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HYPERSPACES OF FJNITE SUBSETS 
OF NON-SEPARABLE HaBERT SPACES 

By 

Masato Y AGUCHI 

Abstract. Let t2(i) be the Hilbert space with weight i and t{ be 
the linear span of the canonical orthonormal basis of the separable 
Hilbert space t2 . In this paper, we prove that if a metric space X is 
homeomorphic to t 2(i) or t 2(T) x t{ then the hyperspace FinH(X) 
of non-empty finite subsets of X with the Hausdorff metric is 
homeomorphic to t2 (i) X t{. 

1. Introduction 

Let CldH(X) be the space of all non-empty closed subsets of a metric space 
X = (X, d) which admits the (infinite-valued) Hausdorff metric dH : CldH(X)2 --+ 

[0, ex) 1 defined as follows: 

dH(A,B) = max{sup d(x,A),sup d(x,B)}, 
XEB XEA 

where d(x,A)=inf{d(x,a)laEA}. By FinH(X), we denote the subspace of 
CldH(X) consisting of all finite subsets of X, where the topology of FinH(X) 
coincides with the Vietoris topology. For an infinite cardinality T, let t 2 (i) be the 
Hilbert space with weight T, that is, 

Let t{ be the linear span of the canonical orthonormal basis of the separable 
Hilbert space t2 = t2U~0), that is, 

t{ = {(Xi)iEN E t21 Xi = ° except for finitely many i EN}. 
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In [5], D. Curtis and Nguyen To Nhu proved that FinH(X) is homeomorphic to 
(::::;) the space t{ if and only if X is non-degenerate, strongly countable­
dimensional, connected, locally path-connected and CT-compact. Recently, the 
hyperspace FinAw(X) with the Attouch-Wets topology and Finw(X) with the 
Wijsman topology have been studied. In [11], it has been shown that if X is 
an infinite-dimensional Banach space with weight w(X) = r then FinAw(X)::::; 

t2(r) x tI, and in [6] that if X is an infinite-dimensional separable Banach space 
then Fin-w(X) ::::; t2 x tf. 

Let CompH(X) be the subspace of CldH(X) consisting of all compact sets in 
X. In [4], it is proved that ComPH(t2) ::::; t2. 

In this paper, we prove the following: 

THEOREM 1.1. Let r be an infinite cardinal. If a metric space X is homeo­
morphic to t2(r) or t2(r) x t{ then FinH(X)::::; t2(r) x tf. Moreover, in case 
X::::; t2(r), CompH(X)::::; t2(r) and FinH(X) is homotopy dense in CompH(X), 

2. The Characterization of t2 (r) x t{ 

Let Sx be the unit sphere in a normed linear space X = (X, II . II). For each 
x E X and r E (0, (0), let B(x, r) = {Xl EX Illx - xiii < r}. For a subset A eX, 

cl A is the closure of A, card A is the cardinarity of A, and diam A = 
sup{lla - bill a,b E A}. 

To prove Theorem 1.1, we use the characterization of the space t2(r) x t{ 
which is obtained in [10]. Before introducing this characterization, we need 
several definitions. 

ACT-completely metrizable space is a metrizable space which is a countable 
union of completely metrizable closed subsets. 

For each open cover tJlf of Y, two maps f, 9 : X ---., Yare tJlf-close (or f is 
tJlf-close to g) if each {f(x),g(x)} is contained in some U E tJlf. When Y = (Y,d) 
is a metric space, there exists a map a: Y ---., (0,00) such that each open ball 
B(y, a(y)) = {z E Y I d(y, z) < a(y)} is contained in some U E tJlf, whence if 9 

is a-close to f, that is, d(f(x),g(x)) < a(f(x)) for each XEX, then 9 is tJlf-close 
to f. 

