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PISOT SUBSTITUTIONS AND THE HAUSDORFF
DIMENSION OF BOUNDARIES OF ATOMIC SURFACES

By
De-Jun FeNG, Maki Furukapo, Shunji Ito, Jun Wu

Abstract. The atomic surface X, from an unimodular Pisot sub-
stitution ¢ usually has the fractal boundary and it generates a self-
affine tiling. In this paper, we study the boundary 90X, as the graph
directed self-affine fractal and estimate the Hausdorff dimension of
the boundary.

0. Introduction

The several properties of self-affine tiles and their boundaries are studied for
instance in the articles [26], [15], [3], [16], [9], [17], [18], [4], [27], [1], [24]. In this
paper, we treat the sets which have the fractal boundary called atomic surfaces or
self-affine tiles based on substitutions.

Let o be a primitive unimodular Pisot substitution on the free monoid
A* =2 {1,2,...,d}", that is,

(1) there exists an n such that i occurs in ¢”(j) for any pair of letters
(i, ) (primitive);
(2) the characteristic polynomial of L, is irreducible over Q and eigenvalues
Ai, 1 <i<d of L, satisfy the followings:
A >1>|4], i=2,...,d (Pisot condition);
(3) det L, = +1 (unimodular condltlon).

Let @ = (wy,,,...) be the fixed point of the substitution ¢ and 7 : R — 2
be the projection along the eigenvector with respect to the largest eigenvalue A; of
L, to the contractive invariant plane 2 of L,. Let us define the set X, by
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X, := the closure of {n ZZ=1 ew, |1 = 1,2,...}

where e;, i = 1,2,...,d are the canonical basis of R?. The domain X, called the
atomic surface usually has a fractal boundary. This domain and its boundary are
not only interesting from the viewpoint of the fractal geometry, but also ergodic
theory, number theory and quasi-crystal theory (see [22], [10], [11], [19], [23], [7)).
In this paper, we mainly study the boundary 0X, as the fractals which have graph
self-affine in Theorem 2.6 (c.f. [5], [25]) and estimate the Hausdorff dimension of
atomic surfaces as follows.

THEOREM 1. Let o be a primitive unimodular Pisot substitution with d letters
and let X, be the atomic surface based on the substitution o. Then the Hausdorff
dimension of the boundary 0X, is estimated by

log y, —log A1 — (d — 1) log|A4]
—log|A4]

dimy 0X, <
where y, is the largest eigenvalue of the graph matrix M,.

Moreover, if the linear map L,|, restricted to the contractive invari-
ant plane £ is a similitude, then the Hausdorff dimension of 0X, is given
by

dimy ox, = = Dlogn
log 4;

1. Atomic Surfaces and Their Basic Properties

In this section, we give a survey of the property of the atomic surface which
is discussed in [6], [2], [12]. Let o/ be an alphabet of d letters {1,2,...,d}. We
denote &* = U:?_—o &" the free monoid of /. The substitution ¢ is a map from
& to &* such that o(i) is a non-empty word for any letter i. The substitution
o naturally extends to an endomorphism of the free monoid «* by the rule
o(UV) = a(U)a(V). Denote o(i) = W, where W is a finite word of the
length /;, and we write W = Wl(i)~-~ W,’@. Denote by P,Ei) the prefix of the
length k£ — 1 of W,c(i) (for k =1, this is the empty word), and S,Ei) the suffix of
the length /; — &, so that o(i) = P,fi) W,Si)S,Ei). For the simplicity, we assume that
Wl(l) = 1. Under this assumption, the infinite sequence w given by

® = lim,e 0™ (1)
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is the fixed point of the substitution ¢. There is a natural homomorphism
f:af* — Z? obtained by the abeliarization of the free monoid «7*, and we
obtain a linear transformation L, satisfying the commutative diagram:

AN A

1

z¢ L, z¢
From now on, we assume that the substitution o is primitive, that is, there
exists an » such that i occurs in ¢”(j) for any pair of letters (3, j). It is equivalent
to say that the matrix L, of ¢ is primitive. By Perron-Frobenius theorem, L, has
the largest eigenvalue 1; that is positive, simple and strictly bigger in modulus
than the other eigenvalues. We denote u; and v; positive eigenvectors associated

with 4; for L, and the transpose of L, respectively. Moreover, we assume that
the substitution o satisfies irreducible Pisot and unimodular condition, that is,

(1) the characteristic polynomial of L, is irreducible over Q and eigenvalues
Ay A2, ..., Aq of L, satisfy

A >1>1A4, i=2,...,d (Pisot condition);
(2) the determinant of L, is equal to +1 (unimodular condition).

