CORRIGENDUM TO: ON THE EXCEPTIONAL SET OF HARDY-LITTLEWOOD'S NUMBERS
 IN SHORT INTERVALS

By

A. Languasco

Let $k \geq 2$ be an integer. In the paper [1] we proved a result on the set E_{k} of the integers which are neither a sum of a prime and a k-power nor a k-power of an integer. Setting $E_{k}(X)=E_{k} \cap[1, X]$ and $E_{k}(X, H)=E_{k} \cap[X, X+H]$, where X is a sufficiently large parameter and $H=o(X)$, our statement is

Theorem. Let $k \geq 2$ be a fixed integer and $K=2^{k-2}$. There exists a (small) positive absolute constant δ such that for $H \geq X^{7 / 12(1-1 / k)+\delta}$

$$
\left|E_{k}(X, H)\right| \ll H^{1-\delta /(5 K)}
$$

In fact our proof is not totally correct. There are two corrections to do. The first one is that the level Q of the the Farey dissection has to be fixed equal to $2 k Y^{1-1 / k}$ instead of $4 Y^{1-1 / k}$ since, in the proof of Lemma 10 of [1], such a condition is needed to estimate, by using the first derivative method, the order of magnitude in a Farey arc of

$$
F_{k}(\alpha)=\sum_{Y / 4 \leq m^{k} \leq Y} e\left(m^{k} \alpha\right),
$$

where $Y=X^{7 / 12+10 \delta+\varepsilon}$ and $e(\alpha)=e^{2 \pi i \alpha}$. We write here the corrected version of Lemma 10 of [1] whose proof is a slight modification of what Perelli-Zaccagnini [3], eq. (39)-(40), proved.

Lemma 10 of [1]. Let $(a, q)=1, Q \geq 2 k Y^{1-1 / k}$ and $|\eta| \leq 1 / q Q$. Then

$$
\left|F_{k}\left(\frac{a}{q}+\eta\right)\right| \ll \frac{Y^{1 / k-1}}{|\eta|} .
$$

[^0]Proof. Write $m=q t+l$. Hence

$$
F_{k}\left(\frac{a}{q}+\eta\right)=\sum_{l=1}^{q} e\left(l^{k}\left(\frac{a}{q}+\eta\right)\right) \sum_{t=\left((Y / 4)^{1 / k}-l\right) / q}^{\left(Y^{1 / k-l) / q}\right.} e\left(f_{k, l}(t)\right),
$$

where, by the Binomial Theorem, we get $f_{k, l}(t)=\eta \sum_{j=1}^{k}\binom{k}{j}(q t)^{j} l^{k-j}$. It is easy to see that $f_{k, l}^{\prime}(t)=k q \eta(q t+l)^{k-1}$ and hence $k q|\eta| Y^{1-1 / k} \ll\left|f_{k, l}^{\prime}(t)\right| \leq$ $k q|\eta| Y^{1-1 / k}$. Now $\left|f_{k, l}^{\prime}(t)\right| \leq 1 / 2$ follows from $|\eta| \leq 1 / q Q$ and $Q \geq 2 k Y^{1-1 / k}$ and hence, by Lemma 4.2 and 4.8 of Titchmarsh [4], Lemma 10 follows.

This change on Q has no consequences in the rest of the proof of the Theorem.

The second correction concerns the use of Lemma 11 of [1]. Such a lemma implies that our Theorem holds only in the case $k \geq 3$. We restate it here for convenience (we also take this occasion to correct a misprint in its statement).

Lemma 11 of [1]. Let $F(x, y)=x^{g} y+\sum_{j=0}^{g-1} b_{j}(y) x^{j}$ where $g \geq 2$ is a fixed integer and $b_{j}(y)$ are real-valued functions. Let $\left|\alpha-\frac{a}{q}\right|<1 / q^{2}$ and $(a, q)=1$. Then for $T, R, q \leq X$ and for every $\varepsilon>0$ we have

$$
\sum_{1 \leq d \leq T}\left|\sum_{n \leq R} e(\alpha F(n, d))\right|<_{g} T R\left(\frac{1}{q}+\frac{1}{R}+\frac{q}{T R^{g}}\right)^{1 / K} T^{\varepsilon / K} R^{(g-1) \varepsilon / K},
$$

where $K=2^{g-1}$.

Lemma 11 is used in section 4 of [1] to estimate the minor arcs contribution. To this end we choosed $g=k-1, k \geq 2$ and $K=2^{k-2}$. So the second part of equation (19), page 11, in [1], and, consequently the main Theorem, holds only for $k \geq 3$.

To save the result for the case $k=2$ we need to insert in the body of the proof of the Theorem a minor arc estimate of the following kind:
$\int_{-2 / H}^{2 / H}\left|F_{2}\left(\frac{a}{q}+\eta\right)\right|^{2} d \eta \ll P^{-1 / 2}=Y^{2 / k-1} P^{-1 / 2 K} \quad$ for $P<q \leq Q$ and $k=2$,
where, as in [1], $H=Q P, Q=2 k Y^{1-1 / k}=4 Y^{1 / 2}$ and P is essentially equal to Y^{δ} (in fact the definition of P depends on the existence of the exceptional zero $\tilde{\beta}$, see section 1 , page 3 , of [1]).

