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CONTINUITY OF INTERPOLATIONS

By
Toshiji TERADA

Abstract. An interpolation function for a set of finite input-output
data is a function which fits the data. Let us say that a topological
space X has a continuous interpolation if interpolation functions can
be selected continuously, more precisely, if there is a continuous map
from a certain subspace of the hyperspace F(X x R) of finite subsets
of X x R to the Banach space C(X) of bounded real-valued continuous
functions on X. The concept of weakly continuous interpolation is
also introduced. The real line has a continuous interpolation. Every
metrizable space has a weakly continuous interpolation. On the other
hand, w; and fw do not have weakly continuous interpolations.

1. Introduction

All topological spaces considered here are Tychonoff. Basic terminology is
found in [2], [4]. The space of real numbers is denoted by R. Let X be a
topological space. The space C(X) is the Banach space of all bounded real-
valued continuous functions, with the sup norm: ||f]|,, = sup{|f(x)| : x € X} for
f € C(X). The space F(X x R) is the hyperspace consisting of all finite subsets of
the product space X x R, with the Vietoris topology [5]. Hence basic neigh-
borhoods of {(x1,r1),(x2,72),.-., (X, 7x)} € F(X x R) are given by:

<U1 X V],Uz)( Vz,...,UnX Vn>

={DeF(XxR):Dc U Uk x Vi, DN (Ui x Vi) # & (k=1,2,..‘,n)},
k=1

where Uy is a neighborhood of x; in X and ¥V} is a neighborhood of r; in R for
k=1,2,...,n. Let S(X) be the subspace of F(X x R) defined by
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SX) = {{(x1,7r1),- -, (Xn,mn)} = x: # x; for i # j}.
For each n=1,2,..., define F,(X x R) and S,(X) by:
F,(X xR) ={D e F(X xR): D has at most n points},
Sa(X) = S(X)NF,(X x R).

Notice that S,_;(X) is closed in S,(X).
For a point D = {(x1,71), (x2,72),- -, (Xn,7n)} € S(X), a function fp in C(X)
is called an interpolation function for D if

fo(x1) =ri, fo() =r,..., fo(xa) =1y

are satisfied [1]. Suppose that X is the input space and R is the output space of
some system. Then the point D is considered as a set of finite input-output
data. The interpolation function fp is a function which fits the given data. It is
obvious that for every D € S(X) there is an interpolation function fp for D, since
X is Tychonoff. Hence we can consider the map ® : S(X) — C(X) defined by
®(D) = fp. Since similar maps under the statistical frameworks are called learning
algorithms in learning theory [6], this map ® might be called an interpolation
algorithm in a vague sense. Further we are interested in the case when this in-
terpolation algorithm has some kind of continuity or stability. Let us call the map
® to be a continuous interpolation of X if ® is continuous as a map between the
topological spaces S(X) and C(X). In case ® satisfies the weaker condition that
the restriction ®|g y)_g ,(x) is continuous for each n=1,2,..., we call ® to be
a weakly continuous interpolation. That is, the interpolation ® is weakly con-
tinuous if for any D = {(x1,71),...,(%n,7n)} € S(X) and any ¢ > 0, there is a
neighborhood W = (U; x V,...,U, x V) of D such that || fpr — fpll, < ¢ for
any D' = {(x{,r{),-..,(x,,r.)} € WNS,(X). Hence this weak continuity can be
called a topological stability of interpolation algorithms like the stabilities of
learning algorithms [6]. Our purpose of this paper is to discuss whether a given
topological space has a (weakly) continuous interpolation or not. The following
are obvious, but fundamental in our argument.

THEOREM 1. Every discrete space has a (weakly) continuous interpolation.

THEOREM 2. If X has a (weakly) continuous interpolation, then every subspace
of X has a (weakly) continuous interpolation.

THEOREM 3. Let 71 and t, be topologies on a set X. If t, is weaker than
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7y and (X,11) has a (weakly) continuous interpolation, then (X,t,) has a (weakly)
continuous interpolation.

2. Metrizable Spaces and Continuous Interpolations

In our framework, the following simple fact is also fundamental.
THEOREM 4. The real line R has a continuous interpolation.

Proor. Let
D = {(x1,r1), (x2,72), - -+, (Xn, 1) }

be an arbitrary point in S(R). We can assume that
X < X2 <00 < X

Let us consider the function fp € C(R) defined by

i—Xi-1

ri for x < x3
fD(X) = Fri—1 + (X*X,‘-])%— for x;_; < x<x,i=2,...,n

Tn for x, < x.