Let 2 be the plane orthogonal to v;. It is clear that £ is invariant by the
linear transformation L,. Moreover, the linear transformation L, is contractive
on 2, that is, there exists a constant 0 < Ag < 1 such that

do(Lox,Lsy) < Aodo(x,y) for x,ye P

where dgp(-,-) is the restricted Euclid distance on #. Let n: R? — 2 be the
projection along the eigenvector u;.

DermNITION 1.1, Let us denote the fixed point @ = lim,_,o, 6”(1) of o by
w:SISZ"'Sn“')

and let us define the set X and X;, i=1,2,...,d by

X := the closure of {nzjil e |k = 1,2,...},

X; = the closure of {nzjil e | sy =i for some k}.

The set X is called the atomic surface associated with the substitution o.

With the notations above, we know the following theorem.



198 De-Jun FenG, Maki FUurRUkADO, Shunji ITo and Jun Wu

THEOREM 1.2 ([2]). Let o be a primitive unimodular Pisot substitution, and X
and X;, i=1,2,...d be the atomic surfaces of o. Then X;’s satisfy the following
relations: for each i=1,...,d,

d
X = Z E (Lo Xj — nf (S,Ej ) (non-overlap)
j=1 9.
Wk(j)=i,
o()=E P w5
where E{=1 A; (non-overlap) means that the Lebesgue measure |A; N Ai| of A; N Ay
is equal to zero for each 1 < j<k<I

In [2], we can see implicitly the set equation of X; i=1,2,...,d holds.
However, we will give an explicit proof here. For this purpose, we prepare some
lemmas and propositions.

Lemma 1.3. The set X is bounded. More precisely, we can estimate

diam. X <

2
.
1—x =™

where LU = (ll])> I= maX)<j<d sz=l lij, and m = maX) <j<d d:?’(o: n(f(])))

ProOF. For any k>0 there exists n such that [® <k < [®)  where
1) =|g"(1)| is the length of the word o”(1). Therefore, there exists j such that
Sp-sp = a"(Wl(‘))ma"(I/Vj(_‘f)tl et
f e < a"(Wj(l))
where wuy ---u; < vp---v; means

vl vj =ul"'ukvk+l vj
Therefore, we know

flsis2--s1) = f(@" ) 4+ £ 0" WD) + f (01 1e).
On the other hand, we know that
dg(0,7f (c"()))) < Agde (0,71 ()
where A9 = maxy<;<q(|4|). Therefore, we have

d@(oa 7l'f(S1 o 'Sk)) <l Ilgja'sxd d9(0>7‘f(1))}~8 + d?(oanf(tl T tk’))
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where | = maxi<j<q >0, ly and L, = (!s)1<i j<qa- Continue the procedure, then
we get

) 2 .
diam X < o l- jmax, dg (0,71 ())). O

LemMa 1.4. The following set equation holds: for each ie{l,2,...,d}

d .
x=U U EX-s)
J=1 Slgj):
Wk(j)=i
U(j)=Pk(j) Wk(j)SlSj)

Proor. It is enough to show that

d

L' =U U  (G-L} @)

=1 ().
J s
w=i,
O.(j)zpk(l) W“(I)S’EI)

where Y; = {nf(s;---sk)|sx =i for some k}. For any k satisfying s, =i, there
exist m and ¢ such that

51828k = a(sy - ~Sm—1)P§s'") VVt(SM)a

Wi =i,
Therefore, we have
flsisz-- ) = folsisz---sm) = F(S5).
Thus, the set equation holds. O
LeMMA 1.5. Let A be a d x d integer matrix and assume that the charac-

teristic polynomial of A is irreducible, then the eigenvector u ="' (1, uy,...,u4_1) of
the eigenvalue A of A is Q-basis of the field Q(A), that is,

MO 1+Q i+ +Q up1=0();
@) {1,u1,...,us—1} is Q-independent.
Proor. Let us denote the simple extension of Q adjoining A by Q(4), then

from the irreducibility of the characteristic polynomial of 4, we see that {I,4,
A2,..., A%} is the basis of Q(A), that is,
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@) Q+ Q4+ + 027" = 0(2);
@) {1,4,...,2%7"} is Q-independent.
On the other hand, from the definition:
AL uy, .. ug] = A1 u, . ug],
we see
A=ay +apu + -+ algia-1 (1.1)
and moreover from the fact that
ARy, uag) = AL, ual],
we have
ik = agﬁ) + a@ul + .+ aglfj)ud (1.2)
and we see
*eQ+Qui+ -+ Qua.
Therefore, we know that
(Q() =)@+ QA+ -+ QA" < O+ Qui + - + Quy_y.
Other direction
Q+ QA+ + 01 >0+ Qui + - + Qua-
is easy from the fact that
(A—2E) L uy,...,uq_1] = 0.

