Problem

Inverting the singular integral operator in (14) we arrive at the following
integral equation of the second kind [5]:

15 §) +—=——~ J 0)Ao(s,0) do +—— Gs o(s), seTll
where
_ 1 X, )
Ao(s,a)——; Jrl 222 0,0)
0i(s) = \/S—aly/bl sign(s — a
o) - L 2014 ()
) o-—s
Go,...,Gn,—1 are arbitrary constants.
To derive equations for Gy,...,Gy,—1 we substitute u(s) from (15) in the
conditions (5), then we obtain
Ni—
(16) J w0)n(0)do+ Y BuwGm=H,, n=1,...,Ni,
r m=0
where
ho) == | 07 o(s.0) s,
17 By = —J 1 07 (s)s™ ds,
r'l

= - o' 0o s
By B we denote the N; x Ny matrix with the elements B,, from (17). As shown
in [4], the matrix B is invertible. The elements of the inverse matrix will be called
(B7!),,,- Inverting the matrix B in (16) we express the constants Gy, ..., Gy,_; in
terms of u(s)
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N,
Gy = > (B Yot | oY) d].
m=1 r
We substitute G, in (15) and obtain the following integral equation for u(s) on I'}
1 1
18 S+——J 0)Ai(s,0) do = ——=®:(s), sell,
( ) ,u() QI(S) r,u'( ) 1( ) QI(S) 1()
where

A;(s,0) = Ao(s,0) Z E (B™),,hm(0),

n=0 m=1

Ny-1

@) (s) = Do(s) — Zs"z(B-l),,mHm

n=0 m=1

It can be shown using the properties of singular integrals [2], [5], that ®g(s),
Ao(s,0) are Holder functions if seT'!, o e . Hence, ®;(s), 41(s,0) are also
Holder functions if se !, o e I'. Consequently, any integrable on I'! and con-
tinuous on I'? solution of equation (18) belongs to oy ,(T'!) with some w & (0, 1).
Therefore, below we look for u(s) on I' in the space Ccy /Z(FI)OCO(TZ) with
w € (0,1]. It can be easily verified that any solution of equation (18) in this space
satisfies both conditions (5) and equation (14). Indeed, if a function u(s)e
Cl“}z(l“l) NC%T?) turns equation (18) to identity, then multiplying this identity
by (s—1)', where e T}, and integrating in s over I'', we obtain identity (14).
Integrating identity (18) in s over I'! (n=1,...,Nj), one can prove that con-
ditions (5) hold.

We put

0(s) = (1 —=96(s))Qi1(s) +(s), seTl.

Instead of u(s) € Cf‘}z(l“l) N C%T?) we introduce the new unknown function
w1 (8) = u(s)Q(s) e C%2(r)N COT?) and rewrite system of equations (13), (18)
in the form of one equation

(19) m(s) + jrma)Q-l(a)A(s, 0)do=d(s), seT,

where
A(s,0) = (1 = (5)) A1 (s, 0) + 6(s)A42(s, 0),

O(s) = (1 —6(s))@1(s) + 26(s) f2(s)-
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Thus, the system of equations (12), (5) for u(s) has been reduced to the
equation (19) for the function u,(s). It is clear from our consideration that any
solution x,(s) of equation (19) in the space C%“(I'')NCO?) with w e (0,1]
produces the solution u(s) = u,(s)/Q(s) € Ci,(T')N COT?) of system (12),
(5).

As noted above, ®;(s) and A4,(s,0) are Holder functions if se !, ceT.
More precisely (see [4], [5]), ®@i(s) e C%?(T!), p=min{1/2,A} and 4,(s,0)
belongs to C%?(T'') in s uniformly with respect to oeT.

We arrive at the following assertion.

Lemma 1. Let TeC?, 1e(0,1], ®(s)eCo(T)ync(r?),
p=min{A,1/2}. If u,s) from COT) satisfies the equation (19), then
p(s) e COPTNCOT?).

The condition ®(s) e CO?(I''YNCO(I'?) holds if fi(s) e COXTY), fals) e
co(r?).

Hence below we will seek a solution u,(s) of the equation (19) in CO(T).

