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Abstract. The Dirichlet-Neumann problem for the dissipative Helm
holtz equation in a connected plane region bounded by closed curves 
and open arcs (cuts) is studied. The Dirichlet condition is specified 
on the closed curves, while the Neumann condition is specified on 
the cuts. The existence of a classical solution is proved by potential 
theory. The problem is reduced to a Fredholm equation of the 
second kind, which is uniquely solvable. An integral representation 
for the solution of the problem is obtained. Our approach holds for 
both interior and exterior domains. 

1. Introduction 

The boundary of a 2-D cracked domain includes both closed curves and open 
arcs (cuts or cracks). The boundary condition is specified on the whole boundary, 
i.e. on both closed curves and open arcs. Open arcs or cuts model screens, wings, 
cracks or spits in applied problems. Boundary value problems for PDEs in 
cracked domains describe different physical processes such as distribution of 
electric and heat fields, propagation of acoustic waves and scattering by cracks, 
etc. Stationary waves in isotropic media are described by the Helmholtz equation 

!1u +k2u = 0, 

where !1 is Laplacian. If 1m k = 0, then this equation is called propagative. If 
1m k i= 0, then this equation is called dissipative, since energy of waves dissipates 
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in the media [13]. The skew derivative problem for the propagative Helmholtz 
equation outside cuts (cracks) in a plane has been studied in [12]. The Dirichlet 
and Neumann problems for the dissipative Helmholtz equation in cracked 
domains were studied in [7], [8]. In the present paper we study the mixed problem 
for the dissipative Helmholtz equation in a cracked domain (interior or exterior), 
so that the Dirichlet condition is specified on the closed curves, while the 
Neumann condition is specified on the cuts. We obtain an integral representation 
for a solution and reduce the problem to the uniquely solvable Fredholm integral 
equation of the second kind and index zero. The obtained integral equation can 
be solved numerically by standard codes [9]. The results of the present paper may 
be helpful in applied inverse problems of determination of crack locations. 

2. Formulation of the Problem 

By a simple open curve we mean a non-closed smooth arc of finite length 
without self-intersections [5]. 

Let y be a set of curves, which may be closed and open. We say that y E C2,A 
(or y E CI,A) if curves yare of class C2,A (or CI,A) with the HOlder exponent 
A. E (0,1]. 

In the plane x = (XI, X2) E R2 we consider the multiply connected domain 
bounded by simple open curves rl, ... , r11 E C2,A and simple closed curves 
rl, ... , r~2 E C2,A, .A. E (0,1], so that the curves do not have common points, in 
particular, endpoints. We will consider both the case of an exterior domain 
and the case of an interior domain, when the curve rl encloses all others. We 
put 

The connected domain bounded by r2 and containing rl will be called !l), so 
that o!l) = r 2, rl c !l). We assume that each curve r1 is parametrized by the arc 
length s: r1 = {x: x = xes) = (XI (S),X2(S)),S E [a~,b~]), n = 1, ... ,Nj , j = 1,2, so 
that 

I bl I bl 2 b2 2 b2 a l < I < ... < aNI < NI < a l < I < ... < aN2 < N2 

and the domain !l) is to the right when the parameter s increases on r;. Therefore 
points x E r and values of the parameter s are in one-to-one correspondence 
except a;, b;, which correspond to the same point x for n = 1, ... ,N2' Below the 
sets of the intervals on the Os axis 
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Nt 

U[a~,b~l, 
N2 

U[a;,b;J, 
2 Nj 

U U [a~,b~l 
n=l n=l i=l n=l 

will be denoted by rl, r2 and r also. 
We put CJ,r(r;) = {ff(s) : ff(s) E Ci,r[a~, b~], ff(m) (a;) = ff(m) (b;), m = 0, j}, 

j=O,l, re[O,l] and 

N2 
cJ,r(r 2 ) = n Ci,r(r;). 

n=l 

The tangent vector to r at the point x(s) we denote by LX = (cos a(s), 
sin a(s)), where cos a(s) = xl (s), sin a(s) = x~(s). Let Ox = (sin a(s), -cos a(s)) be 
a normal vector to r at x(s). The direction of Ox is chosen such that it will 
coincide with the direction of LX if Ox is rotated anticlockwise through an angle of 
n/2. So, Ox is the inward normal to ~ on r2. 

We consider rl as a set of cuts. The side of rl which is on the left, when 
the parameter s increases will be denoted by (rl)+ and the opposite side will be 
denoted by (r 1 ) -. 

We say, that the function u(x) belongs to the smoothness class K if 
1) u e C°(£0\r1) n C2(~\rl) and u(x) is continuous at the end-points of the 

cuts rl, 
2) Vu e CO(~\r\X), where X is a point-set, consisting of the end-points 

of rl: 

NI 

X = U (x(a~) Ux(b~)), 
n=l 

3) in the neighbourhood of any point x(d) e X for some constants ~ > 0, 
e > -1 the inequality holds 

(1) 

where x--?x(d) and d=a~ or d=b~, n=l, ... ,Nl. 

REMARK. In the definition of the class K we consider rl as a set of cuts 
in the domain ~. According to this definition, u(x) and Vu(x) are continuously 
extensible on cuts rl \X from the left and from the right, but their values on 
r1\X from the left and from the right may be different, so that u(x) and Vu(x) 
may have a jump across rJ\x. 

Let us formulate the mixed Dirichlet-Neumann problem for the dissipative 
Helmholtz equation in the domain ~\rJ (interior or exterior). The Dirichlet 
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condition is specified on the closed curves r 2, while the Neumann condition is 
posed on the cuts r 1• 

Problem U. To find a function u(x) of the class K which satisfies the 
Helmholtz equation 

(2a) UX1X1 (x) + UX2X2 (X) + k 2u(x) = 0, X E 2)\rl, k = const, 1m k > 0 

and the boundary conditions 

(2b) 

u(x)lx(s)er2 = F(s). 

If £i) is an exterior domain, then we add the following conditions at infinity: 

(2c) u = o(lxl-1/ 2), IVu(x) I = o(lxrl/2), Ixl = j xf + x~ -+ 00. 

All conditions of the problem U must be satisfied in the classical sense. 
The problem U includes two particular cases. In the first case rl = 0, 

r2 :f= 0 and we obtain the Dirichlet problem for the dissipative Helmholtz 
equation in the domain £i) without cuts (this is a particular case of [8] also). In 
the second case rl :f= 0, r2 = 0 and we obtain the Neumann problem for the 
dissipative Helmholtz equation outside the cuts rl on a plane (see [4], [7]). 

On the basis of the energy equalities [1, v. IV], [11], we can easily prove the 
following assertion. 

THEOREM 1. If r E C 2,A, A E (0, 1], then the problem U has at most one 

solution. 

The theorem holds for both interior and exterior domain £i). 