In fact, {l,u,...,us—1} is the solution of the linear equation
(A — AE)'[x1,...,x4] =0, which is the equation with Q(1)-coefficient, therefore,
we see u; € Q(1). And, we have

Q+Qi+ -+ QA =014+ Q-m+ - +Q uy,

that is, {1,u1,...,ug-1} is the basis of Q(1). And so, we see {1,u1,...,us1} is
Q-linearly independent. O

As the corollary of Lemma 1.5, we have the following.

COROLLARY 1.6. The closure of nZ% = .
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ProrosiTION 1.7.  For the atomic surface X associated with the substitution o
we know the following properties:

(1) L())ZG{ZZ__zn,'ﬂ(el—e,‘) ln,'EZ} (X + z) = '@3
@ X+

Proor. For each n let us consider the set of points [, =

>k, e |1 <k <I™} We define ¥, = nl, and let us, dconsider the lattice Lo :=

——
(24 ni(er — &) [ni€ Z} on Py :={xeZ%|<x,(1,1,...,1)) =0} where <x,y)
is the inner product of vectors x and y.
Now define the set of the lattice points by

L+Ly= UzeLo(l,, + 2).

The projection of I, + Lo by 7 is denoted by | ) re LO(Y,, + 7z). On the other hand,
for any substitution we can see easily the following relation:

#Hd
———
IL+Lo={xeZ%{x,'(1,1,...,1)) > 0}.

Using the fact that
Y, c Yo,

the closure of ()Y, = X,
we know from the boundedness of X and Corollary 1.6,
UzeLo(X—i—nz) =2 (1.3)

Using (1.3) and from Baire category theorem, we have X = Y # . From
Theorem 1.2 and primitivity, we see that

X, £ @ forall ie{l,2,...,d}. 0
In order to know that X; are disjoint each other up to a set of measure 0

(about the sets of measure 0), we would prepare several lemmas. The next result
can be found in [2], originally in [21].

LeMMa 1.8. Let M be a primitive matrix with the largest eigenvalue A.
Suppose that v is a positive vector such that Mv > Av. Then the inequality is an
equality and v is the eigenvector with respect to A.

Hereafter, we will note |K| the measure of the set K.



202 De-Jun FenG, Maki Furukapo, Shunji ITo and Jun Wu

LemMa 1.9. The vector of volumes ‘(|Xi|), <, satisfies the following in-
equality:
LZM(Xl, - 1Xal) = A (X, X)),

Proor. From the form of X; in the equation of Lemma 1.4, we see
_ d
17X < SO0 (L)Xl

Since the determinant of L! restricted to & is 4, we know that |L;'X;| = 4| X;|.
Hence we arrive at the conclusion. O

From the Lemma 1.8, Lemma 1.9 and the fact that |X;| > 0, we obtain the
proof of Theorem 1.2.

RemMArRK. We don’t know whether
X = Zjil X; (non-overlap)

and we see in [2] that X = U,il X; is non-overlap if o satisfies the coincidence
condition.

COROLLARY 1.10. The relation that X = the closure of X holds.
Proor. Moreover by rewriting Theorem 1.2, for any » > 0 we have
d d
xX=>3

i=1 j

> LX - (S).
T
W:Q:i,
For any x € X and J > 0, let B,(6) be the ball with the center x and the radius ¢
on 2, then by the above rewritten formula, there exist » and S,EJ,Z such that
B.(0) > LiX;—nf(SY) and LIX, # Q.

This means that the relation that X = the closure of A(} holds. O

2. Structure of Boundary and Mauldin-Williams Graph

We say that the point (x,i*) € Z¢ x {1,2,...,d} is an element of the stepped
surface 2 if (x,v;) >0 and {(x—e;,v;> < 0. Put all of the elements of the
stepped surface 2 by S.
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Lemma 2.1, If a pair (x,i*) # (p, j*) are the elements of S, then the element
(z,k*) given by

* (x=y,1%) i {<x=py,m)=0
k) = )
@k {(y-x,J*) if {y—x,0)>0

is also an element of S.

