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PISOT SUBSTITUTIONS AND THE HAUSDORFF 
DIMENSION OF BOUNDARlES OF ATOMIC SURFACES 

By 

De-Jun PENG, Maki FuRUKADO, Shunji ITO, Jun Wu 

Abstract. The atomic surface Xq from an unimodular Pisot sub­
stitution .(J usually has the fractal boundary and it generates a self­
affine tiling. In this paper, we study the boundary aXq as the graph 
directed self-affine fractal and estimate the Hausdorff dimension of 
the boundary. 

o. Introduction 

The several properties of self-affine tiles and their boundaries are studied for 
instance in the articles [26], [15], [3], [16], [9], [17], [18], [4], [27], [1], [24]. In this 
paper, we treat the sets which have the fractal boundary called atomic surfaces or 
self-affine tiles based on substitutions. 

Let (J be a primitive unimodular Pisot substitution on the free monoid 
A * = U:o {I, 2, ... , d} n, that is, 

(1) there exists an n such that i occurs in (In(j) for any pair of letters 
(i,j) (primitive); 

(2) the characteristic polynomial of Lq is irreducible over Q and eigenvalues 
Ai, 1 ::; i ::; d of Lq satisfy the followings: 

Al > 1 > lAd, i = 2, ... , d (Pisot condition); 

(3) det Lq = ±1 (unimodular condition). 

Let OJ = (OJ 1 , OJ2, . •. ) be the fixed point of the substitution (J and n : Rd ---+ f?)J 

be the projection along the eigenvector with respect to the largest eigenvalue Al of 
Lq to the contractive invariant plane f?)J of Lq. Let us define the set Xq by 
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Xa := the closure of {n L~=l eWk I n = 1,2, ... } 

where ei, i = 1,2, ... , d are the canonical basis of Rd. The domain Xa called the 
atomic surface usually has a fractal boundary. This domain and its boundary are 
not only interesting from the viewpoint of the fractal geometry, but also ergodic 
theory, number theory and quasi-crystal theory (see [22], [10], [11], [19], [23], [7]). 
In this paper, we mainly study the boundary axu as the fractals which have graph 
self-affine in Theorem 2.6 (c.f. [5], [25]) and estimate the Hausdorff dimension of 
atomic surfaces as follows. 

THEOREM 1. Let a be a primitive unimodular Pisot substitution with d letters 

and let Xa be the atomic surface based on the substitution a. Then the Hausdorff 

dimension of the boundary axu is estimated by 

d· ax log Yl - log Al - (d - 1) 10giAdi 
lillH a < -----'---,--.,-'--.,.--'---'---'-

- -loglAdl 

where Yl is the largest eigenvalue of the graph matrix Ma. 

Moreover, if the linear map Lui&> restricted to the contractive invari­
ant plane r!J is a similitude, then the Hausdorff dimension ofaXu is given 
by 

d· ax _(d-I)10gY1 
ImH u - 1 1 . og 11.1 

1. Atomic Surfaces and Their Basic Properties 

In this section, we give a survey of the property of the atomic surface which 
is discussed in [6], [2], [12]. Let d be an alphabet of d letters {I,2, ... ,d}. We 
denote d* = U:o d n the free monoid of d. The substitution a is a map from 
d to d* such that aU) is a non-empty word for any letter i. The substitution 
a naturally extends to an endomorphism of the free monoid d* by the rule 
a( UV) = a( U)a( V). Denote a( i) = W(i), where W(i) is a finite word of the 
length Ii, and we write W(i) = W1(i) ... W/i). Denote by p~i) the prefix of the 
length k - 1 of W~i) (for k = 1, this is th~ empty word), and Ski) the suffix of 
the length Ii - k, so that aU) = p~i) w~i) Ski). For the simplicity, we assume that 
W?) = 1. Under this assumption, the infinite sequence co given by 

co = limn->co an (1) 
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is the fixed point of the substitution a. There is a natural homomorphism 
f: .91* ---t Zd obtained by the abeliarization of the free monoid .91*, and we 
obtain a linear transformation La satisfying the commutative diagram: 

From now on, we assume that the substitution a is primitive, that is, there 
exists an n such that i occurs in an (j) for any pair ofletters (i, j). It is equivalent 
to say that the matrix La of a is primitive. By Perron-Frobenius theorem, La has 
the largest eigenvalue )~I that is positive, simple and strictly bigger in modulus 
than the other eigenvalues. We denote UA and VA positive eigenvectors associated 
with Al for La and the transpose of La respectively. Moreover, we assume that 
the substitution a satisfies irreducible Pisot and unimodular condition, tllat is, 

(1) the characteristic polynomial of La is irreducible over Q and eigenvalues 
AI, A2, ... , Ad of La satisfy 

Al > 1 > IAil, i = 2, ... , d (Pisot condition); 

(2) the determinant of La is equal to ± 1 (unimodular condition). 