Obviously fp is an interpolation function for D. It must be checked that the map
®: S(X) — C(X) defined by ®(D) = fp is continuous.
For D= {(x1,r1),..., (%n,mn)} € S(R), let

m=min{|x; — X2, ..., |[X¥n—1 — Xu|}, M =max{|r],...,|rl}.

In case n=1, let m be an arbitrary positive number. For any ¢ such that
0<eg(<1)leté=1 mn{%,%} Now, consider the following neighborhood
of D:

W = Us(x1) x Vep3(r1),- -, Us(xn) ¥ Vop3(ra)Ds

where Us(x;) is the d-neighborhood of x; and V,/3(r;) is the &/3-neighborhood
of ri for i=1,...,n. We will show that ||fp — fp|,, <& for any D' e W. Let
D' ={(x},r]),-..,(xp,,r,)}, wWhere xj < --- < x], is satisfied. Then there is the
increasing map o: {l,...,m} — {1,...,n} which satisfies (x;,r/) € Us(xs(;)) x
V.j3(re(j)) for any j=1,...,m. Since it suffices to show that |fp(x) — fp:(x)| < &
for any x € R, let x be an arbitrary point in R. (1) First, assume that x < x; — 4.
Then fp(x) = r;. Further it must be satisfied that x < x{, and hence fp/(x) =ry.
Since [r; —r{| < ¢/3, it is obvious that |fp(x) — fp/(x)| < &/3. In the case that
X > xn + 0, similar argument above implies that |fp(x) — fp(x)| < /3. (2) Next,
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we consider the case when there is some i such that |x — x;| < J. Notice that for
each k =2,...,n the absolute value of the slope ;"“;’;‘l of the line connecting
(Xk—1,7-1) and (xk, r) 1is less than 2(M+1) . Therefore if x,_; < y <z < x; and
|y —z| <& are satisfied, then we obtam that |fp(y) — fo(2)| < BOLTD U‘fn“) =
¢/9. Hence in the present case |fp(x) —r;i| < ¢/9 is satisfied. On the other hand,
there is some j such that x{ <x <x/ ;. If o(j) =0o(j+1) =4 then |/ —ri,
r}yy —ril <é&/3. Since r; —8/3 < mm{j, 11} < for(x) <max{rj,r/,} <ri+e/3,
the inequality |fp/(x) —r;| < ¢/3 is also satisfied. Hence |fp(x) — fp/(x)| < 2¢/3.
If o(j)=1i and o(j+1)=i+1, then |xj —x/,;| =m—26>2m/3. Hence the
absolute value of the slope of the line connecting (x;,7/) and (x,,,7/,,) is less
than 2+ 1t follows that |fp:(x) — r/| < e/6. This implies that | fp(x) — fp+(x)|
< |fo(x) = ril +|ri —rj| + |rj — fpr(x)| < &/9+¢/3+¢/6 <e. Similarly, if o(j) =
i—1and o(j+1) =1, it is proved that |fp(x) — fp/(x)| < &. (3) Finally, assume
that x; +6 < x < x;41 — 6 for some i=1,...,n— 1. The number k = max o~ (i)
is settled and it must be satisfied that ¢g(k+ 1) =i+ 1. Since x; < x; +J and
Xip1 — 6 < Xy, it is satisfied that x| < x < x,,. Let x/ = max{x;,x.}, x/,, =
min{x;41, X}, }. Since |[x] — x;|, |x.,; — xi41] < 8, it follows that |fp(x]) — fp:(x])],
|fp(xLy) = for(xl ) < e by usmg the result of the case (2). Since fp, fp: are
linear on the interval x/ < x < x/,,, it is obvious that |fp(x) — fp/(x)| < & for any
x such that x; +0 < x < x4 — 0.

COROLLARY 1. The Sorgenfrey line and the Michael line have continuous
interpolations.

It seems difficult to extend the result of Theorem 4 to higher dimensional
Euclidean spaces R”. However, we can show that R” has a weakly continuous
interpolation. More generally the following is obtained.