The proof is easy.
Let us define the map ¢: 8 xS — § xS as follows:

o((x,%), (9,7%)) = ((0,17), (2, k™))
where (z,k*) is given as Lemma 2.1 and [* is given by

I* = j* if<x_y>vl>20
Sl i y—x,0)>0

(_{x—y if x—y,0)>0
. y—x if{p—x,0.)>0)

LemMa 2.2. Let us define the operator ¢* on S by

o= 3 > L)),
je{l,..,d} S,fj):
ka=i,
0(j)=P,fj) Wk(j)Slﬁj)

Then all of the elements in o*(x,i*) are also the elements of S.

The proof can be found in [2].
Let us consider the set ¥y of the pair of elements such that

Vo ={((0,5), (x,j)) | (,J%) € S, ||nx|| < 2D}

where ||x|| be the length of the vector x and D be the diameter of X estimated in
Lemma 1.3. Then, we see that the cardinarity of Vj is finite. Let us define the set
of the pair ¥® such that

VO = {o((x,7%), k"N | (x, ), (,k*) € 3*(0,i%), |n(x ~ )|l < 2D},

and VO(O) = Ui=1 2.d V(i), then VO(O) < V.
Let us define the arrow from the point ((0,i*), (w, j*)) € ¥y by the following
manner: for each pair ((0,i*),(w, j*)) let us pick up the pair such that (x,k*) e
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a*(0,i*), (y,1*) e o*(w,j*) and if ||n(x— y)|| < 2D, we give the arrow from

((0,i%), (w, j*)) to o((x,k%), (»,1))-
Let us define the graph Gy = (V1,E,i,t) by the following manner:

1st step: let us consider the arrows starting from the vertex u e VO(O) . If we can
not find the arrow from u, then the vertex u is cancelled; If we can find the
arrow e from u to v we denote i(e) = u, t(e) = v and if moreover the vertex
is new, that is, ve Vo\VéO), then we call v the first generation of u. We
denote the set of the first generation from VO(O) by Vo(l).

2nd step: let us consider the arrow starting from the vertex of the first gen-
eration v e Vo(l). If we cannot find any arrows from v, then we cancell the
vertex v e Vo(l) and the arrow e such that #(e) =v; if we can find the
arrow ¢’ from v to w and the terminal 7(e’) is new, that is, w =1(e’) €
Vo\(VO(O) U VO(I)), then we call the terminal w the 2nd generator of u and
denote VO(Z).

kth step: if we can not find any arrows from the vertex vy, we cancelled the
vertex v, and the arrow e such that #(¢) = vy. And by the cancellation of the
arrow e if v_; = i(e) has no arrow e’ such that v,_; = i(e’) then the vertex
vk—1 and the arrow e” such that #(e”) = vx_; are also cancelled and so on.
From the finiteness of the cardinarity of ¥V, we can stop this procedure. We
denote the final step by g.

Now we get the graph with vertices V) = 111 Vo(j ) and each vertex u has
the arrow e such that u = i(e).

We denote the graph by Gz = (V1, E,i,t) and call the graph of the boundary
of the atomic surface. For the simplicity, we denote the vertex ((0,:*), (x,j*)) by
(@, j, x).

The existence of the arrow from (i, p,xp) to (j,q,x)) means that on the

notation:
a0, = > S =L, (2.4)
le{l,...,d} S}SI):
o()=P".i.s"
o (x0,p) = > ST LS, mt) + L (x0),  (2.5)
me{l,...,d} S,E’z"):

o(m)=p"-p-S{7

there exist /, k, m and k' such that (j,q,x;) is given explicitly by



Pisot substitution and Hausdorff dimension 205

L7 (£(S) = £(S) + xo)
if CLU(A(SP) = £(SEP) + x0), 020 2 0 26)
—L (ST = £(SE) + xo) '
if <LV(S(SP) = £(SI) + x0),0) < 0

g = L) G L (S0) = F(SE7) + x0), ) = 0
v {(m,l) it <LZ1(F(SP) — £(S) + x0), 025 < 0 (2.7)

X =

PROPOSITION 2.3.  For each vertex (i, j,x) € Vi we know X;N (X, + nx) # &
and |X;N (X; + nx)| = 0.

Proor. Suppose that X;N (X; + nx) = &, then from the compactness of X;
and X; we see
do (X, (X; + nx)) > 0,
where dp(A, B) := inf{dp(x,y)|x€ A, y € B}, and so we have
do(L;' X, L' (X + mx)) = A do (X, (X + 7x)).

From the set equation given by Theorem 1.2 and the relation (2.4) and (2.5), we
know that

L7'X > X — L'z (SY) for (1,k) satisfying W =
L7 (X + %0) © X — L7'7f (SU7) + L (x0) for (m, k') satisfying W™ = p.