Let g> be the plane orthogonal to VA' It is clear that g> is invariant by the 
linear transformation La. Moreover, the linear transformation La is contractive 
on g>, that is, there exists a constant 0 < AO < 1 such that 

dr!J'(Lax,LaY) ::; Aodr!J'(x, y) for X,Y E r!I 

where dr!J'("') is the restricted Euclid distance on r!I. Let n: Rd ---t g> be the 
projection along the eigenvector UA' 

DEFINITION 1.1. Let us denote the fixed point (j) = limn--H ,) an (1) of a by 

(j) = SlS2 ... Sn ... , 

and let us define the set X and Xi, i = 1,2, ... ,d by 

X := the closure of {n Lj:1 eSj I k = 1,2, ... }, 

Xi := the closure of {n Lj:1 eSj I Sk = i for some k}. 

The set X is called the atomic surface associated with the substitution a. 

With the notations above, we know the following theorem. 
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THEOREM 1.2 ([2]). Let a be a primitive unimodular Pisot substitution, and X 

and Xi, i = 1, 2, ... d be the atomic surfaces of a. Then Xi'S satisfy the following 

relations: for each i = 1, ... , d, 

L (LuKj - nf(Sij))) (non-overlap) 
s!J1, 

W?=i, 

u{j)=p? wiJl skJl 

where 2:}=1 Aj (non-overlap) means that the Lebesgue measure IAj n Akl of Aj n Ak 

is equal to zero for each 1 s j < k s I. 

In [2], we can see implicitly the set equation of Xi, i = 1,2, ... ,d holds. 
However, we will give an explicit proof here. For this purpose, we prepare some 
lemmas and propositions. 

LEMMA 1.3. The set X is bounded. More precisely, we can estimate 

diam.x s 1 ~ ito . I . m, 

where Lu = (lij), Z = maXl~j~d 2::1Zij, and m = maXl~j~dd&,(O,1l(f(j))). 

PROOF. For any k > 0 there exists n such that l(n) S k < z(n+l), where 
l(n) = lan(l)1 is the length of the word a n(1). Therefore, there exists j such that 

n( W(l)) n( W(l)) Sl···sk=a 1 ···a j_ 1 t1··· tkf, 

t1 ... tk' -< an(Uj(l)) 

where Ul •.. Uk -< VI ... Vj means 

Therefore, we know 

f(sls2·· ·Sk) = f(an(W1(1))) + ... + f(an(UJ~i)) + f(tl··· tkf). 

On the other hand, we know that 

where ito = max2~i~d(litil). Therefore, we have 
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where 1 = maXl:5:}:5:d 2:!'l/ij and La = (lij)l:5:i,}:5:d. Continue the procedure, then 
we get 

diam.X ~ -1 2, ·1· max drJ'(O, nf(j)). 
-/\0 l:5:J$,d 

LEMMA 1.4. The following set equation holds: for each i E {I, 2, ... , d} 

U 
s~jL 

W1 j )=i 

a(j)=P?) w?) s~j) 

PROOF. It is enough to show that 

(j) 
(La~ - nf(Sk )). 

d 

L;;I Yi = U 
}=l 

U (Jj - L;;I(nf(S?)))) 
sFL 

W?=i, 
a(j)=P?) w? s~j) 

D 

where Yi = {nf(sl·· ·Sk) ISk = i for some k}. For any k satisfying Sk = i, there 
exist m and t such that 

( )p(Sm) ruts,") SIS2··· Sk=(JS1···Sm-l t 1'1'( , 

u.,.(Sm) . 
1'1' ( = l. 

Therefore, we have 

Thus, the set equation holds. D 

LEMMA 1.5. Let A be a d x d integer matrix and assume that the charac­

teristic polynomial of A is irreducible, then the eigenvector u = ( (1, Ul, ... , ud-d of 

the eigenvalue). of A is Q-basis of the field Q().), that is, 

(1) Q. 1 + Q. Ul + ... + Q. Ud-l = Q(A); 

(2) {I, Ul, ... ,Ud-l} is Q-independent. 

PROOF. Let us denote the simple extension of Q adjoining). by Q().), then 
from the irreducibility of the characteristic polynomial of A, we see that {I,)., 
).2, ... ,).d-l} is the basis of Q().), that is, 
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(1) Q+ QJe+ ... + QJed- 1 = Q(Je); 

(2) {I, Je, ... , Je d-I} is Q-independent. 

On the other hand, from the definition: 

we see 

and moreover from the fact that 

Akl[l,UI, ... ,Ud_d =Jekl[l,UI, ... ,Ud_d, 

we have 

k _ (k) (k) (k) 
Je - all + a l2 UI + ... + aId Ud 

and we see 

Therefore, we know that 

(Q(Je) =)Q + QJe + ... + QJed- 1 c Q + QUI + ... + QUd-l. 

