
TSUKUBA J. MATH. 
Vol. 30 No. I (2006), 225-236 

CONTINUITY OF INTERPOLATIONS 

By 

Toshiji 'TERADA 

Abstract. An interpolation function for a set of finite input-output 
data is a function which fits the data. Let us say that a topological 
space X has a continuous interpolation if interpolation functions can 
be selected continuously, more precisely, if there is a continuous map 
from a certain subspace of the hyperspace F(X x R) of finite subsets 
of X x R to the Banach space C(X) of bounded real-valued continuous 
functions on X. The concept of weakly continuous interpolation is 
also introduced. The real line has a continuous interpolation. Every 
metrizable space has a weakly continuous interpolation. On the other 
hand, COl and fico do not have weakly continuous interpolations. 

1. Introduction 

All topological spaces considered here are Tychonoff. Basic terminology is 
found in [2], [4]. The space of real numbers is denoted by R. Let X be a 
topological space. The space C(X) is the Banach space of all bounded real­
valued continuous functions, with the sup norm: IIfll ro = sup{lf(x)1 : X E X} for 
f E C(X). The space F(X x R) is the hyperspace consisting of all finite subsets of 
the product space X x R, with the Vietoris topology [5]. Hence basic neigh­
borhoods of {(XI, rd, (X2, r2), . .. , (xn, rn)} E F(X x R) are given by: 

<UI x VI, U2 X V2, ... , Un X Vn> 

= {DEF(XXR) :Dc:::. U Uk x Vk,Dn(Uk x Vk) #0 (k= 1,2, ... ,n)}, 
k=1 

where Uk is a neighborhood of Xk in X and Vk is a neighborhood of rk in R for 
k = 1,2, ... , n. Let S(X) be the subspace of F(X x R) defined by 
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SeX) = {{(XI,rr), ... , (xn,rn)) : Xi #- Xj for i #- j}. 

For each n = 1,2, ... , define Fn(X x R) and Sn(X) by: 

Fn(X x R) = {D E F(X x R): D has at most n points}, 

Sn(X) = SeX) nFn(X x R). 

Notice that Sn-I (X) is closed in Sn(X). 
For a point D = {(XI,rI), (X2' r2)"'" (xn' rn)} E SeX), a function fD in C(X) 

is called an interpolation function for D if 

fD(Xr) = rI,!D(x2) = r2,'" ,!D(Xn) = rn 

are satisfied [1]. Suppose that X is the input space and R is the output space of 
some system. Then the point D is considered as a set of finite input-output 
data. The interpolation function fD is a function which fits the given data. It is 
obvious that for every DE SeX) there is an interpolation function fD for D, since 
X is Tychonoff. Hence we can consider the map 0: SeX) --4 C(X) defined by 
0(D) = fD. Since similar maps under the statistical frameworks are called learning 
algorithms in learning theory [6], this map 0 might be called an interpolation 
algorithm in a vague sense. Further we are interested in the case when this in­
terpolation algorithm has some kind of continuity or stability. Let us call the map 
o to be a continuous interpolation of X if 0 is continuous as a map between the 
topological spaces SeX) and C(X). In case 0 satisfies the weaker condition that 

the restriction 0Isn(X)-Sn_1 (X) is continuous for each n = 1,2, ... , we call 0 to be 
a weakly continuous interpolation. That is, the interpolation 0 is weakly con­
tinuous if for any D= {(xI,rI), ... ,(xn,rn)} ES(X) and any 8>0, there is a 

neighborhood W = < UI X VI,"" Un X Vn) of D such that IlfD' - fD 1100 < 8 for 
any D' = {(x;,rD, ... ,(x~,r~)} E WnSn(X). Hence this weak continuity can be 
called a topological stability of interpolation algorithms like the stabilities of 
learning algorithms [6]. Our purpose of this paper is to discuss whether a given 
topological space has a (weakly) continuous interpolation or not. The following 
are obvious, but fundamental in our argument. 

THEOREM 1. Every discrete space has a (weakly) continuous interpolation. 

THEOREM 2. If X has a (weakly) continuous interpolation, then every subspace 

of X has a (weakly) continuous interpolation. 

