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A GAP THEOREM FOR COMPLETE FOUR-
DIMENSIONAL MANIFOLDS WITH 6W+ =0

By

Takashi OxaYASU

Abstract. Let M* be a complete noncompact oriented four-
dimensional Riemannian manifold satisfying §W* =0, where W+
is the self-dual part of the Weyl curvature tensor. Suppose its scalar
curvature is nonnegative and Sobolev’s inequality holds. We show
that if the L? norm of W+ is sufficiently small, then W+ = 0.

1. Introduction

Let M* be a complete oriented four-dimensional Riemannian manifold. By
the Hodge star operator #, the bundle of 2-forms A? splits into the sum of
the bundle of self-dual and anti-self-dual 2-forms A> = A2 @ A%. According to
this decomposition, Weyl curvature tensor W splits as W = W+ + W=, W+ is
called the self-dual part of the Weyl curvature tensor. We consider the equation
OW™* =0. Here ¢ is the formal divergence defined as

4
SW (X1, X0, X3) = =Y (V. WH)(e1, X1, X2, X3),

i=1

where {e;} is an orthonormal basis of TM with positive orientation. When
the Ricci tensor is parallel, W™ =0 ([2], [3]). Therefore, manifolds satisfying
OW* =0 are natural generalizations of Einstein manifolds or symmetric spaces.
Recently Gursky [4], Itoh-Satoh [5] proved L? or pointwise isolation theo-
rem of W™ for compact oriented four-dimensional Riemannian manifolds with
oW+ =0.
In this note we give a gap theorem for noncompact manifolds.
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THEOREM 1.1. Let M* be a complete noncompact oriented four-dimensional
Riemannian manifold with W+ = 0. Suppose its scalar curvature is nonnegative
and Sobolev’s inequality holds on M*. Then there is a constant C > 0 depending
only on the Sobolev constant such that if fM]Wﬂ2 dv < C, then Wt =0.

2. Proof

The method of proof is a standard way in proving such an isolation theorem
(for example, see [1] for minimal submanifold case, [6] for harmonic map case).
By the Weitzenbock formula, we have (cf. (3.11) and (3.12) in [4])

(1) AW P = 2lVW* > + RIWH? = VoW,

where R is the scalar curvature of M. By using the following Kato’s inequality

((2.1) in [4])
) <42

and the assumption R >0 to (1), we obtain

V6

2w < A+

For simplicity we set a = |W™*| and rewrite the above inequality as
%lVa[2 < aha+ ?a?
Let A e C}(M). Multiplying A% and integrating over M, we get
@) %Jﬂwf < leaAa+\/76J/12a3.
Since
JZlaVl -Va + J/12|Va|2 + leaAa =0,
we get from (2)
3) 2J121Va|2+2JAaVX~Vas ?sza?

We have
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2J|xaw -Va| < sJleValz +Ha2|v,1|2
for any ¢ > 0. Plugging this into (3), we get
(@) @—g) JAZ(Vaiz */EJA%P +1 J 2V
On the other hand we have Sobolev’s inequality

(J 1f1“/3)3/4 < csjsm for Vf e CL(M).

Substituting /3 into f, we obtain

()" <5 o)

We apply this inequality for la and get

(5) (Jx“a“)lﬂ < 18c§{J/12|Va[2+Ja2|v/1|2}.

From (4) and (5), we get

(6) (Jx“a“)l/z lggfj{\ggjazaw J a?|VA[? }+18C§Ja2|V/{|2.

Applying Hélder’s inequality

lea3 < (J l4a4>1/2 <Ja2)1/2
to (6), we get
{1 B ?\/_ S<J >1/2}<P4a4>1/2 § {S(QS_CS) + 18Cs}Ja2IV/1!2.
3 3

If we have
1/2
7 AL <Ja2) >0,
3 &

then by using a standard cut-off function argument, we conclude a = |W*| = 0.
Since we can choose ¢ arbitrarily small, (7) is satisfied if

25 1
WH? <
JM’ <37 c?
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