Other direction 

Q+ QJe+ ... + QJed- 1 ::::l Q+ QUI + ... + QUd-l 

is easy from the fact that 

(1.1 ) 

(1.2) 

In fact, {I, Ul , ... , Ud-l} is the solution of the linear equation 
(A - JeE) I[Xl, ... , Xd] = 0, which is the equation with Q(Je)-coefficient, therefore, 
we see Ui E Q(Je). And, we have 

Q + QJe + ... + QJe d-I = Q. 1 + Q. Ul + ... + Q . Ud-l, 

that is, {l,Ul" .. ,Ud-d is the basis of Q(Je). And so, we see {l,Ul, ... ,Ud-d is 
Q-linearly independent. 0 

As the corollary of Lemma 1.5, we have the following. 

COROLLARY 1.6. The closure of nZd = &. 
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PROPOSITION 1.7. For the atomic surface X associated with the substitution () 
we know the following properties: 

(1) VZE{I~2ni1t(el-ei)lnIEZ}(X + z) = &; 
(2) X=/: 0. 

PROOF. For each n let us consider the set of points In = 

U::;=l eSj 11 S k S l(n)}. We define Yn = nln and let u~dconsider the lattice Lo := 

d d ~ 
n:i=2ni(el-ei)lniEZ} on &0 :={XEZ l(x,I(I,I, ... ,I)=O} where (x,y) 
is the inner product of vectors x and y. 

Now define the set of the lattice points by 

In + Lo = UZELO (In + z). 

The projection of In + Lo by n is denoted by UZELO (Yn + nz). On the other hand, 
for any substitution we can see easily the following relation: 

#d 

{ d I~ In+Lo= XEZ I(x, (1,1, ... ,I)~O}. 

Using the fact that 

the closure of U Yn = X, 

we know from the boundedness of X and Corollary 1.6, 

UZELO(X + nz) = &. (1.3) 
o ~ 

Using (1.3) and from Baire category theorem, we have X = Y =/: 0. From 
Theorem 1.2 and primitivity, we see that 

o 
Xi=/:0 for all iE{I,2, ... ,d}. o 

In order to know that Xi are disjoint each other up to a set of measure 0 
(about the sets of measure 0), we would prepare several lemmas. The next result 
can be found in [2], originally in [21]. 

LEMMA 1.8. Let M be a primitive matrix with the largest eigenvalue A. 
Suppose that v is a positive vector such that Mv :?: Av. Then the inequality is an 
equality and v is the eigenvector with respect to A. 

Hereafter, we will note IKI the measure of the set K. 
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LEMMA 1.9. The vector of volumes t(lXil)l:Si:Sd satisfies the following in­

equality: 

PROOF. From the form of Xi in the equation of Lemma 1.4, we see 

Since the determinant of L-;1 restricted to (!J is AI, we know that IL-;I Xii = AIIXd. 
Hence we arrive at the conclusion. 0 

From the Lemma 1.8, Lemma 1.9 and the fact that 1.J:j1 > 0, we obtain the 
proof of Theorem 1.2. 

REMARK. We don't know whether 

X = 2.:j:l Xi (non-overlap) 

and we see in (2) that X = U/=l.J:j is non-overlap if (J satisfies the coincidence 
condition. 

o 
COROLLARY 1.10. The relation that X = the closure of X holds. 

PROOF. Moreover by rewriting Theorem 1.2, for any n > 0 we have 

d d 

X = 2.:2.: 2.: 
i=1 j=l SU), 

n,k" 

w~~l=i, 
an(j')=pU) w()1 SU) 

n,k n,k n,k 

For any x E X and t5 > 0, let Bx(t5) be the ball with the center x and the radius t5 
on (!J, then by the above rewritten formula, there exist n and S~:t such that 

Bx(t5) :J L~.J:j - nf(S~:t) and L~~:f 0. 
o 

This means that the relation that X = the closure of X holds. o 

2. Structure of Boundary and Mauldin-Williams Graph 

We say that the point (x, i*) E Zd x {I, 2, ... , d} is an element of the stepped 
surface (!J if <x, v;) ~ 0 and <x - ei, vA) < O. Put all of the elements of the 
stepped surface (!J by S. 
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LEMMA 2.1. If a pair (x, i*) i= (y, j*) are the elements of S, then the element 
(z, k*) given by 

(z, k*) := {(x - y, i~) if (x - y, vA) ~ 0 
(y-x,J*) if (y-x,vA»O 

is also an element of S. 

The proof is easy. 