3. Integral Equations at the Boundary 

Below we assume that 

(3) F+(s), F-(s) E CO,A(rl), F(s) E C1,A(r2), A. E (0, 1]. 

If ~l(rl), ~2(r2) are Banach spaces of functions given on rl and r2, then 
for functions given on r we introduce the Banach space ~l(rl) n~2(r2) with 

the norm II . 11~I(rl)n~2(r2) = II '11~I(rl) + 1I·1I~2(r2). 
We consider the angular potential from [3], [4] for the equation (2a) on 
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(4) 

The kernel Vex, a) is defined on each curve r~ (n = 1, ... , Nl) by the 
formula 

Vex, a) = J(1 -aa JeD(I) (klx - y(c;)I) de;, a E [a~, b~], 
a~ Oy 

where JeD(I)(z) is the Hankel function of the first kind [10]: 

-./p(I)( ) _ ..fi exp(iz - in/4) Joo () -1/2 (1 it)-1/2 d 
~o z - r.; exp -t t +-2 t, 

nyZ ° z 

y = y(c;) = (y,(c;), Y2(c;)), Ix - y(c;)1 = vex, - YI(c;))2 + (X2 - Y2(c;))2. 

Below we suppose that p.(a) belongs to the Banach space c:(r l ), OJ E (0,1]' 
q E [0,1) and satisfies the following additional conditions 

b' 

(5) J n p.(a) da = 0, n = 1, ... ,NI • 
a~ 

We say, that p.(s) E c:(rl ) if 

N, 

p.(s) IT Is - a~lqls - b~lq E cO.CO(r l), 
n=1 

where cO.CO(r') is a Holder space with the exponent OJ and 

As shown in [3], [4] for such p.(a) the angular potential wdp.](x) belongs 
to the class K. In particular, the inequality (1) holds with e = -q, if q E (0,1). 
Moreover, integrating WI [p.](x) by parts and using (5) we express the angular 
potential in terms of a double layer potential 

(6) 

with the density 

i J a (I) w,[p.](x) = --4 p(a)-a JeD (klx- y(a)!) da, 
r' Oy 

p(a) = J(1 p.(C;) de;, a E [a~, b~], n = 1, ... , NI. 
a~ 
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Consequently, wIf,u](x) satisfies both equation (2a) outside rl and the conditions 
at infinity (2c). 

Let us construct a solution of the problem U. This solution can be obtained 
with the help of potential theory for the Helmholtz equation (2a). We seek a 
solution of the problem in the following form 

(7) u[v,,u](x) = vdv] (x) + w[,u](x), 

where 

(8) w[,u](x) = wd,u](x) + W2[,u] (x), 

i J a (I) W2[,u](X) = -4 ,u(u) -a ~ (klx - y(u)l) du, r2 Oy 

and wd,u](x) is given by (4), (6). 
By fr j '" du we mean 

We will look for v(s) in the space cO,.:l(r l ), then the single layer potential 
vdv](x) belongs to the class K, obeys the equation (2a) outside rl and satisfies 
the conditions at infinity (2c) in case of an exterior domain ~ (see [1, v. IV], 
[3]). 

We will seek ,u(s) from the Banach space c:,(r l ) n C I,.:l/4(r2), WE (0,1], 

q E [0,1) with the norm II· Ilc:(nnc',l/4(r2) = II . Ilc:(r') + II . Ilc'.lI4(r2). Besides, 
p(s) must satisfy conditions (5). 

It follows from Theorem 5 in Appendix 1 that for such ,u(s) the double layer 
potential W2[,u](X) belongs to Cl U~), and so W2[,u](X) E K. Besides, W2[,u](X) obeys 
the equation (2a) and satisfies the conditions at infinity (2c) if ~ is an exterior 
domain [1, v. IV], [11]. Consequently, for densities ,u(s), v(s) described above, the 
function (7) belongs to the class K and satisfies all conditions of the problem U 
except the boundary condition (2b). 

To satisfy the boundary condition we put (7) in (2b), use the limit formulas 
for the angular potential from [3] and arrive at the integral equations for the 
densities ,u(s) , v(s): 
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1 i J a (1) (9a) ±2:v(s) +4 rIV(O')aox£Q (klx(s)-y(O')l)dO' 

I J sin tJlo(x(s) , y(O')) i J a 
--2 f,l(O') 1 () ()I dO'+-4 f,l(O')~ Vo(x(s) , a) dO' n rl x s - y a rl vOx 

+ -4i J f,l( a-) -J!- -J!- £0(1) (klx(s) - y( a) I) dO' = P±(s), s E r l , 
r2 vOx vOy 

(9b) ~Jrl v(O')£Q(1)(klx(s) - y(O')l) dO'+~lrlf,l(O')V(x(s),O') dO'+~f,l(s) 

i J a (1) + -4 f,l(O') ~£Q (klx(s) - y(O') I) dO' = P(s), 
r2 vOy 

where V(x,O') is the kernel of the angular potential (4), 

J(J a 
Vo(x, a) = ah(klx - y(~)I) d~, 

a,: Oy 
a E [a~,b~], n = 1,2, ... ,NI' 

By tJlo(x, y) we denote the angle between the vector xy and the direction of the 
normal Ox. The angle tJlo(x, y) is taken to be positive if it is measured anti
clockwise from Ox and negative if it is measured clockwise from Ox. Besides, 
tJlo(x, y) is continuous in x, y E r if x =1= y. 

Equation (9a) is obtained as x --+ x(s) E (rl)± and comprises two integral 
equations. The upper sign denotes the integral equation on (rl)+, the lower sign 
denotes the integral equation on (r 1 ) - . 

In addition to the integral equations written above we have the conditions 
(5). 

Subtracting the integral equations (9a) we find 

(10) 

We note that v(s) is found completely and satisfies all required conditions. 
Hence, the potential vJ[v] (x) is found completely as well. 

We introduce the functions /1 (s) and h(s) by the formulae 

(lla) 
1 fi (s) = 2: (P+(s) + P-(s)) 

-~J (P+(O') - p-(O'))-J!-£Q(I)(klx(s) - y(O')1) dO', 
4 rl vOx 
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(lIb) f2(s) = F(s) - £ frl (F+(a) - F-(a))J'&Q(I) (klx(s) - y(a)!) da, s E r2. 