A closed set A c X is called a (strong) Z-set in X provided, for each open 
cover tJlf of X, there is a map f: X ---., X such that f is tJlf-close to idx and 
f(X) n A = 0 (cl f(X) n A = 0). The union of countably many (strong) Z-sets 
in X is called a (strong) Z,,-set in X. When X itself is a (strong) Z,,-set in X, 

we call X a (strong) Z,,-space. A Z-embedding is an embedding whose image is a 
Z-set. 
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A space X is said to be universal for a class Ci (simply, Ci-universal) if every 
map f : C -> X of C E Ci is approximated by Z-embeddings, that is, for each 
C E Ci, each map f: C -> X, and for each open cover tJtt of X, there is a 
Z-embedding g : C -> X such that g is tJtt-close to f. 

It is said that X is strongly universal for Ci (simply, strongly Ci-universal) when 
the .following condition is satisfied: 

(su<,s') for each C E Ci and each closed set Dee, if f : C --} X is a map such 
that flD is a Z-embedding, then, for each open cover tJtt of X, there is 
a Z-embedding h: C -> X such that hiD = flD and h is tJtt-close to f. 

Let 9)(1 (c) be the class of completely metrizable spaces with weight ~ c. The 
next proposition is the characterization of t2(c) x t{: 

PROPOSITION 2.1. A metrizable space X is homeomorpic to t2(t) x t{ if and 

only if X is a strongly 9)(1 (c)-universal AR, which is a a-completely metrizable 

strong Z(J-space of w(X) = c. 

3. AR-property 

The following is due to D. Curtis and Nguyen To Nhu. In fact, it is a 
combination of Lemmas 3.5, 2.3 and the proof of Theorem 2.4 in [5). 

PROPOSITION 3.1. The hyperspace FinH(X) is an ANR (an AR) if and only if 

X is locally path-connected (and connected). 

Here, we shall prove a result stronger than Proposition 3.1 above. In [8], 
Michael introduced uniform AR's and uniform ANR's. A uniform ANR is a 
metric space X with the property: for an arbitrary metric space Z = (Z, d) 
containing X isometrically as a closed subset, there exist a uniform neighborhood 
U of X in Z (i.e., U = N(X, y) for some y > 0) and a retraction r : U -> X which 
is uniformly continuous at X, that is, for each e> 0, there is some 15 > Osuch 
that if x E X, Z E U and d(x, z) < 15 then d(x, r(z)) < e. When U = Z in the above, 
X is called a uniform AR. 

PROPOSITION 3.2. The hyperspace FinH(X) is a uniform ANR (a uniform AR) 

if and only if X is uniformly locally path-connected (and connected). 

PROOF. Since FinH(X) is a Lawson semilattice, by Theorem 3.4 III [7], 
it suffices to show that FinH(X) is uniformly locally path-connected (and 
connected) if and only if so is X. 
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To see the "if" part, let e > O. Then we have 15 > 0 such that each t5-c1ose 
points x, y E X can be connected by a path with diam < e/2. If A,B E FinH(X) 
with dH(A, B) < 15 then for each a E A there is ba E B such that dCa, ba ) < 15, 
hence we have a path !a: [0,1] --t X such that f(O) = a, f(l) = ba E B and 
diam !aerO, 1]) < e/2. Now we define f: [0,1] --t FinH(X) as follows: 

f(t) = BU {!aCt) I a E A} for each t E [0,1]. 

Since A is finite, it is easy to see that f is continuous. Note that f(O) = AU B 
and f(l) = B. Thus, f is a path from A UB to B with diam < e/2. Similarly, we 
can construct a path f' in FinH(X) from AU B to A with diam < e/2. Therefore, 
by connecting f and f', we have a path in FinH(X) from A to B with diam < e. 