Moreover, from the fact that the vertex (i, ji,x;) from (i, j,x) € V; is given by
(2.6) and (2.7), in particular (3, j;) is chosen as (I,m) or (m,/) on the notation
(2.4), (2.5). Therefore we see

do (X, X, + mx1) = dp(L)' X, L' (X + 7x)),
that 1is,
dp (X, X, + mx1) > A5 do (X, X; + ).
Continuing this procedure, we have

do(X;

i

X, + nx,) > A" dp (X, X; + nx).
On the other hand, from the definition of ¥V, and Lemma 1.3, we know

do(Xp, Xy +nx) < 3D for all (p,q,x) € V.
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Therefore, we see that
do(Xi, X; + nx) = 0.

This contradicts to dg(X;, X; + 7x) > 0. From the definition of (i, j, x) € ¥V, there
exist k, n, (y,/*) and (w,m*) € *¢"(0,k*) such that

(G, J,x) = (9, 1), (w,m"))

where we denote *¢” instead of (c*)". Therefore, from the non-overlapping
property in Theorem 1.2, we have

|X; N (X; + 7nx)| = 0. ]

PROPOSITION 2.4. For each vertices (i, j,x) € V1, we see

0X; o X;N(Xj + nx).

PrOOF. Assume that
0X; % XN (X; + mx).
Then, we see that
(Xj 4+ nx) N ).3, #J.

Therefore, there exist a e Ao’l and an open ball Bjs(a) with the center a and the
radius J such that

aeX;+nx and Bjs(a) c Ac},

Since the closure of Ao’j is equal to Xj, we know Bs(a) N (A% + 7nx) # &, and thus
there exists By (b) such that

By(b) = Bs(a) N (X, + mx).
Therefore,
|Bs(a) N (X, + nx)| > 0.
From Proposition 2.3 this contradicts to

10 (X; + 7x)] = 0. O

PROPOSITION 2.5. For each je{l,...,d}, there exist n and Wy such that
a"(j) =Y -1- Wy and satisfying the following form:
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o(X; = =Ly"(f (W)

= > ((X; — nL,"f (W) N (Xie = nL"(F(W))))  (2.8)
k,W:
c"(k)=Y" LW if k#j
or ¢"(k)=Y"-1.-W and W+W, if k=j

and

o(U, S (W), (ks f(W))) € Vi if (X — =L (Wo)) O (Xic — =L (f (W) # .

In particular, we have

ox, = 3 (XN (X — (L (F (W) = L)) (2:9)
k,W:
a"(k):Y’-lWW if k#j
or a"(k)=Y"-1-W and W Wy if k=j

Proor. From Theorem 1.2, we know

d
L"Xi=Y" Y (=nL"(f(W))+X).

= a"(j)LVif.l-W
For the fixed j and the sufficient large n, we can find a ball ¥ contained L"X
and Wy such that the ball V contains X; — zL;"f(W,) and W, satisfies o"(j) =

Y -1- W,. Therefore, we see that

o(X; — nL,"(f (W0)))

= > (X = =L;"f (W) N (Xi — =L (f (W))).
k,W:
"K)y=Y"1-W if k#j
or cr"(k)a=)(”’)~l'W and W5 Wy if k=j (2.10)

In the formula (2.8), if (X; —#nL,"f(Wy)) N (Xx — =L (f(W))) # &, then
o((J, Lg"f (W), (k, L,"f (W) € V1. O
For each arrow e, , € E let us define the transformation 7, ,: % — 2 by
Tyox = Lox +1f, , (2.11)

where u = (i, p,x0) and v = (j,q,x1) given by (2.6) and (2.7), and =f, , is given
by
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—nf (SIM) + xo
o =)L) = S+ x0), 0> 2 0
wo ) :
“f(Sk )

it CLF((SP) = £(SE) + x0),02) < O

Then the transformation 7,, on £ is a contractive map. Therefore, we have
the list of compact sets (.}ifu)ue,,l uniquely satisfying 2, = U Tu,(Ky) (see
[20]). On the other hand, for each vertex (i, p,x() from Proposition 2.3, we
know X;N (X, + nxo) # & and each X; and X, + x( are decomposed by The-
orem 1.2,

d
!
= 3 @xi-ns"),
I=1 s0.
Wk(l)=i,
o()=PPws

d

X, +mxo =Y ST LeXam — (£ (S ~ x0)).

m=1 S('") .
wM=p,
a(m)=pS Wi st

Therefore, we have

X;N (X, + mxo) = S Le(X) = A (SI)) N (Lo (Xm) — (£ (ST)) + x0).
s s,
W w)=(i,p)

Using (2.6), (2.7) and =nf, , we have

XiN (X, + nxo) = U Lo (X; N (X 4+ 7nL(x1))) + =f,, ,
vio=(J, ql,:_xl) eV,
ecE,,

= U T o(X; N (X + 7xy)). O

vio=(j,q,x1)€ W,
ecE,,

Therefore, we have the following theorem.