THEOREM 3. Let '[1 and '[2 be topologies on a set X. If '[1 is weaker than 
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r2 and (X, rd has a (weakly) continuous interpolation, then (X,1:2) has a (weakly) 
contlnuous interpolation. 

2. Metrizable Spaces and Continuous Interpolations 

In our framework, the following simple fact is also fundamental. 

THEOREM 4. The real line R has a continuous interpolation. 

PROOF. Let 

D = {(XI, rl), (X2, r2)" .. , (xn, rn)} 

be an arbitrary point in S(R). We can assume that 

Xl < X2 < ... < Xn · 

Let us consider the function fD E C(R) defined by 

{
rl for X :$; XI 

_ r/-r;_1 ._ 
fD(X) - ri-I + (x - xi-d Xj-Xj_1 for Xi-I < X :$; Xi, l - 2, ... , n 

rn for Xn < X. 

Obviously fD is an interpolation function for D. It must be checked that the map 
o : SeX) ---) C(X) defined by 0(D) = fD is continuous. 

For D = {(Xl, rl), ... , (Xn, rn)} E S(R), let 

m = min{lxl - x21, ... , IXn-1 - xnl}' M = max{lrd,···, Irnl}. 

In case n = I, let m be an arbitrary positive number. For any e such that 

0< e( < 1) let lJ =! min { W, l8(~+I)}' Now, consider the following neighborhood 
of D: 

W = (Ua(xd x "Ve/3(rd, ... , Ua(xn) x "Ve/3(rn), 

where Ua(Xi) is the lJ-neighborhood of Xi and "Ve/3(ri) is the e/3-neighborhood 
of ri for i = 1, ... ,n. We' will show that IIfD - fDllloo < e for any D' E W. Let 
D' = {(x;' rD, . .. , (x~, r~)}, where x; < ... < x~ is satisfied. Then there is the 
increasing map (j: {I, ... , m} ---) {I, ... , n} which satisfies (x;, r;) E Ua(xu(j)) x 

"Ve/3(ru(j)) for any j = 1, ... ,m. Since it suffices to show that IfD(X) - fD' (x) 1 < e 
for any X E R, let X be an arbitrary point in R. (1) First, assume that X:$; XI -lJ. 
Then fD(X) = rl. Further it must be satisfied that X < xL and hence fD' (x) = r;. 
Since irI - r;1 < e/3, it is obvious that IfD(X) - fDI(x)1 < e/3. In the case that 
X 2 Xn +lJ, similar argument above implies that IfD(X) - fD' (x) 1 < e/3. (2) Next, 



228 Toshiji 1'BR.ADA 

we consider the case when there is some i such that Ix - xii <~. Notice that for 
each k = 2, ... ,n the absolute value of the slope ;k=~-I of the line connecting 

2(M+l) k k-I 
(Xk-l, rk-l) and (Xk, rk) is less than -m-. Therefore if Xk-l ~ Y ~ z ~ Xk and 
Iy - zl < ~ are satisfied, then we obtain that IfD(Y) - fD(Z) I < 18(:+1) 2(~+1) = 

e/9. Hence in the present case IfD(X) - ril < e/9 is satisfied. On the other hand, 
there is some j such that x} ~ x ~ X}+I. If (JU) = (JU + 1) = i, then Ir} - ril, 
Ir}+1 - rjl < e/3. Since rj - e/3 < min{r}, r}+I} ~ fDI(X) ~ max{r}, r}+I} < ri + e/3, 
the inequality IfDI(X) - ril < e/3 is also satisfied. Hence IfD(X) - JDI (x) I < 2e/3. 
If (JU) = i and (JU + 1) = i + 1, then Ix} - x}+d 2:: m - 2~ 2:: 2m/3. Hence the 
absolute value of the slope of the line connecting (x), r}) and (X}+I' r}+I) is less 
than 3(~+!). It follows that IfDI(X) - r}1 ~ e/6. This implies that IfD(X) - fD' (x) I 

~ IfD(X) - ril + Iri - r}1 + Ir} - fD' (x) I < e/9 + e/3 + e/6 < e. Similarly, if (JU) = 

i-I and (JU + 1) = i, it is proved that IfD(X) - fDI(x)1 < e. (3) Finally, assume 
that Xj + ~ ~ x ~ Xi+! - ~ for some i = 1, ... , n - 1. The number k = max (J-I (i) 
is settled and it must be satisfied that (J( k + 1) = i + 1. Since xk < Xi + ~ and 