Next, we show the "only if" part. By the uniform local path-connectedness 

of FinH(X), for each e > 0, we have 15 > 0 such that each t5-c1ose A, BE FinH(X) 
can be connected by an e-path in FinH(X). Now, let x, y E X with d(x, y) < b. 
Then, there is a path f: [0,1] --t FinH(X) such that diamdH f([O, 1]) < e/2, 
f(O) = {x} and f(l) = {y}. It suffices to show that x and y can be connected by 

a path in U f([O, 1]) = UtE[O,I] f(t) because diamd U f([O, 1]) < e. By Lemma 
2.2 in [5], U f([O, 1]) is compact and locally connected. Moreover, U f([O, 1]) 
is connected. Otherwise, there would be disjoint open sets U and V in X such 
that both U and V meet U f([O, 1]) and U f([O, 1]) c U U V. Then, [0, 1] could 
be separated into non-empty open sets U' = {t E [0,1] I f(t) c U} and V' = 

{t E [0,1] I f(t) n V # 0}, which contradicts to the connectedness of [0,1]. Thus, 
U f([O, 1]) is a Peano continuum, so x, y E U f([O, 1]) are connected by a path in 

U f([O, 1]). 
By replacing e by 00, it is shown that X is path-connected if and only if 

FinH(X) is path-connected. 0 

For a normed linear space X, FinH(X) is a uniform AR by 3.2. Observe 
that FinH(X) is dense in CompH(X), Then, by Theorem 2 in [9], we have the 
following: 

COROLLARY 3.3. For every normed linear space X, FinH(X) and CompH(X) 
are uniform AR's and FinH(X) is homotopy dense in CompH(X), 

4. Weight of FinH(X) 

For each kEN, let Fink(X) = {A E Fin(X) I card A ::s; k}. The following 
proposition is similarly proved as Proposition 5.1 of [11]. 
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PROPOSITION 4.1. For every metric space X, FinH(X) has the same weight 
as X. 

PROOF. Let D be a dense set in X with card D = w(X). Then, 
card Fin(D) = w(X) because 

card D s card Fin (D) = card U Fink(D) s ~o card D = w(X). 
keN 

For each A E FinH(X) and e > 0, we have BE Fin(D) such that dH(A, B) < e. 
Therefore FinH(D) is dense in FinH(X), Thus FinH(X) has the same weight 
ux. 0 

Since FinH(X) is dense in CompH(X), we have the following: 

COROLLARY 4.2. For every metric space X, CompH(X) has the same weight 
as X. 

5. O'-complete Metrizablity 

In this section, we show that the hyperspace FinH(X) is a-completely 
metrizable. 

PROPOSITION 5.1. Let X = (X,d) be a complete metric space. Then the 
hyperspace FinH(X) is a-completely metrizable. 

PROOF. Note that CldH(X) is complete if X is complete [2, Theorem 3.2.4]. 
Since FinH(X) = UkeN Fink(X), it is enough to prove that Fin~(X) is closed in 
CldH(X). For each BE CldH(X)\Fink(X), we have k + 1 many distinct points 
bl, ... , bk+1 E Band r > ° such that B(b j , r) n B(bj, r) = 0 if i 1= j. If C E CldH(X) 
satisfies dH(B, C) < r then there are CI, ... ,Ck+1 E C such that d(b j, Cj) < r, whence 
Cj 1= Cj if i 1= j. Then card C ~ card{ CI, . .. ,ck+d > k. This implies that C E 
CldH(X)\Fink(X), hence the complement of Fink(X) is open in CldH(X). 0 

For each closed subset Y of a metric space X, CldH( Y) can be regarded as a 
closed subspace of CldH(X). 

COROLLARY 5.2. If a metric space X is a-completely metrizable, then so is 
FinH(X). 
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PROOF. We can denote X = UneNXn, where Xn is a completely metrizable 
closed subset of X with Xn C Xn+l. By Propositon 5.1, Fin~(Xk) is a completely 
metrizable closed subset of CldH(Xk). Since CldH(Xn) is closed in CldH(X), it 
follows that FinH(X) = Uk eN Fin~(Xk) is a-completely metrizable. D 

The following is well-known. For completeness, we give a proof. 

PROPOSITION 5.3. For every complete metric space X = (X, d), ComPH(X) is 
complete. 