THEOREM 5. Every metrizable space has a weakly continuous interpolation.
Proor. Let (X,d) be a metric space. For any D = {(x1,71),..., (Xn,7n)} €
S(X), let
M =max{|r|,...,|r.|}, m=min{d(x;,x;):i# j}.
Then the function fp e C(X) is defined by

0 if d(x,x;) >m/4foreachi=1,...,n
r— 4 Ld(x,x;) if d(x,x;) <m/4forsomei=1,...,n

o) = {
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In case D = {(x1,r1)} € S1(X), let m = oo and hence fp(x) =r; for each x € X.
It is obvious that fp is an interpolation function for D. We will show that the
map O : S(X) — C(X) defined by ®(D) = fp is weakly continuous. Since the
continuity of ®|g, x is obvious, we can assume that n > 1. For the above D and
an arbitrary (1 >)e >0, let 6 >0 be a real number such that

s<minl T sir T )

Since the absolute value ]%’] of the coefficient of d(x, x;) used in the definition of
fp is less than 4(",{1—“), the inequality 4—(—]‘{:—1)25 < ¢/4 implies the following.
Claim. If x, y e X satisfy d(x, y) < 26, then |fp(x) — fp(¥)| < ¢/4.
It suffices to show that || fpr — fpl|,, < &for D' = {(x],r{),..., (x},r.)} € Su(X)
which satisfies
d(x;,x;) <9, |ri—ri|<e/4 fori=1,...,n

For this D', the numbers M’ =max{|r{|,...,|ri|}, m —rmn{d( xj,x;) 1% j}
are also defined. The inequalities M' < M +1, m—25 <m' <m+25 are ob-
vious. Let x be an arbitrary point in X. Assume that d(x,x;) >m/4 for
each i, then fp(x)=0. On the other hand for this point x it is satisfied
that fD:(x)~—O or 0<|fp(x)|< lr’ 'd(x x;)| for some i. Even in the

latter case, since % > d(x,x!) > d(x,x;) — d(x/,x;) > % — 36 and hence |fp(x)| <
I —%(%—15)1 || < 5 < e/4, it follows that 1o %) = for(X)| < /4.

Next, assume that d(x,x;) < m/4 for some i. If |r;| <e&/4, then |fp(x)| <e/4.
Further the inequlity |r/| <e/2 is satisfied. Then |fp/(x)| <e/2, and hence
|/p(x) — fpr(x)| < 3¢/4. The remaining is the case |r;| > ¢/4. Let

a:r[~%d(x,x,-), b=r,-—imgd(x,x;),
c r,-—mdjizéd(x,x{), c=r m‘_tizéd(x,x,{),
i =ri— et~ 20T d{:r,+a/4—4(r’+;/54)d( x)
d=r 8/4-“(’;—i:;—§4—)d(x,x;), d2'=r,~+e/4~%d(x,x;).

Since fp(x) =a and either d; < fp:/(x) <d| or d» < fp:(x) < d, are satisfied
according to r; > ¢/4 or r; < —e/4, if it is proved that |a —d]|,|a — di|, |a — dy|,
|a —dj| < & then we have |fp(x) — fp(x)| <e.
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(1) la—b| < &/8: In fact, |a—b] = | (d(x,x) — d(x,x)))| < X5 < ¢/8.

()w—q<em This mmms from |b—¢| = |maxxﬂ——<%y—
[rild(x, x )lm 5)‘ <M+ tn 32(M+1 8/8

(3) |b—c’l <e/8 |b—c'| = |ri|d(x lm m+25| = |r;|d(x, ,)m
(M+1)%¥ 32(M+1) <e/8.

@) le—d| <3e le —di| = |e/4 + 555d(x, x])| < e/4+ |—255]d(x, x]) <
e/4+4L 3 = 8/4+8/2 = 3¢/4.

(5) ¢ = dj| < 3e ¢/ — dj| = |—&/4 — +555d(x, X])| < /4 + —L55d(x,x]) <

&/4 + 453 < 3¢/4.
(6) IC' — dzl = lc— dli < 38/4.
(7) |le—dy) =|c' = d]| < 3e/4.
Hence |a—dj|,|a —di|,|a—d>|,|a —d;] <e/8+¢/8+3e/4=c.

COROLLARY 2. Let X be a space whose topology is stronger than a metrizable
topology. Then X has a weakly continuous interpolation.

3. Spaces without Continuous Interpolations

As we see in this section, it is delicate whether a given space has a (weakly)
continuous interpolation or not.

THEOREM 6. The ordered space w; of the first uncountable ordinal does not
have a weakly continuous interpolation.