As shown in [4], if s E rl, then fi (s) E cO.A(r l ). Clearly, f2(s) E c l.A(r2). 
Adding the integral equations (9a) and taking into account (9b) we obtain the 

integral equations for fl(S) on rl and on r2 

(12a) 1 J sin qJO(x(s) , y(a)) iJ a 
--2 flea) 1 () ()I da+-4 flea),?> VO(x(s) , a) da n rl x s - y a rl vOx 

i J a a (I) +-4 fl(a),?>,?>J'&Q (klx(s) - y(a)!) da=fi(s), 
r2 vOx vOy 

(12b) £ Jr l flea) V(x(s) , a) da 

1 i J a (I) +2 fl(s) +4 r2fl(a) a~y J'&Q (klx(s) - y(a)!) da = h(s), 

where fi (s), 12 (s) are given in (11). 
It follows from Lemma 4 in Appendix 2 that the sum of integral terms 

in (12b) belongs to c U /4 (r2) in s for any fl(S) E c:(r 1) n CO(r2), 0) E (0, 1], 
q E [0,1). Since h(s) E c l •il (r2) in (12b), any solution of the equation (12b) in 
c:(rl ) n CO(r2) automatically belongs to c:(rl ) n C1•il/ 4(r2). Consequently, 
below we will look for a solution fl(S) of the equations (12) in c:(r1) n CO(r2), 
0) E (0,1], q E [0,1). 

Thus, if fl(S) is a solution of equations (5), (12) from the space c:(r1) n 
CO(r2), 0) E (0,1]' q E [0, 1), then fl(S) E c:(r1) n C1.il/4(r2) and the potential (7) 
satisfies all conditions of the problem U. 

The following theorem holds. 

THEOREM 2. Let r E C 2•il and conditions (3) hold. If the system of equations 
(12), (5) has a solution fl(S) from the Banach space c:(r l ) n CO(r2), 0) E (0,1]' 
q E [0,1), then a solution of the problem U is given by (7), where v(s) is defined 
in (10). 

Below we look for fl(S) in the Banach space c:(r l ) n CO(r2). 
If s E r2, then (12b) is an integral equation of the second kind. If s E r 1, then 

(12a) is a singular integral equation [5], [2]. The first term in (12a) is a Cauchy 
singular integral. 

Our further treatment will be aimed to the proof of the solvability of the 
system (5), (12) in the Banach space c:(r1) n CO(r2). Moreover, we reduce the 
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system (5), (12) to a Fredholm equation of the second kind, which can be easily 
computed by classical methods. 

Equation (I2b) on r2 we rewrite in the form 

(13) 

where 

i i a (1) 
A2 (s,CT) = 2:(1 -6(CT))V(X(S),CT) +2:6(CT) any JfQ (klx(s) - Y(CT) I), 

6(S) = {O, if S E rl , 
1, if S E r2, 

V(x, CT) is the kernel of the angular potential (4). According to [3], (4), 
A2(S, CT) E cO(r2 x r), since r E C2,A, A E (0,1]. 

REMARK. Evidently, h(a~) = h(b~) and A2(a~, CT) = A2(b~, CT) for any 
CT E r (n = 1, ... ,N2). Hence, if J1(s) is a solution of equation (13) from 

CO (Q [a~, b~]), then, according to the equality (13), J1(s) automatically satisfies 

matching conditions J1(a~) = J1(b~) for n = 1, ... , N2 and therefore belongs to 
CO(r2). This observation is true for equation (12b) also and can be helpful 
for finding numerical solutions, since we may abandon matching conditions 
J1(a~) = J1(b~) (n = 1, ... ,N2), which are fulfilled automatically. 

It can be easily proved that 

sinIPo(x(s),y(CT)) __ 1_ E CO,A(rl x rl) 
IX(S)-Y(CT)I CT-S 

(see [3), [4] for details). Therefore we can rewrite equation (I2a) on rl in the 
form 

(14) ~J J1(CT)~+J J1(CT)Y(S,CT)dCT=-2Ji(s), SErl, 
10,' CT - S , 

where 

Y(S, CT) = {(I _ 6(CT)) [~ (Sin IPo(x(s), Y(CT)) __ 1_) -~ ~ Vo(x(s), CT)] 
10 Ix(s) - Y(CT) I CT - S 2 anx 

- ~6(CT) -aa -aa JfQ(l)(klx(s) - Y(CTm} E CO,PO(r l x r), 
2 nx ny 
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Po = A. if 0 < .A. < 1 and Po = 1 - eo for any eo E (0, 1) if A. = 1 (we took into 
account Lemma 3 in [4]). 

4. The Fredholm Integral Equation and the Solution of the Problem 

Inverting the singular integral operator in (14) we arrive at the following 
integral equation of the second kind [5]: 

(15) SE rl, 

where 

QJ(S) = fiIJs-a~Jb~ -si sign(s-a~), 
n=l 

<l>o(s) =!J 2QJ(a)}i(a) da, 
n r' a-s 

Go, ... , GN,-l are arbitrary constants. 
To derive equations for Go, ... , GN,-l we substitute J1(s) from (15) in the 

conditions (5), then we obtain 

(16) n= 1, ... ,Nl, 

where 

(17) 

By B we denote the Nl x Nl matrix with the elements Bnm from (17). As shown 
in [4], the matrix B is invertible. The elements of the inverse matrix will be called 
(B-1)nm' Inverting the matrix Bin (16) we express the constants Go, ... , GN,-l in 
terms of J1(s) 
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We substitute Gn in (15) and obtain the following integral equation for fJ.(s) on rl 

where 

NJ-I N, 

Al (s, a) = Ao(s, a) - l: sn l:(B- I )nm1m(a), 
n=O m=1 

N,-I NJ 

<1>1 (s) = <1>o(s) - l: sn l:(B- I )nmHm. 
n=O m=1 

It can be shown using the properties of singular integrals [2], [5], that <1>o(s), 
Ao(s, a) are Holder functions if s E r 1, a E r. Hence, <1>1 (s), Al (s, a) are also 
Holder functions if s E r l, a E r. Consequently, any integrable on rl and con
tinuous on r2 solution of equation (18) belongs to Cf/2(r l) with some WE (0,1]. 
Therefore, below we look for fJ.(s) on r in the space Cf/2(r l ) n CO(r2) with 
WE (0, I]. It can be easily verified that any solution of equation (18) in this space 
satisfies both conditions (5) and equation (14). Indeed, if a function fJ.(s) E 

Cf/2(r l ) n CO(r2) turns equation (18) to identity, then mUltiplying this identity 
by (s - t)-I, where t E r l , and integrating in s over r l , we obtain identity (14). 
Integrating identity (18) in s over r~ (n = 1, ... ,NI), one can prove that con
ditions (5) hold. 

We put 

Q(s) = (1 - O(S))QI (s) + o(s), S E r. 

Instead of fJ.(s) E Cf/2(r l) n CO(r2) we introduce the new unknown function 
fJ..(s) = fJ.(s)Q(s) E CO,W(rl) n CO(r2) and rewrite system of equations (13), (18) 
in the form of one equation 

(19) 

where 

A(s, a) = (1 - o(s))AI (s, a) + 0(s)A2(s, a), 

<1>(s) = (1 - o(s))<1>\ (s) + 20(s)fz(s). 
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Thus, the system of equations (12), (5) for f1.(s) has been reduced to the 
equation (19) for the function f1..(s). It is clear from our consideration that any 
solution f1..(s) of equation (19) in the space cO.CO(rl) n CO(r2) with co E (0, 1) 
produces the solution f1.(s) = f1..(s)1 Q(s) E CV2(r i ) n CO(r2) of system (12), 
(5). 