Let us define the map rp: S x S ---* S x S as follows: 

rp((x, i*), (y, j*)) = ((0,1*), (z, k*)) 

where (z, k*) is given as Lemma 2.1 and 1* is given by 

1* = {j* 
i* 

if (x - y, vA) ~ 0 

if (y - x, vA) > 0 

(z = {x - y if (x - y, vA) ~ 0) 
y - x if (y - x, v)) > 0 . 

LEMMA 2.2. Let us define the operator cr' on S by 

cr* : (x, i*):= L 
}E{l, ... ,d} 

L (L;;l X + L;;lf(si})) , j*). 
s~jL 

W?=i, 
<J(j)=pY) w? s?) 

Then all of the elements in cr*(x, i*) are also the elements of S. 

The proof can be found in [2]. 
Let us consider the set vo of the pair of elements such that 

vo = {( (0, i*), (x, j*)) I (x, j*) E S, Ilnxll < 2D} 

where Ilxll be the length of the vector x and D be the diameter of X estimated in 
Lemma 1.3. Then, we see that the cardinarity of Vo is finite. Let us define the set 
of the pair v (i) such that 

v (i) := {rp( (x,j*), (y, k*)) I (x, j*), (y, k*) E cr* (0, i*), IIn(x - y) II < 2D}, 

and VJO) := Ui=I,2, ... ,d V(i), then VJO) c: Vo. 
Let us define the arrow from the point ((0, i*), (w, j*)) E Vo by the following 

manner: for each pair ((0, i*), (w,j*)) let us pick up the pair such that (x, k*) E 
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O'*(O,i*), (y,l*)EO'*(w,j*) and if IIn(x-y)11 <2D, we give the arrow from 
((O,i*), (w,j*)) to rp((x,k*), (y,Z*)). 

Let us define the graph Go = (VI,E,i,t) by the following manner: 

1st step: let us consider the arrows starting from the vertex U E V~o). If we can 
not find the arrow from u, then the vertex U is cancelled; If we can find the 
arrow e from u to v we denote i(e) = u, t(e) = v and if moreover the vertex 
is new, that is, v E Vo \ V~o), then we call v the first generation of u. We 
denote the set of the first generation from V~o) by V~l). 

2nd step: let us consider the arrow starting from the vertex of the first gen­
eration v E V~l). If we cannot find any arrows from v, then we cancell the 
vertex v E V~l) and the arrow e such that t(e) = v; if we can find the 
arrow e' from v to wand the terminal t( e') is new, that is, (() = t( e') E 

Vo\(V~o) U V~l)), then we call the terminal (() the 2nd generator of u and 
denote V~2). 

kth step: if we can not find any arrows from the vertex Vk, we cancelled the 
vertex Vk and the arrow e such that t( e) = Vk. And by the cancellation of the 
arrow e if Vk-l = i(e) has no arrow e' such that Vk-l = i(e') then the vertex 
Vk-l and the arrow e" such that t(e") = Vk-l are also cancelled and so on. 
From the finiteness of the cardinarity of Vo, we can stop this procedure. We 
denote the final step by q. 

Now we get the graph with vertices VI = Uj:l v~j) and each vertex u has 
the arrow e such that u = i(e). 

We denote the graph by GB = (VI, E, i, t) and call the graph of the boundary 
of the atomic surface. For the simplicity, we denote the vertex ((0, i*), (x,J*)) by 
(i, j, x). 

The existence of the arrow from (i, p, xo) to (j, q, Xl) means that on the 
notation: 

0'*(0, i*) = L 
ldl, ... ,d} si'L 

(J(l)=pi') .i'S~') 

O'*(xo,p*) = L 
mE{l, ... ,d} 

L (-L;;I(f(Sk':'))),m*) +L;;l(xO), 

S~;L 
(J(m)=P;7')· p.s;~') 

there exist I, k, m and k' such that (j, q, xI) is given explicitly by 

(2.4) 

(2.5) 
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1 
L;;I (f(sf)) - f(Sk':')) + xo) 

XI = if (L;;I(f(Sf)) - f(Sk':')) + xo), V) :;::: 0 

-L;;I (f(Sk/)) - f(Sk':')) + xo) 
if (L;;I (f(Sk1)) - f(Sk':')) + XO), VA) < 0 

C ) - {(I,m) if (L;;l(f(Sf)) - f(Sk':')) + XO), VA) :;::: 0 
j, q - (m, /) if (L;;I (f(Sk/)) - f(Sk':')) + XO), VA) < 0 . 

205 

(2.6) 

(2.7) 

PROPOSITION 2.3. For each vertex (i, j, x) E VI we know Xi n (Xj + nx) '# 0 
and IXi n (Xj + nx)1 = O. 

