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ON A RESULT OF FLAMMENKAMP-LUCA 
CONCERNING NONCOTOTIENT SEQUENCE 

By 

Aleksander GRYTCZUK and Barbara M{iDRYK 

Abstract. Let rp(n) be the Euler totient function of n. A positive 
integer m is called a noncototient if the equation n - rp(n) = m has 
no solution in positive integers n. The sequence (2kp):1 which is 
noncototient for some prime P will be called as Sierpiiiski's sequence. 
In this paper we prove some interesting properties of the Sierpiiiski 
sequence given in the Theorem 1, 2, 3. 

1. Introduction 

In 1959 Sierpiiiski ([6), pp. 200-201) asked whether there exist infinitely many 
natural numbers m such that m =1= n - rp(n), (see also, Erdos [2] and B36 in [4]). 
Using Riesel's result ([5]), that all numbers of the form 2kpO - 1 with prime 
Po = 509203 are composite for k = 1,2, ... , Browkin and Schinzel [1] proved that 
all numbers 2kpO can not be presented in the form n - rp(n). It is a positive 
answer to the question posed by Sierpiiiski. 

Hence there is Sierpiiiski's sequence with Po = 509203. 
In the paper [3] Flammenkamp and Luca proved the following sufficient 

condition for the sequence (2kp)hl to be noncototient. 
Let p be a positive integer satisfying the following four conditions: 
(i) p is an odd prime 
(ii) p is not a Mersenne prime 
(iii) the number 2kp - 1 is composite for all integers k.;;::: 1 
(iv) 2p is a noncototient. 
Then the sequence (2kp)hl is a noncototient, so is the Sierpiiiski se

quence. 
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In this connection we prove, in the Theorem 1 that the above conditions are 

also neccessary. Moreover in the Theorem 2 we prove that there are infinitely 

many primes p for which the conditions (ii) and (iii) are fulfilled. Further in the 

Theorem 3 we prove that 2p is of the form n - rp(n) if and only if there are 

different odd primes Pj where j = 1,2, ... , r; r;:::': 1 such that p = PI P2 ... Pr -

t(PI - 1)(p2 - 1)··· (Pr - 1). 

2. The Results 

THEOREM 1. Let P be an odd prime. The sequence (2kp):=1 is the Sierpiftski 

sequence if and only if: 
1 0. 2p is a nonco to tient 

2°. p is not a Mersenne prime 

3°. 2kp - 1 is composite for every positive integer k;:::.: 1. 

THEOREM 2. There are infinitely many primes p in the arithmetical pro-
6 6 

gression: mIl qj + Po, where Po = 509203, I1 qj = 3 x 5 x 7 x 13 x 17 x 241 such 
that: j=1 j=1 

1°. 2kp - 1 is composite for every positive integer k;:::.: 1 

2°. p is not a Mersenne prime. 

THEOREM 3. The number 2p, where p is an odd prime is of the form n - rp(n) 

if and only if there are different odd primes Pi> where j = 1,2, ... , r; r;:::': 1 such 

that p = PIP2'" Pr - ~ (PI - 1)(p2 - 1) .. · (Pr - 1). 

3. Proof of Theorem 1 

The sufficiency of conditions we prove by induction with respect to k. Suppose 

that the conditions 1 °_3° are satisfied: Then we see that the first step of inductive 

process follows by the assumption 1°. Now, we assume that the number 2k - Ip is a 

noncototient and suppose that 2kp is a cototient. Hence, for some natural number 

nk we have 

(3.1 ) 

Since rp(nk) == 0 (mod 4) or rp(nk) == 2 (mod 4) then from (3.1) we have 

nk == 0 (mod 4) or nk = 2qa, IY.;:::': 1, where q is odd prime, respectively. If 

nk == 0 (mod 4) then (P(~k) = rp(~) and by (3.1) it follows that 
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(3.2) 

and we get a contradiction with inductive assumption. 
In the second case (3.1) implies 

(3.3) 

If IX = 1 then (3.3) implies 2kp - 1 = q, contrary to condition 3°. Hence, 
IX> 1 and from (3.3) we obtain 

(3.4) 

From (3.4) we have IX = 2 and q = P and (3.3) implies 2k - 1 = p. Again we 
obtain a contradiction with condition 2°. 