As noted above, <1>1 (s) and Ai (s, a) are Holder functions if s E rl, a E r. 
More precisely (see [4), [5)), <l>1(S) E cO·p(rl), p = min{1/2,A} and AI(s,a) 
belongs to cO·p(rl) in s uniformly with respect to a E r. 

We arrive at the following assertion. 

LEMMA 1. Let r E C2.\ A E (0,1), <I>(s) E cO·p(r l) n CO(r2), 
p = min{A, 1/2}. If f1.*(s) from CO(r) satisfies the equation (19), then 
f1.*(s) E CO,p(r l) n CO(r2). 

The condition <I>(s) E CO,p(r l) n CO(r2) holds if fi(s) E cO·J(r l), h(s) E 
CO(r2). 

Hence below we will seek a solution f1.*(s) of the equation (19) in CO(r). 
Since Al (s, a) E CO(r l x r) and A2(s, a) E C°(r2 x r), one can verify using 

the Arzela theorem [6) that the integral operator from (19) 

is a compact operator mapping CO(r) into itself. Therefore, (19) is a Fredholm 
equation of the second kind in the Banach space CO(r). 

Let us show that homogeneous equation (19) has only a trivial solution in 
C°(r). Then, according to Fredholm's theorems, the inhomogeneous equation 
(19) has a unique solution in CO(r) for any right-hand side in CO(r). We will 
prove this by a contradiction. Let f1.~(s) E CO(r) be a non-trivial solution of the 
homogeneous equation (19). According to Lemma 1, f1.~(s) E cO·p(r l) n CO(r2), 
p = min{A, 1/2}. Therefore the function f1.°(s) = f1.~(S)Q-I (s) E Cf/2Crl) n CO(r2) 
converts the homogeneous equations (13), (18) into identities. Using the ho
mogeneous identity (18) we check, that f1.°(s) satisfies conditions (5). Besides, 
acting on the homogeneous identity (18) with a singular operator with the kernel 
(s - t)-I we find that f1.°(s) satisfies the homogeneous equation (14). Conse
quently, f1.°(s) satisfies the homogeneous equations (12). On the basis of 
Theorem 2, u[O,f1.°)(x) == w[f1.°)(x) is a solution of the homogeneous problem 
U. According to Theorem 1: w[f1.°)(x) == 0, X E .@\r l . Using the limit formulas for 
tangent derivatives of an angular potential [3), we obtain 
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lim J--w[,u°](x)- lim J--w[,u°](x)=,u°(s) =:0, serlo 
x->x(s)e(rlt u7:x x->x(s)e(rl)- u7:x 

Hence, w[,u°](x) = W2[,u°](X) =: 0, x E!'), and ,u°(s) satisfies the following 
homogeneous equation 

(20) ~ ,u°(s) + £ Jr2 ,u°(a) a!y ~(l) (klx(s) - y(a)1) da = 0, s E r2. 

Equation (20) has only the trivial solution ,u°(s) =: 0 in CO(r2). This is true 
for both interior and exterior domain !'). The detailed proof is presented in the 
section 5. 

Consequently, if s E r, then ,u°(s) == 0, ,u~(s) = ,u°(S)Q-l(S) =: 0 and we arrive 
at the contradiction to the assumption that ,u~(s) is a non-trivial solution of the 
homogeneous equation (19). Thus, the homogeneous Fredholm equation (19) has 
only a trivial solution in CO (r). 

We have proved the following assertion. 

THEOREM 3. If r E C2,A, A E (0, 1], then (19) is a Fredholm equation of the 
second kind in the space CO(r). Moreover, equation (19) has a unique solution 
,u*(s) E CO(r) for any <I>(s) E CO(r). 

As a consequence of Theorem 3 and Lemma 1 we obtain the corollary. 

COROLLARY 1. If r E C2,\ A E (0, 1] and <I>(s) E CO,p(r l ) n CO(r2), where 
p = min{A, 1/2}, then the unique solution of equation (19) in CO(r), ensured by 
Theorem 3, belongs to CO,p(r l ) n CO(r2). 

We recall that <I>(s) belongs to the class of smoothness required in the 
corollary if fi (s) E CO,A(r1), f2(s) E CO(r2). As follows from our treatment 
presented above, if ,u*(s) E CO,p(r l ) n CO(r2) is a solution of (19), then ,u(s) = 

,u*(s)Q-l(s) E Ci/2(r l ) n CO(r2) is a solution of system (12), (5). We obtain the 
following statement. 

COROLLARY 2. If r E C2,A, fi(s) E CO,A(r1), fz(s) E CO(r2), A E (0,1]' then 
the system of equations (12), (5) has a solution ,u(s) E Ci/2(r1) n CO(r2), p = 

min{1/2, A}, which is expressed by the formula ,u(s) = ,u*(s)Q-l(s), where ,u*(s) E 

CO,p(r1) n CO(r2) is the unique solution of the Fredholm equation (19) in CO(r). 

REMARK. The solution of system (12), (5) ensured by Corollary 2 is unique 
in the space CO2(rl) n CO(r2) for any Po E (O,p]. The proof can be given by a 
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contradiction to the assumption that the homogeneous system (12), (5) has a 
nontrivial solution in this space. The proof is almost the same as the proof of 
Theorem 3. Consequently, the numerical solution of system (12), (5) can be 
obtained by the direct numerical inversion of the integral operator from (12), (5). 
In doing so, Holder functions can be approximated by continuous piecewise 
linear functions, which also obey Holder inequality. The simplification for nu
merical solving equation (12b) is suggested in the remark to the equation (13) in 
the section 3. 

We remind, that if conditions (3) hold, then fi(s) E co,,t(r1), f2(s) E 
c 1,,t(r2) c CO(r2) and the solution of equations (5), (12) ensured by Corollary 2 
belongs to Ci/2(r1) n C1,,t/4(r2). On the basis of Corollary 2 and Theorem 2 we 
arrive at the final result. 

THEoREM 4. If r E C2,,t and conditions (3) hold, then the solution of the 
problem U exists and is given by (7), where yes) is defined in (10) and fJ.(s) is a 
solution of equations (12), (5) from Ci/2(r1) n cO(r2), p = min{I/2,1l}, ensured 
by Corollary 2. More precisely, fJ.(s) E Ci/2(r1) n C 1,,t/4(r2). 

It can be checked directly that the solution of the problem U satisfies 
condition (1) with e = -1/2. Explicit expressions for singularities of the solution 
gradient at the end-points of the cuts rl can be easily obtained with the help of 
formulas presented in [4]. 