THEOREM 2.6. Let Gg= (V1,E,i,t) be the graph from the substitution o and
let T, ,: P — P be the transformation given by (2.11). Then, the list of compact
sets (Au),ey, satisfying
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'%/;4: U Tu,v(%)
ve ¥y,
eck,,

is given by
Hu = XN (X; + nx)

where u= (i, j, x) € V1.

3. Hausdorff Dimension of Boundaries

In this section, we discuss the Hausdorff dimension of the boundary of
atomic surfaces.

THEOREM 3.1. Let o be a primitive unimodular Pisot substitution with d
letters. Let X be the atomic surface with respect to o. Then the Hausdorff di-
mension of 0X is estimated by

log y; —log 41 — (d — 1) log|4a|

dimy 0X < dimp 0X <
—log|A4|

where dimg 0X is the Box dimension of 0X and y, is the largest eigenvalue of the
matrix of the graph Gs.

Proor. By Proposition 2.5, the boundary X is constructed by the sets
(XiN(X; + nx)), (i,j,x)e V). For any ¢>0, each set X;N(X;+7nx) can be
covered by ¢(y, +¢)" pieces parallelograms L”(n%) from the unit square % and
the parallelogram L7(n%) is covered at most ¢’ i—j—;—}% . B—:Dn pieces of the
cube whose length of the edge is |A4]". Therefore, the Box dimension of X;N
(Xj + nx) can be estimated by
log ¢(y; +¢)" +log ¢/(A1|Aa]™")™"

—log|ag]

dimp(X; N (X; + nx)) < lin;lo

_log(y +¢) —log 4 — (d — 1) log|44|
—log|2d|

for any ¢ > 0. Therefore, by Proposition 2.5, we see

log y; —log A1 — (d — 1) log|A4|

dimy 0X < dimp 0X <
H B —log|A4|

a

If we know the explicit values y,, 4; and A;, we see probably that
dimg 0X < d — 1. But we have no idea to say
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log y; —log 41 — (d — 1) log|A4|

<d-1.
~log|Aa|

Therefore, we give the next theorem (c.f. [14]).

THEOREM 3.2. Under the same assumption for o as in Theorem 3.1, we have

dimpy 0X <d - 1.

Proor. From the set equations in Theorem 1.2 of {X;},_, , , and X | # I,
for the sufficient large no there exist jo e {1,...,d} and k¢ such that

O'no (]0) P(/o . S(jo

no, ko no,ko?

L X, —nf (S),) < X,

ho, ko
This means

d
oX, < 2 > @) -wf (S

( S("))#(] S(JO) )

() "O(k?
IO AR
o (3.12)
d -\
axed S (@rex) - (SY)

"0 (j)=P-i-s)
From the above properties, we say that we can cover 0X; by

at most L}°(1,1) pieces of L2°(0X))
at most L)°(jo,1) — 1 pieces of L}°(0Xj,)

at most L}°(d,1) pieces of L°(0Xy)
and on the definition of the matrix

Lgo(l,l) Lgo(l,d) ]

D= L"°(]0,1) I - L”°(]0,)

mun ~-mu@
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we see that D < L”° and D is primitive for sufficient large ng. Therefore, we know
that the largest eigenvalue p of D is strictly smaller than A{°. The boundary 0.,
can be covered by at most c”-pieces of paralleologram nL2" (%) for any u <
v < Af°. By analogous discussion in Theorem 3.1, we see that the boundary 0.X,
is covered by at most ¢”(4;]44|?"")™P™ pieces of cubes with the length |A4]"™.
Therefore, the a-dimensional Hausdorff measure #°*(0X;) can be estimated by

#40X)) < lim v ——

—(|A4)™) %
p—o0 (lludld—l)pno (l dl )

Let us assume that v = A;""x for some 0 < x < 1. Then the Hausdorff measure is
estimated by

#%(0X,) < lim ATV )az@yom,
p—®

we can choose og > 0 such that
a <d—1 and AFNe~@D o
and so we know that #%(0X,) = 0. Therefore we have
dimg(0X7) < g <d—1.
By analogous discussion, we see
dimg(0X;) <d —1

and so we get
dimg (0X) <d—1. O

From now on, we will assume that the linear transformation L, on £ is a
similitude. In two cases (i) d =2 (ii) d =3 and L, is the complex Pisot matrix,
we know that the linear transformation is the similitude on 2.