PROOF. Suppose that Xi n (Xj + nx) = 0, then from the compactness of Xi 
and Xj we see 

df/(Xi, (Xj + nx)) > 0, 

where df/(A,B) :=inf{df/(x,y)lxEA,YEB}, and so we have 

df/(L;I Xi, L;I (Xj + nx)) :;::: Aoldf/(Xj , (Xj + nx)). 

From the set equation given by Theorem 1.2 and the relation (2.4) and (2.5), we 
know that 

L;IXi::::J %[ -L;lnf(Sk/)) for (I,k) satisfying w~/) = i 

L;I (Xp + xo) ::::J Xm - L;lnf(Sk':')) + L;I (xo) for (m, k') satisfying wtn) = p. 

Moreover, from the fact that the vertex (iI, jJ, xJ) from (i, j, x) E VI is given by 
(2.6) and (2.7), in particular (iI, jl) is chosen as (l, m) or (m, /) on the notation 
(2.4), (2.5). Therefore we see 

df/(XiJ> Xj, + nXI) :;::: df/(L;I Xi, L;I (Xj + nx)), 

that is, 

Continuing this procedure, we have 

df/(Xin , Xjn + nxn) :;::: Aondf/(Xj , Xj + nx). 

On the other hand, from the definition of Vo and Lemma 1.3, we know 

df/(Xp, Xq + nx) < 3D for all (p, q, x) E Vo. 
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Therefore, we see that 

d9 (Xi , J0 + nx) = O. 

This contradicts to d9 (Xi , J0 + nx) > O. From the definition of (i, j, x) E VI, there 
exist k, n, (y,l*) and (w,m*) E *an(O,k*) such that 

(i, j, x) = qJ((y, 1*), (w, m*)) 

where we denote *a n instead of (a*r. Therefore, from the non-overlapping 
property in Theorem 1.2, we have 

IXi n (J0 + nx)1 = O. o 

PROPOSITION 2.4. For each vertices (i,j,x) E VI, we see 

aXi ::J Xi n (J0 + nx). 

PROOF. Assume that 

aXi ~ Xi n (J0 + nx). 

Then, we see that 

(J0 + nx) n Xi i= 0· 
o 

Therefore, there exist a E Xi and an open ball Bg(a) with the center a and the 
radius 6 such that 

o 
a E J0 + nx and Bg(a) C Xi' 

o 0 

Since the closure of ~ is equal to J0, we know Bg(a) n (~+ nx) i= 0, and thus 
there exists Bg, (b) such that 

o 
B,)'(b) c Bg(a) n (~+ nx). 

Therefore, 

IBg(a) n (Xj + nx)1 > O. 

From Proposition 2.3 this contradicts to 

IXi n (J0 + nx)1 = O. o 

PROPOSITION 2.5. For each j E {I, ... , d}, there exist nand Wo such that 

an(j) = Y· 1 . Wo and satisfying the following form: 
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o(Xj - nL;;n(f( Wo))) 

= I: ((Xj - nL;;nf(Wo)) n (Xk - nL;;n(f(W)))) (2.8) 
k,W: 

q"(k)=Y'·I·W if k.f.j 
or q"(k)=Y"·I·W and W.f.Wo if k=j 

and 

rp((j,j(Wo)), (k,j(W))) E VI if (Xj - nL;;1IJ(Wo)) n (Xk - nL;;n(f(W))) :f= 0. 

In particular, we have 

(Xj n (Xk - n(L;;n(f(W) - f(Wo))))). (2.9) 
k,W: 

q"(k)=Y'·I·W if kh 
or q"(k)=Y"·I·W and W.f.Wo if k=j 

PROOF. From Theorem 1.2, we know 

d 

L;;nXI = I: I: (-nL;;n(f(W)) +Xj). 
j=l W: 

,,"(j)=Y·I·W 

For the fixed j and the sufficient large n, we can find a ball V contained L;n XI 
and Wo such that the ball V contains Xj - nL;nf(Wo) and Wo satisfies an(j) = 

Y . 1 . Woo Therefore, we see that 

o(Xj - nL;;n(f( Wo))) 

I: (Xj - nL;;nf(Wo)) n (Xk - nL;;n(f(W))). 
k,W: 

qn(k)=Y'·I·W if k.f.j 
or ,,"(k)=Y"·I·W and W.f.Wo if k=j (2.10) 

In the formula (2.8), if (Xj - nL;nf(Wo)) n (Xk - nL;n(f(W))) :f= 0, then 

rp((j,L;;nf(Wo)), (k,L;;nf(W))) E VI. o 

For each arrow eu,v E E let us define the transformation Tu,v : r!J' --? r!J' by 

Tu, vX = L"x + nfu, v (2.11) 

where u = (i,p,xo) and v = (j,q,Xl) given by (2.6) and (2.7), and nJu,v is given 
by 
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Then the transformation Tu,v on [l}J is a contractive map. Therefore, we have 
the list of compact sets (fu)ue VI uniquely satisfying fu = U Tu,v(Kv) (see 
[20]). On the other hand, for each vertex (i, p, xo) from Proposition 2.3, we 
know Xi n (Xp + nxo) "# 0 and each Xi and Xp + Xo are decomposed by The­
orem 1.2, 

d 

Xp+nxo = L 
m=l 

Therefore, we have 

L (LuXl - nf(Sk/))), 
sil): 