Since A;(s,0) € CO(I'! x I') and A,(s,0) € CO(I'2 x I'), one can verify using
the Arzela theorem [6] that the integral operator from (19)

Au, = j 1.(0)0"(0)A(s,0) do

is a compact operator mapping C°(I') into itself. Therefore, (19) is a Fredholm
equation of the second kind in the Banach space CO(T).

Let us show that homogeneous equation (19) has only a trivial solution in
CO(I"). Then, according to Fredholm’s theorems, the inhomogeneous equation
(19) has a unique solution in C°(T") for any right-hand side in C°(T). We will
prove this by a contradiction. Let u(s) € C°(T") be a non-trivial solution of the
homogeneous equation (19). According to Lemma 1, x0(s) e C%?(T'') N C(T?),
p = min{A, 1/2}. Therefore the function x°(s) = u2(s)Q~'(s) € Clp/z(I“l) ncor?)
converts the homogeneous equations (13), (18) into identities. Using the ho-
mogeneous identity (18) we check, that u®(s) satisfies conditions (5). Besides,
acting on the homogeneous identity (18) with a singular operator with the kernel
(s—£)~" we find that u°(s) satisfies the homogeneous equation (14). Conse-
quently, u°(s) satisfies the homogeneous equations (12). On the basis of
Theorem 2, u[0,u%)(x) = w[u®](x) is a solution of the homogeneous problem
U. According to Theorem 1: w[u0)(x) = 0, x € 2\I'!. Using the limit formulas for
tangent derivatives of an angular potential [3], we obtain
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0 0
lim  —w[E®)(x)— lm —w[(x) =x) =0, sell.
N Ay [17)(x) i e wl’](x) = p1°(s)
Hence, w[p®](x) = wa[u0)(x) =0, xe D, and u°(s) satisfies the following
homogeneous equation

00 380+ | K)o A W)~ o)) do =0, seT?
2 4 Jr2 on,

Equation (20) has only the trivial solution x%(s) =0 in C°(I'?). This is true
for both interior and exterior domain 2. The detailed proof is presented in the
section 5.

Consequently, if s e T, then p0(s) = 0, u2(s) = u°(s)Q~'(s) = 0 and we arrive
at the contradiction to the assumption that x0(s) is a non-trivial solution of the
homogeneous equation (19). Thus, the homogeneous Fredholm equation (19) has
only a trivial solution in CO(T).

We have proved the following assertion.

TueoreM 3. If T'e C>* )€ (0,1, then (19) is a Fredholm equation of the
second kind in the space C°(T). Moreover, equation (19) has a unique solution
u.(s) e CUT) for any ®(s) e CUT).

As a consequence of Theorem 3 and Lemma 1 we obtain the corollary.

CorOLLARY 1. If T e C** A€ (0,1] and ®(s) e CO?(I')NCOT?), where
p =min{2,1/2}, then the unique solution of equation (19) in C°(T'), ensured by
Theorem 3, belongs to C%?(T'')NCO(T?).

We recall that ®(s) belongs to the class of smoothness required in the
corollary if fi(s) e CHX(I), fo(s) e CO(T'?). As follows from our treatment
presented above, if u,(s) e C%?(I'")N C%('?) is a solution of (19), then u(s) =
w1 ()071(s) e Cl”/z(l“l) NCO%T?) is a solution of system (12), (5). We obtain the
following statement.

COROLLARY 2. If T'e C>* fi(s) e COXTY), fols) e COT?), Ae(0,1], then
the system of equations (12), (5) has a solution u(s) e C{’/Z(FI)OCO(FZ), p=
min{1/2, A}, which is expressed by the formula pu(s) = u,(s)Q7'(s), where u,(s) €
CoP(TYYNCOT?) is the unique solution of the Fredholm equation (19) in C°(T).

RemMARk. The solution of system (12), (5) ensured by Corollary 2 is unique
in the space Clp/"z(l"l) N C%T?) for any p, € (0, p]. The proof can be given by a
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contradiction to the assumption that the homogeneous system (12), (5) has a
nontrivial solution in this space. The proof is almost the same as the proof of
Theorem 3. Consequently, the numerical solution of system (12), (5) can be
obtained by the direct numerical inversion of the integral operator from (12), (5).
In doing so, Holder functions can be approximated by continuous piecewise
linear functions, which also obey Hoélder inequality. The simplification for nu-
merical solving equation (12b) is suggested in the remark to the equation (13) in
the section 3.