PROOF. Since CldH(X) is complete, it suffices to show that ComPH(X) is 
closed in CldH(X). Let A E CldH(X)\CompH(X), Since A is complete, A is not 
totally bounded. Then there exist e > 0 and ai E A (i E N) such that d (ai, aj) > e 
if i =P j. If BE CldH(X) and dH(A, B) < e/3 then we have b; E B (i E N) such that 
deb;, ai) < e/3 for each i E N, whence d(bi, bj ) > e/3 if i =P j. Thus, B is not 
totally bounded, hnce B is not compact. Therefore, CldH(X)\ComPH(X) is open. 

D 

6. Strong Zq-space 

PROPOSITION 6.1. Let X be a normed linear space with dim X ~ 1. Then, 
FinH(X) is a strong Zq-space. 

PROOF. Since FinH(X) = UkeN Fink(X), it is sufficient to prove that each 
Fink(X) is a strong Z-set in FinH(X), As shown in the proof of Proposition 5.1, 
Fin~(X) is a closed subset in FinH(X). Let a: FinH(X) --t (0,1) be any map. 
Take v E Sx and define a map I: FinH(X) --t FinH(X) as follows: 

I(A) = {a + k ~ 1 a(A)v I a E A, j = 0, ... ,k }. 

Then it is easy to see that card I(A) ~ k + 1 and I is a-close to id. 
We will show that Fink(X)ncl/(FinH(X)) = 0. Assume the contrary, 

that is, there is a sequence Ai E FinH(X) (i EN) such that the sequence I(Ai) 
has a limit point A E Fink(X). If liminf a(Ai) = 0 then by taking a subsequence, 
we can assume that a(Ai) --t O. Since I is a-close to id, it follows that 
dH(A;,!(Ai)) --t 0, which implies that Ai converges to A. But this contradicts the 
continuity of a and a(A) > O. Therefore, we have p = liminf a(Ai) > O. By taking 
a subsequence, we can assume that a(Ai) --t p. For each i E N, let 



Hyperspaces of finite subsets of non-separable Hilbert spaces 187 

A; = { a + k ~ l,Bv I a E Ai, j = 0, ... ) k}. 

Then, Af ~ A because dH(f(Ai),A[) < la(Ai) - ,BI. 
Let 11 = ,B/(k + 1) > 0. Then we have an open neighborhood Ua for each 

a E A diam Ua < 11 and Ua n Ua, = 0 if a -# a' . Since dH(A:,A) ~ 0, there is 
i E N such that AI c UaEA Ua . Take any x E Ai. Then 

Since card A :::;; k, there are a E A and j"# l' :::;; k such that 

j 
x + k + l,Bv, 

l' 
x + k + l,Bv E Ua . 

Then, it follows that 

But this is a contradiction. o 

7. Universality 

The following is Proposition 2.4 of [Ill: 

PROPOSITION 7.1. An ANR X with weight r is strongly ffi(j(r)-universal if 
every open se t in X is ffil j ( r ) -universal. 

The following is well-known (cf. [3, Chapter VI, Theorem 5.1]): 

LEMMA 7.2. The unit sphere Sx of an infinite-dimensional Banach space X 

with weight r is homeomorphic to X ~ t2(r). 0 

PROPOSITION 7.3. Let X be an infinite-dimensional Hilbert space with weight 

7:. Then FinH(X) is strongly ffilj(r)-universal. 

PROOF. By Corollary 3.3 and Propositon 7.1, it suffices to show that every 
open subset We FinH(X) is ffilj(7:)-universal. Let Y E ffilj(r), f: Y ~ Wand 
a: W ~ (0,1) be maps. Our purpose is to construct a Z-embedding g: Y ~ W 

which are IX-close to f. Define ,B: W ~ (0,1) by 
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fJ(A) =~ min{a(A),dH(A,FinH(X)\W)}. 