~ , .. . fi d h' 'L r - { '} I -Xi+1 - u < xk+!, It IS satis e t at Xk < x < Xk+l. et Xi - max Xi, Xk , Xi+l -
min{Xi+I,Xk+1}. Since Ix[ - xii, Ixf+l - Xi+ll <~, it follows that IfD(Xn - fD,(xnl, 
IJD(xf+l) - fD,(xf+I)1 < e by using the result of the case (2). Since fD, fD' are 
linear on the interval x[ ~ x ~ Xf+l' it is obvious that IfD(X) - fD' (x) I < e for any 
x such that Xi +~ ~ X ~ Xi+l -~. 

COROLLARY 1. The Sorgenfrey line and the Michael line have continuous 
interpolations. 

It seems difficult to extend the result of Theorem 4 to higher dimensional 
Euclidean spaces Rn. However, we can show that Rn has a weakly continuous 
interpolation. More generally the following is obtained. 

THEOREM 5. Every metrizable space has a weakly continuous interpolation. 

PROOF. Let (X, d) be a metric space. For any D = {(Xl, rd, . .. , (Xii, rn)} E 

S(X), let 

M = max{lrll, ... , Irnl}, m = min{d(xi,Xj) : i =f. j}. 

Then the function fD E C(X) is defined by 

jj ( ) _ {O if d(X,Xi) 2:: m/4 for each i = 1, ... ,n 
DX - rj-~d(x,xj) ifd(x,xi) <m/4forsomei=I, ... ,n. 
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In case D = {(Xl, rJ)} E Sl (X), let m = ex) and hence fD(X) = rl for each X E X. 
It is obvious that fD is an interpolation function for D. We will show that the 
map 0 : S(X) -7 C(X) defined by 0(D) = fD is weakly continuous. Since the 
continuity of 0Isl (x) is obvious, we can assume that n > 1. For the above D and 
an arbitrary (1 »e > 0, let 1> > ° be a real number such that 

s: • {m me } 
u < mIn 8'32(M + 1) . 

Since the absolute value I~il of the coefficient of d(x, Xi) used in the definition of 
fD is less than 4(~+1), the inequality 4(~+1) 21> < e/4 implies the following. 

Claim. If x, y E X satisfy d(x, y) < 21>, then IfD(X) - h(y)1 < e/4. 
It suffices to show that IIfD' - fD 1100 < e for D' = {(x;, rD, ... , (x~, r~)} E Sn(X) 

which satisfies 

d(X;,Xi) <1>, 1< -rd <e/4 for i= 1, ... ,n. 

For this D', the numbers M' = max{lr;I, ... , Ir~I}, m' = min{d(xt,xj) : i =I j} 
are also defined. The inequalities M' < M + 1, m - 21> < m' < m + 21> are ob­
vious. Let X be an arbitrary point in X. Assume that d(x, Xi) ~ m/4 for 
each i, then fD(X) = 0. On the other hand, for this point X it is satisfied 
that fD'(X) = 0 or 0 < IfDI(x)1 ~ H -~!d(x,xnl for some i. Even in the 

latter case, since '~' > d(x,xf) ~ d(x,x;) - d(X:,Xi) > '4' - ~1> and hence IfD,(x)1 ~ 

k: -~! ('~' - ~1» I ~ 1~!1>1 < 6~~~P1> < e/4, it follows that IfD(X) - fDI(x)1 < e/4. 
Next, assume that d(x,x;) < m/4 for some i. If Iril ~ e/4, then IfD(X)1 ~ e/4. 
Further the inequlity Ir:l ~ e/2 is satisfied. Then IfDI(x)1 ~ e/2, and hence 
IfD(X) - fD,(x)1 ~ 3e/4. The remaining is the case Ird > e/4. Let 

4ri 
a = r· - - d(x x·) 1 , I ) 

m 
4ri ( ') b = ri - - d X, Xi , 
m 

, 4ri ( ') 
c = ri - m + 21> d X, Xi , 

4(ri + e/4) , 
d1 =ri- e/4 - m-21> d(x,xi), 

, / 4(r; - e/4) ( , 
dl = ri + e 4 - m + 21> d X, Xi)' 