We remind, that if conditions (3) hold, then f(s)e COXI), fi(s) e
CH4(T?) = CO(I'?) and the solution of equations (5), (12) ensured by Corollary 2
belongs to C/),(I'") N CH*4(I'?). On the basis of Corollary 2 and Theorem 2 we
arrive at the final result.

TueoreM 4. If T'e C>* and conditions (3) hold, then the solution of the
problem U exists and is given by (7), where v(s) is defined in (10) and u(s) is a
solution of equations (12), (5) from Cl”/z(l“l) NCOT?), p=min{1/2,1}, ensured
by Corollary 2. More precisely, u(s) e c{’”/z(rl)n ChHH4 (T2,

It can be checked directly that the solution of the problem U satisfies
condition (1) with ¢ = —1/2. Explicit expressions for singularities of the solution
gradient at the end-points of the cuts I'! can be easily obtained with the help of
formulas presented in [4].

Theorem 4 ensures existence of a classical solution of the problem U when
I" e C>* and conditions (3) hold. The uniqueness of the classical solution follows
from Theorem 1. On the basis of our consideration we suggest the following
scheme for solving the problem U. First, we find the unique solution u,(s) of the
Fredholm equation (19) from C°(T'). This solution automatically belongs to
Cco%?(r')yN c°(r?), p = min{A,1/2}. Second, we construct the solution of equa-
tions (12), (5) from Cl"/z(Fl)ﬂCO(TZ) by the formula u(s) = u,(s)Q~'(s). This
solution automatically belongs to C{),(I') N C»**(T'?). Finally, substituting v(s)
from (10) and u(s) in (7) we obtain the solution of the problem U.

Modern methods for numerical analysis of integral equations with singular
integrals are presented in [9].

5. Analysis of Equation (20)

The Fredholm equation (20) is well-known in classical mathematical physics.
We arrive at (20) when solving the homogeneous Dirichlet problem for the
Helmholtz equation (2a) in the domain 2 by the double layer potential.
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Our aim is to prove the following assertion.

ProposiTioN.  If T2 e C%%, 2 € (0,1), then there is only the trivial solution of
the homogeneous Fredholm equation (20) in CO(T?).

We will give a proof by a contradiction. Let 1°(s) be a nontrivial solution
of equation (20) in C°(I'?). So, u°(s) transforms equation (20) into an identity.
It follows from Lemma 4 in Appendix 2 that the integral term in this identity
belongs to C“#4(T'?). It follows from identity (20) that w(s) e CL¥4(T?).
03" (klx = y(@)))

on,
According to Theorem 5 in Appendix 1, wy[u0)(x) € C1(2) N CY(R2\D). More—
over, the potential w,[u)(x) satisfies the Helmholtz equation (wy), . -+ (w2) oy T
k2w, =0, xe 2 and the homogeneous Dirichlet boundary condition on I'%:
hmr wa[u%](x) = 0, which follows from identity (20). Besides, wy[u®](x) sat-

Consider the double layer potential wy[u0)(x) = frz G

X
1s§§s9 conditions at infinity (2¢) if 9 is an exterior domain. So, wp[u%)(x) is a
solution of the particular case of the problem U when I'' = ¥, According to
Theorem 1, this problem has only the trivial solution wy[°](x) = 0 in 9. Let 9,
be a domain bounded by the curve I“,f and such that 2 ¢ 9,, n=1,...,N,.
Therefore 2,,...,%y, are interior domains, while 2, is interior if 9 is exterior,
and 9, is exterior if 9 is interior. We consider I'? as double-sided curves. We
denote that side of I'?> which is on the left when the parameter s increases on I'2

by (I'?)*, the opposite side will be denoted by (I'?)”. Set

o) wal](0) = war 7)) + wal)()
where
nla)(s) = =35 | ) T g

enln)) = 3 | w0y PN 4

According to Lemma 2 in Appendix 1,

w1 (x) _ own[p°)(x)