Note that if g: Y -+ FinH(X) is 2fJ-close to f then 9 is a-close to f and 
g(Y) c W. Each v E Sx has an open neighborhood U in Sx such that 
<v}, V2) > 0 for each VI, V2 E U, where <v}, V2) is the inner product. Since 
Sx ~ t'2(-r) is 9)1} (-r)-universal, we have a closed embedding h : Y -+ Sx such that 
<h(y), h(y') > 0 for each y, y' E Y. 

First, we define p: Y -+ FinH(R) by 

p(y) = {<h(y), a) 1 a E f(y)} for each y E Y. 

To see the continuity of p, let e > 0 and y E Y. For each a E f(y), there is Ja > 0 
such that 

VESx, bEX, Ilh(y)-vll, Ila-bll<Ja:::}l<h(y),a)-<v,b)l<e. 

Since f(y) is finite, we have J = min{Ja 1 a E f(y)} > O. By the continuity of h 
and f, we have 1] > 0 such that if y' E Y and d(y, y') < 1] then 

Ilh(y) - h(y')11 < J and dH(f(y),j(y')) < J. 

The last inequality implies that for each a E f(y), there is ba E f(y') with 

Iia - ball < J ::; Ja, whence 

d«h(y),a),p(y')) ::; I<h(y),a) - <h(y'),ba)1 < e. 

Conversely, for each bE f(y'), there is ab E f(y) with lib - abll < J ::; Jab> whence 

d«h(y'),b),p(y))::; I<h(y'),b) - <h(y),ab)1 < e. 

Therefore, d(y, y') < 1] implies dH(p(y), p(y')) < e, so p is continuous. 
Next, define q, r : Y -+ FinH(R) by 

q(y) = {O} U {Si - Si-l 12 ::; i::; m}, 

r(y) = {O,fJ(f(y))} U {x E q(y) I x::; fJ(f(y))}, 

where SI < ... < Sm with p(y) = {Si Ii::; m}. For each y E Y, let 

u(y) = min{x > 01 x E r(y)}. 

To see the continuity of q, let e > 0 and y E Y. Assume that y' E Y 

is sufficiently close to y so that p(y') satisfies dH(p(y), p(y')) < 1], where 1] = 
min{e/2, u(y)/3} > O. Denote p(y') = {tj I j::; n}, where tl < ... < tn. Then, for 
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each i ~ m, we have j ~ n such that lSi - 01 < 1'/. Since p(y') c Ut::;:m B(sj, 1'/) and 
1'/-balls B(si,1'/) are pairwise disjoint, for each i ~ m, there is k ~ n such that 

Then, it follows that 

l(si+1 - Si) - (tk+1 - tk)1 ~ ISi+1 - tk+d + Itk - sd < 21'/ ~ e. 

This means that d((Si+1 - Si), q(y')) < e. On the other hand, for each j ~ n, 
we have i, i' ~ m such that Iti - s;j, Iti+1 - si'l < 1'/. Then, it is easy to see that 
i ~ i' ~ i + 1. If i' = i then 

l(ti+1 - ti) - 01 = It)+1 - til ~ It)+1 - sill + Iti - sd < 21'/ ~ 8. 

If i' = i + 1 then 

l(ti+1 - ti) - (S;+I - si)1 ~ Iti+1 - sill + Is; - til < 21'/ ~ 8. 

These mean that d((ti+1 - ti), q(y)) < 8. Thus, we have dH(q(y), q(y')) < 8. 

Consequently, q is continuous. 
To see the continuity of r, let e > 0 and y E Y. By the continuity of q and 13, 

we have J> 0 such that if y' E Y and d(y, y') < J then 

If3(f(y)) - f3(f(y'))1 < e and dH(q(y), q(y')) < e. 

For each a E q(y) with a < f3(f(y)), there is ba E q(yl) such that la - bal < 8. 