4(r; + e/4) , 
d2=ri- e/ 4 - m+21> d(x,x;), 

Since fD(X) = a and either d1 < fDI(X) < d{ or d2 < fDI(X) < d~ are satisfied 
according to ri > e/4 or ri < -e/4, if it is proved that la - d{l, la - dll, la - d21, 
la - d~1 < e then we have IfD(X) - fDI(x)1 < e. 
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(1) la - bl < e/8: In fact, la - bl = I'!:/ (d(x, Xi) - d(x, xf)) 1 ~ 4(~+1) t5 < e/8. 
(2) Ib - cl < e/8: This follows from Ib - cl = IrM(x, xf) I~ - m~2ol = 

IrM(x,xf)lm(~~20)1 < eM + 1)38 m-~/4 32(;+1) = e/8. 
(3) Ib - c'l < e/8: Ib - c'l = Irild(x, xf) I~ - m~2ol = IrM(x, xf) m(,!!20) < 

(M + 1) 38 m+~/4 32(;+1) < e/8. 
(4) Ie - dd < ie: Ie - dd = le/4+ m':20 d(X,xf) 1 ~ e/4+ Im':2ol d(x,xf) < 

e/4 + t! 38 = e/4 + e/2 = 3e/4. 
(5) Ie' - d{1 < ie: Ie' - d{1 = l-e/4 - m~2od(x, xnl ~ e/4 + m~2od(x, xi) < 

e/4 + t 38 < 3e/4. 
(6) Ie' - d21 = Ie - dd < 3e/4; 
(7) Ie - d~1 = Ie' - d{1 < 3e/4. 

Hence la - d{I, la - dll, la - d21, la - d~1 < e/8 + e/8 + 3e/4 = e. 

COROLLARY 2. Let X be a space whose topology is stronger than a metrizable 
topology. Then X has a weakly continuous interpolation. 

3. Spaces without Continuous Interpolations 

As we see in this section, it is delicate whether a given space has a (weakly) 
continuous interpolation or not. 

THEOREM 6. The ordered space COl of the first uncountable ordinal does not 
have a weakly continuous interpolation. 

PROOF. AsstIme that there is a weakly continuous interpolation E> : S(COI) ~ 
C(coJ). Let IXo = 0 and Wo be the set of all limit ordinals in COl. For each A E Wo, 
let D~ = {(IXo,O), (A, I)} E S2(COI). Then the function f;.o = E>(D~) is obtained. 
Since this function is continuous at A and fleA) = I, there exists J1.~ < A such that 
If;.O(x) - 11 < 1/4 for any x which satisfies J1.~ < x ~ A. Using the pressing down 
lemma [4] for the function A 1-+ J1.~, there exist an ordinal IXI and a stationary 
subset WI of Wo such that J1.~ = IXI for any A E WI. Repeat the similar procedures. 
Then we obtain a sequence 

IXO < IXI < ... 

of points in COl and a sequence 

of stationary sets in COl such that for any i = 1,2, ... and any A E Wi, the function 
f1- 1 =E>({(IXi-I,O),(A,I)}) satisfies 
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for any x such that rxi < x ~ A.. Now, let a = limn .... oo rxn. We can take another 
sequence of ordinals (a <)Po < PI < . .. such that Pi E Wi for each i. Let 
P = limn--+oo Pn in COl. Then for D = {(a, 0), (P, l)}e S2(COr) there is the corre­
sponding function Ii> = 0(D). Since 0Is2(llll)-Sl(lllt} is continuous at D, there are 
neighborhoods Ua. of a and Vp of P which satisfy the following: For any rx E Ua. 
and P E Vp, the function fap = 0({(rx,O), (P,I)}) satisfies IIfap - f.5l1oo < 1/4 and 
hence Ifap(a) I < 1/4 and IfaP(P) - 11 < 1/4. Since rxn E Ua. and Pn E Vp for suf­
ficiently large n, it follows that lfan_lp'(<i) I < 1/4 for sufficiently large n. But this is 
a contradiction, since the above condition (*) implies that Ifan-tPn (<i) - 11 < 1 / 4. 