Theorem 4 ensures existence of a classical solution of the problem U when 
r E C2,,t and conditions (3) hold. The uniqueness of the classical solution follows 
from Theorem 1. On the basis of our consideration we suggest the following 
scheme for solving the problem U. First, we find the unique solution fJ.*(s) of the 
Fredholm equation (19) from CO(r). This solution automatically belongs to 
CO,p(r1) n CO(r2), p = min{ll, 1/2}. Second, we construct the solution of equa
tions (12), (5) from Ci/2(r1) n CO(r2) by the formula fJ.(s) = fJ.*(s)Q-l(S). This 
solution automatically belongs to Ci/2(r1) n C1,,t/4(r2). Finally, sUbstitutingv(s) 
from (10) and fJ.(s) in (7) we obtain the solution of the problem U. 

Modem methods for numerical analysis of integral equations with singular 
integrals are presented in [9]. 

5. Analysis of Equation (20) 

The Fredholm equation (20) is well-known in classical mathematical physics. 
We arrive at (20) when solving the homogeneous Dirichlet problem for the 
Helmholtz equation (2a) in the domain f) by the double layer potential. 
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Our aim is to prove the following assertion. 

PROPOSITION. If r2 E C2,.\ A E (0,1], then there is only the trivial solution of 

the homogeneous Fredholm equation (20) in CO(r2). 

We wi11 give a proof by a contradiction. Let fiO(S) be a nontrivial solution 
of equation (20) in CO(r2). So, fiO(S) transforms equation (20) into an identity. 
It follows from Lemma 4 in Appendix 2 that the integral term in this identity 
belongs to CI,A/4(r2). It follows from identity (20) that fiO(s) E CI,A/4(r2). 

i oJ"fr(I) (klx - y(O')!) 
Consider the double layer potential w2[fiO](X) =4fr2fiO(0') ° ony dO'. 

According to Theorem 5 in Appendix 1, W2[fiO](X) E CI(~) n C 1(R2\£')). More

over, the potential W2[fiO](X) satisfies the Helmholtz equation (W2)X1Xl + (W2)X1X2 + 
k 2w2 = 0, X E £') and the homogeneous Dirichlet boundary condition on r2: 

lim W2[fiO)(X) = 0, which follows from identity (20). Besides, W2[fiO](X) sat-
X-+Xo Er2 

XE!'J 

isfies conditions at infinity (2c) if £') is an exterior domain. So, W2[fiO](X) is a 
solution of the particular case of the problem U when rl = 0. According to 
Theorem 1, this problem has only the trivial solution W2[fiO](X) == 0 in £'). Let £')n 
be a domain bounded by the curve r; and such that £') ¢ £')n, n = 1, ... ,N2. 

Therefore £')2,' .. , £5)N2 are interior domains, while £5)1 is interior if £5) is exterior, 
and £')1 is exterior if £5) is interior. We consider r2 as double-sided curves. We 
denote that side of r2 which is on the left when the parameter s increases on r2 
by (r2) +, the opposite side will be denoted by (r2) -. Set 

(21) 

where 

[ 0]( ) 1 f o() 0 mix - y(O')1 d W21fi x =--2 fi 0' '" a, 
'It r2 Uny 

[ O]() if o() oh(klx - y(a)!) d W22 fi x = -4 fi a '" a. 
r2 Uny 

According to Lemma 2 in Appendix 1, 

(22) OW22[fiO](X) I = OW22 [fiO) (x) I . 
onx (r2)+ onx (r2)-

It follows from (27) in Theorem 5 (Appendix 1) and from Lemma 3 in Appendix 
1 that 
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(23) OW21 [1'0] (x) I = OV2J[(JiO)'](x) I 
onx cr2)+ O'fx Cr2)+' 

(24) OW2J[JiO](X) I = OV2J[(JiO)']{x) I 
onx cr2)- O'fx cr2)-

where V2d(JiO)'](x) = - 21 fr2{JiO(O-}}' lnlx - y(a)1 da. It is shown in Lemma 3 
(Appendix 1) that n 

(25) oV2d(JiO)'](x) I = OV21[(JiO)'](x) I . 
O'fx cr2)+ O'fx cr2)-

. OW2[JiO] (x) I OW? [1'0] (x) I . Accordlllg to (21)-(25), = - . Slllce W2[JiO](X) = 0 ° onx cr2t onx Cr2)-
in ?2, we have OW2~ ](x) I = O. Therefore, the function 

nx cr2t 

W2[JiO](X) E C 1(?2 n ) n C2(?2n ) 

satisfies the Helmholtz equation 

(26) 

in the domain ?2n (n = 1, ... , N2 ) and obeys the homogeneous Neumann 

b d d·· OW2[JiO](X) I 0 1 N In dd" 'f 1 d oun ary con ltlOn a = , n = , ... , 2. a Itlon, 1 n = an 
nx cr;t 

if ?21 is an exterior domain (?2 is interior) then W2[JiO](X) satisfies conditions at 
infinity (2c). So, W2[JiO](X) obeys the homogeneous Neumann problem for dis
sipative Helmholtz equation (26) in the domain ?2n . Using the method of energy 
equalities [I, v. IV], [11], we multiply (26) by W2 (the complex conjugate function 
to W2) and integrate by parts in ?2n . Using condition at infinity (2c) for n = 1 if 

?21 is an exterior domain, we obtain the identity IIVW21ILC.@n) - k21Iw21ILC.@n) = 

fcr2t W2 °OW2 ds = 0, n = 1, ... , N2. If Re k =1= 0 then taking the imaginary part in 
II Dx 

this identity and remembering that 1m k > 0, we obtain Ilw21ILC.@n) = 0; n = 
1, ... ,N2 . The same result follows from the identity if Re k = 0 since 1m k > O. 
So in any case, W2[JiO](X) =0 in?2n (n= 1, ... ,N2)' Therefore, W2[JiO](X) =0 in 
R2\r2. Using the jump formula for the limit values of the double layer potential 

[1], [11], we obtain w2[JiO](x)lcr2)+ - w2[JiO](x)lcr2)- = -JiO(s) = O. Hence JiO(s) = 0 
on r2 and we arrive at a contradiction to the assumption that JiO(s) is a non
trivial solution of equation (20). Thus, equation (20) has only the trivial solution 
in CO(r2). The proof is completed. 
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As a consequence of Proposition and the Fredholm alternative, we 
obtain 

COROLLARY 3. If r2 E C2,\ A. E (0,1] then nonhomogeneous Fredholm 
equation (20) is uniquely solvable in CO(r2) for any right-hand side from cO(r2). 

Appendix 1 

Let us study smoothness properties of the double layer potential with a 
differentiable density. Let G be an interior simply connected domain bounded by 
a simple closed curve aG of the class C1,)., A. E (0,1]. The boundary aG is 
parametrized by the arc length s counted from some :fixed point on aG: 

aG = {y : y = yes) = (Yl (s), Y2(S)) E R2,S E [a, b]; Yl (s), Y2(S) E C1').[a, b]; 

yea) = y(b),y'(a) = y'(b)}. 