Now, we can prove the necessity of these conditions. Suppose that the se
quence (2kp)k<?:1 is noncototient for every positive integer k. Then we see that the 
condition 1 ° follows immediately for k = 1. 

It remains to prove that the conditions 2° and 3° are satisfied. We prove 
this fact by contraposition. Indeed suppose that for some natural k > 1 we have 
2k - 1 = P or 2kp - 1 = q, where p and q are odd primes. Let p = 2k - 1. Then 
taking n = 2p2 we get 

(3.5) n - rp(n) = 2p2 - rp(2p2) = 2p2 - p(p - 1) = p(p + 1). 

Since p = 2k - I then (3.5) implies n - rp(n) = 2kp. 

The case 2kp - 1 = q is considered similarly. Taking' n = 2q we get 

n - rp(n) = 2q - rp(2q) = 2q - (q - 1) = q + 1 = 2kp 

and the proof of the theorem 1 is complete. • 

4. Proof of the Theorem 2 

In the proof of the Theorem 2 we use of the following Lemma: 

LEMMA 1. Let Po = 509203. Then we have 

(4.1) 

(4.2) 

where 

Po == 2aj (mod qj} 

2kpO == 1 (mod qj), 

(4.3) (qj, aj) = {(3, 0), (5, 3), (7, 1), (13, 5), (17, 1), (241,21)} 



536 Aleksander GRYTCZUK and Barbara ~RYK 

for j = 1, 2, ... ,6 and every integer k satisfies of the congruences 

(4.4) 

for mj = 2,4,3,12,8,24 and j = 1,2, ... ,6 respectively. 

The proof of Lemma is given in the paper [1]. For the proof of the Theorem 
2 consider the following arithmetical progression: 

(4.5) 
6 

II qj = 3 x 5 x 7 x 13 x 17 x 241. 
j=l 

By (4.2) it follows that (po, n qj) = 1 and consequently Dirichlet's theorem 
J=l 

on arithmetical progression implies that there are infinitely many primes p con-
6 

tained in the progression (4.5). Let p = m I1 qj + Po be one of such primes. Then 
we have j=l 

From (4.6) and (4.2) we obtain 

2kp - 1 == 0 (mod qj), 

hence, all numbers 2kp - 1 are composite. 
For the proof of the second part of the theorem 2 suppose that there is a 

6 
prime number p in the arithmetical progression m I1 qj + Po that is a Mersenne 
prime. Hence for some prime k we have j=l 

(4.7) 

From (4.7) we get 

6 

P = m II qj + Po = 2k - 1. 
j=l 

(4.8) qj 12k - 1 - Po, for some qj = 3,5,7,13,17,241. 

By (4.8) it follows that 

(4.9) 
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Since qj 12kpO - 1, from (4.2) then by (4.9) it follows that 

(4.10) tfi I pO(Po + 1) - 1. 

Using computer calculation we get the following factorization into primes 

(4.11) Po(Po + 1) - 1 = 509203 x 509204 - 1 = 59 x 71 x 809 x 76511. 

From (4.11) it fo1lows that none of tfi = 3,5,7,13, 17,241 satisfies the relation 
(4.10). 

The proof of the theorem 2 is complete. II 

5. Proof of the Theorem 3 

Suppose that for some natural number n the number 2p has presantation in 
the form 

(5.1) 2p = n - rp(n) 

Let n = 2ap~lp~2 ... p:r, where Pj are different odd primes for j = 1,2, ... , r; 
r ~ 1 then rp(n) = 2a-Ip~I-I ... p:r-I(PI - 1)··· (Pr - 1) and by (5.1) it follows 
that 

If ct. ~ 2 then (5.2) is impossible. Hence, C( = 1 and by (5.2) follows that 
ct.j = 1 for j = 1,2, ... ,r and consequently (5.2) implies that 

(5.3) 

Conversely, assume that (5.3) is satisfied. Then putting n = 2PI ... PI" we have 
rp(n) = (PI - 1)·· . (Pr - 1) and we see that (5.3) implies 2p = n - rp(n). The proof 
is complete. • 
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