PrROOF. Assume that there is a weakly continuous interpolation ® : S(w;) —
C(w;). Let ag = 0 and W, be the set of all limit ordinals in w;. For each A e W,
let DY = {(a0,0),(4,1)} € Sa(w1). Then the function fQ = @(DJ) is obtained.
Since this function is continuous at A and f(1) = 1, there exists x) < 4 such that
|/2(x) — 1] < 1/4 for any x which satisfies u) < x < 1. Using the pressing down
lemma [4] for the function A~ uj, there exist an ordinal «; and a stationary
subset W, of W, such that u = o, for any A € W). Repeat the similar procedures.
Then we obtain a sequence

o <oy < -

of points in w; and a sequence
Wyo W) o

of stationary sets in w; such that for any i = 1,2,... and any A € W}, the function
fi7 = 0({(x-1,0),(4,1)}) satisfies
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A7) -1 <1/4 ()
for any x such that o«; < x < A. Now, let & = lim,_,, o,. We can take another
sequence of ordinals (& <)f, < ,81 -- such that f;e W; for each i Let
B =1lim, e B, in w;. Then for D = {(oc 0),(B,1)} € Sy(cw;) there is the corre-
sponding function f; = @(D). Since O S»(w1)=Si(a) 18 continuous at D, there are
neighborhoods U; of & and Vs of B which satisfy the following: For any o € Uz
and e Vj, the function fus = @({(oc 0), (B,1)}) satisfies ||fup — f5ll < 1/4 and
hence |f.,/;(oc)| < 1/4 and |f,5(f) — 1| < 1/4. Since o, € Uz and B, € Vs for suf-
ficiently large n, it follows that |f;,_ s, (&)| < 1/4 for sufficiently large n. But this is
a contradiction, since the above condition () implies that |f;,_z (&) — 1| < 1/4.

COROLLARY 3. Every topological space containing w; does not have a weakly
continuous interpolation.

The space w, is first-countable and countably compact. On the other hand,
every countably compact space which has a weakly continuous interpolation must
be nearly first-countable in the following sense.

TueoreM 7. Let X be a countably compact space which has a weakly
continuous interpolation. Then the tightness ©(X) of X is countable.

ProOOF. Assume that 7(X) > w and that X has a weakly continuous in-
terpolation ® : D — fp. Then there are a subset 4 of X and a point p € cly A4
such that p ¢ cly B for any countable subset B of A. We can assume further that
cly B = A for any countable subset B of A.

Let xo be an arbitrary point in 4 and let Dy = {(xo, 1), (p,0)} € S2(X). Then
there is a point x; € f;!(0) N4, since X is countably compact and has the
property futher assumed above. Next, let D; = {(x1,1),(p,0)}. Then there is a
point x; € f51(0) N f5,1(0) N 4. Continuing this procedure, we obtain a sequence
{xi:iew} of points in 4 such that for any new

Xn & Xnt1 efD—ol(O)nnfD—,,l(O)’

where D; = {(x;,1), (p,0)} for each iew. Since X is countably compact, there
is an accumuration point x, of {x;:i€w}. The procedure of constracting
{xi:iew} implies that X, #p and xe €(){/5'(0):iew}. Consider the
point De = {(Xw,1),(p,0)} € S2(X). Then there exists a neighborhood W =
{Uqg x V1,U, x Vo) of Dy such that || fp — fb,, |l < 1/2 and hence especially
|fpr(x00) — 1] < 1/2 for any D' e WN(S2(X)— S1(X)). But this is a contra-
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diction, since there exists n such that D, € W N (Sy(X) — S1(X)). In fact, for this
D, it must be satisfied that fp,(xe) = 0.

COROLLARY 4. The ordered space w) + 1 does not have a weakly continuous
interpolation.

For the discrete space D(w;) of cardinality c;, let D(w;)U {co4} be the one-
point compactification of D(w;), i.e. the complement of every neighborhood of
0oy is a finite subset of D(c;). The one-point Lindeldfication D(w;)U {cor} of
D(w;) is the space obtained by adding a point coy with the neighborhood base
consisting of co-countable sets.

THEOREM 8. The one-point Lindeldfication D(w;)U{coL} has a continuous
interpolation.

Proor. We can assume that the underlying set of D(ew;)U{oor} is w; + 1 as
ooy = wy. For D = {(ay1,r1),...,(otn,1n)} € S(D(w1) U{o0L}), where o < -+ < oy,
let fp e C(D(w;)U{oor}) be the function defined by

ri fora <o
fol@)=<r foro 1 <a<o,i=2,...,n—1
r, for a1 < a.

It is easy to see that the map ® defined by ®(D) = fp is a continuous inter-
polation of D(w;)U{ocor}.