22
( ) 5nx (I-Z)+ 6nx

2y
It follows from (27) in Theorem 5 (Appendix 1) and from Lemma 3 in Appendix
1 that
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owa [1°)(%) _ on[(1%)1(%)
@) T U TR FINC
Iwa [1°)(x) _ 0un[(#°)1(x)
(24) on, (r2)- - 0ty 2"
where v;[(1°)'])(x) = ——%frz{,uo(a)}' In|x — y(o)| do. 1t is shown in Lemma 3
(Appendix 1) that
(25) o [(1°))(x) _ (W) |
0t (r2)* Otx (r2)-
According to (21) (25), awz([an #1069 i =6—W2—g;0~]@ = Since w[u%)(x) =0
wau ](x) * ) x ™)

in 9, we have = 0. Therefore, the function

anx 2)+

wa[1°)(x) € C(D,) N CH(Dy)

satisfies the Helmholtz equation

(26) Aw,y + k*wy =0, Kk =const, Imk >0

in the domain 9, (n=1,...,N,;) and obeys the homogeneous Neumann
0

boundary condition %(_x_) =0,n=1,...,N>. In addition, if n =1 and
x (N

if 9, is an exterior domain (9 is interior) then w,[u)(x) satisfies conditions at
infinity (2c). So, wa[u](x) obeys the homogeneous Neumann problem for dis-
sipative Helmholtz equation (26) in the domain 2,. Using the method of energy
equalities [1, v. IV], [11], we multiply (26) by w; (the complex conjugate function
to wy) and integrate by parts in 9,. Using condition at infinity (2¢) for n =1 if
9, is an exterior domain, we obtain the identity ||sz]|iz(9") —kzllwzlliz(%) =
f(rz)+ W ng ds=0,n=1,...,N,. If Re k # 0 then taking the imaginary part in
this identity and remembering that Im k > 0, we obtain ”Wz”iz(@n) =0; n=
1,...,N,. The same result follows from the identity if Re k = 0 since Im k > 0.
So in any case, wy[u%)(x) =0 in 9, (n=1,...,N,). Therefore, wy[1°](x) =0 in
R?\I'?. Using the jump formula for the limit values of the double layer potential
(1], [11], we obtain wy[u®)(x)|p2yr — wa[u®)(x)|(r2)- = —4°(s) = 0. Hence u(s) =0
on I'? and we arrive at a contradiction to the assumption that x°(s) is a non-
trivial solution of equation (20). Thus, equation (20) has only the trivial solution
in C%(I'?). The proof is completed.
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As a consequence of Proposition and the Fredholm alternative, we
obtain

CorOLLARY 3. If T?eC?* 1e(0,1] then nonhomogeneous Fredholm
equation (20) is uniquely solvable in C°(T'?) for any right-hand side from C°(I'2).

Appendix 1

Let us study smoothness properties of the double layer potential with a
differentiable density. Let G be an interior simply connected domain bounded by
a simple closed curve G of the class CL4 Ae(0,1]. The boundary 4G is
parametrized by the arc length s counted from some fixed point on 9G:

3G ={y: y=y(s) = (51(s), »2(5)) € R%, s € [a, b]; y1(s), 2(s) € C*{a, B];
y(a) = y(b),y'(a) = y'(b)}.

It is assumed that the domain G is situated on the left when the parameter s
increases on 0G. Introduce at a point y € 0G the tangent vector 7, showing the
increment direction of s and the vector n, of the outward normal to G. Then
7, = (cos a(s),sin a(s)), m, = (sin a(s), —cos a(s)), cosa(s) = yi(s), sina(s) =
¥5(s). Note that the curvilinear integral of the first kind [, - --do coincides with
the integral f:mda. Let

K(s) € C"1(0G) = {uls) € C*{a,b], u(a) = u(b), #'(a) = ' (b)}-
Introduce the designations:

i 851 (k|x — y(0)))
- Z J@G #(O-) : 6ny >

Wy (x) do = Wi[Y(x) + W2 [y(x)

is the double layer potential for the Helmholtz equation,

mmw=—§hf@@%£ﬂﬂw

is the double layer potential for the Laplace equation,

Oh(klx — y(9)I)

on,, do,

Walul() =5 | w0

where h(z) = .}%(I)(z) —2Inz, h(z) = C'[0,4+). We will prove the following
result.
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TeEOREM S. Let G e CH%, 4 €(0,1], u(s) € CH*(8G), then
Wd(x) e C1(G)N C(R2\G).
Proor. It will be proved in Lemma 2 (see below) that W>[y](x) € C'(R?)

for any density u(s) € C°(0G) = {u(s) € C°a,b], u(a) = u(b)}. Thus, to finish the
proof of the theorem, we need to demonstrate that

Wilk(x) € C'(G)NCH(RN\G).
According to [11, §31.2], if u(s) e C°(dG) and 9G e C* then
Wi[H(x) e C°(G)N C*(RN\G).