COROLLARY 3. Every topological space containing COl does not have a weakly 

continuous interpolation. 

The space COl is first-countable and countably compact. On the other hand, 
every countably compact space which has a weakly continuous interpolation must 
be nearly first-countable in the following sense. 

THEOREM 7. Let X be a countably compact space which has a weakly 

continuous interpolation. Then the tightness 'reX) of X is countable. 

PROOF. Assume that 'reX) > co and that X has a weakly continuous in­
terpolation 0: D 1--t!D. Then there are a subset A of X and a point p E clx A 
such that p if clx B for any countable subset B of A. We can assume further that 
clx B c A for any countable subset B of A. 

Let Xo be an arbitrary point in A and let Do = {(xo, I), (p,O)} E S2(X). Then 
there is a point XI E fir} (0) n A, since X is countably compact and has the 
property futher assumed above. Next, let DI = {(XI, 1), (p,O)}. Then there is a 
point X2 E fir/ (0) n f£/ (0) n A. Continuing this procedure, we obtain a sequence 
{Xi : i E CO} of points in A such that for any n E co 

Xn if Xn+1 E f£r}(O) n··· nf.o:.I(O), 

where Di = {(Xi, I), (p, O)} for each i E co. Since X is countably compact, there 
is an accumuration point Xoo of {Xi: i E CO}. The procedure of constracting 
{Xi : i E CO} implies that Xoo =I p and Xoo E n {fn; I (0) : i E co}. Consider the 
point Doo = {(xoo,I), (p,O)} E S2(X). Then there exists a neighborhood W = 

<Uoo x VI, Up x Vo> of Doo such that IIfDI - fD,.,IIoo < 1/2 and hence especially 
IfDI(Xoo) - 11 < 1/2 for any D' E wn (S2(X) - SI(X». But this is a contra-
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diction, since there exists n such that Dn E wn (S2(X) - SI(X)). In fact, for this 
Dn it must be satisfied that ID.(Xoo ) = O. 

COROLLARY 4. The ordered space COl + 1 does not have a weakly continuous 
interpolation. 

For the discrete space D(cor) of cardinality COl, let D(cor) U {OOA} be the one­
point compactification of D(cor), i.e. the complement of every neighborhood of 
OOA is a finite subset of D(COI)' The one-point Lindel6fication D(COI) U {ood of 
D( COl) is the space obtained by adding a point 00 L with the neighborhood base 
consisting of co-countable sets. 

THEOREM 8. The one-point LindelOfication 1>(COI) U {ood has a continuous 
interpolation. 

PROOF. We can assume that the underlying set of D(cor) U {ood is COl + I as 
OOL = COl. For D = {(aI, rI)" .. , (an, rn)} E S(D(cor) U {ood), where al < ... < an, 
let ID E C(D(COI) U {ood) be the function defined by 

{

Yl for a S al 

ID(a) = ri for ai-I < a S ai, i = 2, ... ,n - 1 
rn for an-I < a. 

It is easy to see that the map ® defined by ®(D) = ID is a continuous inter­
polation of D(cor) U {OOL}. 

THEOREM 9. The one-point compactification D(coI) U {OOA} does not have a 
weakly continuous interpolation. 

PROOF. The underlying set of the space X = D(COI) U {OOA} is also the well­
ordered set COl + I as above. Assume that D(cor) U {OOA} has a weakly con­
tinuous interpolation ® : D ~ ID. Since any real-valued continuous function on 
D(COI) U {OOA} is constant on a co-countable set and ® is continuous on 
S2(X) - SI (X), there exists Yo < COl such that 

IDo{J( OOA) = 0 

for any Dcxp = {(a, 1), (P,O)} such that a < co and P> Yo. 
Let Po E D(coI) be a point larger than Yo. Consider Do = {(Po, 0), (OOA, I)} in 

S2(X). Then IDo(OOA) = 1. Since the restriction ®IS2(x)-s\(X) is continuous, there 
is a neighborhood W of Do in S2(X) such that 
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ilfD' - fDoiloo < 1/2 

and hence IfD,(coA) -11 < 1/2 for any D' E W. Since the complement of any 
neighborhood of COA in D(COl) U {COA} is finite, there exists ao < co such that 
DaoPo = {(Po, 0), (eto, I)} E W. Then fDooPo (COA) > 1/2. However, since ao < co and 
Yo < Po, the above condition of Yo implies that fDooPo (COA) = 0. This is a con­
tradiction. 