Wil)=i, 
u(l)=pil ) wP) sil) 

Xi n (Xp + nxo) = L (Lu(Xl) - nf(Sk/))) n (Lu(Xm) - n(f(Sk':'))) + xo). 
sil ),s;7): 

(wil),~Sm»)=(i,p) 

Using (2.6), (2.7) and nJu,v we have 

Xi n (Xp + nxo) = U Lu(Xj n (Xq + nL(xd)) + nJu,v 
v:v=(j,q,XI) e VI, 

eeEu .• 

= U Tu,v(Xj n (Xq + nxd)· 
v:v=(j,q,XI) e VI, 

eeEu .• 

Therefore, we have the following theorem. 

D 

THEOREM 2.6. Let GB = (Vl,E,i,t) be the graph from the substitution (j and 
let Tu, v : [l}J -+ [l}J be the transformation given by (2.11). Then, the list of compact 
sets (fu)ue VI satisfying 
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is given by 

where u = (i,j,x) E VI, 

::.f'u = U Tu,v(::.f'v) 
VE VI> 
eEEu,v 

::.f'u = Xi n (.xj + nx) 

3. Hausdorff Dimension of Boundaries 

209 

In this section, we discuss the Hausdorff dimension of the boundary of 
atomic surfaces. 

THEOREM 3.1. Let 0' be a pnmltLVe unimodular Pisot substitution with d 

letters. Let X be the atomic surface with respect to 0'. Then the Hausdorff di­

mension of ax is estimated by 

where dimB ax is the Box dimension of ax and)'1 is the largest eigenvalue of the 

matrix of the graph GB . 

PROOF. By Proposition 2.5, the boundary ax is constructed by the sets 

(Xi n (Xi + nx)), (i,j,x) E VI. For any e> 0, each set Xi n (.xj + nx) can be 
covered by C(YI + er pieces parallelograms L~(nOlt) from the unit square iJlt and 
h II I L n( /I),) . d t t' (IA21 IA31 IAdl)n. f h t e para e ogram a n-u IS covere amos c IAdl·]I.;1····· IAdl pieces 0 t e 

cube whose length of the edge is IAdln. Therefore, the Box dimension of Xi n 
(Xi + nx) can be estimated by 

d · (x·n(x· )) I' 10gc(YI+er+logc'P·IIAdld-I)-n 
1mB I } + nx ::; lID 1 I' n 1 

n->OO - og Ad 

log(YI + e) -log Al - (d - 1) 10giAdi 
-loglAdl 

for any e > O. Therefore, by Proposition 2.5, we see 

d· ax d' ..,x log YI -log Al - (d - 1) 10g1Ad\ 
lIDH ::; lIDB 0 ::; -loglAd 1 o 

If we know the explicit values YI> Al and Ad, we see probably that 
dimH ax < d - 1. But we have no idea to say 
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log YI -log Al - (d - 1) 10giAdi < d _ 1. 
-loglAdl 

Therefore, we give the next theorem (c.f. [14]). 

THEOREM 3.2. Under the same assumption for a as in Theorem 3.l, we have 

dimH ax < d - 1. 

o 
PROOF. From the set equations in Theorem 1.2 of {Xi };=1.2 •...• d and XI =f. 0, 

for the sufficient large no there exist jo E {I, ... ,d} and ko such that 

This means 

d 

OXic L 
j=1 

ano (J' ) = pUo) . 1 . SUo) o no.ko no.ko' 

L(no) X - rcif(SUo) ) c X . 
a M ~.~ I 

L (L~O(oXj) - rcf(S~~k)) 
S(j)· 

n,k' 

ano (j')=p(}) .j.S(}) 
n,k n,k 

From the above properties, we say that we can cover OXI by 

at most L~o (1, 1) pieces of L~o (oXd 

at most L~O(d, 1) pieces of L~O(OXd) 

and on the definition of the matrix 

(3.l2) 



Pisot substitution and Hausdorff dimension 211 

we see that D < L~o and D is primitive for sufficient large no. Therefore, we know 
that the largest eigenvalue fl of D is strictly smaller than A?o. The boundary aXl 
can be covered by at most Clp -pieces of paralleologram nLgno (d/i) for any fl < 
v < A?o. By analogous discussion in Theorem 3.1, we see that the boundary aXl 

is covered by at most CIP(Al!Ad!d-l)-pno pieces of cubes with the length !Ad!pno. 