It ,is assumed that the domain G is situated on the left when the parameter s 
increases on aG. Introduce at a point y E aG the tangent vector 'l:y showing the 
increment direction of s and the vector ny of the outward normal to G. Then 
'l:y = (cos a(s), sin a(s)), ny = (sin a(s), -cos a(s)), cos a(s) = y( (s), sin a(s) = 
y~(s). Note that the curvilinear integral of the first kind SoG' .. da coincides with 

the integral S:'" da. Let 

fl(S) E C1,).( aG) = {fl(S) E C1').[a, b], flea) = fl(b), fl' (a) = fl' (b)}. 

Introduce the designations: 

i J a.Yt;(1)(klx y(a)!) 
W[fl](X) = -4 flea) 0 a - da = Wrlfl](X) + W2[fl](X) 

oG ny 

is the double layer potential for the Helmholtz equation, 

Wr[fl](X) = -~J flea) a lnlx - y(a) I da 
2n oG Ooy 

is the double layer potential for the Laplace equation, 

where h(z) = ~(l)(z) -~ In~, h(z) = C1[O,+oo). We will prove the following 
result. 
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THEOREM 5. Let aG E CI,A, A E (0,1]' f1.(s) E C1,A(aG), then 

W[f1.](x) E CI(O) n C1(R2\G). 

PROOF. It will be proved in Lemma 2 (see below) that W2[f1.](x) E C l (R2) 
for any density f1.(s) E cO(aG) = {f1.(s) E CO[a,b],f1.(a) = f1.(b)}. Thus, to finish the 
proof of the theorem, we need to demonstrate that 

Wrlf1.](x) E CI(O) n CI(R2\G). 

According to [11, §31.2], if f1.(s) E CO(aG) and aG E CI,A then 

Wrlf1.](x) E CO(O) n CO(R2\G). 

Thereby, it remains to prove that Y'Wdf1.](x) E CO(O) n CO(R2\G). Let x 1; aG, 
then 

aWdf1.J(x) = -~J f1.(a) ~ a lnlx - y(a)1 da, j = 1,2. 
ax) 2n ao ax) any 

T C h d .. . h' 1 C aWl aWl k' . h ranSlorm t e ensltIes m t e mtegra s lor -a -, -a - ta mg mto account t at 
ny = (y~(a), _Y; (a)): Xl Xz 

o 0 lnlx - yl I 0 0 lnlx - yl I a a lnlx - YI 
- =Yz- -Yl-
OXI any OXI 0Yl OXI oyz 

I a a lnlx - yl I a a lnlx - yl 
= -Y2- +Yl-

0Yl 0Yl 0Yl 0Y2 

I a a lnlx - yl I a a lnlx - yl 
= Y2ayZ oyz - Yl aYl axz 

I a 0 Inlx - yl I a a lnlx - yl 
=-Yz- -Yl-

aX2 0Y2 OX2 aYl 

o a Inlx - y(a)1 
oxz oa 

o a Inlx - yl I a a lnlx - yl I a a lnlx - YI 
a '" = Yz -a - YI -Xz Uny Xz aYI aX2 oyz 

I a a lnlx - yl I a a Inlx - YI 
= -Yz 0Y2 0Yl + YI aY2 oyz 

I a a lnlx - yl I a a Inlx - yl 
= YZ oYz OXl - Yl OYI aYl 
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, 0 0 lnlx - yl I 0 0 lnlx - yl 
= Y2 ox! 0Y2 + Yl OXI 0YI 

= ~ 0 lnlx - y(cr) I 
OXI ocr 

where the Laplace equation 

o 0 lnlx - yl 0 0 lnlx - yl 
= 

OYI OYI 0Y2 0Y2 
x:;6y 

and the relation 

OXj OYj 
o Inlx - yl 0 Inlx - yl 

= j= 1,2 

are used. Consequently, integrating by parts, we obtain for x ¢ oG 

oWd,u)(x) = -(-I/J ,u(cr)_o- 0 Inlx - y(cr)1 dcr 
OXj 2n aG OX3_j ocr 

= (-1/ J ,u'(cr) 0 Inlx - y(cr) I dcr = _( -1)j oVI[,u'] (x) , j = 1,2, 
2n aG OX3_j OX3_j 

where ,u'(S) E CO,A(oG) = {,u'(S) E CO,A[a,b],,u'(a) = ,u'(b)}. By 

VI [,u/] (x) = -21 J ,u'(cr) lnlx- y(cr) I dcr 
n aG 

we denote the single layer potential with the density ,u'(cr). It follows from 
Lemma 3 (see below) that VVd,u/](X) E CO (G) n CO(R2\G). Since 

(27) oWd,u)(x) = -(-I)j o Vd,u/] (x) . = 1 2 
O ~, ] " Xj UX3-j 

we obtain VWI[,u](x) E CO(G) n CO(R2\G). The proof is completed. 

LEMMA 2. If oG E CI,A, A. E (0,1], ,u(s) E CO(aG), then W2[,u](X) E CI(R2). 
Besides, VW2[,u](x)laG can be calculated by differentiation under the integral. 

PROOF. Set (x:;6 y) 

( ) Xl - YI I I' I I' cos ljJ X, Y = Ix _ yl = - X - Y YI = X - Y XI' 

. ( ) X2 - Y2 I I' I I' sm ljJ X, Y = Ix _ yl = - x - Y Y2 = X - Y Xl· 
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Then for x =1= y 

Vyh(klx- yl) = -kh'(klx- yl)(cos ljJ(x,y),sin ljJ(x,y)). 

Since h'(z) E COlO, +(0) and h'(z) = O(z In z), then ah(k~:- yl) is continuous in 

(x, y) E R2 x aGo We obtain from the theorem on a c6ntinuity of a proper 
integral in parameter that W2[,uj(X) E CO(R2). It is easy to verify that 

t7 ,1,( ) _ sin ljJ( -sin ljJ, cos ljJ) t7 . ,1,( ) _ cos ljJ( -sin ljJ, cos ljJ) 
v x cos 'f' x, Y - - I I ' v x sm 'f' x, Y - I I . x-y x-y 

Hence, 

av h(klx - yl) 2 . 
Y a = -k h"(klx - yl) cos ljJ(x, y)(cos ljJ(x, y), smljJ(x, y)) 

XI 

kh'(klx - yl) sin ljJ(x, y)( -sin ljJ(x, y), cos ljJ(x, y)) 
+ Ix-yl ' 

aVyh(~lx - yl) = -k2h" (klx - yl) sin ljJ(x, y)(cos ljJ(x, y), sin ljJ(x, y)) 
X2 

kh'(klx - yl) cos ljJ(x, y)( -sin ljJ(x, y), cos ljJ(x, y)) 

Ix-yl 

Taking into account (see [3, 4]) that h'(z) = -~zlnz+zhl(z), hl(z) E 

CI[O,+oo), hl/(z) = -~ Inz+h2(z), h2(Z) E CI[O,+oo), we obtain 

aVyh(klx - yl) ik2(1,0) In(klx - yl) 
n 

- k2[h2(klx - yl) cos ljJ(x, y)(cos ljJ(x, y), sin ljJ(x, y)) 

+ hI (klx - yl) sin ljJ(x, y)(sin ljJ(x, y), -cos ljJ(x, y))], 

aVyh(klx - yl) ik2(0, 1) In(klx - yl) 
aX2 - n 

- k2[h2(klx - yl) sin ljJ(x, y)(cos ljJ(x, y), sin ljJ(x, y)) 

+ hI (klx - yl) cos ljJ(x, y)( -sin ljJ(x, y), cos ljJ(x, y))]. 