For a point p in a space X, l/J(p, X) is the pseudo-character of X at p. A 
similar argument to the proof above show the following. 

THEOREM 10. Let X be a space with a point p such that l/J(p,X) > co. Let 
X vpw (co + 1) be the quotient space of the topological sum X E!3 (co + 1), obtained 
by the identification of p with co. Then X Vpw (co + 1) does not have a weakly 
continuous interpolation. 

PROOF. In XVpw (co + 1), let Pw be the point corresponding to the set {p,co} 
collapsed. Assume that X vpw (co + 1) has a weakly continuous interpolation 
e : D f-t fD. Since any GJ-set of X containing p has an infinite number of points, 
the weak continuity of e at Dip", = {(i, 1), (Pw,O)} for each i E co implies that 
there exists an infinite GJ-set B of X containing p with the following property: 
If x E B - {p} and i E co, then 

where Dix = {(i,I),(x,O)}. Let qEB be a point which is distinct from p. 
Consider the point Dwq = {(q, 0), (Pw, I)}. Then fDwq(Pw) = 1. On the other hand, 
any neighborhood W of Dwq in S2(X vpw (co + 1)) - SI (X vpw (co + 1)) contains 
Diq = {(i,I),(q,O)} for some iEco. Since fD;q(Pw) =0 for such Diq, this con­
tradicts the weak continuity of e. 

COROLLARY 5. Let X be a space such that X x (co + 1) has a weakly 
continuous interpolation. Then the pseudo-character l/J(X) is countable. 

PROOF. Suppose that l/J(p, X) > co for a point p in X. The space 
X vpw (co + 1) having no weakly continuous interpolation is embedded in 
X x (co + 1) as X x {co} U {p} x (co + 1). 

Let X be the. one-point Lindelofication D( cod U { co d and Y = co + 1. Then 
we obtain the following. 
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THEOREM 11. There are spaces X, Y having continuous interpolations such 

that X x Y does not have a weakly continuous interpolation. 

A subset !F c C(X) is called a separating family of X if for any distinct 
points p, q in X there exists f E!F such that f (p) =I- f (q). 

THEOREM 12. If an infinite space X has a weakly continuous interpolation, 

then the density d(X) of X is larger than or equal to the minimum cardinality of 

separating families of X. 

PROOF. There is a weakly continuous interpolation 8 : D f---t fD of X. Assume 
that I!FI > d(X) for every separating family !F of X. Let B be a dense subset of 
X such that IBI = d(X). Consider the subfamily 

S'(X) = {D E S(X): if (x, r) ED, then x E B, r E Q}, 

where Q is the set of all rational numbers. Let !FB = {fD : DE S'(X)}. Since 

I!FBI :s;; IS'(X)I = d(X), 

!FB is not a separating family of X. Hence there are distinct points p, q in X such 
that f(p)=f(q) for any fE!FB. Take Do={(p,O),(q,1)}ES2(X), From the 
weak continuity of 8, it follows that there is a neighborhood W of Do in 
S2(X) - Sl(X) such that 8(W) is included in the 1/2-ball B lj2(fDo) of fDo in 
C(X). Since B x Q is dense in X x R, there is Dl = {(p',r),(q',s)} E WnS'(X). 

For this Db 

must be satisfied. But this is a contradiction, since 

COROLLARY 6. The uncountable product space {O, 1} WI does not have a weakly 

continuous interpolation. Hence every space containing {O,I}WI does not have a 

weakly continuous interpolation. 

Since D((j)l) U {CX)A} can be embedded in {O, 1} WI, this corollary is considered 
also as a corollary of Theorem 9. 