Therefore, the a-dimensional Hausdorff measure yC'Ci(axJ) can be estimated by 

yC'''(axI) ~ lim vP ~ 1 (!Ad!pnot· 
p->oo (Al!Ad! - )pno 

Let us assume that v = A?O-X for some 0 < x < 1. Then the Hausdorff measure is 
estimated by 

yC'''( aXl ) ~ lim (A)X-l) !A;-(d-l) J)pno, 
p-+oo 

we can choose ao > 0 such that 

0:0 < d - 1 and Alx- l ) A;o-(d-I) < 1, 

and so we know that yC'CiO(aXl) = O. Therefore we have 

By analogous discussion, we see 

and so we get 

dimH(aX) < d - 1. o 

From now on, we will assume that the linear transformation La on f!J is a 
similitude. In two cases (i) d = 2 (ii) d = 3 and La is the complex Pisot matrix, 
we know that the linear transformation is the similitude on f!J. 

Let the list {XI"" Xd} of compact sets be the atomic surfaces, then we had 
known the sets satisfy the equation in Theorem 1.2. Therefore, we can get the 
graph Ga = {V, E, i, t} which is constructed by V = {1, ... , d}, eij E E if there 
exists j E {I, ... , d} such that (J(i) = Pki) . i . Ski). And for each eij E E let us 
define the contracting transformation Tij: f!J --+ f!J by 

Tij(x) = LaX - nf(Ski )) 

which is the similitude with some contractive constant 0 < s < 1. Then we see 
that {V,E,i,t,{Tij}} is a Mauldin-Williams graph and that {Xi!i= l,2, ... d} is 
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the graph construction set. Moreover, the graph satisfies the locally finite 
condition, that is, there exists a constant H > 0 such that for any I > r > 0 and 
any x E f?J 

o 
since the sets 10, j = 1,2, ... ,d satisfy the open set condition. 

Therefore, we have the following lemma. 

LEMMA 3.3. Let GB=(VI,E,i,t,{Tu,v}) be a Mauldin-William graph in 
Theorem 2.6. Then the graph satisfies the locally finite condition. 

PROOF. From the locally finite condition of GB = {V,E,i,t,{Tij}}, we see 
that 

c2 _ H(H -I) 
< H- 2 . 

Using Lemma 3.3 and Theorem I in [20], we have the following theorem. 

THEOREM 3.4. Let (j be the primitive unimodular Pisot substitution. Let us 
assume that the linear trasnformation La on the invariant surface f?J is a similitude. 
Then the Hausdorff dimension of oX is given by 

dimH oX = (d - I) log YI 
log Al 

where Yl is the largest eigenvalue of the matrix of the graph GB. 

4. Examples 

In this section, we propose some examples of atomic surfaces. 

EXAMPLE 4.1. Let (j be the following substitution: 

1-+112 
(j: 2 -+ 21 . 
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1 

-0.75 1 

Figure 1: the atomic surface X = Ui=I,2 Xi in Example 4.1. 

This substitution is a simple example which is not invertible. Therefore, the 
atomic surface is not an interval (see [6]). In this example, the graph GB of the 
boundary of the atomic surface is given by the following form (see Figure 2): 

The matrix Ma of the graph GB is given by 

1 1 0 1 0 0 
1 1 0 0 1 0 

Ma= 
0 0 0 0 1 0 
0 0 0 0 0 1 

1 0 1 0 1 0 
0 0 0 0 0 1 

and the characteristic polynomial of Ma is given by 

X2(x2 - 2x - l)(x - 1)2 
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Figure 2: the graph GB from the substitution: 1 1-+ 112, 21-+ 21. 

where the largest eigenvalue of Mu comes from x2 - 2x - 1. And so by using 
Theorem 3.4, the Hausdorff dimension of the boundary of the atomic surface is 
given by 

dimH ax = log YI = log 2.41421 = 0.915785 ... 
log A.I log 2.61803 

where y, and A.I are the largest eigenvalues of the graph matrix Mu and Lu 
respectively. 

EXAMPLE 4.2. Let us consider the substitution called Rauzy substitution [22]: 

1 ~ 12 
a:2~13 

3 ~ 1. 

Figure 3: the atomic surface X = Ui~1.2.3 Xi in Example 4.2. 
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The Hausdorff dimension had been calculated in [10]. In our method, the 
graph GB of the boundary of the atomic surface is given by the following form 
(see Figure 4): 

Figure 4: the graph GB from Rauzy substitution: 1 I-> 12, 2 I-> 13, I-> 1. 

The matrix Mq of the graph GB is given by 

0 1 1 0 0 0 0 
0 0 0 0 1 1 0 
0 0 0 1 0 0 0 

Mq = 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 
0 0 0 0 0 0 1 
1 0 0 0 0 0 0 

and the characteristic polynomial of Mq is given by 

x 3(x4 - 2x - 1). 