The estimate (1) can be obtained following the line of section 5 of PerelliPintz [2].

By Gallagher's Lemma (see, e.g., Lemma 7 of [1]), we get that

$$
\int_{-2 / H}^{2 / H}\left|F_{2}\left(\frac{a}{q}+\eta\right)\right|^{2} d \eta \ll H^{-2} \int_{Y / 10}^{Y}\left|\sum_{m^{2} \in I(x)} e\left(m^{2} \frac{a}{q}\right)\right|^{2} d x
$$

where $I(x)=[x, x+H / 4]$. Writing $d=m-n$ we obtain

$$
\begin{align*}
\left|\sum_{m^{2} \in I(x)} e\left(m^{2} \frac{a}{q}\right)\right|^{2}= & 2 \operatorname{Re} \sum_{\substack{0 \leq d \leq H / Y^{1 / 2} \\
2 d \neq 0(\bmod q)}} e\left(d^{2} \frac{a}{q}\right) \sum_{n^{2},(n+d)^{2} \in I(x)} e\left(n \frac{2 d a}{q}\right) \\
& +\sum_{m^{2} \in I(x)} \sum_{\substack{n^{2} \in I(x) \\
2 m \equiv 2 n(\bmod q)}} 1=S_{1}+S_{2}, \tag{2}
\end{align*}
$$

say. Now we have

$$
\int_{Y / 10}^{Y} S_{1} d x \ll \sum_{\substack{0 \leq d \leq H / Y^{1 / 2} \\ 2 d \neq 0(\bmod q)}}|\Sigma(d)|+\frac{H^{2}}{Y}
$$

where

$$
\Sigma(d)=\sum_{Y_{1} \leq n \leq Y_{2}} e\left(n \frac{2 d a}{q}\right) \max \left(0 ; \frac{H}{4}-d^{2}-2 n d\right)
$$

and

$$
Y_{1}=\left(\frac{Y}{10}+\frac{H}{4}\right)^{1 / 2}, \quad Y_{2}=\left(Y-\frac{H}{4}\right)^{1 / 2}-d
$$

Denoting by $\|a\|$ the distance of a from the nearest integer and using the fact

$$
\Sigma(d, y)=\sum_{Y_{1} \leq n \leq y} e\left(n \frac{2 d a}{q}\right) \ll\left\|\frac{2 d a}{q}\right\|^{-1}
$$

we have, by partial summation, that

$$
\Sigma(d) \ll H\left\|\frac{2 d a}{q}\right\|^{-1}
$$

Using now Lemma 2.2 of Vaughan [5], we obtain

$$
\begin{equation*}
\int_{Y / 10}^{Y} S_{1} d x \ll \frac{H^{2}}{Y^{1 / 2}} \log X+H q \log X+\frac{H^{2}}{Y} \tag{3}
\end{equation*}
$$

Moreover we have

$$
\begin{equation*}
\int_{Y / 10}^{Y} S_{2} d x \ll \int_{Y / 10}^{Y} \frac{H}{x^{1 / 2}}\left(\frac{H}{q x^{1 / 2}}+1\right) d x \ll H Y^{1 / 2}+\frac{H^{2}}{q} . \tag{4}
\end{equation*}
$$

Recalling $P<q \leq Q, H=Q P, Q=2 k Y^{1-1 / k}=4 Y^{1 / 2}$, we get from (2)-(4) that

$$
\begin{equation*}
\int_{-2 / H}^{2 / H}\left|F_{2}\left(\frac{a}{q}+\eta\right)\right|^{2} d \eta \ll Y^{-1 / 2} \log X+P^{-1} \log X+P^{-1} \ll P^{-1} \log X \tag{5}
\end{equation*}
$$

Hence, recalling $k=2$ and $K=2^{k-2}$, from (5) we obtain that (1) holds.
Now we have that the second part of equation (19), page 11, in [1] holds in the case $k=2$ too. Inserting it in the rest of the proof of the Theorem we get that it holds for every $k \geq 2$.

References

[1] A. Languasco, On the exceptional set of Hardy-Littlewood's numbers in short intervals, Tsukuba Journal of Mathematics, 28 (2004), 169-192.
[2] A. Perelli, J. Pintz, Hardy-Littlewood numbers in short intervals, J. Number Theory 54 (1995), 297-308.
[3] A. Perelli, A. Zaccagnini, On the sum of a prime and a k-power, Izv. Vu. 59 (1995), 181-204.
[4] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, second ed., Oxford U. P. 1986.
[5] R. C. Vaughan, The Hardy-Littlewood method, second edition, Cambridge University Press, 1997.

Alessandro Languasco
Università di Padova
Dipartimento di Matematica Pura e Applicata Via Belzoni 7
35131 Padova, Italy
e-mail: languasco@math.unipd.it

[^0]: Received October 12, 2005.