COROLLARY 7. The Stone-Cech compactijication (J(j) of the countably infinite 

discrete space (j) does not have a continuous interpolation. 
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Since the tightness of p()) is uncountable, this corollary is also a corollary of 
Theorem 7. There are more examples which show the delicacy of having weakly 
continuous inerpolations. A family d of infinite subsets of ()) is called an almost 
disjoint family if the intersection of any two distinct element of d is finite [3, 4]. 
A maximal almost disjoint family is an almost disjoint family d with no almost 
disjoint family go properly containing d. For each almost disjoint family d we 
can define the topological space 'P (d) = ()) U d, with the following topology: 
The points of ()) are isolated, while a neighborhood of a point A E d is any set 
containing A and all but a finite number of points of A( c ())) [3]. 

THEOREM 13. (1) There exists an almost disjoint family d of cardinality 200 

such that 'P(d) has a weakly continuous interpolation. 
(2) There exists an almost disjoint family .4t of cardinality 200 such that 'P(.4t) 

does not have a weakly continuous interpolation. 

PROOF. (1) Let us consider the following topology -r on the upper half­
plane R x [0,(0), which is similar to the Niemytzki tangent disc topology: 
Neighborhoods of all points (x, y) with y '# ° are unchanged from those of 
the Euclidean topology and taking as a base at each point (r,O) the family 
{{(r,O)}U Un(r): n = 1,2, ... }, where 

Un(r) = {(x,y) ER x (0, (0): Ix- rl < y < lin}. 

Since -r is stronger than the Euclidean topology, every subspace of this upper half­
plane with the topology -r has a weakly continuous interpolation. Let {qn : n E ()) } 

be an enumeration of all rational numbers, and let t/J : ()) x Z --+ R x (0, (0) be the 
one-to-one map defined by t/J(n,m) = (qn + ml(n + 1), 1/(n + 1)), where Z is the 
set of all integers. Then the subspace 

x = {t/J(n,m) : (n,m) E ()) X Z} UR x {O} 

of (R x [0,(0), -r) has a weakly continuous interpolation. Let !/I : ()) --+ ()) x Z be 
a bijection. For each r E R, let Ar = {n E ()) : t/J 0 !/I(n) E Uj (r)}. Then the family 
d = {Ar : r E R} is an almost disjoint family. It is easy to see that 'P(d) is 
homeomorphic to X. 

(2) It is well known that there exists a maximal almost disjoint family .4t of 
cardinality 200. Since the density of 'P(.4t) is countable, it suffices to show that 
the cardinality of every separating family of 'P (.4t) is greater than ()). Assume 
that there is a countable separating family fF of 'P (.4t). Then the product map 
nfF : 'P(.4t) --+ Rff defined by nfF(x) = (f(X))/eff is one-to-one and continuous. 
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Since \l"(.4/) is pseudocompact and R9' is metrizable, the image nff(\l"(.4/)) of 
this continuous map must be compact. For any x E 'P(.4/) and any neighborhood 
U of x in \l"(.4/), there is a real-valued continuous function ix, U : 'P(.4/) ----t [0,1] 

such that ix, u(x) = 0, ix, ui'¥(.41)-u = 1. Now, consider the family ff' = ff U {ix, u} 
obtained by adding one more function ix, u to ff. Then there exists also the map 
nff' : \l"(.4/) ----t R9" and its compact image nff'(\l"(.4/)) , in which nff'(U) is 
a neighborhood of nff'(x). Since the natural projection P: R9" ----t R9' is con­
tinuous, the restriction Pin9"(\l"(.4/)) : nff'('P(.4/)) ----t nff('P(.4/)) is a one-to-one 
continuous map between compact spaces and hence a homeomorphism. This 
means that nff(U) is a neighborhood of nff(x) for any x E \l"(.4/) and any 
neighborhood U of x. It follows that 'P(.4/) is homeomorphic to nff('P(.4/)), but 
this is a contradiction since \l"(.4/) is neither compact nor metrizable. 

The following problems seem to be interesting. 

PROBLEM 1. Does every separable metrizable space have a continuous in­

terpolation? 

This is equivalent to the problem: Does the Hilbert cube I W or the countable 
product R W have a continuous interpolation? 

PROBLEM 2. Does every space contain a dense subspace which has a (weakly) 

continuous interpolation? 

ADDENDUM. The author was recently pointed out by K. Sakai that the 
answer of Problem 1 is positive. 
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