Thereby, it remains to prove that VW;[y(x) e C°(G) N C°(R2\G). Let x ¢ 4G,
then

W) L[ i 2 gy
an 2n G 6xj 6ny
Transform the densities in the integrals for %, % taking into account that
2
ny = (y3(0), —»1(9)): :
0 Olnjx—y|  , 9 dlnjx—y| , 0 dlnjx— y|
0x1 oOn, =) 0x1 oy 71 0x1 0y,

7 8ln|x—y|+y,£61n|x—y|

o1 o Yoyr  om
:y,ialnlx—y| , 0 dln|x— y|
20y, Oy Yoy, ox
_ ;0 0lx—yl , 0 dlnjx—y|
T 250 op Nom ™ o

_ 0 0lnlx— y(o)|
T 0x do ’

i@ln[x—y[__ , 0 0ln|x— y| , 0 0ln|x—y|

ox;  om, Vo, o o oy
R 0 aln]x—yl , 0 Olnjx—y|
2%, an an om

— 0 0 dllx—y| , 0 dlnjx—y|
20y, ox ~h o 1
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0 0ln|x— y| 0 0lnjx — y|
BRCY R P A T
_ 0 9ln|x— y(o)|
- 6x1 do !
where the Laplace equation
9 0ln|x— y| 4 9ln|x— y|
—— - X #
oy on oy2 Oy Y
and the relation
0 ln|x — y| _ _61n|x—y|) =12

0x; oy;
are used. Consequently, integrating by parts, we obtain for x ¢ 0G

oW1 [H(x) —(-D’j 0 0lnjx ~ y(o)|
= (o) do
G 8X3.j do

an 2n

_C o= y@) o))
- 2r JaGﬂ( 8x3_j do= ( 1) 6X3.j

where 4/(s) € C%4(0G) = {1/ (s) € C%*[a,b], ' (a) = u'(b)}. By

) j=1»2a

M6 = =52 w(o) Inlx = y(0)] do

we denote the single layer potential with the density u'(o). It follows from
Lemma 3 (see below) that VV;[u'](x) € C°(G) N CO(R?\G). Since

@) omip(x) _ _ -1y 24 (#](x)

=1,2
axj 5X3_j ) J [t

we obtain VW;[y](x) € C°(G)N CO(R?\G). The proof is completed.

LemMa 2. If 0Ge CM4, 1€ (0,1], u(s) e C°(3G), then Wy[u)(x) e CH(R?).
Besides, VW-[u](x)|; can be calculated by differentiation under the integral.

PrOOF. Set (x # y)

X1 — )1
cos ‘p(x)y): |x—y| =_|x_y|}l1] =l'x_y|)lcl)
X2y _
Ix — ¥l

sin Y(x, y) = —|x =y, = x =y,
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Then for x # y
Vyh(k|x — y|) = —kh'(klx — y|)(cos ¥ (x, y), sin ¥(x, y)).

Since ]’l’(Z) e CO[O,—i-OO) and h/(Z) = O(Z In Z), then ah(kla):l_ yl)

(x,y) € R? x 3G. We obtain from the theorem on a cgntinuity of a proper
integral in parameter that W>[y](x) e CO(R?). It is easy to verify that

__sin y(—sin ¥, cos ¥) cos Y(—sin , cos )

is continuous in

, Vesiny(x,y) =

Vx cos Y(x, y) =

= =)l
Hence,
TR = 2D 42 (e ) cos Y, )05 p s ), in U()
L (kx — y) sin s, y)(sim Y5, 3),005 U, )
lx =yl ’
TMEX =D o (e — 3 sin (x, ) cos b, ), sy, )
2