If a ~ f3(f(yl)) - 8 then ba ~ f3(f(yl)), whence d(a, r(yl)) ~ la - bal < e. If 
f3(f(yl)) - e < a then d(a, r(yl)) ~ la - f3(f(yl)) I < 8 because a < f3(f(y)) < 
f3(f(yl)) + e. On the other hand, for each bE q(yl) with b < f3(f(y')), there 
is ab E q(y) such that Ib - abl < e. If b ~ f3(f(y)) - e then ab ~ f3(f(y)), i.e., 
ab E r(y). Hence, d(b, r(y)) ~ Ib - abl < e. If f3(f(y)) - e < b then d(b, r(y)) ~ 
Ib - f3(f(y)) I < e because b < f3(f(yl)) < f3(f(y)) + e. Therefore, d(y, yl) < J 
implies dH (r(y), r(yl)) < e, hence r is continuous. 

Next, we define a map g: Y -. FinH(X) as follows: 

g(y) = {a + bh(y) I a E f(y), bE r(y)}. 

Since f and r are continuous, it is easy to see that g : Y -. FinH(X) is con­
tinuous. Since diam r(y) = f3(f(y)), it follows that dH(f(y),g(y)) < 2f3(f(y)). It 
should be remarked that 

(*) <h(y),x)-minp(y) E{O}U[U(Y),oo) for each XEg(y). 

Indeed, let x = a + bh(y) E g(y), where a E f(y) and bE r(y). Then, 
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min p(y) ~ (h(y),a) ~ (h(y),a) + bllh(y) II = (h(y),a + bh(y) = (h(y),x). 

Since b = ° or b 2:: u(y) > 0, we have (*). 
To see that g is injective, assume that there are y =1= y' E Y with g(y) = g(y'). 

Since hey) =1= hey'), it follows that 

° < IIh(y) - h(y')112 = IIh(y) 112 + IIh(y') 112 - 2(h(y),h(y') 

= 2(1 - (h(y),h(y')), 

hence 0< (h(y),h(y') < 1. Let a E fey) with (h(y), a) = min p(y). Note 
a E g(y') because fey) c g(y) = g(y'). If a if; fey') then there are a' E fey') c 

g(y') = g(y) and 0< b ~ P(f(y')) such that a = a' + bh(y'), whence 

(h(y),a') = (h(y), (a - bh(y'))) = (h(y),a) - b(h(y),h(y') < min p(y). 

This contradicts to (*). Therefore, a E fey'), hence a + u(y')h(y') E g(y') = g(y). 
On the other hand, we have no points c E g(y) with min p(y) < (h(y), c) < 
min p(y) + u(y) by (*). Then, 

min p(y) + u(y) ~ (h(y), (a + u(y')h(y'))) 

= (h(y), a) + u(y') (h(y), h(y') 

= min p(y) + u(y')(h(y), hey')~. 

Therefore, 0< u(y)/u(y') ~ (h(y),h(y') < 1. By replacing y and y' by each 
others, we get ° < u(y')/u(y) < 1 but this is impossible. 

To see that g is a closed map, let A c Y be a closed set in Y and Yi E A, 
i E N, such that g(Yi) converges to G E W. Then liminf P(f(Yi)) > 0. Otherwise, 
by taking a subsequence, we could assume that diam r(Yi) = P(f(Yi)) ~ 0, 
hence dH(f(Yi),g(Yi)) ~ ° (i ~ 00). In this case, f(Yi) converges to G, hence 
P(f(Yi)) ~ P( G) > 0, which is a contradiction. Now, for each i EN, let 

Xi E fey;) and x; = x; + P(f(y;))h(Yi) E g(y;). 

Since Xi E g(Yi) and g(y;) ~G, we have Zi E G such that d(x;, Zi) ~ 0. Since G is 
finite, by taking a subsequence, it can be assumed that all Z; are the same point 
Z E G, whence X; ~ z. By the same way, we can assume that there is z' E G such 
that xf ~ z'. Note that z =1= z' because liminf P(f(Yi)) > 0. Hence, this implies 
that h(Yi) converges to (z' - z)/llz' - zll E Sx. Since h is a closed embedding, y; 
converges to some YEA, which implies that G = g(y) E g(A). 