THEOREM 9. The one-point compactification D(w;)U{co4} does not have a
weakly continuous interpolation.

Proor. The underlying set of the space X = D(w;)U {co,} is also the well-
ordered set w;+1 as above. Assume that D(w;)U{c04} has a weakly con-
tinuous interpolation ® : D — fp. Since any real-valued continuous function on
D(w;)U{co4} is constant on a co-countable set and ® is continuous on
S2(X) — S1(X), there exists y, < w; such that

Jpy(04) =0

for any Dy = {(,1),(8,0)} such that o < e and S > y,.

Let By € D(w)) be a point larger than y,. Consider Dy = {(f,,0), (c04,1)} in
S2(X). Then fp,(o04) = 1. Since the restriction ®|s,y)_s,(x) i continuous, there
is a neighborhood W of Dy in S,(X) such that
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I/ = Ipolleo < 1/2

and hence |fp/(oo4) — 1| < 1/2 for any D' e W. Since the complement of any
neighborhood of ooy in D(w;)U{oo,} is finite, there exists op < w such that
Dyop, = {(B0,0), (%0,1)} € W. Then fp,, (c04) > 1/2. However, since op < w and
y0 < By, the above condition of y, implies that fDuoﬁo(OOA) = 0. This is a con-
tradiction.

For a point p in a space X, y(p,X) is the pseudo-character of X at p. A
similar argument to the proof above show the following.

THEOREM 10. Let X be a space with a point p such that Yy(p,X) > . Let
X Vpo (w0 + 1) be the quotient space of the topological sum X @ (w + 1), obtained
by the identification of p with w. Then X v, (w+1) does not have a weakly
continuous interpolation.

PrOOF. In X v,, (w+ 1), let p,, be the point corresponding to the set {p,w}
collapsed. Assume that X v, (0 + 1) has a weakly continuous interpolation
® : D fp. Since any Gs-set of X containing p has an infinite number of points,
the weak continuity of ® at Dj,, = {(i,1), (pw,0)} for each i€ implies that
there exists an infinite Gs-set B of X containing p with the following property:
If xe B—{p} and i€ w, then

fDix (Pco) =0

where Di; = {(i,1),(x,0)}. Let ge B be a point which is distinct from p.
Consider the point Dyy = {(¢,0), (pw,1)}. Then fp,, (p») = 1. On the other hand,
any neighborhood W of Dy in S>(X Ve (@ + 1)) — S1(X Ve (w0 + 1)) contains
Dy ={(i,1),(¢,0)} for some iew. Since fp,(pw) =0 for such Dj, this con-
tradicts the weak continuity of ®.

CoROLLARY 5. Let X be a space such that X x (w+1) has a weakly
continuous interpolation. Then the pseudo-character y(X) is countable.

ProOF. Suppose that Y (p,X)>cw for a point p in X. The space
X Vpy (w+1) having no weakly continuous interpolation is embedded in
X x(w+1) as X x {w}U{p} x (w+1).

Let X be the one-point Lindel6fication D(w;)U{c0.} and ¥ = w + 1. Then
we obtain the following.
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THEOREM 11. There are spaces X, Y having continuous interpolations such
that X x Y does not have a weakly continuous interpolation.

A subset ¥ < C(X) is called a separating family of X if for any distinct
points p, ¢ in X there exists f € & such that f(p) # f(q).

THEOREM 12. If an infinite space X has a weakly continuous interpolation,
then the density d(X) of X is larger than or equal to the minimum cardinality of
separating families of X.

Proor. There is a weakly continuous interpolation ® : D — fp of X. Assume
that [#| > d(X) for every separating family & of X. Let B be a dense subset of
X such that |B| = d(X). Consider the subfamily

S'(X)={DeS(X): if (x,r) e D, then xe B,reQ},
where Q is the set of all rational numbers. Let #3 = {fp: D e S'(X)}. Since
|75 < |S'(X)] = d(X),

&y 1s not a separating family of X. Hence there are distinct points p, ¢ in X such
that f(p) = f(g) for any f e 5. Take Dy = {(p,0),(g,1)} € S2(X). From the
weak continuity of ®, it follows that there is a neighborhood W of Dy in
S$>(X) — S1(X) such that (W) is included in the 1/2-ball B,/ (fp,) of fp, in
C(X). Since B x Q is dense in X x R, there is D; = {(p’,r),(q’,5)} e WNS'(X).
For this Dy,

1for = foulloo < 1/2

must be satisfied. But this is a contradiction, since

fDl(p):fDl(q)> fDo(p)ZO, fDO(Q)Z 1.