_ kh'(klx — yl) cos Y(x, y)(—sin ¥(x, y), cos Y(x, ))
bx =yl
Taking into account (see [3, 4]) that h'(z) =—Lizlnz+zhi(z), hi(z)e
C'0,+o0), h"(z) = =L Inz + hy(z), ha(z) € C'[0,+00), we obtain
oV,h(klx — y|) _ ik*(1,0) In(k|x — y|)
0x) - 7

— k2 [ha(k|x — y|) cos Y(x, y)(cos ¥(x, ),sin ¥(x, y))
+ hl(klx - yl) sin lp(x7 y)(Sin ‘//(x’ y)’ —Cos ‘p(x: J)))],

aV,h(klx — y|) _ik?(0,1) In(k|x — y|)
ax;z a T

— K2[ha(k|x = y|) sin ¢ (x, y)(cos ¢(x, y),sin ¥(x, y))
+ hl(klx - yl) cos '//(x’ y)(_Sin l//(X, y),COS '//(X» y))]

Thus,

X 2
éz%%lz‘%Lg@mmu@mwu—ﬂdow

ik?

_ TLG w(0)[ha(klx — y|) cos ¥ (x, y)(cos ¥(x, y) sin
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— sin Y (x, y) cos &) + Ay (k|x — y[) sin Y/ (x, y)
X (sin Y(x, y) sin o + cos Y(x, y) cos )] do,

oW [(x) _ k>

= Lcy(a) cos o() In(k|x — y(0)|) do

2
[ o)ttt = D i, )(e05 Y5, ) sin

— sin Y(x, y) cos &) + Ay (k|x — y|) cos Y¥(x, y)
X (—sin Y(x, y) sin o — cos Y(x, y) cos a)] do.

Here the arguments are omitted: y = y(0), @ =a(o). The first terms in the
oW, oW,
R
densities. They are continuous in x on the whole plane (see [11, §31.2]). Let Gy be
a bounded open domain and G = Gy. If x e Gy then the integrands in the

formulae for are the single layer potentials with continuous on 0G

. 4 . oW . . .
second integrals in 572 and in % are uniformly bounded, that is their absolute
1 2

values can be majorized by a constant uniformly in x € Gy, y € 0G. If x ¢ 0G and
x — x° € 0G then the integrands in these integrals tend to their direct values on
0G for all y e dG except y = x° (that is the limit exists ‘nearly everywhere’).
Applying the theorem on proceeding to limit under the Lebesgue integral [6,
ch. V, §5.5], [1, v. V, §54], we obtain that for x ¢ G, x — x° € G the second
integrals in %, % tend to their direct values on dG. Hence, %,%

Ox; ° 0xy ox;  0xp
CO(R?). Moreover, these derivatives can be calculated under the integral for all
x € R?. The proof is completed.

LemMa 3. Let 0Ge CY2, Ae(0,1],
v(s) € CO*3G) = {v(s) € C"*a,b],v(a) = v(b)}.

Then — ViP)(x) = — o [,59(0) In|x — y(0)| do e C}(G)N C(R?\G).  Besides,
Vi (x) _onx)

07x xe(3G)* O xe(3G)™
(0G)* is the side of G, which is on the left, when parameter s increases, while

(0G)™ is another side.

, where 0G is considered as a double-sided curve,
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Proor. The functions (¥1),, and (—V1),, are defined for x € R*\0G and
satisfy the Cauchy-Riemann relations (¥1),,,, = —(=V1) x> (PM)xm = (V1) 0m
since AV =0 for x € R?\3G. Let z = x| + ixy, t = y; + iy, consider the analytic
complex function

®(z) = (M), — (M),

1 cos Y(x, y(0))  .sin Y (x, y(0)) -
[ R e i

= IJ v(a)ﬂ——dt———l—J vi(o at
T 2z 3G |x—y|e"'»"(x>)’) T 2z 3G ! z—1t’

where vi(0) = v(0)e™ ™) e CO*(3G), dt=1'(0) do=e™) ds since y(o) =
cos a(0), yj(o) = sin a(c). Denote v,(t) = v2(t(0)) = vi(0). Consider an arbitrary
non-closed arc y; which is a part of 0G. If x(a) = x(b) ¢ y; = {y ey, : y = y(s),
s€[c,d]}, then vi(0) € C%%c,d], that is
Va(t1(01)) = va(t2(02))] = 1 (01) — vi(02)| < clor — 02|
S01|t1(0‘])_12(02)|1, VO‘l,Gze[C,d].