Thus, 

aW2[,uj(x) k2 J . a = - -4 ,u(u) sm ct(u) In(klx - y(u)1) du 
XI n aG 

'k2 J - ~ aG p(U)[h2(klx - yl) cos ljJ(x, y)(cos ljJ(x, y) sin ct 
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- sin t/J(x, y) cos IX) + hl(klx - yl) sin t/J(X, y) 

x (sin t/J(x, y) sin IX + cos t/J(x, y) cos IX)] da, 

eJ -4 f..l(a) cos lX(a) In(klx - y(a) I) da 
n 8C 

- ik2 J f..l(a) [h2(klx - yl) sin t/J(x, y)(cos t/J(x, y) sin IX 
4 8C 

- sin t/J(x, y) cos IX) + hi (klx - yl) cos t/J(x, y) 

x (-sin t/J(x, y) sin IX - cos t/J(x, y) cos IX)] da. 

Here the arguments are omitted: y = y(a), IX = lX(a). The first terms in the 

formulae for aaW2 , aaW2 are the single layer potentials with continuous on aG 
Xl X2 

densities. They are continuous in X on the whole plane (see [11, §31.2]). Let Go be 
a bounded open domain and aG c Go. If X E Go then the integrands in the 

second integrals in aaW2 and in aaW2 are uniformly bounded, that is their absolute 
Xl x2 

values can be majorized by a constant uniformly in X EGO, Y E aGo If X ¢ aG and 
X ~ xO E aG then the integrands in these integrals tend to their direct values on 
aG for all y E aG except y = xO (that is the limit exists 'nearly everywhere'). 
Applying the theorem on proceeding to limit under the Lebesgue integral [6, 
ch. V, §5.5]' [1, v. V, §54]' we obtain that for x if aG, x ~ xO E aG the second 

. l' aw? aW2 d h' d' 1 aG H aW2 aW2 mtegra s m -a -, -a- ten to t elr lrect va ues on . ence, -a-' -a- E 
Xl x2 Xl x2 

CO(R2). Moreover, these derivatives can be calculated under the integral for all 
X E R2. The proof is completed. 

LEMMA 3. Let aG E C l,\ A E (0, 1], 

v(s) E CO,A(aG) = {v(s) E Co,A[a,b], v(a) = v(b)}. 

Then Vdv](x) = -trfac v(a) lnlx - y(a)1 da E CI(G) n C I (R2\G). Besides, 

aVI (x) I aVI (x) I .. . -a - = -a - , where aG IS considered as a double-sided curve, 
Tx xE(8Ct Tx XE(aC)-

(aG)+ is the side of aG, which is on the left, when parameter s increases, while 
(aG)- is another side. 
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PROOF. The functions (VI)xl and (-Vr)X2 are defined for x E R2\oG and 
satisfy the Cauchy-Riemann relations (Vr) X1X2 = -(-V1)x2xl' (Vr)XIXI = (-Vr) X2X2 
since AV =0 for x E R2\oG. Let z = XI + iX2, t = YI + iY2, consider the analytic 
complex function 

<l>(z) = (VI)Xl - i(Vr)X2 

= -~J v(a) [COS I/t(x,y(a)) _ isin I/t(x,y(a))] dO' 
2n GO Ix - yl Ix - yl 

1 J e-iCX(cr) 1 J dt = -- v(a) . dt= -- vI(a)-, 
2n GO Ix - yle'l/J(x,y) 2n GO Z - t 

where VI (a) = v(a)e-iCX(cr) E CO,A(oG), dt = t'(a) dO' = eicx(cr) dO' since y; (a) = 
cos a(a), y~(a) = sin a(a). Denote V2(t) = v2(t(a)) = vI(a). Consider an arbitrary 
non-closed arc YI which is a part of oG. If x(a) = x(b) ¢ YI = {y E YI : Y = y(s), 
S E [c, d]}, then VI (a) E CO,A[C, d], that is 

IV2(tl (0'1)) - v2(t2(a2))1 = IVI (0'1) - VI (0'2)1 :s;; clal - 0'21" 

:s;; clltl(ar) - t2(a2)1\ VaJ,a2 E [c,dl· 

Here we used the fact (see [3, lemma 1]) that 

h - 0'21 ° 
I() ()IEC([c,d1x[c,d]), y 0'1 - Y 0'2 

consequently, 

I () () I < const, 
y 0'1 - Y 0'2 

therefore 

1 J dt <l>(z)=-- V2(t)-. 
2n ao Z - t 

If x(a) = x(b) is an interior point of YI = {x E YI : x = x(s), S E [a, cl U [d, b]}, then 
introduce a new parametrization on YI: 
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where yeo = yeo, VI (e) = VI (e) if e E [d, b); ji(e) = y(e - (b - a)), VI (e) = 
VI(e-(b-a)) if eE[b,b+c-a). Obviously, VI(~)ECO·..t[d.b), VI(~)ECO·..t[b. 
b+c-a) and VI(~)ECO[d,b+c-a). It is known from [5, §5.1) that VI(e)E 
Co·..t[d,b+c-a). Similarly, x(e) E CI·..t[d,b+c-a). It can be shown by re
peating the above arguments for the function V2(t) = V2(t(~)) = VI (~) in the new 
parametrization e that V2(t) E CO·..t(YI)' Then 

<I>(z) = -~J V2(t) dt -~J V2(t) dt 
2n l'1 z - t 2rc ilG\l'1 z - t 

In any case, the Cauchy integral <I>(z) has a Holder density on YI' It is known 
from [5, § 15] that the function <I>(z) is continuously extensible on YI from the left 
and from the right (except, maybe, the end-points of YI)' Since YI is an arbitrary 
non-closed arc of aG, the function <I>(z) is continuously extensible on aG from the 
left and from the right at all points. Thereby, VVI E CO(O) n CO(R2\G). Since 
Vd.u)(x) E CO(R2) (see [11, ch. V, §31.2]), we obtain that Vd.u)(x) E CI(O) n 
CI(R2\G). Consider aG a double-sided curve. The limiting values of functions 
on (yd+ and on (YI)- will be denoted by superscripts + and - respectively. 
Using the expression for function <I>(z) and Sokhotsky's formulae from [5], we 
obtain 

= Re (e icx(s) <I> (to)) 110 el'l ' 

where to = XI + iX2, <I>(to) is the direct value of the function <I>(z) at the point to 

aVI (x) I aVI (x) I . () .. on YI' Hence, -a- = -a- = [Re(e 'lXS <I>(to))]ltoel'I' Smce YIIS an 
LX xe(l'd+ LX xe(YI)- av (x) I av (x) I 

arbitrary open arc contained in aG, we obtain -al- = -al- . 