Let the list {X; ..., Xy} of compact sets be the atomic surfaces, then we had
known the sets satisfy the equation in Theorem 1.2. Therefore, we can get the
graph G, = {V,E,i,t} which is constructed by ¥V = {1,...,d}, e; € E if there
exists je€{l,...,d} such that o(i) =P,(cj)-i~S,£j). And for each e; e E let us
define the contracting transformation Tj : 2 — 2 by

Tj(x) = Lox — nf(S,Ej))

which is the similitude with some contractive constant 0 < s < 1. Then we see
that {V,E,i,t,{T;}} is a Mauldin-Williams graph and that {X;|i=1,2,...d} is
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the graph construction set. Moreover, the graph satisfies the locally finite
condition, that is, there exists a constant H > 0 such that for any 1 > r > 0 and
any xe 2

eij’,-jﬂeE, 1<j<i-1,
#{ (i) tr <t <, < H, (%)
Tiliz o Ti2i3 S ]ﬂil—lil('Xvil) ﬂBx(r) #

since the sets Ao’j, j=12,...,d satisfy the open set condition.
Therefore, we have the following lemma.

Lemma 3.3. Let Gg= (V1,E,i,t,{Ty,}) be a Mauldin-William graph in
Theorem 2.6. Then the graph satisfies the locally finite condition.

Proor. From the locally finite condition of Gz = {V,E,i,t,{T;}}, we see
that

# (u U U ) €ui,uis GE: r<it"< r
1, U2, ..., Uy TuluZTuzus"'Tun—l“n(Xpn(Xq+ny))nBX(r) ;é@
HH -1
<Ci= ( 5 )

Using Lemma 3.3 and Theorem 1 in [20], we have the following theorem.

THEOREM 3.4. Let o be the primitive unimodular Pisot substitution. Let us
assume that the linear trasnformation L, on the invariant surface P is a similitude.
Then the Hausdorff dimension of 0X is given by

) _(d—-1)logy,
dlmH 0X = log 21

where y, is the largest eigenvalue of the matrix of the graph Gp.

4. Examples

In this section, we propose some examples of atomic surfaces.

ExampLE 4.1. Let o be the following substitution:

1112
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Figure 1: the atomic surface X = | )., , X; in Example 4.1.

This substitution is a simple example which is not invertible. Therefore, the

atomic surface is not an interval (see [6]). In this example, the graph Gg of the

boundary of the atomic surface is given by the following form (see Figure 2):
The matrix M, of the graph Gj is given by

110100
110010
0000T1 0

Mo=10 000 0 1
101010
00000 1

and the characteristic polynomial of M, is given by

x(x2—2x—D(x—1)*
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Figure 2: the graph Gy from the substitution: 1 —s 112, 2+ 21.

where the largest eigenvalue of M, comes from x2? — 2x — 1. And so by using
Theorem 3.4, the Hausdorff dimension of the boundary of the atomic surface is
given by

dimy 0X — logy, log2.41421

log A, log2.61803 ~ 0215785

where y; and A; are the largest eigenvalues of the graph matrix M, and L,
respectively.

EXAMPLE 4.2.  Let us consider the substitution called Rauzy substitution [22]:

1—12
g:2—13
3> 1.

Figure 3: the atomic surface X = Ui:l ,3 Xi in Example 4.2.
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The Hausdorff dimension had been calculated in [10]. In our method, the

graph Gy of the boundary of the atomic surface is given by the following form
(see Figure 4):

@ @3.000) Mg 08
V (13, (00,00

Figure 4: the graph Gp from Rauzy substitution: 1— 12, 2+— 13, — 1.

The matrix M, of the graph Gy is given by

01 10000
0000110
0001000

M,=|1 0000 00
1000000
0000001
10000 0 0]

and the characteristic polynomial of M, is given by
(x*—2x-1).
Therefore, the Hausdorff dimension of 0X, is caluculated by

2logy; 2log1.39534
logd  log 1.83929

dimg 0X = =1.09337...

where y; and A; are the largest eigenvalues of the graph matrix M, and L,
respectively.

ExaMPLE 4.3. Let us consider the following substitution:
1—-12

g:2—31.
31
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Figure 5: the atomic surface X =J,_, , ; X; in Example 4.3.