Here we used the fact (see [3, lemma 1]) that

loy — o3|

Do = en <€ ed)x [e.d),

consequently,
o1 — 03]
—————————— < const,
|y(o1) = (02|
therefore
|o1 — 02| < const|t;(01) — t(02)].

Hence, v,(f) € C%*(y)),

o(z) = —%Lsz(z)z‘i‘t.

If x(a) = x(b) is an interior point of y; = {x €y, : x = x(s),s € [a,c] U [d, b]}, then
introduce a new parametrization on y;:

'})1:{}76)/1Zj:j}(é),ée[d,b—f—c_a]},
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where j(&) = y(&), W(&) =w(¢) if Leld,b]; F(&)=y(—(b—a)), W(¢)=
vi(€ = (b—a)) if £€[b,b+c—a]. Obviously, (&) e C¥[d,d], #1(¢) e CO4[b,
b+c—a] and ¥ (&) e C%[d,b+c—al. Tt is known from [5, §5.1] that % (&) e
C%*d,b+ ¢ —a]. Similarly, %(¢) e C"*[d,b+c—a]. It can be shown by re-
peating the above arguments for the function ¥,(f) = ¥,(¢(¢)) = ¥(¢) in the new
parametrization ¢ that ,(z) € C%*(y;). Then

<I>(z)~—LJ (1) dt__l_J va (1) dt
- 2n ! z—1 2n aG\y, z—1 '

In any case, the Cauchy integral ®(z) has a Holder density on y,. It is known
from [5, §15] that the function ®(z) is continuously extensible on y; from the left
and from the right (except, maybe, the end-points of ;). Since y; is an arbitrary
non-closed arc of dG, the function ®(z) is continuously extensible on dG from the
left and from the right at all points. Thereby, V¥, € C%(G)N C*(R?\G). Since
V114)(x) € CO(R?) (see [11, ch. V, §31.2]), we obtain that V)[4](x) e C'(G)N
C'(R?\G). Consider G a double-sided curve. The limiting values of functions
on (y;)* and on (y,)” will be denoted by superscripts + and — respectively.
Using the expression for function ®(z) and Sokhotsky’s formulae from [5], we
obtain

oV (x) * o + v(s) . o
(BE . = Re OO ), = Re| £ 701+ e 00(0) |
X(S) €N 0E€Y\
= Re(eia(S)q)(to))ltoeyl>

where 1) = x) + ixp, ®(fp) is the direct value of the function ®(z) at the point f
on y,. Hence, 61;1 () = ggl—(x—) = [Re(e™®(19))]l,,c,,- Since y, is an

T lxe(n)* Tx Ixe(n) oV (x) v (x)
arbitrary open arc contained in 0G, we obtain ——— = — " .
Tx  lxe(aG)* 07x xe(3G)™

The proof is completed.

Appendix 2

Let us study smoothness of the direct value of the double layer potential on
the curve.

LemMmA 4. Let y be a simple closed curve of class C**, e (0,1], para-
metrized by the arc length s: y={x:x=x(s),s € [a,b]}, and

p(s) € C°y) = {uls) € C°la,b], u(a) = p(b)}.
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Let
94 (k|x(s) — ()

on,

i

1(s) =Zj u(o) do

be the direct value of the double layer potential on y. Then

I(s) € CHM4(y) = {I(s) € CHM*(a,b],1(a) = I(b),I'(a) = I'(b)}.
Proor. Let I(s) = Ii(s) + L(s), where

1) = 35 | o) =AM g

b

1) = [ o) =X o, ey = A -2 m

1) Consider I (s) and prove that I;(s) € C1**[a, b]. Taking into account that
n, = (»3(0), =»{(0)), we find

0 In|x(s) — y(a)| _ T(s,0) x(s) - y(a)|2
on, = 9(s,0)° g(s,0) = —W—,

T(s,0) = [x2(5) = y2(0)]¥1(0) = [x1(s) — y1(0)]5(0)
’ (s— o)’ |

Note that y(o) is a point on I' corresponding to s=o. So, we may put
x(o) = y(0). For j=1,2 we have [3, §3]