The proof is completed. LX xe(ilG)+ LX xe(ilG)-

Appendix 2 

Let us study smoothness of the direct value of the double layer potential on 
the curve. 

LEMMA 4. Let Y be a simple closed curve of class C 2 . ..t, A E (0,1), para
metrized by the arc length s: Y = {x: x = x(s),s E [a, b)}, and 
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Let 

be the direct value of the double layer potential on y. Then 

I(s) E C1,A/4(y) = {I(s) E C1,A/4[a,b],I(a) = I(b),I'(a) = I'(b)}. 

PROOF. Let I(s) = l] (s) + h(s), where 

I() =-~J ()aln1x(s)-Y(0')l d 
1 s 2 f.l 0' a a, n y ny 

h(s) = ~ J/(O') ah(kIX(in: y(O')1) dO', h(z) = YtQ(i\z) - ~ In ~. 

1) Consider l](s) and prove that IJ(s) E C1,A/4[a,b]. Taking into account that 

ny = (Y2(0') , -Yl (0')), we find 

alnlx(s) - Y(O') I 
any 

T(s, 0') g(s, 0') = Ix(s) - Y(~)12 
g(s,O') , (s - 0') 

T( ) = [X2(S) - Y2(0')]Yl (0') - [XI (s) - YI (0')] Y2 (0') 
S,O' 2 

(s - 0') 

Note that Y(O') is a point on r corresponding to s = 0'. So, we may put 
x(O') = y(O'). For j = 1,2 we have [3, §3] 

where 

xAs) - xAO') = (s - O')z) (s, 0') = -x; (0') (0' - s) + (0' - s)2Z](O', s), 

Z)(s,O') = J: x;(O'+~(s- 0')) dl:, E C1,A([a,b] x [a,b]), 

Z](O', s) = J: ~xj' (s + ~(O' - s)) dl:, E CO,A([a, b] x [a, b]). 

Note that the function 

does not equal zero anywhere on rand g(s, s) = 1, therefore 

1 I 
-(-) E C ([a, b] x [a, b]). 
g S,O' 
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Further, 

a 1 a (s - ol g~(s, 0') 
as g(s, 0') = as Ix(s) -x(0')12 = - g2(S,O') 

_ -2 zl (s, 0') [Zl (s, 0')]; + [zJ (s, O')];zJ (s, 0') CO),([ b] [ b]) 
- 2( ) E a, x a, . g S,O' 

Consequently, -( 1 ) E CI,A([a,b] x [a,b]). Similarly, 
g s,O' 

r(s, 0') = [X2(S) - X2(0')]X~ (0') - [Xl (s) - Xl (O')]xHO') 
(s - 0')2 

= [Z}(O', s)xf (0') - Zt(O', s)X~(O')] E CO,A([a, b] x [a, b]). 

Consider ar~O') = JI(S,O') - 2h(s,0'), where 

J ( ) x~(s)x~(O') - X; (s)xHO') 
I S,O' = 2 

(s - 0') 

[xHs) - X~(O')]X; (0') - [X~ (s) - X; (O')]xHO') 
(s - 0')2 

= _1_ {X; (0') JI xns + ~(O' - s)] d~ - X~(O') JI xf'[s + ~(O' - s)] d~}j 
S-O' ° ° 

J ( ) [X2(S) - X2(0')]X; (0') - [XI (s) - XI (O')]xHO') 
2 s,O' = 3 

(s - 0') 

= _1_ {X; (0') II ~xns + ~(O' - s)] d~ -X~(O') II ~x~[s + ~(O' - s)] d~}. 
S-O' ° ° 

Then 

- xHO') II (1 - 2~)xf'[s + ~(O' - s)] d~} = K(s, 0') , ° s - 0' 

where K(s, 0') E CO,A([a,b] x [a,b]) and K(s,s) = O. According to [5, §5.7], the 
following representation holds: 

ar(s, O') _ K*(s,O') 
as - Is _ 0'1 1- A/ 4 I 
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K*(s,a) ECO,3A/4([a,b] x [a,b]). Using properties of Holder functions [5], we 
obtain the representation 

!... a lnlx(s) - y(a)1 = _1_ aT(s, a) + T(s, a)!... _l_ 
as any g(s, a) as as g(s, a) 

Kl (s, a) 
= l_A/4+ K2 (s,a), 

Is - al 
where Kl (s, a) E CO. 3A/4([a, b] x [a, b]), K2(S, a) E CO,A([a, b] x [a, b]). By formal 
differentiation under the integral, we :find 

dIr(s) = -~J fl(a)!... alnlx(s) - y(a)1 da 
ds 2n y as any 

1 J Kl (s, a) 1 J =--2 fl(a) l_A/4 da --2 fl(a)K2(s,a)da. 
n y Is - al n y 

The validity of differentiation under the integral can be proved in the same way 
as at the end of § 1.6 in [11] (Fubini theorem on change of integration order is 

used). Taking into account the obtained representation for dl~;S) and applying 

results of [5, §51.1], we obtain that dl~;S) E CO. A/4[a,b]. 

2) Consider h(s). It follows from lemma 3.3 in [3] that 

aa ah(klx(~ - y(a)l) E CO.A/4([a, b] x [a, b]). 
s lly 

This kernel is continuous, hence differentiation under the integral is valid (by the 
theorem on differentiation of proper integral with respect to a parameter): 

dh(s) = ~J ()!... ah(klx(s) - y(a) I) d dh(s) CO,A/4[ b] 
d 4 fl a a a a, d E a,. 

s y s lly S 

It follows from the points 1) and 2) that l(s) E C1,A/4[a,b] and 

dl(s) = ~J fl(a)!... aJfQ(l) (klx(s) - y(a)l) da. 
ds 4 y as ally 

Note that aa = -aa due to the parametrization chosen. It is easy to verify that the 
s LX 

kernels in the integrals l(s), 1'(s) depend on xjm) (s), j = 1,2; m = 0, 1,2. The 
values of these functions at s = a and at s = b are equal. Therefore, l(a) = l(b), 
1'(a) = 1'(b). Thus, l(s) E C1.A/4(y). That accomplishes the proof. 
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