The matrix L, of the substitution is same as one of Rauzy substitution.
But the shape of the atomic surface is perfectly different. The graph Gp of the
boundary of the atomic surface is given by the following form (see Figure 6): The
characteristic polynomial of M, is given by

(xS —x° —x* = x?+x - D2+ x+1)2xB(x - 1)%
Therefore, the Hausdorff dimension of 0X, is caluculated by

2logy, 2log1.72629

Tog 4;  log 183929 ~ L1+

dimy 0X =

where y, and A; are the largest eigenvalues of the graph matrix M, and L,

respectively.

ExaMPLE 4.4. Let us consider the substitution:

1—112
g:2—13
3> 1.

This substitution is an example of a class of Pisot substitutions:

#ki
—
1—11---12

#ka
—
2—11---13

31

Oki ks *
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a2
2
=)
=)
e
o
<

(2,3,(0,0,0)

Figure 6: the graph Gp from the substitution: 1+ 12, 1+ 31, 1+ 1.

12,3 Xi in Example 4.4.

= U,‘:

Figure 7: the atomic surface X

The graph Gp of the

is related to Pisot p-expansions (see [13]).
boundary of the atomic surface is given by the following form

which

(see

):

Figure &
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The matrix M, of the graph Gy is given by

011100000
000011000
000000110
000000100
M,={0 000000 0 1
100000000
100000000
011100000
10000000 O]

.

M, is given by

and the characteristic polynomial o

x*—x?-3x-1).

(1,3, (0,0,0)

Figure 8: the graph Gp from the f-substitution: 1+ 112, 2+ 13, 3— L.

Therefore, the Hausdorff dimension of dX, is caluculated by

2logy, 2 log1.74553

dimy 0X = _
g X =~ Tog 2.54682

=1.19177...

where y, and A; are the largest eigenvalues of the graph matrix M, and L,
respectively.
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ExaMpPLE 4.5. Let us consider the substitution:

1—13
c:2—1
332

This substitution is coming from Example 4 in [8] (L, = M?).

Figure 9: the atomic surface X = (J,_, , ; X; in Example 4.5.

This example is that the atomic surface is not simply connected. The
characteristic polynomial of M, is given by

X321 = x12 - X104 X% 2x® —dxT —2x5 —4xt 4+ X3 —4x? 1)

x (0 =23 +x -+ 3P+ x+D(x—1)

and the largest eigenvalue of M, is coming from the polynomial (x!® — x!2 —

x10 4 x% — 2x% —4x7 — 2x° — 4x* + x> — 4x> — 1). Therefore, the Hausdorff di-
mension of 0X, is caluculated by

2logy, 2log1.72864

log &y log 1.75478 = 1.94643 ...

dim}{ 0X =

where y; and A, are the largest eigenvalues of the graph matrix M, and L,
respectively.
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ExAMPLE 4.6. Let us consider the substitution:

1 — 12123
c:2—1
3 - 12.

Figure 10: the atomic surface X = J._, ,; X; in Example 4.6.

This substitution is coming from o) oo, for o,, Example 1 in [10].

This is an example such that the boundary of the atomic surface is not
double point free. The graph Gp of the boundary of the atomic surface is given
the following form (see Figure 11);

The matrix M, of the graph Gg is given by

(o]
o
[w)
S
o)

O O O O O O O O O O O O O O == O =
O O O O O O OO O O OO OO =O -
O O O O O = H O O O O O O O O =
O O O O O = = O O O O O O O O
O O O O O OO OO O OO ~O O OO
O O O O O = = O O O O O O O o o o
O O O = = O O O = = O O O O O O© O
O = O O O O O O O O O O O o o o o
—_ 0 O O O O O = O O = - OO o o O
O O = O O O O O O OO oo oo o o
_O O O O O O = O 0O~ 0O 0o o oo

S

Il
_ O O O O O O O O O — - O O O O O
O O O OO OO OO OO O OO O
O O OO OO O OO OO OO O
O OO OO O OO OO OO O —-=Oo o
O O O O OO OO OO OO OO -=Oo
—_O O O O O O O O O = = O O O O
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The characteristic polynomial of M, is given by

xB(x* = 3x? 4 2x - 1)(x - 1).

Figure 11: the graph Gp from the substitution: 1+ 12123, 2+— 1, 3~ 12.

Therefore, the Hausdorff dimension of X, is caluculated by
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2logy; 2log2.32472 L5
log A~ log3.0796 ~—

dimy 0X =

where y; and A; are the largest eigenvalues of the graph matrix M, and L,

respectively.
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