%(5) = x(0) = (s = 0)Z}(s5,0) = —x](0) (0 = 8) + (0 = 5)°Z} (0, 9),

where

1
Z!(s,0) = L %0+ &(s — 0)) d& € C1((a, ] x [a,B]),

1
Z%(0,5) = Jo Ex!/(s + (o — 5)) dE € CO((a,b] x [a, ).
Note that the function

2
x(s) — x(o
o(5,0) = ZO 2 = (1215, )" + 2} (5,00} € (e, ) x o, 8)
does not equal zero anywhere on I' and g(s,s) = 1, therefore

1
g(s,0)

e C!([a,b] x [a,b]).
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Further,
9 1 3 (s—0 _ gils0)
s g(s,0)  0s |x(s) — x(0)|? g%(s,0)

Z{(s,0)[Z{ (s, 9)]; + [Z5 (s, 0)]:Z3 (5, 0)

=2 e C**((a,b] x [a,b)).

g%(s,0)
Consequently, ; (Sl) 5 € Ch*([a,b] x [a,b)). Similarly,
T(s,0) = [xa(s) — xa(0))x1 (o) — {xzx (8) — x1(0))x3(0)
(s—o)
= [Z3(0,9)x(0) — Z}(0,8)x3(0)] € C**([a, 8] x [a,B]).
Consider a:r((;, ) _ Ji(5,0) — 2a(s, ), where

%3(8)x1(0) — x1(5)x3(0)

Jl(S,G') =

(s—0)?
_ [%(8) = x3(9)lxi(0) — [x1(s) — x](0)]x;(0)
(s—0)?
1 1
= {0 | s et — ) de— i) | s+ o -9 ac
(s 0) = 28 = xz(a)lxi((c:)_— a[; (s) = x1(@)5(0)
1 1
=3 _1 p {x{(a) L Exy[s + &(o — 5)] d& — x;5(0) Jo Exi[s + &(o — 9)] dé}.
Then
1
Moo 1 {x; (@) L (1 - 28)xl[s + &(o — 5)] d¢
! g
— x(0) J (1 - 26)xs + &(0 - 5)] dcf} - A
0

where K(s,0) € C%*([a,b] x [a,b]) and K(s,s) =0. According to [5, §5.7), the
following representation holds:
0T (s,0)  K*(s,0)
s Is—all_m’
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K*(s,0) € C%3*%([a,b] x [a,b]). Using properties of Hélder functions [5], we
obtain the representation

0 0ln|x(s) —y(o)] 1 0T(s,0) 9 1
ds on, " g(s,0) Os +T(s,0) s g(s, o)
K (s,0)

= m + Kz (S, O'),

where K, (s,0) € C%3**([a,b] x [a,b]), Ka(s,0) € C®*([a,b] x [a,b]). By formal
differentiation under the integral, we find

dIL (s) 1 0 01n|x(s) — y(o)|
S ‘E;J,“@é;———any d

J ()l _(ll }1/4 do — IJ#(U)Kz(S o) do.

The validity of differentiation under the integral can be proved in the same way
as at the end of §1.6 in [11] (Fubini theorem on change of integration order is

used). Taking into account the obtained representation for d—I%S—) and applying
results of [5, §51.1], we obtain that i%gz e CO*4(q,b).
2) Consider I (s). It follows from lemma 3.3 in [3] that

0 0Oh(kl|x(s) —
0s on,

YN o c0.4/4 (14, ] x [a, B]).

This kernel is continuous, hence differentiation under the integral is valid (by the
theorem on differentiation of proper integral with respect to a parameter):

dh(s) i 0 oh(k|x(s) — y(o)l) dh(s) _ 0,24
ds = 4Jy (0)5} any dO', —(,F eC [a,b].
It follows from the points 1) and 2) that I(s) € C»**[a,b] and

dI(s) _ i J () 2 9 (x9) = y))

ds 4 y ds on,

0 0 o . .
Note that PRl due to the parametrization chosen. It is easy to verify that the
X

kernels in the integrals I(s), I’(s) depend on xj(-m)(s), j=1,2, m=0,1,2. The
values of these functions at s = a and at s = b are equal. Therefore, I(a) = I(b),
I'(a) = I'(b). Thus, I(s) e CL*4(y). That accomplishes the proof.
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