COROLLARY 6. The uncountable product space {0,1}*" does not have a weakly
continuous interpolation. Hence every space containing {0,1}*' does not have a
weakly continuous interpolation.

Since D(w;)U {004} can be embedded in {0, 1}, this corollary is considered
also as a corollary of Theorem 9.

COROLLARY 7. The Stone-Cech compactification Bw of the countably infinite
discrete space w does not have a continuous interpolation.
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Since the tightness of fw is uncountable, this corollary is also a corollary of
Theorem 7. There are more examples which show the delicacy of having weakly
continuous inerpolations. A family &/ of infinite subsets of ¢ is called an almost
disjoint family if the intersection of any two distinct element of 7 is finite [3, 4].
A maximal almost disjoint family is an almost disjoint family & with no almost
disjoint family & properly containing 7. For each almost disjoint family &7 we
can define the topological space ¥(o/) = wU &/, with the following topology:
The points of @ are isolated, while a neighborhood of a point 4 € &/ is any set
containing 4 and all but a finite number of points of 4(< ) [3].

THEOREM 13. (1) There exists an almost disjoint family o of cardinality 2%
such that ¥() has a weakly continuous interpolation.

(2) There exists an almost disjoint family M of cardinality 2% such that V(M)
does not have a weakly continuous interpolation.

Proor. (1) Let us consider the following topology t on the upper half-
plane R x [0,00), which is similar to the Niemytzki tangent disc topology:
Neighborhoods of all points (x,y) with y # 0 are unchanged from those of
the Euclidean topology and taking as a base at each point (r,0) the family
{0}V U,(r) :n=1,2,...}, where

U,(r) ={(x,y) e R x (0,00) : |x —r| < y < 1/n}.

Since 7 is stronger than the Euclidean topology, every subspace of this upper half-
plane with the topology t has a weakly continuous interpolation. Let {g, : n € w}
be an enumeration of all rational numbers, and let ¢ : @ x Z — R x (0, c0) be the
one-to-one map defined by ¢(n,m) = (¢, +m/(n+1),1/(n+ 1)), where Z is the
set of all integers. Then the subspace

X ={¢(n,m) : (n,m) eco x ZYUR x {0}

of (R x [0,00),7) has a weakly continuous interpolation. Let ¥ : w — w X Z be
a bijection. For each reR, let 4, ={new:¢doy(n) e Uy(r)}. Then the family
o ={A,:reR} is an almost disjoint family. It is easy to see that W¥(«Z) is
homeomorphic to X.

(2) It is well known that there exists a maximal almost disjoint family . of
cardinality 2¢. Since the density of W() is countable, it suffices to show that
the cardinality of every separating family of W(.#) is greater than . Assume
that there is a countable separating family & of (). Then the product map
nF P(M) — RZ defined by 2% (x) = (f (X))/cs 1s one-to-one and continuous.



236 Toshiji TERADA

Since ¥(.#) is pseudocompact and R? is metrizable, the image 7% (¥(#)) of
this continuous map must be compact. For any x € ¥(.#) and any neighborhood
U of x in ¥W(4), there is a real-valued continuous function f, y : ¥(#) — [0,1]
such that f; y(x) = 0, fx,vly(x)-v = 1. Now, consider the family #' = # U {f; v}
obtained by adding one more function f; y to . Then there exists also the map
nF'  W(M) —R”' and its compact image nF'(W(A)), in which =nF'(U) is
a neighborhood of #%'(x). Since the natural projection P:R¥ — R¥ is con-
tinuous, the restriction P| g/ (¥ (M)) : nF ' (¥ (M)) — nF (¥(M)) is a one-to-one
continuous map between compact spaces and hence a homeomorphism. This
means that 7% (U) is a neighborhood of n% (x) for any x € W(#) and any
neighborhood U of x. It follows that ¥(.#) is homeomorphic to n% (¥ (.#)), but
this is a contradiction since ¥(.#) is neither compact nor metrizable.

The following problems seem to be interesting.

PrOBLEM 1. Does every separable metrizable space have a continuous in-
terpolation?

This is equivalent to the problem: Does the Hilbert cube /% or the countable
product R® have a continuous interpolation?

PROBLEM 2. Does every space contain a dense subspace which has a (weakly)
continuous interpolation?

ADDENDUM. The author was recently pointed out by K. Sakai that the
answer of Problem 1 is positive.
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