To see that g(Y) is a Z-set in W, for each a map 0:: W ~ (0,1), take Yo E Y 

and let 
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y(A) =~ min{ex(A),dH(A, FinH(X)\W), u(yo)} > 0. 

Define maps p', q', r' : W -t FinH(R) and q;; W -t W as follows: 

p'(A) = {<h(yo), a) \ a E A}, 

q' (A) = {O} U {Sj - Sj-l \2 ~ i ~ m}, 

r'(A) = {O, y(A)} U {x E q'(A) \ x ~ y(A)}, 

q;(A) = {a + bh(yo) \ a E A,b E r'(y)}, 

where Sl < ... < Sm with p'(A) = {Si \ i ~ m}. If g(Y) n q;(W) # 0 then this 
intersection is {g(yo)} by the same way as above which shows the injectivity of g. 

If there is A E W such that q;(A) = g(yo) then for each a E A with <h(yo), a) = 
min p(Yo), we have a' = a + y(A)h(yo) E q;(A). But this is impossible because 
y(A) < u(yo). 0 

REMARK. In the above proof, when ex is extended to a map iX: W -t (0,1) 
of an open set W in Comp H(X) such that W = W n FinH(X), it can be seen 
that g( Y) is closed in W as follows: In this case, (J has the natural extension 
j]: W -t (0,1). If g(Yi) converges to G E W, we have liminf (J(f(Yi)) > ° by the 
same arguments. Moreover, even if G is not finite, there is a subsequence of 
(Zi)iEN converging to some Z E G because G is compact. Then, the corresponding 
subsequence of (X;)iEN converges to z. Thus, we can assume that Xi -t z. Similarly, 
we can assume that (x;)iEN converges to some z' E G. Hence, we have G E g(Y) 
by the same way. 

PROPOSITION 7.4. Let X be an infinite-dimensional Hilbert space with weight 
r. Then CompH(X) is strongly Wlr (r)-universal. 

PROOF. The proof is similar to Propositon 7.3. Let f: Y -t W be a map 
from Y E Wlr(r) to an open set We CompH(X), For each open cover dlt of W, 
let "f/' be an open star-refinement of dlt. Since FinH(X) is homotopy dense in 
ComPH(X), it easily follows that W n FinH(X) is homotopy dense in W. Then, f 
is "f/'-close to a map f' : Y -t W n FinH(X), By Propositon 7.3, f' is "f/'-close to 
a Z-embedding g : Y -t W n FinH(X), where g( Y) is closed in W by the above 
remark. Then, it follows that g : Y -t W is a Z-embedding which is dlt-close to f. 

o 
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'THEOREM 7.5. If a metric space X is homeomorphic to t2(r) then 

FinH(X) ~t2(r) x t{ and CompH(X) ~t2(r). 

PROOF. Since the topology of CompH(X) coincides with the Vietoris to­
pology, we have FinH(X) ~ FinH(t2(r)) and ComPH(X) ~ ComPH(t2(r)). It has 
been proved that FinH(t2(r)) satisfies the all conditions in Propositon 2.1. Then 
FinH(X) ~t2(r) x t{ On the other hand, CompH(t2(r)) is a strongly 91l1(r)­
universal complete metric AR with weight r. By Torunczyk's characterization of 
t2(r) [12, Proposition 2.1] (cf. [13]), we have CompH(X) ~ t2(r). 0 

For a dense subspace Z = t2(r) x t{ of t2(r) x t2 ~ t 2(r), the unit sphere 
Sz contains a copy St2(T) x {O} of St2(T) as closed set. Then there is a closed 
embedding h : Y --7 Sz for each Y E 91l1(r). By the same proof as Propositon 7.3, 
we can show the 91l1(r)-universality of FinH(Z), Consequently, we have the 
following: 

'THEOREM 7.6. If a metric space X is homeomorphic to t2(r) x t{ then 
FinH(X) ~ t2(r) x t{. 0 
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