Therefore, the Hausdorff dimension of aXq is caluculated by 

dimH ax = 2 log Yl = 2 log 1.39534 = 1.09337 ... 
log A.l log 1.83929 

where Yl and A.I are the largest eigenvalues of the graph matrix Mq and Lq 
respectively. 

EXAMPLE 4.3. Let us consider the following substitution: 

1 -+ 12 
a: 2-+31. 

3 -+ 1 
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Figure 5: the atomic surface X = Ui=l,2,3 Xi in Example 4.3. 

The matrix La of the substitution is same as one of Rauzy substitution. 
But the shape of the atomic surface is perfectly different. The graph GB of the 
boundary of the atomic surface is given by the following form (see Figure 6): The 
characteristic polynomial of Ma is given by 

Therefore, the Hausdorff dimension of aXa is caluculated by 

d· ""X = 2 log YI = 2 log 1.72629 = 1 7919 
ImH U log A.I log 1.83929 . . .. 

where YI and A.I are the largest eigenvalues of the graph matrix Ma and La 

respectively. 

EXAMPLE 4.4. Let us consider the substitution: 

1 --t 112 

a:2--t13 

3 --t 1. 

This substitution is an example of a class of Pisot substitutions: 

#kl 
,..-"'--... 

1 --t 11 ... 12 
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Figure 6: the graph GB from the substitution: 1 1-4 12, 1 1-+ 31, 1 1-+ 1. 

1 ne2 

Figure 7: the atomic surface X = Ui=1,2,3 Xi in Example 4.4. 

which is related to Pisot p-expansions (see [13]). The graph GB of the 
boundary of the atomic surface is given by the following form (see 
Figure 8): 
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The matrix Ma of the graph GB is given by 

0 1 1 1 0 0 0 0 0 

0 0 0 0 1 1 0 0 0 

0 0 0 0 0 0 1 1 0 

0 0 0 0 0 0 1 0 0 

Ma= 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 1 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 

and the characteristic polynomial of Ma is given by 

x5(x4 - x2 - 3x - 1). 

Figure 8: the graph GB from the Ii-substitution: 1 f-4 112, 2 f-4 13, 3 I-> 1. 

Therefore, the Hausdorff dimension of ax a is caluculated by 

dimH ax = 210g YI = 2 log 1.74553 = 1.19177 ... 
log Al log 2.54682 

where YI and Al are the largest eigenvalues of the graph matrix Ma and La 

respectively. 
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EXAMPLE 4.5. Let us consider the substitution: 

1 -T 13 

cr:2-Tl. 

3 -T 32 

This substitution is coming from Example 4 in [8] (Lu = M2). 

-1 

Figure 9: the atomic surface X = Ui=I,2.3 Xi in Example 4.5. 
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This example is that the atomic surface is not simply connected. The 
characteristic polynomial of Mu is given by 

X32 (x 13 _ x12 _ x lO + x 9 - 2x8 - 4x7 - 2x5 - 4x4 + x 3 - 4x2 - 1) 

x (x5 - 2x3 + x-I) (x4 + x 3 + x 2 + X + 1) (x - 1) 

and the largest eigenvalue of Mu is coming from the polynomial (x 13 - x12 _ 

x lO + x 9 - 2x8 - 4x7 - 2x5 - 4X4 + x 3 - 4x2 - 1). Therefore, the Hausdorff di­
mension of axu is caluculated by 

di !'lX = 2 log YI = 2 log 1.72864 = 1 94643 
mH U log Al log 1.75478 . . .. 

where YI and Al are the largest eigenvalues of the graph matrix Mu and Lu 
respectively. 
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EXAMPLE 4.6. Let us consider the substitution: 

1 -+ 12123 
0":2-+1 

3 -+ 12. 

Figure 10: the atomic surface X = Ui=J,2,3 Xi in Example 4.6. 

This substitution is coming from O"J 00"2 for O"m Example 1 in [10]. 
This is an example such that the boundary of the atomic surface is not 

double point free. The graph GB of the boundary of the atomic surface is given 
the following form (see Figure 11); 

The matrix Ma of the graph GB is given by 

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Ma= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 
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The characteristic polynomial of M" is given by 

x 13 (x3 - 3x2 + 2x - l)(x - 1). 

Figure 11: the graph GB from the substitution: 1 f-> 12123, 2 f-> 1, 3 f-> 12. 

Therefore, the Hausdorff dimension of ax" IS caluculated by 

221 
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dimH ax = 2 log YI = 2 log 2.32472 = 1.5 
log Al log 3.0796 

where YI and Al are the largest eigenvalues of the graph matrix Ma and La 

respectively. 
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